xref: /llvm-project/llvm/lib/Target/PowerPC/PPCTargetTransformInfo.cpp (revision 3a7578c6589b910f9a04bae7f7f121dfe3281578)
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "PPCTargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/Support/CommandLine.h"
14 #include "llvm/Support/Debug.h"
15 #include "llvm/Target/CostTable.h"
16 #include "llvm/Target/TargetLowering.h"
17 using namespace llvm;
18 
19 #define DEBUG_TYPE "ppctti"
20 
21 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
22 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
23 
24 // This is currently only used for the data prefetch pass which is only enabled
25 // for BG/Q by default.
26 static cl::opt<unsigned>
27 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
28               cl::desc("The loop prefetch cache line size"));
29 
30 //===----------------------------------------------------------------------===//
31 //
32 // PPC cost model.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 TargetTransformInfo::PopcntSupportKind
37 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
38   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
39   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
40     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
41              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
42   return TTI::PSK_Software;
43 }
44 
45 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
46   if (DisablePPCConstHoist)
47     return BaseT::getIntImmCost(Imm, Ty);
48 
49   assert(Ty->isIntegerTy());
50 
51   unsigned BitSize = Ty->getPrimitiveSizeInBits();
52   if (BitSize == 0)
53     return ~0U;
54 
55   if (Imm == 0)
56     return TTI::TCC_Free;
57 
58   if (Imm.getBitWidth() <= 64) {
59     if (isInt<16>(Imm.getSExtValue()))
60       return TTI::TCC_Basic;
61 
62     if (isInt<32>(Imm.getSExtValue())) {
63       // A constant that can be materialized using lis.
64       if ((Imm.getZExtValue() & 0xFFFF) == 0)
65         return TTI::TCC_Basic;
66 
67       return 2 * TTI::TCC_Basic;
68     }
69   }
70 
71   return 4 * TTI::TCC_Basic;
72 }
73 
74 int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
75                               Type *Ty) {
76   if (DisablePPCConstHoist)
77     return BaseT::getIntImmCost(IID, Idx, Imm, Ty);
78 
79   assert(Ty->isIntegerTy());
80 
81   unsigned BitSize = Ty->getPrimitiveSizeInBits();
82   if (BitSize == 0)
83     return ~0U;
84 
85   switch (IID) {
86   default:
87     return TTI::TCC_Free;
88   case Intrinsic::sadd_with_overflow:
89   case Intrinsic::uadd_with_overflow:
90   case Intrinsic::ssub_with_overflow:
91   case Intrinsic::usub_with_overflow:
92     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
93       return TTI::TCC_Free;
94     break;
95   case Intrinsic::experimental_stackmap:
96     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
97       return TTI::TCC_Free;
98     break;
99   case Intrinsic::experimental_patchpoint_void:
100   case Intrinsic::experimental_patchpoint_i64:
101     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
102       return TTI::TCC_Free;
103     break;
104   }
105   return PPCTTIImpl::getIntImmCost(Imm, Ty);
106 }
107 
108 int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
109                               Type *Ty) {
110   if (DisablePPCConstHoist)
111     return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty);
112 
113   assert(Ty->isIntegerTy());
114 
115   unsigned BitSize = Ty->getPrimitiveSizeInBits();
116   if (BitSize == 0)
117     return ~0U;
118 
119   unsigned ImmIdx = ~0U;
120   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
121        ZeroFree = false;
122   switch (Opcode) {
123   default:
124     return TTI::TCC_Free;
125   case Instruction::GetElementPtr:
126     // Always hoist the base address of a GetElementPtr. This prevents the
127     // creation of new constants for every base constant that gets constant
128     // folded with the offset.
129     if (Idx == 0)
130       return 2 * TTI::TCC_Basic;
131     return TTI::TCC_Free;
132   case Instruction::And:
133     RunFree = true; // (for the rotate-and-mask instructions)
134     LLVM_FALLTHROUGH;
135   case Instruction::Add:
136   case Instruction::Or:
137   case Instruction::Xor:
138     ShiftedFree = true;
139     LLVM_FALLTHROUGH;
140   case Instruction::Sub:
141   case Instruction::Mul:
142   case Instruction::Shl:
143   case Instruction::LShr:
144   case Instruction::AShr:
145     ImmIdx = 1;
146     break;
147   case Instruction::ICmp:
148     UnsignedFree = true;
149     ImmIdx = 1;
150     // Zero comparisons can use record-form instructions.
151     LLVM_FALLTHROUGH;
152   case Instruction::Select:
153     ZeroFree = true;
154     break;
155   case Instruction::PHI:
156   case Instruction::Call:
157   case Instruction::Ret:
158   case Instruction::Load:
159   case Instruction::Store:
160     break;
161   }
162 
163   if (ZeroFree && Imm == 0)
164     return TTI::TCC_Free;
165 
166   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
167     if (isInt<16>(Imm.getSExtValue()))
168       return TTI::TCC_Free;
169 
170     if (RunFree) {
171       if (Imm.getBitWidth() <= 32 &&
172           (isShiftedMask_32(Imm.getZExtValue()) ||
173            isShiftedMask_32(~Imm.getZExtValue())))
174         return TTI::TCC_Free;
175 
176       if (ST->isPPC64() &&
177           (isShiftedMask_64(Imm.getZExtValue()) ||
178            isShiftedMask_64(~Imm.getZExtValue())))
179         return TTI::TCC_Free;
180     }
181 
182     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
183       return TTI::TCC_Free;
184 
185     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
186       return TTI::TCC_Free;
187   }
188 
189   return PPCTTIImpl::getIntImmCost(Imm, Ty);
190 }
191 
192 void PPCTTIImpl::getUnrollingPreferences(Loop *L,
193                                          TTI::UnrollingPreferences &UP) {
194   if (ST->getDarwinDirective() == PPC::DIR_A2) {
195     // The A2 is in-order with a deep pipeline, and concatenation unrolling
196     // helps expose latency-hiding opportunities to the instruction scheduler.
197     UP.Partial = UP.Runtime = true;
198 
199     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
200     // often outweigh the cost of a division to compute the trip count.
201     UP.AllowExpensiveTripCount = true;
202   }
203 
204   BaseT::getUnrollingPreferences(L, UP);
205 }
206 
207 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
208   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
209   // on combining the loads generated for consecutive accesses, and failure to
210   // do so is particularly expensive. This makes it much more likely (compared
211   // to only using concatenation unrolling).
212   if (ST->getDarwinDirective() == PPC::DIR_A2)
213     return true;
214 
215   return LoopHasReductions;
216 }
217 
218 bool PPCTTIImpl::expandMemCmp(Instruction *I, unsigned &MaxLoadSize) {
219   MaxLoadSize = 8;
220   return true;
221 }
222 
223 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
224   return true;
225 }
226 
227 unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) {
228   if (Vector && !ST->hasAltivec() && !ST->hasQPX())
229     return 0;
230   return ST->hasVSX() ? 64 : 32;
231 }
232 
233 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) {
234   if (Vector) {
235     if (ST->hasQPX()) return 256;
236     if (ST->hasAltivec()) return 128;
237     return 0;
238   }
239 
240   if (ST->isPPC64())
241     return 64;
242   return 32;
243 
244 }
245 
246 unsigned PPCTTIImpl::getCacheLineSize() {
247   // This is currently only used for the data prefetch pass which is only
248   // enabled for BG/Q by default.
249   return CacheLineSize;
250 }
251 
252 unsigned PPCTTIImpl::getPrefetchDistance() {
253   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
254   // default, only on the BG/Q).
255   return 300;
256 }
257 
258 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
259   unsigned Directive = ST->getDarwinDirective();
260   // The 440 has no SIMD support, but floating-point instructions
261   // have a 5-cycle latency, so unroll by 5x for latency hiding.
262   if (Directive == PPC::DIR_440)
263     return 5;
264 
265   // The A2 has no SIMD support, but floating-point instructions
266   // have a 6-cycle latency, so unroll by 6x for latency hiding.
267   if (Directive == PPC::DIR_A2)
268     return 6;
269 
270   // FIXME: For lack of any better information, do no harm...
271   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
272     return 1;
273 
274   // For P7 and P8, floating-point instructions have a 6-cycle latency and
275   // there are two execution units, so unroll by 12x for latency hiding.
276   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
277   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
278       Directive == PPC::DIR_PWR9)
279     return 12;
280 
281   // For most things, modern systems have two execution units (and
282   // out-of-order execution).
283   return 2;
284 }
285 
286 int PPCTTIImpl::getArithmeticInstrCost(
287     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
288     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
289     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) {
290   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
291 
292   // Fallback to the default implementation.
293   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
294                                        Opd1PropInfo, Opd2PropInfo);
295 }
296 
297 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
298                                Type *SubTp) {
299   // Legalize the type.
300   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
301 
302   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
303   // (at least in the sense that there need only be one non-loop-invariant
304   // instruction). We need one such shuffle instruction for each actual
305   // register (this is not true for arbitrary shuffles, but is true for the
306   // structured types of shuffles covered by TTI::ShuffleKind).
307   return LT.first;
308 }
309 
310 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
311                                  const Instruction *I) {
312   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
313 
314   return BaseT::getCastInstrCost(Opcode, Dst, Src);
315 }
316 
317 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
318                                    const Instruction *I) {
319   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
320 }
321 
322 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
323   assert(Val->isVectorTy() && "This must be a vector type");
324 
325   int ISD = TLI->InstructionOpcodeToISD(Opcode);
326   assert(ISD && "Invalid opcode");
327 
328   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
329     // Double-precision scalars are already located in index #0.
330     if (Index == 0)
331       return 0;
332 
333     return BaseT::getVectorInstrCost(Opcode, Val, Index);
334   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
335     // Floating point scalars are already located in index #0.
336     if (Index == 0)
337       return 0;
338 
339     return BaseT::getVectorInstrCost(Opcode, Val, Index);
340   }
341 
342   // Estimated cost of a load-hit-store delay.  This was obtained
343   // experimentally as a minimum needed to prevent unprofitable
344   // vectorization for the paq8p benchmark.  It may need to be
345   // raised further if other unprofitable cases remain.
346   unsigned LHSPenalty = 2;
347   if (ISD == ISD::INSERT_VECTOR_ELT)
348     LHSPenalty += 7;
349 
350   // Vector element insert/extract with Altivec is very expensive,
351   // because they require store and reload with the attendant
352   // processor stall for load-hit-store.  Until VSX is available,
353   // these need to be estimated as very costly.
354   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
355       ISD == ISD::INSERT_VECTOR_ELT)
356     return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index);
357 
358   return BaseT::getVectorInstrCost(Opcode, Val, Index);
359 }
360 
361 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
362                                 unsigned AddressSpace, const Instruction *I) {
363   // Legalize the type.
364   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
365   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
366          "Invalid Opcode");
367 
368   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
369 
370   bool IsAltivecType = ST->hasAltivec() &&
371                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
372                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
373   bool IsVSXType = ST->hasVSX() &&
374                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
375   bool IsQPXType = ST->hasQPX() &&
376                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
377 
378   // VSX has 32b/64b load instructions. Legalization can handle loading of
379   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
380   // PPCTargetLowering can't compute the cost appropriately. So here we
381   // explicitly check this case.
382   unsigned MemBytes = Src->getPrimitiveSizeInBits();
383   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
384       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
385     return 1;
386 
387   // Aligned loads and stores are easy.
388   unsigned SrcBytes = LT.second.getStoreSize();
389   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
390     return Cost;
391 
392   // If we can use the permutation-based load sequence, then this is also
393   // relatively cheap (not counting loop-invariant instructions): one load plus
394   // one permute (the last load in a series has extra cost, but we're
395   // neglecting that here). Note that on the P7, we could do unaligned loads
396   // for Altivec types using the VSX instructions, but that's more expensive
397   // than using the permutation-based load sequence. On the P8, that's no
398   // longer true.
399   if (Opcode == Instruction::Load &&
400       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
401       Alignment >= LT.second.getScalarType().getStoreSize())
402     return Cost + LT.first; // Add the cost of the permutations.
403 
404   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
405   // P7, unaligned vector loads are more expensive than the permutation-based
406   // load sequence, so that might be used instead, but regardless, the net cost
407   // is about the same (not counting loop-invariant instructions).
408   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
409     return Cost;
410 
411   // Newer PPC supports unaligned memory access.
412   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
413     return Cost;
414 
415   // PPC in general does not support unaligned loads and stores. They'll need
416   // to be decomposed based on the alignment factor.
417 
418   // Add the cost of each scalar load or store.
419   Cost += LT.first*(SrcBytes/Alignment-1);
420 
421   // For a vector type, there is also scalarization overhead (only for
422   // stores, loads are expanded using the vector-load + permutation sequence,
423   // which is much less expensive).
424   if (Src->isVectorTy() && Opcode == Instruction::Store)
425     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
426       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
427 
428   return Cost;
429 }
430 
431 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
432                                            unsigned Factor,
433                                            ArrayRef<unsigned> Indices,
434                                            unsigned Alignment,
435                                            unsigned AddressSpace) {
436   assert(isa<VectorType>(VecTy) &&
437          "Expect a vector type for interleaved memory op");
438 
439   // Legalize the type.
440   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
441 
442   // Firstly, the cost of load/store operation.
443   int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace);
444 
445   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
446   // (at least in the sense that there need only be one non-loop-invariant
447   // instruction). For each result vector, we need one shuffle per incoming
448   // vector (except that the first shuffle can take two incoming vectors
449   // because it does not need to take itself).
450   Cost += Factor*(LT.first-1);
451 
452   return Cost;
453 }
454 
455