1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "PPCTargetTransformInfo.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/Support/CommandLine.h" 14 #include "llvm/Support/Debug.h" 15 #include "llvm/Target/CostTable.h" 16 #include "llvm/Target/TargetLowering.h" 17 using namespace llvm; 18 19 #define DEBUG_TYPE "ppctti" 20 21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24 // This is currently only used for the data prefetch pass which is only enabled 25 // for BG/Q by default. 26 static cl::opt<unsigned> 27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 28 cl::desc("The loop prefetch cache line size")); 29 30 //===----------------------------------------------------------------------===// 31 // 32 // PPC cost model. 33 // 34 //===----------------------------------------------------------------------===// 35 36 TargetTransformInfo::PopcntSupportKind 37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 38 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 39 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 40 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 41 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 42 return TTI::PSK_Software; 43 } 44 45 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 46 if (DisablePPCConstHoist) 47 return BaseT::getIntImmCost(Imm, Ty); 48 49 assert(Ty->isIntegerTy()); 50 51 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 52 if (BitSize == 0) 53 return ~0U; 54 55 if (Imm == 0) 56 return TTI::TCC_Free; 57 58 if (Imm.getBitWidth() <= 64) { 59 if (isInt<16>(Imm.getSExtValue())) 60 return TTI::TCC_Basic; 61 62 if (isInt<32>(Imm.getSExtValue())) { 63 // A constant that can be materialized using lis. 64 if ((Imm.getZExtValue() & 0xFFFF) == 0) 65 return TTI::TCC_Basic; 66 67 return 2 * TTI::TCC_Basic; 68 } 69 } 70 71 return 4 * TTI::TCC_Basic; 72 } 73 74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 75 Type *Ty) { 76 if (DisablePPCConstHoist) 77 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 78 79 assert(Ty->isIntegerTy()); 80 81 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 82 if (BitSize == 0) 83 return ~0U; 84 85 switch (IID) { 86 default: 87 return TTI::TCC_Free; 88 case Intrinsic::sadd_with_overflow: 89 case Intrinsic::uadd_with_overflow: 90 case Intrinsic::ssub_with_overflow: 91 case Intrinsic::usub_with_overflow: 92 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 93 return TTI::TCC_Free; 94 break; 95 case Intrinsic::experimental_stackmap: 96 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 97 return TTI::TCC_Free; 98 break; 99 case Intrinsic::experimental_patchpoint_void: 100 case Intrinsic::experimental_patchpoint_i64: 101 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 102 return TTI::TCC_Free; 103 break; 104 } 105 return PPCTTIImpl::getIntImmCost(Imm, Ty); 106 } 107 108 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 109 Type *Ty) { 110 if (DisablePPCConstHoist) 111 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 112 113 assert(Ty->isIntegerTy()); 114 115 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 116 if (BitSize == 0) 117 return ~0U; 118 119 unsigned ImmIdx = ~0U; 120 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 121 ZeroFree = false; 122 switch (Opcode) { 123 default: 124 return TTI::TCC_Free; 125 case Instruction::GetElementPtr: 126 // Always hoist the base address of a GetElementPtr. This prevents the 127 // creation of new constants for every base constant that gets constant 128 // folded with the offset. 129 if (Idx == 0) 130 return 2 * TTI::TCC_Basic; 131 return TTI::TCC_Free; 132 case Instruction::And: 133 RunFree = true; // (for the rotate-and-mask instructions) 134 LLVM_FALLTHROUGH; 135 case Instruction::Add: 136 case Instruction::Or: 137 case Instruction::Xor: 138 ShiftedFree = true; 139 LLVM_FALLTHROUGH; 140 case Instruction::Sub: 141 case Instruction::Mul: 142 case Instruction::Shl: 143 case Instruction::LShr: 144 case Instruction::AShr: 145 ImmIdx = 1; 146 break; 147 case Instruction::ICmp: 148 UnsignedFree = true; 149 ImmIdx = 1; 150 // Zero comparisons can use record-form instructions. 151 LLVM_FALLTHROUGH; 152 case Instruction::Select: 153 ZeroFree = true; 154 break; 155 case Instruction::PHI: 156 case Instruction::Call: 157 case Instruction::Ret: 158 case Instruction::Load: 159 case Instruction::Store: 160 break; 161 } 162 163 if (ZeroFree && Imm == 0) 164 return TTI::TCC_Free; 165 166 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 167 if (isInt<16>(Imm.getSExtValue())) 168 return TTI::TCC_Free; 169 170 if (RunFree) { 171 if (Imm.getBitWidth() <= 32 && 172 (isShiftedMask_32(Imm.getZExtValue()) || 173 isShiftedMask_32(~Imm.getZExtValue()))) 174 return TTI::TCC_Free; 175 176 if (ST->isPPC64() && 177 (isShiftedMask_64(Imm.getZExtValue()) || 178 isShiftedMask_64(~Imm.getZExtValue()))) 179 return TTI::TCC_Free; 180 } 181 182 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 183 return TTI::TCC_Free; 184 185 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 186 return TTI::TCC_Free; 187 } 188 189 return PPCTTIImpl::getIntImmCost(Imm, Ty); 190 } 191 192 unsigned PPCTTIImpl::getUserCost(const User *U, 193 ArrayRef<const Value *> Operands) { 194 if (U->getType()->isVectorTy()) { 195 // Instructions that need to be split should cost more. 196 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 197 return LT.first * BaseT::getUserCost(U, Operands); 198 } 199 200 return BaseT::getUserCost(U, Operands); 201 } 202 203 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 204 TTI::UnrollingPreferences &UP) { 205 if (ST->getDarwinDirective() == PPC::DIR_A2) { 206 // The A2 is in-order with a deep pipeline, and concatenation unrolling 207 // helps expose latency-hiding opportunities to the instruction scheduler. 208 UP.Partial = UP.Runtime = true; 209 210 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 211 // often outweigh the cost of a division to compute the trip count. 212 UP.AllowExpensiveTripCount = true; 213 } 214 215 BaseT::getUnrollingPreferences(L, SE, UP); 216 } 217 218 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 219 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 220 // on combining the loads generated for consecutive accesses, and failure to 221 // do so is particularly expensive. This makes it much more likely (compared 222 // to only using concatenation unrolling). 223 if (ST->getDarwinDirective() == PPC::DIR_A2) 224 return true; 225 226 return LoopHasReductions; 227 } 228 229 bool PPCTTIImpl::enableMemCmpExpansion(unsigned &MaxLoadSize) { 230 MaxLoadSize = 8; 231 return true; 232 } 233 234 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 235 return true; 236 } 237 238 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 239 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 240 return 0; 241 return ST->hasVSX() ? 64 : 32; 242 } 243 244 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 245 if (Vector) { 246 if (ST->hasQPX()) return 256; 247 if (ST->hasAltivec()) return 128; 248 return 0; 249 } 250 251 if (ST->isPPC64()) 252 return 64; 253 return 32; 254 255 } 256 257 unsigned PPCTTIImpl::getCacheLineSize() { 258 // Check first if the user specified a custom line size. 259 if (CacheLineSize.getNumOccurrences() > 0) 260 return CacheLineSize; 261 262 // On P7, P8 or P9 we have a cache line size of 128. 263 unsigned Directive = ST->getDarwinDirective(); 264 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 265 Directive == PPC::DIR_PWR9) 266 return 128; 267 268 // On other processors return a default of 64 bytes. 269 return 64; 270 } 271 272 unsigned PPCTTIImpl::getPrefetchDistance() { 273 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 274 // default, only on the BG/Q). 275 return 300; 276 } 277 278 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 279 unsigned Directive = ST->getDarwinDirective(); 280 // The 440 has no SIMD support, but floating-point instructions 281 // have a 5-cycle latency, so unroll by 5x for latency hiding. 282 if (Directive == PPC::DIR_440) 283 return 5; 284 285 // The A2 has no SIMD support, but floating-point instructions 286 // have a 6-cycle latency, so unroll by 6x for latency hiding. 287 if (Directive == PPC::DIR_A2) 288 return 6; 289 290 // FIXME: For lack of any better information, do no harm... 291 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 292 return 1; 293 294 // For P7 and P8, floating-point instructions have a 6-cycle latency and 295 // there are two execution units, so unroll by 12x for latency hiding. 296 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 297 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 298 Directive == PPC::DIR_PWR9) 299 return 12; 300 301 // For most things, modern systems have two execution units (and 302 // out-of-order execution). 303 return 2; 304 } 305 306 int PPCTTIImpl::getArithmeticInstrCost( 307 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 308 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 309 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { 310 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 311 312 // Fallback to the default implementation. 313 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 314 Opd1PropInfo, Opd2PropInfo); 315 } 316 317 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 318 Type *SubTp) { 319 // Legalize the type. 320 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 321 322 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 323 // (at least in the sense that there need only be one non-loop-invariant 324 // instruction). We need one such shuffle instruction for each actual 325 // register (this is not true for arbitrary shuffles, but is true for the 326 // structured types of shuffles covered by TTI::ShuffleKind). 327 return LT.first; 328 } 329 330 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 331 const Instruction *I) { 332 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 333 334 return BaseT::getCastInstrCost(Opcode, Dst, Src); 335 } 336 337 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 338 const Instruction *I) { 339 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 340 } 341 342 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 343 assert(Val->isVectorTy() && "This must be a vector type"); 344 345 int ISD = TLI->InstructionOpcodeToISD(Opcode); 346 assert(ISD && "Invalid opcode"); 347 348 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 349 // Double-precision scalars are already located in index #0. 350 if (Index == 0) 351 return 0; 352 353 return BaseT::getVectorInstrCost(Opcode, Val, Index); 354 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 355 // Floating point scalars are already located in index #0. 356 if (Index == 0) 357 return 0; 358 359 return BaseT::getVectorInstrCost(Opcode, Val, Index); 360 } 361 362 // Estimated cost of a load-hit-store delay. This was obtained 363 // experimentally as a minimum needed to prevent unprofitable 364 // vectorization for the paq8p benchmark. It may need to be 365 // raised further if other unprofitable cases remain. 366 unsigned LHSPenalty = 2; 367 if (ISD == ISD::INSERT_VECTOR_ELT) 368 LHSPenalty += 7; 369 370 // Vector element insert/extract with Altivec is very expensive, 371 // because they require store and reload with the attendant 372 // processor stall for load-hit-store. Until VSX is available, 373 // these need to be estimated as very costly. 374 if (ISD == ISD::EXTRACT_VECTOR_ELT || 375 ISD == ISD::INSERT_VECTOR_ELT) 376 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 377 378 return BaseT::getVectorInstrCost(Opcode, Val, Index); 379 } 380 381 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 382 unsigned AddressSpace, const Instruction *I) { 383 // Legalize the type. 384 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 385 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 386 "Invalid Opcode"); 387 388 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 389 390 bool IsAltivecType = ST->hasAltivec() && 391 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 392 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 393 bool IsVSXType = ST->hasVSX() && 394 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 395 bool IsQPXType = ST->hasQPX() && 396 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 397 398 // VSX has 32b/64b load instructions. Legalization can handle loading of 399 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 400 // PPCTargetLowering can't compute the cost appropriately. So here we 401 // explicitly check this case. 402 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 403 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 404 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 405 return 1; 406 407 // Aligned loads and stores are easy. 408 unsigned SrcBytes = LT.second.getStoreSize(); 409 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 410 return Cost; 411 412 // If we can use the permutation-based load sequence, then this is also 413 // relatively cheap (not counting loop-invariant instructions): one load plus 414 // one permute (the last load in a series has extra cost, but we're 415 // neglecting that here). Note that on the P7, we could do unaligned loads 416 // for Altivec types using the VSX instructions, but that's more expensive 417 // than using the permutation-based load sequence. On the P8, that's no 418 // longer true. 419 if (Opcode == Instruction::Load && 420 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 421 Alignment >= LT.second.getScalarType().getStoreSize()) 422 return Cost + LT.first; // Add the cost of the permutations. 423 424 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 425 // P7, unaligned vector loads are more expensive than the permutation-based 426 // load sequence, so that might be used instead, but regardless, the net cost 427 // is about the same (not counting loop-invariant instructions). 428 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 429 return Cost; 430 431 // Newer PPC supports unaligned memory access. 432 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 433 return Cost; 434 435 // PPC in general does not support unaligned loads and stores. They'll need 436 // to be decomposed based on the alignment factor. 437 438 // Add the cost of each scalar load or store. 439 Cost += LT.first*(SrcBytes/Alignment-1); 440 441 // For a vector type, there is also scalarization overhead (only for 442 // stores, loads are expanded using the vector-load + permutation sequence, 443 // which is much less expensive). 444 if (Src->isVectorTy() && Opcode == Instruction::Store) 445 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 446 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 447 448 return Cost; 449 } 450 451 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 452 unsigned Factor, 453 ArrayRef<unsigned> Indices, 454 unsigned Alignment, 455 unsigned AddressSpace) { 456 assert(isa<VectorType>(VecTy) && 457 "Expect a vector type for interleaved memory op"); 458 459 // Legalize the type. 460 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 461 462 // Firstly, the cost of load/store operation. 463 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 464 465 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 466 // (at least in the sense that there need only be one non-loop-invariant 467 // instruction). For each result vector, we need one shuffle per incoming 468 // vector (except that the first shuffle can take two incoming vectors 469 // because it does not need to take itself). 470 Cost += Factor*(LT.first-1); 471 472 return Cost; 473 } 474 475