xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 40574fefe9b2ad7d251da25c7461c313d965b809)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "ppctti"
21 
22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
24 
25 // This is currently only used for the data prefetch pass which is only enabled
26 // for BG/Q by default.
27 static cl::opt<unsigned>
28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
29               cl::desc("The loop prefetch cache line size"));
30 
31 static cl::opt<bool>
32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
33                 cl::desc("Enable using coldcc calling conv for cold "
34                          "internal functions"));
35 
36 static cl::opt<bool>
37 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
38                cl::desc("Do not add instruction count to lsr cost model"));
39 
40 // The latency of mtctr is only justified if there are more than 4
41 // comparisons that will be removed as a result.
42 static cl::opt<unsigned>
43 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
44                       cl::desc("Loops with a constant trip count smaller than "
45                                "this value will not use the count register."));
46 
47 //===----------------------------------------------------------------------===//
48 //
49 // PPC cost model.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 TargetTransformInfo::PopcntSupportKind
54 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
55   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
56   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
57     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
58              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
59   return TTI::PSK_Software;
60 }
61 
62 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
63                               TTI::TargetCostKind CostKind) {
64   if (DisablePPCConstHoist)
65     return BaseT::getIntImmCost(Imm, Ty, CostKind);
66 
67   assert(Ty->isIntegerTy());
68 
69   unsigned BitSize = Ty->getPrimitiveSizeInBits();
70   if (BitSize == 0)
71     return ~0U;
72 
73   if (Imm == 0)
74     return TTI::TCC_Free;
75 
76   if (Imm.getBitWidth() <= 64) {
77     if (isInt<16>(Imm.getSExtValue()))
78       return TTI::TCC_Basic;
79 
80     if (isInt<32>(Imm.getSExtValue())) {
81       // A constant that can be materialized using lis.
82       if ((Imm.getZExtValue() & 0xFFFF) == 0)
83         return TTI::TCC_Basic;
84 
85       return 2 * TTI::TCC_Basic;
86     }
87   }
88 
89   return 4 * TTI::TCC_Basic;
90 }
91 
92 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
93                                     const APInt &Imm, Type *Ty,
94                                     TTI::TargetCostKind CostKind) {
95   if (DisablePPCConstHoist)
96     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
97 
98   assert(Ty->isIntegerTy());
99 
100   unsigned BitSize = Ty->getPrimitiveSizeInBits();
101   if (BitSize == 0)
102     return ~0U;
103 
104   switch (IID) {
105   default:
106     return TTI::TCC_Free;
107   case Intrinsic::sadd_with_overflow:
108   case Intrinsic::uadd_with_overflow:
109   case Intrinsic::ssub_with_overflow:
110   case Intrinsic::usub_with_overflow:
111     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
112       return TTI::TCC_Free;
113     break;
114   case Intrinsic::experimental_stackmap:
115     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
116       return TTI::TCC_Free;
117     break;
118   case Intrinsic::experimental_patchpoint_void:
119   case Intrinsic::experimental_patchpoint_i64:
120     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
121       return TTI::TCC_Free;
122     break;
123   }
124   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
125 }
126 
127 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
128                                   const APInt &Imm, Type *Ty,
129                                   TTI::TargetCostKind CostKind) {
130   if (DisablePPCConstHoist)
131     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind);
132 
133   assert(Ty->isIntegerTy());
134 
135   unsigned BitSize = Ty->getPrimitiveSizeInBits();
136   if (BitSize == 0)
137     return ~0U;
138 
139   unsigned ImmIdx = ~0U;
140   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
141        ZeroFree = false;
142   switch (Opcode) {
143   default:
144     return TTI::TCC_Free;
145   case Instruction::GetElementPtr:
146     // Always hoist the base address of a GetElementPtr. This prevents the
147     // creation of new constants for every base constant that gets constant
148     // folded with the offset.
149     if (Idx == 0)
150       return 2 * TTI::TCC_Basic;
151     return TTI::TCC_Free;
152   case Instruction::And:
153     RunFree = true; // (for the rotate-and-mask instructions)
154     LLVM_FALLTHROUGH;
155   case Instruction::Add:
156   case Instruction::Or:
157   case Instruction::Xor:
158     ShiftedFree = true;
159     LLVM_FALLTHROUGH;
160   case Instruction::Sub:
161   case Instruction::Mul:
162   case Instruction::Shl:
163   case Instruction::LShr:
164   case Instruction::AShr:
165     ImmIdx = 1;
166     break;
167   case Instruction::ICmp:
168     UnsignedFree = true;
169     ImmIdx = 1;
170     // Zero comparisons can use record-form instructions.
171     LLVM_FALLTHROUGH;
172   case Instruction::Select:
173     ZeroFree = true;
174     break;
175   case Instruction::PHI:
176   case Instruction::Call:
177   case Instruction::Ret:
178   case Instruction::Load:
179   case Instruction::Store:
180     break;
181   }
182 
183   if (ZeroFree && Imm == 0)
184     return TTI::TCC_Free;
185 
186   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
187     if (isInt<16>(Imm.getSExtValue()))
188       return TTI::TCC_Free;
189 
190     if (RunFree) {
191       if (Imm.getBitWidth() <= 32 &&
192           (isShiftedMask_32(Imm.getZExtValue()) ||
193            isShiftedMask_32(~Imm.getZExtValue())))
194         return TTI::TCC_Free;
195 
196       if (ST->isPPC64() &&
197           (isShiftedMask_64(Imm.getZExtValue()) ||
198            isShiftedMask_64(~Imm.getZExtValue())))
199         return TTI::TCC_Free;
200     }
201 
202     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
203       return TTI::TCC_Free;
204 
205     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
206       return TTI::TCC_Free;
207   }
208 
209   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
210 }
211 
212 unsigned
213 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands,
214                         TTI::TargetCostKind CostKind) {
215   if (U->getType()->isVectorTy()) {
216     // Instructions that need to be split should cost more.
217     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
218     return LT.first * BaseT::getUserCost(U, Operands, CostKind);
219   }
220 
221   return BaseT::getUserCost(U, Operands, CostKind);
222 }
223 
224 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
225                              SmallPtrSetImpl<const Value *> &Visited) {
226   const PPCTargetMachine &TM = ST->getTargetMachine();
227 
228   // Loop through the inline asm constraints and look for something that
229   // clobbers ctr.
230   auto asmClobbersCTR = [](InlineAsm *IA) {
231     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
232     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
233       InlineAsm::ConstraintInfo &C = CIV[i];
234       if (C.Type != InlineAsm::isInput)
235         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
236           if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
237             return true;
238     }
239     return false;
240   };
241 
242   // Determining the address of a TLS variable results in a function call in
243   // certain TLS models.
244   std::function<bool(const Value *)> memAddrUsesCTR =
245       [&memAddrUsesCTR, &TM, &Visited](const Value *MemAddr) -> bool {
246     // No need to traverse again if we already checked this operand.
247     if (!Visited.insert(MemAddr).second)
248       return false;
249     const auto *GV = dyn_cast<GlobalValue>(MemAddr);
250     if (!GV) {
251       // Recurse to check for constants that refer to TLS global variables.
252       if (const auto *CV = dyn_cast<Constant>(MemAddr))
253         for (const auto &CO : CV->operands())
254           if (memAddrUsesCTR(CO))
255             return true;
256 
257       return false;
258     }
259 
260     if (!GV->isThreadLocal())
261       return false;
262     TLSModel::Model Model = TM.getTLSModel(GV);
263     return Model == TLSModel::GeneralDynamic ||
264       Model == TLSModel::LocalDynamic;
265   };
266 
267   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
268     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
269       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
270 
271     return false;
272   };
273 
274   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
275        J != JE; ++J) {
276     if (CallInst *CI = dyn_cast<CallInst>(J)) {
277       // Inline ASM is okay, unless it clobbers the ctr register.
278       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
279         if (asmClobbersCTR(IA))
280           return true;
281         continue;
282       }
283 
284       if (Function *F = CI->getCalledFunction()) {
285         // Most intrinsics don't become function calls, but some might.
286         // sin, cos, exp and log are always calls.
287         unsigned Opcode = 0;
288         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
289           switch (F->getIntrinsicID()) {
290           default: continue;
291           // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
292           // we're definitely using CTR.
293           case Intrinsic::set_loop_iterations:
294           case Intrinsic::loop_decrement:
295             return true;
296 
297           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
298           // because, although it does clobber the counter register, the
299           // control can't then return to inside the loop unless there is also
300           // an eh_sjlj_setjmp.
301           case Intrinsic::eh_sjlj_setjmp:
302 
303           case Intrinsic::memcpy:
304           case Intrinsic::memmove:
305           case Intrinsic::memset:
306           case Intrinsic::powi:
307           case Intrinsic::log:
308           case Intrinsic::log2:
309           case Intrinsic::log10:
310           case Intrinsic::exp:
311           case Intrinsic::exp2:
312           case Intrinsic::pow:
313           case Intrinsic::sin:
314           case Intrinsic::cos:
315             return true;
316           case Intrinsic::copysign:
317             if (CI->getArgOperand(0)->getType()->getScalarType()->
318                 isPPC_FP128Ty())
319               return true;
320             else
321               continue; // ISD::FCOPYSIGN is never a library call.
322           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
323           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
324           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
325           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
326           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
327           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
328           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
329           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
330           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
331           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
332           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
333           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
334           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
335           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
336           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
337           }
338         }
339 
340         // PowerPC does not use [US]DIVREM or other library calls for
341         // operations on regular types which are not otherwise library calls
342         // (i.e. soft float or atomics). If adapting for targets that do,
343         // additional care is required here.
344 
345         LibFunc Func;
346         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
347             LibInfo->getLibFunc(F->getName(), Func) &&
348             LibInfo->hasOptimizedCodeGen(Func)) {
349           // Non-read-only functions are never treated as intrinsics.
350           if (!CI->onlyReadsMemory())
351             return true;
352 
353           // Conversion happens only for FP calls.
354           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
355             return true;
356 
357           switch (Func) {
358           default: return true;
359           case LibFunc_copysign:
360           case LibFunc_copysignf:
361             continue; // ISD::FCOPYSIGN is never a library call.
362           case LibFunc_copysignl:
363             return true;
364           case LibFunc_fabs:
365           case LibFunc_fabsf:
366           case LibFunc_fabsl:
367             continue; // ISD::FABS is never a library call.
368           case LibFunc_sqrt:
369           case LibFunc_sqrtf:
370           case LibFunc_sqrtl:
371             Opcode = ISD::FSQRT; break;
372           case LibFunc_floor:
373           case LibFunc_floorf:
374           case LibFunc_floorl:
375             Opcode = ISD::FFLOOR; break;
376           case LibFunc_nearbyint:
377           case LibFunc_nearbyintf:
378           case LibFunc_nearbyintl:
379             Opcode = ISD::FNEARBYINT; break;
380           case LibFunc_ceil:
381           case LibFunc_ceilf:
382           case LibFunc_ceill:
383             Opcode = ISD::FCEIL; break;
384           case LibFunc_rint:
385           case LibFunc_rintf:
386           case LibFunc_rintl:
387             Opcode = ISD::FRINT; break;
388           case LibFunc_round:
389           case LibFunc_roundf:
390           case LibFunc_roundl:
391             Opcode = ISD::FROUND; break;
392           case LibFunc_trunc:
393           case LibFunc_truncf:
394           case LibFunc_truncl:
395             Opcode = ISD::FTRUNC; break;
396           case LibFunc_fmin:
397           case LibFunc_fminf:
398           case LibFunc_fminl:
399             Opcode = ISD::FMINNUM; break;
400           case LibFunc_fmax:
401           case LibFunc_fmaxf:
402           case LibFunc_fmaxl:
403             Opcode = ISD::FMAXNUM; break;
404           }
405         }
406 
407         if (Opcode) {
408           EVT EVTy =
409               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
410 
411           if (EVTy == MVT::Other)
412             return true;
413 
414           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
415             continue;
416           else if (EVTy.isVector() &&
417                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
418             continue;
419 
420           return true;
421         }
422       }
423 
424       return true;
425     } else if (isa<BinaryOperator>(J) &&
426                J->getType()->getScalarType()->isPPC_FP128Ty()) {
427       // Most operations on ppc_f128 values become calls.
428       return true;
429     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
430                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
431       CastInst *CI = cast<CastInst>(J);
432       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
433           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
434           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
435           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
436         return true;
437     } else if (isLargeIntegerTy(!TM.isPPC64(),
438                                 J->getType()->getScalarType()) &&
439                (J->getOpcode() == Instruction::UDiv ||
440                 J->getOpcode() == Instruction::SDiv ||
441                 J->getOpcode() == Instruction::URem ||
442                 J->getOpcode() == Instruction::SRem)) {
443       return true;
444     } else if (!TM.isPPC64() &&
445                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
446                (J->getOpcode() == Instruction::Shl ||
447                 J->getOpcode() == Instruction::AShr ||
448                 J->getOpcode() == Instruction::LShr)) {
449       // Only on PPC32, for 128-bit integers (specifically not 64-bit
450       // integers), these might be runtime calls.
451       return true;
452     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
453       // On PowerPC, indirect jumps use the counter register.
454       return true;
455     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
456       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
457         return true;
458     }
459 
460     // FREM is always a call.
461     if (J->getOpcode() == Instruction::FRem)
462       return true;
463 
464     if (ST->useSoftFloat()) {
465       switch(J->getOpcode()) {
466       case Instruction::FAdd:
467       case Instruction::FSub:
468       case Instruction::FMul:
469       case Instruction::FDiv:
470       case Instruction::FPTrunc:
471       case Instruction::FPExt:
472       case Instruction::FPToUI:
473       case Instruction::FPToSI:
474       case Instruction::UIToFP:
475       case Instruction::SIToFP:
476       case Instruction::FCmp:
477         return true;
478       }
479     }
480 
481     for (Value *Operand : J->operands())
482       if (memAddrUsesCTR(Operand))
483         return true;
484   }
485 
486   return false;
487 }
488 
489 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
490                                           AssumptionCache &AC,
491                                           TargetLibraryInfo *LibInfo,
492                                           HardwareLoopInfo &HWLoopInfo) {
493   const PPCTargetMachine &TM = ST->getTargetMachine();
494   TargetSchedModel SchedModel;
495   SchedModel.init(ST);
496 
497   // Do not convert small short loops to CTR loop.
498   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
499   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
500     SmallPtrSet<const Value *, 32> EphValues;
501     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
502     CodeMetrics Metrics;
503     for (BasicBlock *BB : L->blocks())
504       Metrics.analyzeBasicBlock(BB, *this, EphValues);
505     // 6 is an approximate latency for the mtctr instruction.
506     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
507       return false;
508   }
509 
510   // We don't want to spill/restore the counter register, and so we don't
511   // want to use the counter register if the loop contains calls.
512   SmallPtrSet<const Value *, 4> Visited;
513   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
514        I != IE; ++I)
515     if (mightUseCTR(*I, LibInfo, Visited))
516       return false;
517 
518   SmallVector<BasicBlock*, 4> ExitingBlocks;
519   L->getExitingBlocks(ExitingBlocks);
520 
521   // If there is an exit edge known to be frequently taken,
522   // we should not transform this loop.
523   for (auto &BB : ExitingBlocks) {
524     Instruction *TI = BB->getTerminator();
525     if (!TI) continue;
526 
527     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
528       uint64_t TrueWeight = 0, FalseWeight = 0;
529       if (!BI->isConditional() ||
530           !BI->extractProfMetadata(TrueWeight, FalseWeight))
531         continue;
532 
533       // If the exit path is more frequent than the loop path,
534       // we return here without further analysis for this loop.
535       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
536       if (( TrueIsExit && FalseWeight < TrueWeight) ||
537           (!TrueIsExit && FalseWeight > TrueWeight))
538         return false;
539     }
540   }
541 
542   LLVMContext &C = L->getHeader()->getContext();
543   HWLoopInfo.CountType = TM.isPPC64() ?
544     Type::getInt64Ty(C) : Type::getInt32Ty(C);
545   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
546   return true;
547 }
548 
549 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
550                                          TTI::UnrollingPreferences &UP) {
551   if (ST->getCPUDirective() == PPC::DIR_A2) {
552     // The A2 is in-order with a deep pipeline, and concatenation unrolling
553     // helps expose latency-hiding opportunities to the instruction scheduler.
554     UP.Partial = UP.Runtime = true;
555 
556     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
557     // often outweigh the cost of a division to compute the trip count.
558     UP.AllowExpensiveTripCount = true;
559   }
560 
561   BaseT::getUnrollingPreferences(L, SE, UP);
562 }
563 
564 // This function returns true to allow using coldcc calling convention.
565 // Returning true results in coldcc being used for functions which are cold at
566 // all call sites when the callers of the functions are not calling any other
567 // non coldcc functions.
568 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
569   return EnablePPCColdCC;
570 }
571 
572 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
573   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
574   // on combining the loads generated for consecutive accesses, and failure to
575   // do so is particularly expensive. This makes it much more likely (compared
576   // to only using concatenation unrolling).
577   if (ST->getCPUDirective() == PPC::DIR_A2)
578     return true;
579 
580   return LoopHasReductions;
581 }
582 
583 PPCTTIImpl::TTI::MemCmpExpansionOptions
584 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
585   TTI::MemCmpExpansionOptions Options;
586   Options.LoadSizes = {8, 4, 2, 1};
587   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
588   return Options;
589 }
590 
591 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
592   return true;
593 }
594 
595 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
596   assert(ClassID == GPRRC || ClassID == FPRRC ||
597          ClassID == VRRC || ClassID == VSXRC);
598   if (ST->hasVSX()) {
599     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
600     return ClassID == VSXRC ? 64 : 32;
601   }
602   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
603   return 32;
604 }
605 
606 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
607   if (Vector)
608     return ST->hasVSX() ? VSXRC : VRRC;
609   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
610                   Ty->getScalarType()->isDoubleTy()))
611     return ST->hasVSX() ? VSXRC : FPRRC;
612   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
613                   Ty->getScalarType()->isPPC_FP128Ty()))
614     return VRRC;
615   else if (Ty && Ty->getScalarType()->isHalfTy())
616     return VSXRC;
617   else
618     return GPRRC;
619 }
620 
621 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
622 
623   switch (ClassID) {
624     default:
625       llvm_unreachable("unknown register class");
626       return "PPC::unknown register class";
627     case GPRRC:       return "PPC::GPRRC";
628     case FPRRC:       return "PPC::FPRRC";
629     case VRRC:        return "PPC::VRRC";
630     case VSXRC:       return "PPC::VSXRC";
631   }
632 }
633 
634 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
635   if (Vector) {
636     if (ST->hasQPX()) return 256;
637     if (ST->hasAltivec()) return 128;
638     return 0;
639   }
640 
641   if (ST->isPPC64())
642     return 64;
643   return 32;
644 
645 }
646 
647 unsigned PPCTTIImpl::getCacheLineSize() const {
648   // Check first if the user specified a custom line size.
649   if (CacheLineSize.getNumOccurrences() > 0)
650     return CacheLineSize;
651 
652   // On P7, P8 or P9 we have a cache line size of 128.
653   unsigned Directive = ST->getCPUDirective();
654   // Assume that Future CPU has the same cache line size as the others.
655   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
656       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
657     return 128;
658 
659   // On other processors return a default of 64 bytes.
660   return 64;
661 }
662 
663 unsigned PPCTTIImpl::getPrefetchDistance() const {
664   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
665   // default, only on the BG/Q).
666   return 300;
667 }
668 
669 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
670   unsigned Directive = ST->getCPUDirective();
671   // The 440 has no SIMD support, but floating-point instructions
672   // have a 5-cycle latency, so unroll by 5x for latency hiding.
673   if (Directive == PPC::DIR_440)
674     return 5;
675 
676   // The A2 has no SIMD support, but floating-point instructions
677   // have a 6-cycle latency, so unroll by 6x for latency hiding.
678   if (Directive == PPC::DIR_A2)
679     return 6;
680 
681   // FIXME: For lack of any better information, do no harm...
682   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
683     return 1;
684 
685   // For P7 and P8, floating-point instructions have a 6-cycle latency and
686   // there are two execution units, so unroll by 12x for latency hiding.
687   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
688   // Assume that future is the same as the others.
689   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
690       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
691     return 12;
692 
693   // For most things, modern systems have two execution units (and
694   // out-of-order execution).
695   return 2;
696 }
697 
698 // Adjust the cost of vector instructions on targets which there is overlap
699 // between the vector and scalar units, thereby reducing the overall throughput
700 // of vector code wrt. scalar code.
701 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
702                                      Type *Ty2) {
703   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
704     return Cost;
705 
706   std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
707   // If type legalization involves splitting the vector, we don't want to
708   // double the cost at every step - only the last step.
709   if (LT1.first != 1 || !LT1.second.isVector())
710     return Cost;
711 
712   int ISD = TLI->InstructionOpcodeToISD(Opcode);
713   if (TLI->isOperationExpand(ISD, LT1.second))
714     return Cost;
715 
716   if (Ty2) {
717     std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
718     if (LT2.first != 1 || !LT2.second.isVector())
719       return Cost;
720   }
721 
722   return Cost * 2;
723 }
724 
725 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
726                                        TTI::TargetCostKind CostKind,
727                                        TTI::OperandValueKind Op1Info,
728                                        TTI::OperandValueKind Op2Info,
729                                        TTI::OperandValueProperties Opd1PropInfo,
730                                        TTI::OperandValueProperties Opd2PropInfo,
731                                        ArrayRef<const Value *> Args,
732                                        const Instruction *CxtI) {
733   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
734 
735   // Fallback to the default implementation.
736   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
737                                            Op2Info,
738                                            Opd1PropInfo, Opd2PropInfo);
739   return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
740 }
741 
742 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
743                                Type *SubTp) {
744   // Legalize the type.
745   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
746 
747   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
748   // (at least in the sense that there need only be one non-loop-invariant
749   // instruction). We need one such shuffle instruction for each actual
750   // register (this is not true for arbitrary shuffles, but is true for the
751   // structured types of shuffles covered by TTI::ShuffleKind).
752   return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
753                               nullptr);
754 }
755 
756 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
757                                  TTI::TargetCostKind CostKind,
758                                  const Instruction *I) {
759   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
760 
761   int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind);
762   return vectorCostAdjustment(Cost, Opcode, Dst, Src);
763 }
764 
765 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
766                                    TTI::TargetCostKind CostKind,
767                                    const Instruction *I) {
768   int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
769   return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
770 }
771 
772 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
773   assert(Val->isVectorTy() && "This must be a vector type");
774 
775   int ISD = TLI->InstructionOpcodeToISD(Opcode);
776   assert(ISD && "Invalid opcode");
777 
778   int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
779   Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
780 
781   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
782     // Double-precision scalars are already located in index #0 (or #1 if LE).
783     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
784         Index == (ST->isLittleEndian() ? 1 : 0))
785       return 0;
786 
787     return Cost;
788 
789   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
790     // Floating point scalars are already located in index #0.
791     if (Index == 0)
792       return 0;
793 
794     return Cost;
795 
796   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
797     if (ST->hasP9Altivec()) {
798       if (ISD == ISD::INSERT_VECTOR_ELT)
799         // A move-to VSR and a permute/insert.  Assume vector operation cost
800         // for both (cost will be 2x on P9).
801         return vectorCostAdjustment(2, Opcode, Val, nullptr);
802 
803       // It's an extract.  Maybe we can do a cheap move-from VSR.
804       unsigned EltSize = Val->getScalarSizeInBits();
805       if (EltSize == 64) {
806         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
807         if (Index == MfvsrdIndex)
808           return 1;
809       } else if (EltSize == 32) {
810         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
811         if (Index == MfvsrwzIndex)
812           return 1;
813       }
814 
815       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
816       // The cost of the load constant for a vector extract is disregarded
817       // (invariant, easily schedulable).
818       return vectorCostAdjustment(1, Opcode, Val, nullptr);
819 
820     } else if (ST->hasDirectMove())
821       // Assume permute has standard cost.
822       // Assume move-to/move-from VSR have 2x standard cost.
823       return 3;
824   }
825 
826   // Estimated cost of a load-hit-store delay.  This was obtained
827   // experimentally as a minimum needed to prevent unprofitable
828   // vectorization for the paq8p benchmark.  It may need to be
829   // raised further if other unprofitable cases remain.
830   unsigned LHSPenalty = 2;
831   if (ISD == ISD::INSERT_VECTOR_ELT)
832     LHSPenalty += 7;
833 
834   // Vector element insert/extract with Altivec is very expensive,
835   // because they require store and reload with the attendant
836   // processor stall for load-hit-store.  Until VSX is available,
837   // these need to be estimated as very costly.
838   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
839       ISD == ISD::INSERT_VECTOR_ELT)
840     return LHSPenalty + Cost;
841 
842   return Cost;
843 }
844 
845 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
846                                 MaybeAlign Alignment, unsigned AddressSpace,
847                                 TTI::TargetCostKind CostKind,
848                                 const Instruction *I) {
849   // Legalize the type.
850   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
851   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
852          "Invalid Opcode");
853 
854   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
855                                     CostKind);
856   Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
857 
858   bool IsAltivecType = ST->hasAltivec() &&
859                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
860                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
861   bool IsVSXType = ST->hasVSX() &&
862                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
863   bool IsQPXType = ST->hasQPX() &&
864                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
865 
866   // VSX has 32b/64b load instructions. Legalization can handle loading of
867   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
868   // PPCTargetLowering can't compute the cost appropriately. So here we
869   // explicitly check this case.
870   unsigned MemBytes = Src->getPrimitiveSizeInBits();
871   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
872       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
873     return 1;
874 
875   // Aligned loads and stores are easy.
876   unsigned SrcBytes = LT.second.getStoreSize();
877   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
878     return Cost;
879 
880   // If we can use the permutation-based load sequence, then this is also
881   // relatively cheap (not counting loop-invariant instructions): one load plus
882   // one permute (the last load in a series has extra cost, but we're
883   // neglecting that here). Note that on the P7, we could do unaligned loads
884   // for Altivec types using the VSX instructions, but that's more expensive
885   // than using the permutation-based load sequence. On the P8, that's no
886   // longer true.
887   if (Opcode == Instruction::Load &&
888       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
889       Alignment >= LT.second.getScalarType().getStoreSize())
890     return Cost + LT.first; // Add the cost of the permutations.
891 
892   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
893   // P7, unaligned vector loads are more expensive than the permutation-based
894   // load sequence, so that might be used instead, but regardless, the net cost
895   // is about the same (not counting loop-invariant instructions).
896   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
897     return Cost;
898 
899   // Newer PPC supports unaligned memory access.
900   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
901     return Cost;
902 
903   // PPC in general does not support unaligned loads and stores. They'll need
904   // to be decomposed based on the alignment factor.
905 
906   // Add the cost of each scalar load or store.
907   assert(Alignment);
908   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
909 
910   // For a vector type, there is also scalarization overhead (only for
911   // stores, loads are expanded using the vector-load + permutation sequence,
912   // which is much less expensive).
913   if (Src->isVectorTy() && Opcode == Instruction::Store)
914     for (int i = 0, e = cast<VectorType>(Src)->getNumElements(); i < e; ++i)
915       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
916 
917   return Cost;
918 }
919 
920 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
921                                            unsigned Factor,
922                                            ArrayRef<unsigned> Indices,
923                                            unsigned Alignment,
924                                            unsigned AddressSpace,
925                                            TTI::TargetCostKind CostKind,
926                                            bool UseMaskForCond,
927                                            bool UseMaskForGaps) {
928   if (UseMaskForCond || UseMaskForGaps)
929     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
930                                              Alignment, AddressSpace, CostKind,
931                                              UseMaskForCond, UseMaskForGaps);
932 
933   assert(isa<VectorType>(VecTy) &&
934          "Expect a vector type for interleaved memory op");
935 
936   // Legalize the type.
937   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
938 
939   // Firstly, the cost of load/store operation.
940   int Cost =
941       getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
942                       CostKind);
943 
944   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
945   // (at least in the sense that there need only be one non-loop-invariant
946   // instruction). For each result vector, we need one shuffle per incoming
947   // vector (except that the first shuffle can take two incoming vectors
948   // because it does not need to take itself).
949   Cost += Factor*(LT.first-1);
950 
951   return Cost;
952 }
953 
954 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
955                                            ArrayRef<Value *> Args,
956                                            FastMathFlags FMF, unsigned VF,
957                                            TTI::TargetCostKind CostKind,
958                                            const Instruction *I) {
959   return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, CostKind, I);
960 }
961 
962 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
963                                            ArrayRef<Type *> Tys,
964                                            FastMathFlags FMF,
965                                            unsigned ScalarizationCostPassed,
966                                            TTI::TargetCostKind CostKind,
967                                            const Instruction *I) {
968   if (ID == Intrinsic::bswap && ST->hasP9Vector())
969     return TLI->getTypeLegalizationCost(DL, RetTy).first;
970   return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
971                                       ScalarizationCostPassed, CostKind, I);
972 }
973 
974 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
975                             LoopInfo *LI, DominatorTree *DT,
976                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
977   // Process nested loops first.
978   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
979     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
980       return false; // Stop search.
981 
982   HardwareLoopInfo HWLoopInfo(L);
983 
984   if (!HWLoopInfo.canAnalyze(*LI))
985     return false;
986 
987   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
988     return false;
989 
990   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
991     return false;
992 
993   *BI = HWLoopInfo.ExitBranch;
994   return true;
995 }
996 
997 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
998                                TargetTransformInfo::LSRCost &C2) {
999   // PowerPC default behaviour here is "instruction number 1st priority".
1000   // If LsrNoInsnsCost is set, call default implementation.
1001   if (!LsrNoInsnsCost)
1002     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
1003                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1004            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
1005                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1006   else
1007     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1008 }
1009