1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "PPCTargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/CostTable.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/Support/CommandLine.h" 16 #include "llvm/Support/Debug.h" 17 using namespace llvm; 18 19 #define DEBUG_TYPE "ppctti" 20 21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24 // This is currently only used for the data prefetch pass which is only enabled 25 // for BG/Q by default. 26 static cl::opt<unsigned> 27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 28 cl::desc("The loop prefetch cache line size")); 29 30 static cl::opt<bool> 31 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 32 cl::desc("Enable using coldcc calling conv for cold " 33 "internal functions")); 34 35 //===----------------------------------------------------------------------===// 36 // 37 // PPC cost model. 38 // 39 //===----------------------------------------------------------------------===// 40 41 TargetTransformInfo::PopcntSupportKind 42 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 43 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 44 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 45 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 46 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 47 return TTI::PSK_Software; 48 } 49 50 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 51 if (DisablePPCConstHoist) 52 return BaseT::getIntImmCost(Imm, Ty); 53 54 assert(Ty->isIntegerTy()); 55 56 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 57 if (BitSize == 0) 58 return ~0U; 59 60 if (Imm == 0) 61 return TTI::TCC_Free; 62 63 if (Imm.getBitWidth() <= 64) { 64 if (isInt<16>(Imm.getSExtValue())) 65 return TTI::TCC_Basic; 66 67 if (isInt<32>(Imm.getSExtValue())) { 68 // A constant that can be materialized using lis. 69 if ((Imm.getZExtValue() & 0xFFFF) == 0) 70 return TTI::TCC_Basic; 71 72 return 2 * TTI::TCC_Basic; 73 } 74 } 75 76 return 4 * TTI::TCC_Basic; 77 } 78 79 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 80 Type *Ty) { 81 if (DisablePPCConstHoist) 82 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 83 84 assert(Ty->isIntegerTy()); 85 86 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 87 if (BitSize == 0) 88 return ~0U; 89 90 switch (IID) { 91 default: 92 return TTI::TCC_Free; 93 case Intrinsic::sadd_with_overflow: 94 case Intrinsic::uadd_with_overflow: 95 case Intrinsic::ssub_with_overflow: 96 case Intrinsic::usub_with_overflow: 97 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 98 return TTI::TCC_Free; 99 break; 100 case Intrinsic::experimental_stackmap: 101 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 102 return TTI::TCC_Free; 103 break; 104 case Intrinsic::experimental_patchpoint_void: 105 case Intrinsic::experimental_patchpoint_i64: 106 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 107 return TTI::TCC_Free; 108 break; 109 } 110 return PPCTTIImpl::getIntImmCost(Imm, Ty); 111 } 112 113 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 114 Type *Ty) { 115 if (DisablePPCConstHoist) 116 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 117 118 assert(Ty->isIntegerTy()); 119 120 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 121 if (BitSize == 0) 122 return ~0U; 123 124 unsigned ImmIdx = ~0U; 125 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 126 ZeroFree = false; 127 switch (Opcode) { 128 default: 129 return TTI::TCC_Free; 130 case Instruction::GetElementPtr: 131 // Always hoist the base address of a GetElementPtr. This prevents the 132 // creation of new constants for every base constant that gets constant 133 // folded with the offset. 134 if (Idx == 0) 135 return 2 * TTI::TCC_Basic; 136 return TTI::TCC_Free; 137 case Instruction::And: 138 RunFree = true; // (for the rotate-and-mask instructions) 139 LLVM_FALLTHROUGH; 140 case Instruction::Add: 141 case Instruction::Or: 142 case Instruction::Xor: 143 ShiftedFree = true; 144 LLVM_FALLTHROUGH; 145 case Instruction::Sub: 146 case Instruction::Mul: 147 case Instruction::Shl: 148 case Instruction::LShr: 149 case Instruction::AShr: 150 ImmIdx = 1; 151 break; 152 case Instruction::ICmp: 153 UnsignedFree = true; 154 ImmIdx = 1; 155 // Zero comparisons can use record-form instructions. 156 LLVM_FALLTHROUGH; 157 case Instruction::Select: 158 ZeroFree = true; 159 break; 160 case Instruction::PHI: 161 case Instruction::Call: 162 case Instruction::Ret: 163 case Instruction::Load: 164 case Instruction::Store: 165 break; 166 } 167 168 if (ZeroFree && Imm == 0) 169 return TTI::TCC_Free; 170 171 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 172 if (isInt<16>(Imm.getSExtValue())) 173 return TTI::TCC_Free; 174 175 if (RunFree) { 176 if (Imm.getBitWidth() <= 32 && 177 (isShiftedMask_32(Imm.getZExtValue()) || 178 isShiftedMask_32(~Imm.getZExtValue()))) 179 return TTI::TCC_Free; 180 181 if (ST->isPPC64() && 182 (isShiftedMask_64(Imm.getZExtValue()) || 183 isShiftedMask_64(~Imm.getZExtValue()))) 184 return TTI::TCC_Free; 185 } 186 187 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 188 return TTI::TCC_Free; 189 190 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 191 return TTI::TCC_Free; 192 } 193 194 return PPCTTIImpl::getIntImmCost(Imm, Ty); 195 } 196 197 unsigned PPCTTIImpl::getUserCost(const User *U, 198 ArrayRef<const Value *> Operands) { 199 if (U->getType()->isVectorTy()) { 200 // Instructions that need to be split should cost more. 201 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 202 return LT.first * BaseT::getUserCost(U, Operands); 203 } 204 205 return BaseT::getUserCost(U, Operands); 206 } 207 208 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 209 TTI::UnrollingPreferences &UP) { 210 if (ST->getDarwinDirective() == PPC::DIR_A2) { 211 // The A2 is in-order with a deep pipeline, and concatenation unrolling 212 // helps expose latency-hiding opportunities to the instruction scheduler. 213 UP.Partial = UP.Runtime = true; 214 215 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 216 // often outweigh the cost of a division to compute the trip count. 217 UP.AllowExpensiveTripCount = true; 218 } 219 220 BaseT::getUnrollingPreferences(L, SE, UP); 221 } 222 223 // This function returns true to allow using coldcc calling convention. 224 // Returning true results in coldcc being used for functions which are cold at 225 // all call sites when the callers of the functions are not calling any other 226 // non coldcc functions. 227 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 228 return EnablePPCColdCC; 229 } 230 231 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 232 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 233 // on combining the loads generated for consecutive accesses, and failure to 234 // do so is particularly expensive. This makes it much more likely (compared 235 // to only using concatenation unrolling). 236 if (ST->getDarwinDirective() == PPC::DIR_A2) 237 return true; 238 239 return LoopHasReductions; 240 } 241 242 const PPCTTIImpl::TTI::MemCmpExpansionOptions * 243 PPCTTIImpl::enableMemCmpExpansion(bool IsZeroCmp) const { 244 static const auto Options = []() { 245 TTI::MemCmpExpansionOptions Options; 246 Options.LoadSizes.push_back(8); 247 Options.LoadSizes.push_back(4); 248 Options.LoadSizes.push_back(2); 249 Options.LoadSizes.push_back(1); 250 return Options; 251 }(); 252 return &Options; 253 } 254 255 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 256 return true; 257 } 258 259 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 260 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 261 return 0; 262 return ST->hasVSX() ? 64 : 32; 263 } 264 265 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 266 if (Vector) { 267 if (ST->hasQPX()) return 256; 268 if (ST->hasAltivec()) return 128; 269 return 0; 270 } 271 272 if (ST->isPPC64()) 273 return 64; 274 return 32; 275 276 } 277 278 unsigned PPCTTIImpl::getCacheLineSize() { 279 // Check first if the user specified a custom line size. 280 if (CacheLineSize.getNumOccurrences() > 0) 281 return CacheLineSize; 282 283 // On P7, P8 or P9 we have a cache line size of 128. 284 unsigned Directive = ST->getDarwinDirective(); 285 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 286 Directive == PPC::DIR_PWR9) 287 return 128; 288 289 // On other processors return a default of 64 bytes. 290 return 64; 291 } 292 293 unsigned PPCTTIImpl::getPrefetchDistance() { 294 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 295 // default, only on the BG/Q). 296 return 300; 297 } 298 299 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 300 unsigned Directive = ST->getDarwinDirective(); 301 // The 440 has no SIMD support, but floating-point instructions 302 // have a 5-cycle latency, so unroll by 5x for latency hiding. 303 if (Directive == PPC::DIR_440) 304 return 5; 305 306 // The A2 has no SIMD support, but floating-point instructions 307 // have a 6-cycle latency, so unroll by 6x for latency hiding. 308 if (Directive == PPC::DIR_A2) 309 return 6; 310 311 // FIXME: For lack of any better information, do no harm... 312 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 313 return 1; 314 315 // For P7 and P8, floating-point instructions have a 6-cycle latency and 316 // there are two execution units, so unroll by 12x for latency hiding. 317 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 318 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 319 Directive == PPC::DIR_PWR9) 320 return 12; 321 322 // For most things, modern systems have two execution units (and 323 // out-of-order execution). 324 return 2; 325 } 326 327 int PPCTTIImpl::getArithmeticInstrCost( 328 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 329 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 330 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { 331 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 332 333 // Fallback to the default implementation. 334 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 335 Opd1PropInfo, Opd2PropInfo); 336 } 337 338 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 339 Type *SubTp) { 340 // Legalize the type. 341 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 342 343 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 344 // (at least in the sense that there need only be one non-loop-invariant 345 // instruction). We need one such shuffle instruction for each actual 346 // register (this is not true for arbitrary shuffles, but is true for the 347 // structured types of shuffles covered by TTI::ShuffleKind). 348 return LT.first; 349 } 350 351 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 352 const Instruction *I) { 353 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 354 355 return BaseT::getCastInstrCost(Opcode, Dst, Src); 356 } 357 358 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 359 const Instruction *I) { 360 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 361 } 362 363 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 364 assert(Val->isVectorTy() && "This must be a vector type"); 365 366 int ISD = TLI->InstructionOpcodeToISD(Opcode); 367 assert(ISD && "Invalid opcode"); 368 369 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 370 // Double-precision scalars are already located in index #0. 371 if (Index == 0) 372 return 0; 373 374 return BaseT::getVectorInstrCost(Opcode, Val, Index); 375 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 376 // Floating point scalars are already located in index #0. 377 if (Index == 0) 378 return 0; 379 380 return BaseT::getVectorInstrCost(Opcode, Val, Index); 381 } 382 383 // Estimated cost of a load-hit-store delay. This was obtained 384 // experimentally as a minimum needed to prevent unprofitable 385 // vectorization for the paq8p benchmark. It may need to be 386 // raised further if other unprofitable cases remain. 387 unsigned LHSPenalty = 2; 388 if (ISD == ISD::INSERT_VECTOR_ELT) 389 LHSPenalty += 7; 390 391 // Vector element insert/extract with Altivec is very expensive, 392 // because they require store and reload with the attendant 393 // processor stall for load-hit-store. Until VSX is available, 394 // these need to be estimated as very costly. 395 if (ISD == ISD::EXTRACT_VECTOR_ELT || 396 ISD == ISD::INSERT_VECTOR_ELT) 397 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 398 399 return BaseT::getVectorInstrCost(Opcode, Val, Index); 400 } 401 402 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 403 unsigned AddressSpace, const Instruction *I) { 404 // Legalize the type. 405 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 406 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 407 "Invalid Opcode"); 408 409 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 410 411 bool IsAltivecType = ST->hasAltivec() && 412 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 413 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 414 bool IsVSXType = ST->hasVSX() && 415 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 416 bool IsQPXType = ST->hasQPX() && 417 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 418 419 // VSX has 32b/64b load instructions. Legalization can handle loading of 420 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 421 // PPCTargetLowering can't compute the cost appropriately. So here we 422 // explicitly check this case. 423 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 424 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 425 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 426 return 1; 427 428 // Aligned loads and stores are easy. 429 unsigned SrcBytes = LT.second.getStoreSize(); 430 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 431 return Cost; 432 433 // If we can use the permutation-based load sequence, then this is also 434 // relatively cheap (not counting loop-invariant instructions): one load plus 435 // one permute (the last load in a series has extra cost, but we're 436 // neglecting that here). Note that on the P7, we could do unaligned loads 437 // for Altivec types using the VSX instructions, but that's more expensive 438 // than using the permutation-based load sequence. On the P8, that's no 439 // longer true. 440 if (Opcode == Instruction::Load && 441 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 442 Alignment >= LT.second.getScalarType().getStoreSize()) 443 return Cost + LT.first; // Add the cost of the permutations. 444 445 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 446 // P7, unaligned vector loads are more expensive than the permutation-based 447 // load sequence, so that might be used instead, but regardless, the net cost 448 // is about the same (not counting loop-invariant instructions). 449 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 450 return Cost; 451 452 // Newer PPC supports unaligned memory access. 453 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 454 return Cost; 455 456 // PPC in general does not support unaligned loads and stores. They'll need 457 // to be decomposed based on the alignment factor. 458 459 // Add the cost of each scalar load or store. 460 Cost += LT.first*(SrcBytes/Alignment-1); 461 462 // For a vector type, there is also scalarization overhead (only for 463 // stores, loads are expanded using the vector-load + permutation sequence, 464 // which is much less expensive). 465 if (Src->isVectorTy() && Opcode == Instruction::Store) 466 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 467 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 468 469 return Cost; 470 } 471 472 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 473 unsigned Factor, 474 ArrayRef<unsigned> Indices, 475 unsigned Alignment, 476 unsigned AddressSpace) { 477 assert(isa<VectorType>(VecTy) && 478 "Expect a vector type for interleaved memory op"); 479 480 // Legalize the type. 481 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 482 483 // Firstly, the cost of load/store operation. 484 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 485 486 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 487 // (at least in the sense that there need only be one non-loop-invariant 488 // instruction). For each result vector, we need one shuffle per incoming 489 // vector (except that the first shuffle can take two incoming vectors 490 // because it does not need to take itself). 491 Cost += Factor*(LT.first-1); 492 493 return Cost; 494 } 495 496