xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 4d425f86632fc2a7142d2ba1c8d67a19c620d355)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/IR/ProfDataUtils.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/KnownBits.h"
22 #include "llvm/Transforms/InstCombine/InstCombiner.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include <optional>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "ppctti"
29 
30 static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost",
31 cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden);
32 
33 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
34 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
35 
36 static cl::opt<bool>
37 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
38                 cl::desc("Enable using coldcc calling conv for cold "
39                          "internal functions"));
40 
41 static cl::opt<bool>
42 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
43                cl::desc("Do not add instruction count to lsr cost model"));
44 
45 // The latency of mtctr is only justified if there are more than 4
46 // comparisons that will be removed as a result.
47 static cl::opt<unsigned>
48 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
49                       cl::desc("Loops with a constant trip count smaller than "
50                                "this value will not use the count register."));
51 
52 //===----------------------------------------------------------------------===//
53 //
54 // PPC cost model.
55 //
56 //===----------------------------------------------------------------------===//
57 
58 TargetTransformInfo::PopcntSupportKind
59 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
60   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
61   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
62     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
63              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
64   return TTI::PSK_Software;
65 }
66 
67 std::optional<Instruction *>
68 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
69   Intrinsic::ID IID = II.getIntrinsicID();
70   switch (IID) {
71   default:
72     break;
73   case Intrinsic::ppc_altivec_lvx:
74   case Intrinsic::ppc_altivec_lvxl:
75     // Turn PPC lvx -> load if the pointer is known aligned.
76     if (getOrEnforceKnownAlignment(
77             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
78             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
79       Value *Ptr = IC.Builder.CreateBitCast(
80           II.getArgOperand(0), PointerType::getUnqual(II.getType()));
81       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
82     }
83     break;
84   case Intrinsic::ppc_vsx_lxvw4x:
85   case Intrinsic::ppc_vsx_lxvd2x: {
86     // Turn PPC VSX loads into normal loads.
87     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
88                                           PointerType::getUnqual(II.getType()));
89     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
90   }
91   case Intrinsic::ppc_altivec_stvx:
92   case Intrinsic::ppc_altivec_stvxl:
93     // Turn stvx -> store if the pointer is known aligned.
94     if (getOrEnforceKnownAlignment(
95             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
96             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
97       Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
98       Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
99       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
100     }
101     break;
102   case Intrinsic::ppc_vsx_stxvw4x:
103   case Intrinsic::ppc_vsx_stxvd2x: {
104     // Turn PPC VSX stores into normal stores.
105     Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
106     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
107     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
108   }
109   case Intrinsic::ppc_altivec_vperm:
110     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
111     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
112     // a vectorshuffle for little endian, we must undo the transformation
113     // performed on vec_perm in altivec.h.  That is, we must complement
114     // the permutation mask with respect to 31 and reverse the order of
115     // V1 and V2.
116     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
117       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
118              "Bad type for intrinsic!");
119 
120       // Check that all of the elements are integer constants or undefs.
121       bool AllEltsOk = true;
122       for (unsigned i = 0; i != 16; ++i) {
123         Constant *Elt = Mask->getAggregateElement(i);
124         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
125           AllEltsOk = false;
126           break;
127         }
128       }
129 
130       if (AllEltsOk) {
131         // Cast the input vectors to byte vectors.
132         Value *Op0 =
133             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
134         Value *Op1 =
135             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
136         Value *Result = UndefValue::get(Op0->getType());
137 
138         // Only extract each element once.
139         Value *ExtractedElts[32];
140         memset(ExtractedElts, 0, sizeof(ExtractedElts));
141 
142         for (unsigned i = 0; i != 16; ++i) {
143           if (isa<UndefValue>(Mask->getAggregateElement(i)))
144             continue;
145           unsigned Idx =
146               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
147           Idx &= 31; // Match the hardware behavior.
148           if (DL.isLittleEndian())
149             Idx = 31 - Idx;
150 
151           if (!ExtractedElts[Idx]) {
152             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
153             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
154             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
155                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
156           }
157 
158           // Insert this value into the result vector.
159           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
160                                                   IC.Builder.getInt32(i));
161         }
162         return CastInst::Create(Instruction::BitCast, Result, II.getType());
163       }
164     }
165     break;
166   }
167   return std::nullopt;
168 }
169 
170 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
171                                           TTI::TargetCostKind CostKind) {
172   if (DisablePPCConstHoist)
173     return BaseT::getIntImmCost(Imm, Ty, CostKind);
174 
175   assert(Ty->isIntegerTy());
176 
177   unsigned BitSize = Ty->getPrimitiveSizeInBits();
178   if (BitSize == 0)
179     return ~0U;
180 
181   if (Imm == 0)
182     return TTI::TCC_Free;
183 
184   if (Imm.getBitWidth() <= 64) {
185     if (isInt<16>(Imm.getSExtValue()))
186       return TTI::TCC_Basic;
187 
188     if (isInt<32>(Imm.getSExtValue())) {
189       // A constant that can be materialized using lis.
190       if ((Imm.getZExtValue() & 0xFFFF) == 0)
191         return TTI::TCC_Basic;
192 
193       return 2 * TTI::TCC_Basic;
194     }
195   }
196 
197   return 4 * TTI::TCC_Basic;
198 }
199 
200 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
201                                                 const APInt &Imm, Type *Ty,
202                                                 TTI::TargetCostKind CostKind) {
203   if (DisablePPCConstHoist)
204     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
205 
206   assert(Ty->isIntegerTy());
207 
208   unsigned BitSize = Ty->getPrimitiveSizeInBits();
209   if (BitSize == 0)
210     return ~0U;
211 
212   switch (IID) {
213   default:
214     return TTI::TCC_Free;
215   case Intrinsic::sadd_with_overflow:
216   case Intrinsic::uadd_with_overflow:
217   case Intrinsic::ssub_with_overflow:
218   case Intrinsic::usub_with_overflow:
219     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
220       return TTI::TCC_Free;
221     break;
222   case Intrinsic::experimental_stackmap:
223     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224       return TTI::TCC_Free;
225     break;
226   case Intrinsic::experimental_patchpoint_void:
227   case Intrinsic::experimental_patchpoint_i64:
228     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
229       return TTI::TCC_Free;
230     break;
231   }
232   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
233 }
234 
235 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
236                                               const APInt &Imm, Type *Ty,
237                                               TTI::TargetCostKind CostKind,
238                                               Instruction *Inst) {
239   if (DisablePPCConstHoist)
240     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
241 
242   assert(Ty->isIntegerTy());
243 
244   unsigned BitSize = Ty->getPrimitiveSizeInBits();
245   if (BitSize == 0)
246     return ~0U;
247 
248   unsigned ImmIdx = ~0U;
249   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
250        ZeroFree = false;
251   switch (Opcode) {
252   default:
253     return TTI::TCC_Free;
254   case Instruction::GetElementPtr:
255     // Always hoist the base address of a GetElementPtr. This prevents the
256     // creation of new constants for every base constant that gets constant
257     // folded with the offset.
258     if (Idx == 0)
259       return 2 * TTI::TCC_Basic;
260     return TTI::TCC_Free;
261   case Instruction::And:
262     RunFree = true; // (for the rotate-and-mask instructions)
263     [[fallthrough]];
264   case Instruction::Add:
265   case Instruction::Or:
266   case Instruction::Xor:
267     ShiftedFree = true;
268     [[fallthrough]];
269   case Instruction::Sub:
270   case Instruction::Mul:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     ImmIdx = 1;
275     break;
276   case Instruction::ICmp:
277     UnsignedFree = true;
278     ImmIdx = 1;
279     // Zero comparisons can use record-form instructions.
280     [[fallthrough]];
281   case Instruction::Select:
282     ZeroFree = true;
283     break;
284   case Instruction::PHI:
285   case Instruction::Call:
286   case Instruction::Ret:
287   case Instruction::Load:
288   case Instruction::Store:
289     break;
290   }
291 
292   if (ZeroFree && Imm == 0)
293     return TTI::TCC_Free;
294 
295   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
296     if (isInt<16>(Imm.getSExtValue()))
297       return TTI::TCC_Free;
298 
299     if (RunFree) {
300       if (Imm.getBitWidth() <= 32 &&
301           (isShiftedMask_32(Imm.getZExtValue()) ||
302            isShiftedMask_32(~Imm.getZExtValue())))
303         return TTI::TCC_Free;
304 
305       if (ST->isPPC64() &&
306           (isShiftedMask_64(Imm.getZExtValue()) ||
307            isShiftedMask_64(~Imm.getZExtValue())))
308         return TTI::TCC_Free;
309     }
310 
311     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
312       return TTI::TCC_Free;
313 
314     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
315       return TTI::TCC_Free;
316   }
317 
318   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
319 }
320 
321 // Check if the current Type is an MMA vector type. Valid MMA types are
322 // v256i1 and v512i1 respectively.
323 static bool isMMAType(Type *Ty) {
324   return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
325          (Ty->getPrimitiveSizeInBits() > 128);
326 }
327 
328 InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
329                                                ArrayRef<const Value *> Operands,
330                                                TTI::TargetCostKind CostKind) {
331   // We already implement getCastInstrCost and getMemoryOpCost where we perform
332   // the vector adjustment there.
333   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
334     return BaseT::getInstructionCost(U, Operands, CostKind);
335 
336   if (U->getType()->isVectorTy()) {
337     // Instructions that need to be split should cost more.
338     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
339     return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
340   }
341 
342   return BaseT::getInstructionCost(U, Operands, CostKind);
343 }
344 
345 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
346                                           AssumptionCache &AC,
347                                           TargetLibraryInfo *LibInfo,
348                                           HardwareLoopInfo &HWLoopInfo) {
349   const PPCTargetMachine &TM = ST->getTargetMachine();
350   TargetSchedModel SchedModel;
351   SchedModel.init(ST);
352 
353   // Do not convert small short loops to CTR loop.
354   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
355   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
356     SmallPtrSet<const Value *, 32> EphValues;
357     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
358     CodeMetrics Metrics;
359     for (BasicBlock *BB : L->blocks())
360       Metrics.analyzeBasicBlock(BB, *this, EphValues);
361     // 6 is an approximate latency for the mtctr instruction.
362     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
363       return false;
364   }
365 
366   // Check that there is no hardware loop related intrinsics in the loop.
367   for (auto *BB : L->getBlocks())
368     for (auto &I : *BB)
369       if (auto *Call = dyn_cast<IntrinsicInst>(&I))
370         if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
371             Call->getIntrinsicID() == Intrinsic::loop_decrement)
372           return false;
373 
374   SmallVector<BasicBlock*, 4> ExitingBlocks;
375   L->getExitingBlocks(ExitingBlocks);
376 
377   // If there is an exit edge known to be frequently taken,
378   // we should not transform this loop.
379   for (auto &BB : ExitingBlocks) {
380     Instruction *TI = BB->getTerminator();
381     if (!TI) continue;
382 
383     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
384       uint64_t TrueWeight = 0, FalseWeight = 0;
385       if (!BI->isConditional() ||
386           !extractBranchWeights(*BI, TrueWeight, FalseWeight))
387         continue;
388 
389       // If the exit path is more frequent than the loop path,
390       // we return here without further analysis for this loop.
391       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
392       if (( TrueIsExit && FalseWeight < TrueWeight) ||
393           (!TrueIsExit && FalseWeight > TrueWeight))
394         return false;
395     }
396   }
397 
398   LLVMContext &C = L->getHeader()->getContext();
399   HWLoopInfo.CountType = TM.isPPC64() ?
400     Type::getInt64Ty(C) : Type::getInt32Ty(C);
401   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
402   return true;
403 }
404 
405 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
406                                          TTI::UnrollingPreferences &UP,
407                                          OptimizationRemarkEmitter *ORE) {
408   if (ST->getCPUDirective() == PPC::DIR_A2) {
409     // The A2 is in-order with a deep pipeline, and concatenation unrolling
410     // helps expose latency-hiding opportunities to the instruction scheduler.
411     UP.Partial = UP.Runtime = true;
412 
413     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
414     // often outweigh the cost of a division to compute the trip count.
415     UP.AllowExpensiveTripCount = true;
416   }
417 
418   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
419 }
420 
421 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
422                                        TTI::PeelingPreferences &PP) {
423   BaseT::getPeelingPreferences(L, SE, PP);
424 }
425 // This function returns true to allow using coldcc calling convention.
426 // Returning true results in coldcc being used for functions which are cold at
427 // all call sites when the callers of the functions are not calling any other
428 // non coldcc functions.
429 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
430   return EnablePPCColdCC;
431 }
432 
433 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
434   // On the A2, always unroll aggressively.
435   if (ST->getCPUDirective() == PPC::DIR_A2)
436     return true;
437 
438   return LoopHasReductions;
439 }
440 
441 PPCTTIImpl::TTI::MemCmpExpansionOptions
442 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
443   TTI::MemCmpExpansionOptions Options;
444   Options.LoadSizes = {8, 4, 2, 1};
445   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
446   return Options;
447 }
448 
449 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
450   return true;
451 }
452 
453 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
454   assert(ClassID == GPRRC || ClassID == FPRRC ||
455          ClassID == VRRC || ClassID == VSXRC);
456   if (ST->hasVSX()) {
457     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
458     return ClassID == VSXRC ? 64 : 32;
459   }
460   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
461   return 32;
462 }
463 
464 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
465   if (Vector)
466     return ST->hasVSX() ? VSXRC : VRRC;
467   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
468                   Ty->getScalarType()->isDoubleTy()))
469     return ST->hasVSX() ? VSXRC : FPRRC;
470   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
471                   Ty->getScalarType()->isPPC_FP128Ty()))
472     return VRRC;
473   else if (Ty && Ty->getScalarType()->isHalfTy())
474     return VSXRC;
475   else
476     return GPRRC;
477 }
478 
479 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
480 
481   switch (ClassID) {
482     default:
483       llvm_unreachable("unknown register class");
484       return "PPC::unknown register class";
485     case GPRRC:       return "PPC::GPRRC";
486     case FPRRC:       return "PPC::FPRRC";
487     case VRRC:        return "PPC::VRRC";
488     case VSXRC:       return "PPC::VSXRC";
489   }
490 }
491 
492 TypeSize
493 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
494   switch (K) {
495   case TargetTransformInfo::RGK_Scalar:
496     return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
497   case TargetTransformInfo::RGK_FixedWidthVector:
498     return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
499   case TargetTransformInfo::RGK_ScalableVector:
500     return TypeSize::getScalable(0);
501   }
502 
503   llvm_unreachable("Unsupported register kind");
504 }
505 
506 unsigned PPCTTIImpl::getCacheLineSize() const {
507   // Starting with P7 we have a cache line size of 128.
508   unsigned Directive = ST->getCPUDirective();
509   // Assume that Future CPU has the same cache line size as the others.
510   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
511       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
512       Directive == PPC::DIR_PWR_FUTURE)
513     return 128;
514 
515   // On other processors return a default of 64 bytes.
516   return 64;
517 }
518 
519 unsigned PPCTTIImpl::getPrefetchDistance() const {
520   return 300;
521 }
522 
523 unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
524   unsigned Directive = ST->getCPUDirective();
525   // The 440 has no SIMD support, but floating-point instructions
526   // have a 5-cycle latency, so unroll by 5x for latency hiding.
527   if (Directive == PPC::DIR_440)
528     return 5;
529 
530   // The A2 has no SIMD support, but floating-point instructions
531   // have a 6-cycle latency, so unroll by 6x for latency hiding.
532   if (Directive == PPC::DIR_A2)
533     return 6;
534 
535   // FIXME: For lack of any better information, do no harm...
536   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
537     return 1;
538 
539   // For P7 and P8, floating-point instructions have a 6-cycle latency and
540   // there are two execution units, so unroll by 12x for latency hiding.
541   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
542   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
543   // Assume that future is the same as the others.
544   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
545       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
546       Directive == PPC::DIR_PWR_FUTURE)
547     return 12;
548 
549   // For most things, modern systems have two execution units (and
550   // out-of-order execution).
551   return 2;
552 }
553 
554 // Returns a cost adjustment factor to adjust the cost of vector instructions
555 // on targets which there is overlap between the vector and scalar units,
556 // thereby reducing the overall throughput of vector code wrt. scalar code.
557 // An invalid instruction cost is returned if the type is an MMA vector type.
558 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
559                                                        Type *Ty1, Type *Ty2) {
560   // If the vector type is of an MMA type (v256i1, v512i1), an invalid
561   // instruction cost is returned. This is to signify to other cost computing
562   // functions to return the maximum instruction cost in order to prevent any
563   // opportunities for the optimizer to produce MMA types within the IR.
564   if (isMMAType(Ty1))
565     return InstructionCost::getInvalid();
566 
567   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
568     return InstructionCost(1);
569 
570   std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
571   // If type legalization involves splitting the vector, we don't want to
572   // double the cost at every step - only the last step.
573   if (LT1.first != 1 || !LT1.second.isVector())
574     return InstructionCost(1);
575 
576   int ISD = TLI->InstructionOpcodeToISD(Opcode);
577   if (TLI->isOperationExpand(ISD, LT1.second))
578     return InstructionCost(1);
579 
580   if (Ty2) {
581     std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
582     if (LT2.first != 1 || !LT2.second.isVector())
583       return InstructionCost(1);
584   }
585 
586   return InstructionCost(2);
587 }
588 
589 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
590     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
591     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
592     ArrayRef<const Value *> Args,
593     const Instruction *CxtI) {
594   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
595 
596   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
597   if (!CostFactor.isValid())
598     return InstructionCost::getMax();
599 
600   // TODO: Handle more cost kinds.
601   if (CostKind != TTI::TCK_RecipThroughput)
602     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
603                                          Op2Info, Args, CxtI);
604 
605   // Fallback to the default implementation.
606   InstructionCost Cost = BaseT::getArithmeticInstrCost(
607       Opcode, Ty, CostKind, Op1Info, Op2Info);
608   return Cost * CostFactor;
609 }
610 
611 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
612                                            ArrayRef<int> Mask,
613                                            TTI::TargetCostKind CostKind,
614                                            int Index, Type *SubTp,
615                                            ArrayRef<const Value *> Args) {
616 
617   InstructionCost CostFactor =
618       vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
619   if (!CostFactor.isValid())
620     return InstructionCost::getMax();
621 
622   // Legalize the type.
623   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
624 
625   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
626   // (at least in the sense that there need only be one non-loop-invariant
627   // instruction). We need one such shuffle instruction for each actual
628   // register (this is not true for arbitrary shuffles, but is true for the
629   // structured types of shuffles covered by TTI::ShuffleKind).
630   return LT.first * CostFactor;
631 }
632 
633 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
634                                            TTI::TargetCostKind CostKind,
635                                            const Instruction *I) {
636   if (CostKind != TTI::TCK_RecipThroughput)
637     return Opcode == Instruction::PHI ? 0 : 1;
638   // Branches are assumed to be predicted.
639   return 0;
640 }
641 
642 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
643                                              Type *Src,
644                                              TTI::CastContextHint CCH,
645                                              TTI::TargetCostKind CostKind,
646                                              const Instruction *I) {
647   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
648 
649   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
650   if (!CostFactor.isValid())
651     return InstructionCost::getMax();
652 
653   InstructionCost Cost =
654       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
655   Cost *= CostFactor;
656   // TODO: Allow non-throughput costs that aren't binary.
657   if (CostKind != TTI::TCK_RecipThroughput)
658     return Cost == 0 ? 0 : 1;
659   return Cost;
660 }
661 
662 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
663                                                Type *CondTy,
664                                                CmpInst::Predicate VecPred,
665                                                TTI::TargetCostKind CostKind,
666                                                const Instruction *I) {
667   InstructionCost CostFactor =
668       vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
669   if (!CostFactor.isValid())
670     return InstructionCost::getMax();
671 
672   InstructionCost Cost =
673       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
674   // TODO: Handle other cost kinds.
675   if (CostKind != TTI::TCK_RecipThroughput)
676     return Cost;
677   return Cost * CostFactor;
678 }
679 
680 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
681                                                TTI::TargetCostKind CostKind,
682                                                unsigned Index, Value *Op0,
683                                                Value *Op1) {
684   assert(Val->isVectorTy() && "This must be a vector type");
685 
686   int ISD = TLI->InstructionOpcodeToISD(Opcode);
687   assert(ISD && "Invalid opcode");
688 
689   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
690   if (!CostFactor.isValid())
691     return InstructionCost::getMax();
692 
693   InstructionCost Cost =
694       BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
695   Cost *= CostFactor;
696 
697   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
698     // Double-precision scalars are already located in index #0 (or #1 if LE).
699     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
700         Index == (ST->isLittleEndian() ? 1 : 0))
701       return 0;
702 
703     return Cost;
704 
705   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
706     unsigned EltSize = Val->getScalarSizeInBits();
707     // Computing on 1 bit values requires extra mask or compare operations.
708     unsigned MaskCost = VecMaskCost && EltSize == 1 ? 1 : 0;
709     if (ST->hasP9Altivec()) {
710       if (ISD == ISD::INSERT_VECTOR_ELT)
711         // A move-to VSR and a permute/insert.  Assume vector operation cost
712         // for both (cost will be 2x on P9).
713         return 2 * CostFactor;
714 
715       // It's an extract.  Maybe we can do a cheap move-from VSR.
716       unsigned EltSize = Val->getScalarSizeInBits();
717       if (EltSize == 64) {
718         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
719         if (Index == MfvsrdIndex)
720           return 1;
721       } else if (EltSize == 32) {
722         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
723         if (Index == MfvsrwzIndex)
724           return 1;
725       }
726 
727       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
728       // The cost of the load constant for a vector extract is disregarded
729       // (invariant, easily schedulable).
730       return CostFactor + MaskCost;
731 
732     } else if (ST->hasDirectMove()) {
733       // Assume permute has standard cost.
734       // Assume move-to/move-from VSR have 2x standard cost.
735       if (ISD == ISD::INSERT_VECTOR_ELT)
736         return 3;
737       return 3 + MaskCost;
738     }
739   }
740 
741   // Estimated cost of a load-hit-store delay.  This was obtained
742   // experimentally as a minimum needed to prevent unprofitable
743   // vectorization for the paq8p benchmark.  It may need to be
744   // raised further if other unprofitable cases remain.
745   unsigned LHSPenalty = 2;
746   if (ISD == ISD::INSERT_VECTOR_ELT)
747     LHSPenalty += 7;
748 
749   // Vector element insert/extract with Altivec is very expensive,
750   // because they require store and reload with the attendant
751   // processor stall for load-hit-store.  Until VSX is available,
752   // these need to be estimated as very costly.
753   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
754       ISD == ISD::INSERT_VECTOR_ELT)
755     return LHSPenalty + Cost;
756 
757   return Cost;
758 }
759 
760 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
761                                             MaybeAlign Alignment,
762                                             unsigned AddressSpace,
763                                             TTI::TargetCostKind CostKind,
764                                             TTI::OperandValueInfo OpInfo,
765                                             const Instruction *I) {
766 
767   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
768   if (!CostFactor.isValid())
769     return InstructionCost::getMax();
770 
771   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
772     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
773                                   CostKind);
774   // Legalize the type.
775   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
776   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
777          "Invalid Opcode");
778 
779   InstructionCost Cost =
780       BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
781   // TODO: Handle other cost kinds.
782   if (CostKind != TTI::TCK_RecipThroughput)
783     return Cost;
784 
785   Cost *= CostFactor;
786 
787   bool IsAltivecType = ST->hasAltivec() &&
788                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
789                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
790   bool IsVSXType = ST->hasVSX() &&
791                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
792 
793   // VSX has 32b/64b load instructions. Legalization can handle loading of
794   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
795   // PPCTargetLowering can't compute the cost appropriately. So here we
796   // explicitly check this case.
797   unsigned MemBytes = Src->getPrimitiveSizeInBits();
798   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
799       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
800     return 1;
801 
802   // Aligned loads and stores are easy.
803   unsigned SrcBytes = LT.second.getStoreSize();
804   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
805     return Cost;
806 
807   // If we can use the permutation-based load sequence, then this is also
808   // relatively cheap (not counting loop-invariant instructions): one load plus
809   // one permute (the last load in a series has extra cost, but we're
810   // neglecting that here). Note that on the P7, we could do unaligned loads
811   // for Altivec types using the VSX instructions, but that's more expensive
812   // than using the permutation-based load sequence. On the P8, that's no
813   // longer true.
814   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
815       *Alignment >= LT.second.getScalarType().getStoreSize())
816     return Cost + LT.first; // Add the cost of the permutations.
817 
818   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
819   // P7, unaligned vector loads are more expensive than the permutation-based
820   // load sequence, so that might be used instead, but regardless, the net cost
821   // is about the same (not counting loop-invariant instructions).
822   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
823     return Cost;
824 
825   // Newer PPC supports unaligned memory access.
826   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
827     return Cost;
828 
829   // PPC in general does not support unaligned loads and stores. They'll need
830   // to be decomposed based on the alignment factor.
831 
832   // Add the cost of each scalar load or store.
833   assert(Alignment);
834   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
835 
836   // For a vector type, there is also scalarization overhead (only for
837   // stores, loads are expanded using the vector-load + permutation sequence,
838   // which is much less expensive).
839   if (Src->isVectorTy() && Opcode == Instruction::Store)
840     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
841          ++i)
842       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
843                                  nullptr, nullptr);
844 
845   return Cost;
846 }
847 
848 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
849     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
850     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
851     bool UseMaskForCond, bool UseMaskForGaps) {
852   InstructionCost CostFactor =
853       vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
854   if (!CostFactor.isValid())
855     return InstructionCost::getMax();
856 
857   if (UseMaskForCond || UseMaskForGaps)
858     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
859                                              Alignment, AddressSpace, CostKind,
860                                              UseMaskForCond, UseMaskForGaps);
861 
862   assert(isa<VectorType>(VecTy) &&
863          "Expect a vector type for interleaved memory op");
864 
865   // Legalize the type.
866   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
867 
868   // Firstly, the cost of load/store operation.
869   InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
870                                          AddressSpace, CostKind);
871 
872   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
873   // (at least in the sense that there need only be one non-loop-invariant
874   // instruction). For each result vector, we need one shuffle per incoming
875   // vector (except that the first shuffle can take two incoming vectors
876   // because it does not need to take itself).
877   Cost += Factor*(LT.first-1);
878 
879   return Cost;
880 }
881 
882 InstructionCost
883 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
884                                   TTI::TargetCostKind CostKind) {
885   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
886 }
887 
888 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
889                                        const Function *Callee,
890                                        const ArrayRef<Type *> &Types) const {
891 
892   // We need to ensure that argument promotion does not
893   // attempt to promote pointers to MMA types (__vector_pair
894   // and __vector_quad) since these types explicitly cannot be
895   // passed as arguments. Both of these types are larger than
896   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
897   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
898     return false;
899 
900   return llvm::none_of(Types, [](Type *Ty) {
901     if (Ty->isSized())
902       return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
903     return false;
904   });
905 }
906 
907 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
908                             LoopInfo *LI, DominatorTree *DT,
909                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
910   // Process nested loops first.
911   for (Loop *I : *L)
912     if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
913       return false; // Stop search.
914 
915   HardwareLoopInfo HWLoopInfo(L);
916 
917   if (!HWLoopInfo.canAnalyze(*LI))
918     return false;
919 
920   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
921     return false;
922 
923   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
924     return false;
925 
926   *BI = HWLoopInfo.ExitBranch;
927   return true;
928 }
929 
930 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
931                                const TargetTransformInfo::LSRCost &C2) {
932   // PowerPC default behaviour here is "instruction number 1st priority".
933   // If LsrNoInsnsCost is set, call default implementation.
934   if (!LsrNoInsnsCost)
935     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
936                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
937            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
938                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
939   else
940     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
941 }
942 
943 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
944   return false;
945 }
946 
947 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
948   const PPCTargetMachine &TM = ST->getTargetMachine();
949   // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
950   if (!TM.isELFv2ABI())
951     return false;
952   return BaseT::shouldBuildRelLookupTables();
953 }
954 
955 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
956                                     MemIntrinsicInfo &Info) {
957   switch (Inst->getIntrinsicID()) {
958   case Intrinsic::ppc_altivec_lvx:
959   case Intrinsic::ppc_altivec_lvxl:
960   case Intrinsic::ppc_altivec_lvebx:
961   case Intrinsic::ppc_altivec_lvehx:
962   case Intrinsic::ppc_altivec_lvewx:
963   case Intrinsic::ppc_vsx_lxvd2x:
964   case Intrinsic::ppc_vsx_lxvw4x:
965   case Intrinsic::ppc_vsx_lxvd2x_be:
966   case Intrinsic::ppc_vsx_lxvw4x_be:
967   case Intrinsic::ppc_vsx_lxvl:
968   case Intrinsic::ppc_vsx_lxvll:
969   case Intrinsic::ppc_vsx_lxvp: {
970     Info.PtrVal = Inst->getArgOperand(0);
971     Info.ReadMem = true;
972     Info.WriteMem = false;
973     return true;
974   }
975   case Intrinsic::ppc_altivec_stvx:
976   case Intrinsic::ppc_altivec_stvxl:
977   case Intrinsic::ppc_altivec_stvebx:
978   case Intrinsic::ppc_altivec_stvehx:
979   case Intrinsic::ppc_altivec_stvewx:
980   case Intrinsic::ppc_vsx_stxvd2x:
981   case Intrinsic::ppc_vsx_stxvw4x:
982   case Intrinsic::ppc_vsx_stxvd2x_be:
983   case Intrinsic::ppc_vsx_stxvw4x_be:
984   case Intrinsic::ppc_vsx_stxvl:
985   case Intrinsic::ppc_vsx_stxvll:
986   case Intrinsic::ppc_vsx_stxvp: {
987     Info.PtrVal = Inst->getArgOperand(1);
988     Info.ReadMem = false;
989     Info.WriteMem = true;
990     return true;
991   }
992   case Intrinsic::ppc_stbcx:
993   case Intrinsic::ppc_sthcx:
994   case Intrinsic::ppc_stdcx:
995   case Intrinsic::ppc_stwcx: {
996     Info.PtrVal = Inst->getArgOperand(0);
997     Info.ReadMem = false;
998     Info.WriteMem = true;
999     return true;
1000   }
1001   default:
1002     break;
1003   }
1004 
1005   return false;
1006 }
1007 
1008 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1009                                        Align Alignment) const {
1010   // Only load and stores instructions can have variable vector length on Power.
1011   if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1012     return false;
1013   // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1014   // therefore cannot be used in 32-bit mode.
1015   if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1016     return false;
1017   if (isa<FixedVectorType>(DataType)) {
1018     unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1019     return VecWidth == 128;
1020   }
1021   Type *ScalarTy = DataType->getScalarType();
1022 
1023   if (ScalarTy->isPointerTy())
1024     return true;
1025 
1026   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1027     return true;
1028 
1029   if (!ScalarTy->isIntegerTy())
1030     return false;
1031 
1032   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1033   return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1034 }
1035 
1036 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1037                                               Align Alignment,
1038                                               unsigned AddressSpace,
1039                                               TTI::TargetCostKind CostKind,
1040                                               const Instruction *I) {
1041   InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1042                                                   AddressSpace, CostKind, I);
1043   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1044     return Cost;
1045   // TODO: Handle other cost kinds.
1046   if (CostKind != TTI::TCK_RecipThroughput)
1047     return Cost;
1048 
1049   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1050          "Invalid Opcode");
1051 
1052   auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1053   assert(SrcVTy && "Expected a vector type for VP memory operations");
1054 
1055   if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1056     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
1057 
1058     InstructionCost CostFactor =
1059         vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1060     if (!CostFactor.isValid())
1061       return InstructionCost::getMax();
1062 
1063     InstructionCost Cost = LT.first * CostFactor;
1064     assert(Cost.isValid() && "Expected valid cost");
1065 
1066     // On P9 but not on P10, if the op is misaligned then it will cause a
1067     // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1068     // ones.
1069     const Align DesiredAlignment(16);
1070     if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1071       return Cost;
1072 
1073     // Since alignment may be under estimated, we try to compute the probability
1074     // that the actual address is aligned to the desired boundary. For example
1075     // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1076     // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1077     // aligned.
1078     float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1079     float MisalignmentProb = 1.0 - AlignmentProb;
1080     return (MisalignmentProb * P9PipelineFlushEstimate) +
1081            (AlignmentProb * *Cost.getValue());
1082   }
1083 
1084   // Usually we should not get to this point, but the following is an attempt to
1085   // model the cost of legalization. Currently we can only lower intrinsics with
1086   // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1087   return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1088 }
1089 
1090 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
1091   return TLI->supportsTailCallFor(CB);
1092 }
1093