xref: /llvm-project/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp (revision bc5e969ca1e1567ae5ad259f7f2d55a96e30b07f)
1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "reginfo"
48 
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
51 
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54 
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57          cl::desc("Enable use of a base pointer for complex stack frames"));
58 
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61          cl::desc("Force the use of a base pointer in every function"));
62 
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65          cl::desc("Enable spills from gpr to vsr rather than stack"));
66 
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69                 cl::desc("Consider R1 caller preserved so stack saves of "
70                          "caller preserved registers can be LICM candidates"),
71                 cl::init(true), cl::Hidden);
72 
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75                   cl::desc("Maximum search distance for definition of CR bit "
76                            "spill on ppc"),
77                   cl::Hidden, cl::init(100));
78 
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89                cl::desc("Emit information about accumulator register spills "
90                         "and copies"),
91                cl::Hidden, cl::init(false));
92 #endif
93 
94 extern cl::opt<bool> DisableAutoPairedVecSt;
95 
96 static unsigned offsetMinAlignForOpcode(unsigned OpC);
97 
98 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
99   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
100                        TM.isPPC64() ? 0 : 1,
101                        TM.isPPC64() ? 0 : 1),
102     TM(TM) {
103   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
104   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
105   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
106   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
107   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
108   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
109   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
110   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
111   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
112 
113   // 64-bit
114   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
115   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
116   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
117   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
118   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
119   ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
120   ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
121 
122   // VSX
123   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
124   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
125   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
126   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
127   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
128   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
129   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
130   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
131   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
132   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
133   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
134   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
135 
136   // SPE
137   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
138   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
139   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
140   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
141 
142   // Power10
143   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
144   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
145   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
146   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
147   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
148   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
149 
150   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
151   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
152   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
153 
154   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
155   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
156   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
157   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
158   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
159 
160   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
161   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
162   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
163   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
164 }
165 
166 /// getPointerRegClass - Return the register class to use to hold pointers.
167 /// This is used for addressing modes.
168 const TargetRegisterClass *
169 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
170                                                                        const {
171   // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
172   // when it checks for ZERO folding.
173   if (Kind == 1) {
174     if (TM.isPPC64())
175       return &PPC::G8RC_NOX0RegClass;
176     return &PPC::GPRC_NOR0RegClass;
177   }
178 
179   if (TM.isPPC64())
180     return &PPC::G8RCRegClass;
181   return &PPC::GPRCRegClass;
182 }
183 
184 const MCPhysReg*
185 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
186   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
187   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
188     if (!TM.isPPC64() && Subtarget.isAIXABI())
189       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
190     if (Subtarget.hasVSX()) {
191       if (Subtarget.pairedVectorMemops())
192         return CSR_64_AllRegs_VSRP_SaveList;
193       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
194         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
195       return CSR_64_AllRegs_VSX_SaveList;
196     }
197     if (Subtarget.hasAltivec()) {
198       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
199         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
200       return CSR_64_AllRegs_Altivec_SaveList;
201     }
202     return CSR_64_AllRegs_SaveList;
203   }
204 
205   // On PPC64, we might need to save r2 (but only if it is not reserved).
206   // We do not need to treat R2 as callee-saved when using PC-Relative calls
207   // because any direct uses of R2 will cause it to be reserved. If the function
208   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
209   // will use the @notoc relocation which will cause this function to set the
210   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
211   // clobbers the TOC.
212   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
213                 !Subtarget.isUsingPCRelativeCalls();
214 
215   // Cold calling convention CSRs.
216   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
217     if (Subtarget.isAIXABI())
218       report_fatal_error("Cold calling unimplemented on AIX.");
219     if (TM.isPPC64()) {
220       if (Subtarget.pairedVectorMemops())
221         return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
222                       : CSR_SVR64_ColdCC_VSRP_SaveList;
223       if (Subtarget.hasAltivec())
224         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
225                       : CSR_SVR64_ColdCC_Altivec_SaveList;
226       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
227                     : CSR_SVR64_ColdCC_SaveList;
228     }
229     // 32-bit targets.
230     if (Subtarget.pairedVectorMemops())
231       return CSR_SVR32_ColdCC_VSRP_SaveList;
232     else if (Subtarget.hasAltivec())
233       return CSR_SVR32_ColdCC_Altivec_SaveList;
234     else if (Subtarget.hasSPE())
235       return CSR_SVR32_ColdCC_SPE_SaveList;
236     return CSR_SVR32_ColdCC_SaveList;
237   }
238   // Standard calling convention CSRs.
239   if (TM.isPPC64()) {
240     if (Subtarget.pairedVectorMemops()) {
241       if (Subtarget.isAIXABI()) {
242         if (!TM.getAIXExtendedAltivecABI())
243           return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
244         return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList;
245       }
246       return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
247     }
248     if (Subtarget.hasAltivec() &&
249         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
250       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
251                     : CSR_PPC64_Altivec_SaveList;
252     }
253     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
254   }
255   // 32-bit targets.
256   if (Subtarget.isAIXABI()) {
257     if (Subtarget.pairedVectorMemops())
258       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList
259                                            : CSR_AIX32_SaveList;
260     if (Subtarget.hasAltivec())
261       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
262                                            : CSR_AIX32_SaveList;
263     return CSR_AIX32_SaveList;
264   }
265   if (Subtarget.pairedVectorMemops())
266     return CSR_SVR432_VSRP_SaveList;
267   if (Subtarget.hasAltivec())
268     return CSR_SVR432_Altivec_SaveList;
269   else if (Subtarget.hasSPE()) {
270     if (TM.isPositionIndependent() && !TM.isPPC64())
271       return CSR_SVR432_SPE_NO_S30_31_SaveList;
272     return CSR_SVR432_SPE_SaveList;
273    }
274   return CSR_SVR432_SaveList;
275 }
276 
277 const uint32_t *
278 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
279                                       CallingConv::ID CC) const {
280   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
281   if (CC == CallingConv::AnyReg) {
282     if (Subtarget.hasVSX()) {
283       if (Subtarget.pairedVectorMemops())
284         return CSR_64_AllRegs_VSRP_RegMask;
285       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
286         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
287       return CSR_64_AllRegs_VSX_RegMask;
288     }
289     if (Subtarget.hasAltivec()) {
290       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
291         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
292       return CSR_64_AllRegs_Altivec_RegMask;
293     }
294     return CSR_64_AllRegs_RegMask;
295   }
296 
297   if (Subtarget.isAIXABI()) {
298     if (Subtarget.pairedVectorMemops()) {
299       if (!TM.getAIXExtendedAltivecABI())
300         return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask;
301       return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask;
302     }
303     return TM.isPPC64()
304                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
305                       ? CSR_PPC64_Altivec_RegMask
306                       : CSR_PPC64_RegMask)
307                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
308                       ? CSR_AIX32_Altivec_RegMask
309                       : CSR_AIX32_RegMask);
310   }
311 
312   if (CC == CallingConv::Cold) {
313     if (TM.isPPC64())
314       return Subtarget.pairedVectorMemops()
315                  ? CSR_SVR64_ColdCC_VSRP_RegMask
316                  : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
317                                            : CSR_SVR64_ColdCC_RegMask);
318     else
319       return Subtarget.pairedVectorMemops()
320                  ? CSR_SVR32_ColdCC_VSRP_RegMask
321                  : (Subtarget.hasAltivec()
322                         ? CSR_SVR32_ColdCC_Altivec_RegMask
323                         : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
324                                               : CSR_SVR32_ColdCC_RegMask));
325   }
326 
327   if (TM.isPPC64())
328     return Subtarget.pairedVectorMemops()
329                ? CSR_SVR464_VSRP_RegMask
330                : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
331                                          : CSR_PPC64_RegMask);
332   else
333     return Subtarget.pairedVectorMemops()
334                ? CSR_SVR432_VSRP_RegMask
335                : (Subtarget.hasAltivec()
336                       ? CSR_SVR432_Altivec_RegMask
337                       : (Subtarget.hasSPE()
338                              ? (TM.isPositionIndependent()
339                                      ? CSR_SVR432_SPE_NO_S30_31_RegMask
340                                      : CSR_SVR432_SPE_RegMask)
341                              : CSR_SVR432_RegMask));
342 }
343 
344 const uint32_t*
345 PPCRegisterInfo::getNoPreservedMask() const {
346   return CSR_NoRegs_RegMask;
347 }
348 
349 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
350   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
351     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
352 }
353 
354 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
355   BitVector Reserved(getNumRegs());
356   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
357   const PPCFrameLowering *TFI = getFrameLowering(MF);
358 
359   // The ZERO register is not really a register, but the representation of r0
360   // when used in instructions that treat r0 as the constant 0.
361   markSuperRegs(Reserved, PPC::ZERO);
362 
363   // The FP register is also not really a register, but is the representation
364   // of the frame pointer register used by ISD::FRAMEADDR.
365   markSuperRegs(Reserved, PPC::FP);
366 
367   // The BP register is also not really a register, but is the representation
368   // of the base pointer register used by setjmp.
369   markSuperRegs(Reserved, PPC::BP);
370 
371   // The counter registers must be reserved so that counter-based loops can
372   // be correctly formed (and the mtctr instructions are not DCE'd).
373   markSuperRegs(Reserved, PPC::CTR);
374   markSuperRegs(Reserved, PPC::CTR8);
375 
376   markSuperRegs(Reserved, PPC::R1);
377   markSuperRegs(Reserved, PPC::LR);
378   markSuperRegs(Reserved, PPC::LR8);
379   markSuperRegs(Reserved, PPC::RM);
380 
381   markSuperRegs(Reserved, PPC::VRSAVE);
382 
383   // The SVR4 ABI reserves r2 and r13
384   if (Subtarget.isSVR4ABI()) {
385     // We only reserve r2 if we need to use the TOC pointer. If we have no
386     // explicit uses of the TOC pointer (meaning we're a leaf function with
387     // no constant-pool loads, etc.) and we have no potential uses inside an
388     // inline asm block, then we can treat r2 has an ordinary callee-saved
389     // register.
390     const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
391     if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
392       markSuperRegs(Reserved, PPC::R2);  // System-reserved register
393     markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
394   }
395 
396   // Always reserve r2 on AIX for now.
397   // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
398   if (Subtarget.isAIXABI())
399     markSuperRegs(Reserved, PPC::R2);  // System-reserved register
400 
401   // On PPC64, r13 is the thread pointer. Never allocate this register.
402   if (TM.isPPC64())
403     markSuperRegs(Reserved, PPC::R13);
404 
405   if (TFI->needsFP(MF))
406     markSuperRegs(Reserved, PPC::R31);
407 
408   bool IsPositionIndependent = TM.isPositionIndependent();
409   if (hasBasePointer(MF)) {
410     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
411       markSuperRegs(Reserved, PPC::R29);
412     else
413       markSuperRegs(Reserved, PPC::R30);
414   }
415 
416   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
417     markSuperRegs(Reserved, PPC::R30);
418 
419   // Reserve Altivec registers when Altivec is unavailable.
420   if (!Subtarget.hasAltivec())
421     for (MCRegister Reg : PPC::VRRCRegClass)
422       markSuperRegs(Reserved, Reg);
423 
424   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
425       !TM.getAIXExtendedAltivecABI()) {
426     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
427     //  and cannot be used.
428     for (auto Reg : CSR_Altivec_SaveList) {
429       if (Reg == 0)
430         break;
431       markSuperRegs(Reserved, Reg);
432       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
433         Reserved.set(*AS);
434       }
435     }
436   }
437 
438   assert(checkAllSuperRegsMarked(Reserved));
439   return Reserved;
440 }
441 
442 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
443                                        MCRegister PhysReg) const {
444   // We cannot use getReservedRegs() to find the registers that are not asm
445   // clobberable because there are some reserved registers which can be
446   // clobbered by inline asm. For example, when LR is clobbered, the register is
447   // saved and restored. We will hardcode the registers that are not asm
448   // cloberable in this function.
449 
450   // The stack pointer (R1/X1) is not clobberable by inline asm
451   return PhysReg != PPC::R1 && PhysReg != PPC::X1;
452 }
453 
454 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
455   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
456   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
457   const MachineFrameInfo &MFI = MF.getFrameInfo();
458   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
459 
460   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
461                     << ".\n");
462   // If the callee saved info is invalid we have to default to true for safety.
463   if (!MFI.isCalleeSavedInfoValid()) {
464     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
465     return true;
466   }
467 
468   // We will require the use of X-Forms because the frame is larger than what
469   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
470   // If we need an X-Form then we need a register to store the address offset.
471   unsigned FrameSize = MFI.getStackSize();
472   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
473   if (FrameSize & ~0x7FFF) {
474     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
475     return true;
476   }
477 
478   // The callee saved info is valid so it can be traversed.
479   // Checking for registers that need saving that do not have load or store
480   // forms where the address offset is an immediate.
481   for (const CalleeSavedInfo &CSI : Info) {
482     // If the spill is to a register no scavenging is required.
483     if (CSI.isSpilledToReg())
484       continue;
485 
486     int FrIdx = CSI.getFrameIdx();
487     Register Reg = CSI.getReg();
488 
489     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
490     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
491     if (!MFI.isFixedObjectIndex(FrIdx)) {
492       // This is not a fixed object. If it requires alignment then we may still
493       // need to use the XForm.
494       if (offsetMinAlignForOpcode(Opcode) > 1) {
495         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
496                           << " for register " << printReg(Reg, this) << ".\n");
497         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
498                           << "alignment.\n");
499         return true;
500       }
501     }
502 
503     // This is eiher:
504     // 1) A fixed frame index object which we know are aligned so
505     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
506     // need to consider the alignment here.
507     // 2) A not fixed object but in that case we now know that the min required
508     // alignment is no more than 1 based on the previous check.
509     if (InstrInfo->isXFormMemOp(Opcode)) {
510       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
511                         << " for register " << printReg(Reg, this) << ".\n");
512       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
513       return true;
514     }
515 
516     // This is a spill/restore of a quadword.
517     if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
518       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
519                         << " for register " << printReg(Reg, this) << ".\n");
520       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
521       return true;
522     }
523   }
524   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
525   return false;
526 }
527 
528 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
529     const MachineFunction &MF) const {
530   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
531   // Do not use virtual base registers when ROP protection is turned on.
532   // Virtual base registers break the layout of the local variable space and may
533   // push the ROP Hash location past the 512 byte range of the ROP store
534   // instruction.
535   return !Subtarget.hasROPProtect();
536 }
537 
538 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
539                                                const MachineFunction &MF) const {
540   assert(Register::isPhysicalRegister(PhysReg));
541   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
542   const MachineFrameInfo &MFI = MF.getFrameInfo();
543 
544   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
545     return false;
546   if (PhysReg == Subtarget.getTOCPointerRegister())
547     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
548     // The reason it's reserved is that it's the TOC pointer (and the function
549     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
550     // with no TOC access), we can't claim that it is preserved.
551     return (getReservedRegs(MF).test(PhysReg));
552   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
553       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
554     // The value of the stack pointer does not change within a function after
555     // the prologue and before the epilogue if there are no dynamic allocations
556     // and no inline asm which clobbers X1/R1.
557     return true;
558   return false;
559 }
560 
561 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
562                                             ArrayRef<MCPhysReg> Order,
563                                             SmallVectorImpl<MCPhysReg> &Hints,
564                                             const MachineFunction &MF,
565                                             const VirtRegMap *VRM,
566                                             const LiveRegMatrix *Matrix) const {
567   const MachineRegisterInfo *MRI = &MF.getRegInfo();
568 
569   // Call the base implementation first to set any hints based on the usual
570   // heuristics and decide what the return value should be. We want to return
571   // the same value returned by the base implementation. If the base
572   // implementation decides to return true and force the allocation then we
573   // will leave it as such. On the other hand if the base implementation
574   // decides to return false the following code will not force the allocation
575   // as we are just looking to provide a hint.
576   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
577       VirtReg, Order, Hints, MF, VRM, Matrix);
578   // We are interested in instructions that copy values to ACC/UACC.
579   // The copy into UACC will be simply a COPY to a subreg so we
580   // want to allocate the corresponding physical subreg for the source.
581   // The copy into ACC will be a BUILD_UACC so we want to allocate
582   // the same number UACC for the source.
583   const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
584   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
585     const MachineOperand *ResultOp = nullptr;
586     Register ResultReg;
587     switch (Use.getOpcode()) {
588     case TargetOpcode::COPY: {
589       ResultOp = &Use.getOperand(0);
590       ResultReg = ResultOp->getReg();
591       if (Register::isVirtualRegister(ResultReg) &&
592           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
593           VRM->hasPhys(ResultReg)) {
594         Register UACCPhys = VRM->getPhys(ResultReg);
595         Register HintReg;
596         if (RegClass->contains(PPC::VSRp0)) {
597           HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
598           // Ensure that the hint is a VSRp register.
599           if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
600             Hints.push_back(HintReg);
601         } else if (RegClass->contains(PPC::ACC0)) {
602           HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0);
603           if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7)
604             Hints.push_back(HintReg);
605         }
606       }
607       break;
608     }
609     case PPC::BUILD_UACC: {
610       ResultOp = &Use.getOperand(0);
611       ResultReg = ResultOp->getReg();
612       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
613           VRM->hasPhys(ResultReg)) {
614         Register ACCPhys = VRM->getPhys(ResultReg);
615         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
616                "Expecting an ACC register for BUILD_UACC.");
617         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
618         Hints.push_back(HintReg);
619       }
620       break;
621     }
622     }
623   }
624   return BaseImplRetVal;
625 }
626 
627 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
628                                               MachineFunction &MF) const {
629   const PPCFrameLowering *TFI = getFrameLowering(MF);
630   const unsigned DefaultSafety = 1;
631 
632   switch (RC->getID()) {
633   default:
634     return 0;
635   case PPC::G8RC_NOX0RegClassID:
636   case PPC::GPRC_NOR0RegClassID:
637   case PPC::SPERCRegClassID:
638   case PPC::G8RCRegClassID:
639   case PPC::GPRCRegClassID: {
640     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
641     return 32 - FP - DefaultSafety;
642   }
643   case PPC::F4RCRegClassID:
644   case PPC::F8RCRegClassID:
645   case PPC::VSLRCRegClassID:
646     return 32 - DefaultSafety;
647   case PPC::VFRCRegClassID:
648   case PPC::VRRCRegClassID: {
649     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
650     // Vector registers VR20-VR31 are reserved and cannot be used in the default
651     // Altivec ABI on AIX.
652     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
653       return 20 - DefaultSafety;
654   }
655     return 32 - DefaultSafety;
656   case PPC::VSFRCRegClassID:
657   case PPC::VSSRCRegClassID:
658   case PPC::VSRCRegClassID: {
659     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
660     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
661       // Vector registers VR20-VR31 are reserved and cannot be used in the
662       // default Altivec ABI on AIX.
663       return 52 - DefaultSafety;
664   }
665     return 64 - DefaultSafety;
666   case PPC::CRRCRegClassID:
667     return 8 - DefaultSafety;
668   }
669 }
670 
671 const TargetRegisterClass *
672 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
673                                            const MachineFunction &MF) const {
674   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
675   const auto *DefaultSuperclass =
676       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
677   if (Subtarget.hasVSX()) {
678     // With VSX, we can inflate various sub-register classes to the full VSX
679     // register set.
680 
681     // For Power9 we allow the user to enable GPR to vector spills.
682     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
683     // support to spill GPRC.
684     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
685       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
686           RC == &PPC::G8RCRegClass) {
687         InflateGP8RC++;
688         return &PPC::SPILLTOVSRRCRegClass;
689       }
690       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
691         InflateGPRC++;
692     }
693 
694     for (const auto *I = RC->getSuperClasses(); *I; ++I) {
695       if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
696         continue;
697 
698       switch ((*I)->getID()) {
699       case PPC::VSSRCRegClassID:
700         return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
701       case PPC::VSFRCRegClassID:
702       case PPC::VSRCRegClassID:
703         return *I;
704       case PPC::VSRpRCRegClassID:
705         return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
706       case PPC::ACCRCRegClassID:
707       case PPC::UACCRCRegClassID:
708         return Subtarget.hasMMA() ? *I : DefaultSuperclass;
709       }
710     }
711   }
712 
713   return DefaultSuperclass;
714 }
715 
716 //===----------------------------------------------------------------------===//
717 // Stack Frame Processing methods
718 //===----------------------------------------------------------------------===//
719 
720 /// lowerDynamicAlloc - Generate the code for allocating an object in the
721 /// current frame.  The sequence of code will be in the general form
722 ///
723 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
724 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
725 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
726 ///
727 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
728   // Get the instruction.
729   MachineInstr &MI = *II;
730   // Get the instruction's basic block.
731   MachineBasicBlock &MBB = *MI.getParent();
732   // Get the basic block's function.
733   MachineFunction &MF = *MBB.getParent();
734   // Get the frame info.
735   MachineFrameInfo &MFI = MF.getFrameInfo();
736   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
737   // Get the instruction info.
738   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
739   // Determine whether 64-bit pointers are used.
740   bool LP64 = TM.isPPC64();
741   DebugLoc dl = MI.getDebugLoc();
742 
743   // Get the maximum call stack size.
744   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
745   Align MaxAlign = MFI.getMaxAlign();
746   assert(isAligned(MaxAlign, maxCallFrameSize) &&
747          "Maximum call-frame size not sufficiently aligned");
748   (void)MaxAlign;
749 
750   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
751   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
752   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
753   bool KillNegSizeReg = MI.getOperand(1).isKill();
754   Register NegSizeReg = MI.getOperand(1).getReg();
755 
756   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
757   // Grow the stack and update the stack pointer link, then determine the
758   // address of new allocated space.
759   if (LP64) {
760     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
761         .addReg(Reg, RegState::Kill)
762         .addReg(PPC::X1)
763         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
764     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
765         .addReg(PPC::X1)
766         .addImm(maxCallFrameSize);
767   } else {
768     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
769         .addReg(Reg, RegState::Kill)
770         .addReg(PPC::R1)
771         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
772     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
773         .addReg(PPC::R1)
774         .addImm(maxCallFrameSize);
775   }
776 
777   // Discard the DYNALLOC instruction.
778   MBB.erase(II);
779 }
780 
781 /// To accomplish dynamic stack allocation, we have to calculate exact size
782 /// subtracted from the stack pointer according alignment information and get
783 /// previous frame pointer.
784 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
785                                            Register &NegSizeReg,
786                                            bool &KillNegSizeReg,
787                                            Register &FramePointer) const {
788   // Get the instruction.
789   MachineInstr &MI = *II;
790   // Get the instruction's basic block.
791   MachineBasicBlock &MBB = *MI.getParent();
792   // Get the basic block's function.
793   MachineFunction &MF = *MBB.getParent();
794   // Get the frame info.
795   MachineFrameInfo &MFI = MF.getFrameInfo();
796   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
797   // Get the instruction info.
798   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
799   // Determine whether 64-bit pointers are used.
800   bool LP64 = TM.isPPC64();
801   DebugLoc dl = MI.getDebugLoc();
802   // Get the total frame size.
803   unsigned FrameSize = MFI.getStackSize();
804 
805   // Get stack alignments.
806   const PPCFrameLowering *TFI = getFrameLowering(MF);
807   Align TargetAlign = TFI->getStackAlign();
808   Align MaxAlign = MFI.getMaxAlign();
809 
810   // Determine the previous frame's address.  If FrameSize can't be
811   // represented as 16 bits or we need special alignment, then we load the
812   // previous frame's address from 0(SP).  Why not do an addis of the hi?
813   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
814   // Constructing the constant and adding would take 3 instructions.
815   // Fortunately, a frame greater than 32K is rare.
816   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
817   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
818 
819   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
820     if (LP64)
821       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
822           .addReg(PPC::X31)
823           .addImm(FrameSize);
824     else
825       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
826           .addReg(PPC::R31)
827           .addImm(FrameSize);
828   } else if (LP64) {
829     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
830         .addImm(0)
831         .addReg(PPC::X1);
832   } else {
833     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
834         .addImm(0)
835         .addReg(PPC::R1);
836   }
837   // Determine the actual NegSizeReg according to alignment info.
838   if (LP64) {
839     if (MaxAlign > TargetAlign) {
840       unsigned UnalNegSizeReg = NegSizeReg;
841       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
842 
843       // Unfortunately, there is no andi, only andi., and we can't insert that
844       // here because we might clobber cr0 while it is live.
845       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
846           .addImm(~(MaxAlign.value() - 1));
847 
848       unsigned NegSizeReg1 = NegSizeReg;
849       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
850       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
851           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
852           .addReg(NegSizeReg1, RegState::Kill);
853       KillNegSizeReg = true;
854     }
855   } else {
856     if (MaxAlign > TargetAlign) {
857       unsigned UnalNegSizeReg = NegSizeReg;
858       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
859 
860       // Unfortunately, there is no andi, only andi., and we can't insert that
861       // here because we might clobber cr0 while it is live.
862       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
863           .addImm(~(MaxAlign.value() - 1));
864 
865       unsigned NegSizeReg1 = NegSizeReg;
866       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
867       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
868           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
869           .addReg(NegSizeReg1, RegState::Kill);
870       KillNegSizeReg = true;
871     }
872   }
873 }
874 
875 void PPCRegisterInfo::lowerPrepareProbedAlloca(
876     MachineBasicBlock::iterator II) const {
877   MachineInstr &MI = *II;
878   // Get the instruction's basic block.
879   MachineBasicBlock &MBB = *MI.getParent();
880   // Get the basic block's function.
881   MachineFunction &MF = *MBB.getParent();
882   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
883   // Get the instruction info.
884   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
885   // Determine whether 64-bit pointers are used.
886   bool LP64 = TM.isPPC64();
887   DebugLoc dl = MI.getDebugLoc();
888   Register FramePointer = MI.getOperand(0).getReg();
889   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
890   bool KillNegSizeReg = MI.getOperand(2).isKill();
891   Register NegSizeReg = MI.getOperand(2).getReg();
892   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
893   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
894   if (FramePointer == NegSizeReg) {
895     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
896                              "NegSizeReg should be killed");
897     // FramePointer is clobbered earlier than the use of NegSizeReg in
898     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
899     // misuse.
900     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
901         .addReg(NegSizeReg)
902         .addReg(NegSizeReg);
903     NegSizeReg = ActualNegSizeReg;
904     KillNegSizeReg = false;
905   }
906   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
907   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
908   // TargetAlign.
909   if (NegSizeReg != ActualNegSizeReg)
910     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
911         .addReg(NegSizeReg)
912         .addReg(NegSizeReg);
913   MBB.erase(II);
914 }
915 
916 void PPCRegisterInfo::lowerDynamicAreaOffset(
917     MachineBasicBlock::iterator II) const {
918   // Get the instruction.
919   MachineInstr &MI = *II;
920   // Get the instruction's basic block.
921   MachineBasicBlock &MBB = *MI.getParent();
922   // Get the basic block's function.
923   MachineFunction &MF = *MBB.getParent();
924   // Get the frame info.
925   MachineFrameInfo &MFI = MF.getFrameInfo();
926   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
927   // Get the instruction info.
928   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
929 
930   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
931   bool is64Bit = TM.isPPC64();
932   DebugLoc dl = MI.getDebugLoc();
933   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
934           MI.getOperand(0).getReg())
935       .addImm(maxCallFrameSize);
936   MBB.erase(II);
937 }
938 
939 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
940 /// reserving a whole register (R0), we scrounge for one here. This generates
941 /// code like this:
942 ///
943 ///   mfcr rA                  ; Move the conditional register into GPR rA.
944 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
945 ///   stw rA, FI               ; Store rA to the frame.
946 ///
947 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
948                                       unsigned FrameIndex) const {
949   // Get the instruction.
950   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
951   // Get the instruction's basic block.
952   MachineBasicBlock &MBB = *MI.getParent();
953   MachineFunction &MF = *MBB.getParent();
954   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
955   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
956   DebugLoc dl = MI.getDebugLoc();
957 
958   bool LP64 = TM.isPPC64();
959   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
960   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
961 
962   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
963   Register SrcReg = MI.getOperand(0).getReg();
964 
965   // We need to store the CR in the low 4-bits of the saved value. First, issue
966   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
967   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
968       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
969 
970   // If the saved register wasn't CR0, shift the bits left so that they are in
971   // CR0's slot.
972   if (SrcReg != PPC::CR0) {
973     Register Reg1 = Reg;
974     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
975 
976     // rlwinm rA, rA, ShiftBits, 0, 31.
977     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
978       .addReg(Reg1, RegState::Kill)
979       .addImm(getEncodingValue(SrcReg) * 4)
980       .addImm(0)
981       .addImm(31);
982   }
983 
984   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
985                     .addReg(Reg, RegState::Kill),
986                     FrameIndex);
987 
988   // Discard the pseudo instruction.
989   MBB.erase(II);
990 }
991 
992 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
993                                       unsigned FrameIndex) const {
994   // Get the instruction.
995   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
996   // Get the instruction's basic block.
997   MachineBasicBlock &MBB = *MI.getParent();
998   MachineFunction &MF = *MBB.getParent();
999   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1000   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1001   DebugLoc dl = MI.getDebugLoc();
1002 
1003   bool LP64 = TM.isPPC64();
1004   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1005   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1006 
1007   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1008   Register DestReg = MI.getOperand(0).getReg();
1009   assert(MI.definesRegister(DestReg) &&
1010     "RESTORE_CR does not define its destination");
1011 
1012   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1013                               Reg), FrameIndex);
1014 
1015   // If the reloaded register isn't CR0, shift the bits right so that they are
1016   // in the right CR's slot.
1017   if (DestReg != PPC::CR0) {
1018     Register Reg1 = Reg;
1019     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1020 
1021     unsigned ShiftBits = getEncodingValue(DestReg)*4;
1022     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
1023     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1024              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
1025              .addImm(31);
1026   }
1027 
1028   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1029              .addReg(Reg, RegState::Kill);
1030 
1031   // Discard the pseudo instruction.
1032   MBB.erase(II);
1033 }
1034 
1035 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1036                                          unsigned FrameIndex) const {
1037   // Get the instruction.
1038   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
1039   // Get the instruction's basic block.
1040   MachineBasicBlock &MBB = *MI.getParent();
1041   MachineFunction &MF = *MBB.getParent();
1042   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1043   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1044   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1045   DebugLoc dl = MI.getDebugLoc();
1046 
1047   bool LP64 = TM.isPPC64();
1048   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1049   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1050 
1051   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1052   Register SrcReg = MI.getOperand(0).getReg();
1053 
1054   // Search up the BB to find the definition of the CR bit.
1055   MachineBasicBlock::reverse_iterator Ins = MI;
1056   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1057   ++Ins;
1058   unsigned CRBitSpillDistance = 0;
1059   bool SeenUse = false;
1060   for (; Ins != Rend; ++Ins) {
1061     // Definition found.
1062     if (Ins->modifiesRegister(SrcReg, TRI))
1063       break;
1064     // Use found.
1065     if (Ins->readsRegister(SrcReg, TRI))
1066       SeenUse = true;
1067     // Unable to find CR bit definition within maximum search distance.
1068     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1069       Ins = MI;
1070       break;
1071     }
1072     // Skip debug instructions when counting CR bit spill distance.
1073     if (!Ins->isDebugInstr())
1074       CRBitSpillDistance++;
1075   }
1076 
1077   // Unable to find the definition of the CR bit in the MBB.
1078   if (Ins == MBB.rend())
1079     Ins = MI;
1080 
1081   bool SpillsKnownBit = false;
1082   // There is no need to extract the CR bit if its value is already known.
1083   switch (Ins->getOpcode()) {
1084   case PPC::CRUNSET:
1085     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1086       .addImm(0);
1087     SpillsKnownBit = true;
1088     break;
1089   case PPC::CRSET:
1090     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1091       .addImm(-32768);
1092     SpillsKnownBit = true;
1093     break;
1094   default:
1095     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1096     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1097     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1098     // register), and SETNBC will set this.
1099     if (Subtarget.isISA3_1()) {
1100       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1101           .addReg(SrcReg, RegState::Undef);
1102       break;
1103     }
1104 
1105     // On Power9, we can use SETB to extract the LT bit. This only works for
1106     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1107     // of the bit we care about (32-bit sign bit) will be set to the value of
1108     // the LT bit (regardless of the other bits in the CR field).
1109     if (Subtarget.isISA3_0()) {
1110       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1111           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1112           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1113           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1114         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1115           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1116         break;
1117       }
1118     }
1119 
1120     // We need to move the CR field that contains the CR bit we are spilling.
1121     // The super register may not be explicitly defined (i.e. it can be defined
1122     // by a CR-logical that only defines the subreg) so we state that the CR
1123     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1124     // we add it as an implicit use.
1125     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1126       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1127       .addReg(SrcReg,
1128               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1129 
1130     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1131     // to store is the first one. Mask all but that bit.
1132     Register Reg1 = Reg;
1133     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1134 
1135     // rlwinm rA, rA, ShiftBits, 0, 0.
1136     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1137       .addReg(Reg1, RegState::Kill)
1138       .addImm(getEncodingValue(SrcReg))
1139       .addImm(0).addImm(0);
1140   }
1141   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1142                     .addReg(Reg, RegState::Kill),
1143                     FrameIndex);
1144 
1145   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1146   // Discard the pseudo instruction.
1147   MBB.erase(II);
1148   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1149     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1150     Ins->removeOperand(0);
1151   }
1152 }
1153 
1154 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1155                                       unsigned FrameIndex) const {
1156   // Get the instruction.
1157   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1158   // Get the instruction's basic block.
1159   MachineBasicBlock &MBB = *MI.getParent();
1160   MachineFunction &MF = *MBB.getParent();
1161   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1162   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1163   DebugLoc dl = MI.getDebugLoc();
1164 
1165   bool LP64 = TM.isPPC64();
1166   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1167   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1168 
1169   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1170   Register DestReg = MI.getOperand(0).getReg();
1171   assert(MI.definesRegister(DestReg) &&
1172     "RESTORE_CRBIT does not define its destination");
1173 
1174   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1175                               Reg), FrameIndex);
1176 
1177   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1178 
1179   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1180   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1181           .addReg(getCRFromCRBit(DestReg));
1182 
1183   unsigned ShiftBits = getEncodingValue(DestReg);
1184   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1185   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1186       .addReg(RegO, RegState::Kill)
1187       .addReg(Reg, RegState::Kill)
1188       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1189       .addImm(ShiftBits)
1190       .addImm(ShiftBits);
1191 
1192   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1193           getCRFromCRBit(DestReg))
1194       .addReg(RegO, RegState::Kill)
1195       // Make sure we have a use dependency all the way through this
1196       // sequence of instructions. We can't have the other bits in the CR
1197       // modified in between the mfocrf and the mtocrf.
1198       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1199 
1200   // Discard the pseudo instruction.
1201   MBB.erase(II);
1202 }
1203 
1204 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1205                                       MCRegister DestReg, MCRegister SrcReg) {
1206 #ifdef NDEBUG
1207   return;
1208 #else
1209   if (ReportAccMoves) {
1210     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1211     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1212     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1213     MBB.dump();
1214   }
1215 #endif
1216 }
1217 
1218 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1219                                     bool IsRestore) {
1220 #ifdef NDEBUG
1221   return;
1222 #else
1223   if (ReportAccMoves) {
1224     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1225            << (IsRestore ? "restore" : "spill") << ":\n";
1226     MBB.dump();
1227   }
1228 #endif
1229 }
1230 
1231 static void spillRegPairs(MachineBasicBlock &MBB,
1232                           MachineBasicBlock::iterator II, DebugLoc DL,
1233                           const TargetInstrInfo &TII, Register SrcReg,
1234                           unsigned FrameIndex, bool IsLittleEndian,
1235                           bool IsKilled, bool TwoPairs) {
1236   unsigned Offset = 0;
1237   if (TwoPairs)
1238     Offset = IsLittleEndian ? 48 : 0;
1239   else
1240     Offset = IsLittleEndian ? 16 : 0;
1241   Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
1242                                         : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1243   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1244                         .addReg(Reg, getKillRegState(IsKilled)),
1245                     FrameIndex, Offset);
1246   Offset += IsLittleEndian ? -16 : 16;
1247   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1248                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1249                     FrameIndex, Offset);
1250   if (TwoPairs) {
1251     Offset += IsLittleEndian ? -16 : 16;
1252     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1253                           .addReg(Reg + 2, getKillRegState(IsKilled)),
1254                       FrameIndex, Offset);
1255     Offset += IsLittleEndian ? -16 : 16;
1256     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1257                           .addReg(Reg + 3, getKillRegState(IsKilled)),
1258                       FrameIndex, Offset);
1259   }
1260 }
1261 
1262 /// Remove any STXVP[X] instructions and split them out into a pair of
1263 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
1264 /// the command line.
1265 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
1266                                            unsigned FrameIndex) const {
1267   assert(DisableAutoPairedVecSt &&
1268          "Expecting to do this only if paired vector stores are disabled.");
1269   MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
1270   MachineBasicBlock &MBB = *MI.getParent();
1271   MachineFunction &MF = *MBB.getParent();
1272   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1273   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1274   DebugLoc DL = MI.getDebugLoc();
1275   Register SrcReg = MI.getOperand(0).getReg();
1276   bool IsLittleEndian = Subtarget.isLittleEndian();
1277   bool IsKilled = MI.getOperand(0).isKill();
1278   spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
1279                 /* TwoPairs */ false);
1280   // Discard the original instruction.
1281   MBB.erase(II);
1282 }
1283 
1284 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1285 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1286 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1287 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1288 /// handle the FI elimination.
1289 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1290                                        unsigned FrameIndex) const {
1291   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1292   MachineBasicBlock &MBB = *MI.getParent();
1293   MachineFunction &MF = *MBB.getParent();
1294   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1295   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1296   DebugLoc DL = MI.getDebugLoc();
1297   Register SrcReg = MI.getOperand(0).getReg();
1298   bool IsKilled = MI.getOperand(0).isKill();
1299 
1300   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1301   Register Reg =
1302       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1303   bool IsLittleEndian = Subtarget.isLittleEndian();
1304 
1305   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1306 
1307   // De-prime the register being spilled, create two stores for the pair
1308   // subregisters accounting for endianness and then re-prime the register if
1309   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1310   // adjust the offset of the store that is within the 64-byte stack slot.
1311   if (IsPrimed)
1312     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1313   if (DisableAutoPairedVecSt)
1314     spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
1315                   /* TwoPairs */ true);
1316   else {
1317     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1318                           .addReg(Reg, getKillRegState(IsKilled)),
1319                       FrameIndex, IsLittleEndian ? 32 : 0);
1320     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1321                           .addReg(Reg + 1, getKillRegState(IsKilled)),
1322                       FrameIndex, IsLittleEndian ? 0 : 32);
1323   }
1324   if (IsPrimed && !IsKilled)
1325     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1326 
1327   // Discard the pseudo instruction.
1328   MBB.erase(II);
1329 }
1330 
1331 /// lowerACCRestore - Generate the code to restore the accumulator register.
1332 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1333                                       unsigned FrameIndex) const {
1334   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1335   MachineBasicBlock &MBB = *MI.getParent();
1336   MachineFunction &MF = *MBB.getParent();
1337   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1338   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1339   DebugLoc DL = MI.getDebugLoc();
1340 
1341   Register DestReg = MI.getOperand(0).getReg();
1342   assert(MI.definesRegister(DestReg) &&
1343          "RESTORE_ACC does not define its destination");
1344 
1345   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1346   Register Reg =
1347       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1348   bool IsLittleEndian = Subtarget.isLittleEndian();
1349 
1350   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1351 
1352   // Create two loads for the pair subregisters accounting for endianness and
1353   // then prime the accumulator register being restored.
1354   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1355                     FrameIndex, IsLittleEndian ? 32 : 0);
1356   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1357                     FrameIndex, IsLittleEndian ? 0 : 32);
1358   if (IsPrimed)
1359     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1360 
1361   // Discard the pseudo instruction.
1362   MBB.erase(II);
1363 }
1364 
1365 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1366 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1367                                             unsigned FrameIndex) const {
1368   MachineInstr &MI = *II;
1369   MachineBasicBlock &MBB = *MI.getParent();
1370   MachineFunction &MF = *MBB.getParent();
1371   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1372   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1373   DebugLoc DL = MI.getDebugLoc();
1374 
1375   Register SrcReg = MI.getOperand(0).getReg();
1376   bool IsKilled = MI.getOperand(0).isKill();
1377 
1378   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1379   bool IsLittleEndian = Subtarget.isLittleEndian();
1380 
1381   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1382                         .addReg(Reg, getKillRegState(IsKilled)),
1383                     FrameIndex, IsLittleEndian ? 8 : 0);
1384   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1385                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1386                     FrameIndex, IsLittleEndian ? 0 : 8);
1387 
1388   // Discard the pseudo instruction.
1389   MBB.erase(II);
1390 }
1391 
1392 /// lowerQuadwordRestore - Generate code to restore paired general register.
1393 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1394                                            unsigned FrameIndex) const {
1395   MachineInstr &MI = *II;
1396   MachineBasicBlock &MBB = *MI.getParent();
1397   MachineFunction &MF = *MBB.getParent();
1398   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1399   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1400   DebugLoc DL = MI.getDebugLoc();
1401 
1402   Register DestReg = MI.getOperand(0).getReg();
1403   assert(MI.definesRegister(DestReg) &&
1404          "RESTORE_QUADWORD does not define its destination");
1405 
1406   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1407   bool IsLittleEndian = Subtarget.isLittleEndian();
1408 
1409   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1410                     IsLittleEndian ? 8 : 0);
1411   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1412                     IsLittleEndian ? 0 : 8);
1413 
1414   // Discard the pseudo instruction.
1415   MBB.erase(II);
1416 }
1417 
1418 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1419                                            Register Reg, int &FrameIdx) const {
1420   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1421   // prevent allocating an additional frame slot.
1422   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1423   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1424   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1425   // valid.
1426   // For 32-bit ELF, we have previously created the stack slot if needed, so
1427   // return its FrameIdx.
1428   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1429     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1430     return true;
1431   }
1432   return false;
1433 }
1434 
1435 // If the offset must be a multiple of some value, return what that value is.
1436 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1437   switch (OpC) {
1438   default:
1439     return 1;
1440   case PPC::LWA:
1441   case PPC::LWA_32:
1442   case PPC::LD:
1443   case PPC::LDU:
1444   case PPC::STD:
1445   case PPC::STDU:
1446   case PPC::DFLOADf32:
1447   case PPC::DFLOADf64:
1448   case PPC::DFSTOREf32:
1449   case PPC::DFSTOREf64:
1450   case PPC::LXSD:
1451   case PPC::LXSSP:
1452   case PPC::STXSD:
1453   case PPC::STXSSP:
1454   case PPC::STQ:
1455     return 4;
1456   case PPC::EVLDD:
1457   case PPC::EVSTDD:
1458     return 8;
1459   case PPC::LXV:
1460   case PPC::STXV:
1461   case PPC::LQ:
1462   case PPC::LXVP:
1463   case PPC::STXVP:
1464     return 16;
1465   }
1466 }
1467 
1468 // If the offset must be a multiple of some value, return what that value is.
1469 static unsigned offsetMinAlign(const MachineInstr &MI) {
1470   unsigned OpC = MI.getOpcode();
1471   return offsetMinAlignForOpcode(OpC);
1472 }
1473 
1474 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1475 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1476                                     unsigned FIOperandNum) {
1477   // Take into account whether it's an add or mem instruction
1478   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1479   if (MI.isInlineAsm())
1480     OffsetOperandNo = FIOperandNum - 1;
1481   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1482            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1483     OffsetOperandNo = FIOperandNum + 1;
1484 
1485   return OffsetOperandNo;
1486 }
1487 
1488 void
1489 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1490                                      int SPAdj, unsigned FIOperandNum,
1491                                      RegScavenger *RS) const {
1492   assert(SPAdj == 0 && "Unexpected");
1493 
1494   // Get the instruction.
1495   MachineInstr &MI = *II;
1496   // Get the instruction's basic block.
1497   MachineBasicBlock &MBB = *MI.getParent();
1498   // Get the basic block's function.
1499   MachineFunction &MF = *MBB.getParent();
1500   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1501   // Get the instruction info.
1502   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1503   // Get the frame info.
1504   MachineFrameInfo &MFI = MF.getFrameInfo();
1505   DebugLoc dl = MI.getDebugLoc();
1506 
1507   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1508 
1509   // Get the frame index.
1510   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1511 
1512   // Get the frame pointer save index.  Users of this index are primarily
1513   // DYNALLOC instructions.
1514   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1515   int FPSI = FI->getFramePointerSaveIndex();
1516   // Get the instruction opcode.
1517   unsigned OpC = MI.getOpcode();
1518 
1519   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1520     lowerDynamicAreaOffset(II);
1521     return;
1522   }
1523 
1524   // Special case for dynamic alloca.
1525   if (FPSI && FrameIndex == FPSI &&
1526       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1527     lowerDynamicAlloc(II);
1528     return;
1529   }
1530 
1531   if (FPSI && FrameIndex == FPSI &&
1532       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1533        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1534        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1535        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1536     lowerPrepareProbedAlloca(II);
1537     return;
1538   }
1539 
1540   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1541   if (OpC == PPC::SPILL_CR) {
1542     lowerCRSpilling(II, FrameIndex);
1543     return;
1544   } else if (OpC == PPC::RESTORE_CR) {
1545     lowerCRRestore(II, FrameIndex);
1546     return;
1547   } else if (OpC == PPC::SPILL_CRBIT) {
1548     lowerCRBitSpilling(II, FrameIndex);
1549     return;
1550   } else if (OpC == PPC::RESTORE_CRBIT) {
1551     lowerCRBitRestore(II, FrameIndex);
1552     return;
1553   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1554     lowerACCSpilling(II, FrameIndex);
1555     return;
1556   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1557     lowerACCRestore(II, FrameIndex);
1558     return;
1559   } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
1560     lowerOctWordSpilling(II, FrameIndex);
1561     return;
1562   } else if (OpC == PPC::SPILL_QUADWORD) {
1563     lowerQuadwordSpilling(II, FrameIndex);
1564     return;
1565   } else if (OpC == PPC::RESTORE_QUADWORD) {
1566     lowerQuadwordRestore(II, FrameIndex);
1567     return;
1568   }
1569 
1570   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1571   MI.getOperand(FIOperandNum).ChangeToRegister(
1572     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1573 
1574   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1575   // form (and must be r+r).
1576   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1577                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1578 
1579   // Now add the frame object offset to the offset from r1.
1580   int64_t Offset = MFI.getObjectOffset(FrameIndex);
1581   Offset += MI.getOperand(OffsetOperandNo).getImm();
1582 
1583   // If we're not using a Frame Pointer that has been set to the value of the
1584   // SP before having the stack size subtracted from it, then add the stack size
1585   // to Offset to get the correct offset.
1586   // Naked functions have stack size 0, although getStackSize may not reflect
1587   // that because we didn't call all the pieces that compute it for naked
1588   // functions.
1589   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1590     if (!(hasBasePointer(MF) && FrameIndex < 0))
1591       Offset += MFI.getStackSize();
1592   }
1593 
1594   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1595   // transform it to the prefixed version so we don't have to use the XForm.
1596   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1597       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1598       Subtarget.hasPrefixInstrs()) {
1599     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1600     MI.setDesc(TII.get(NewOpc));
1601     OpC = NewOpc;
1602   }
1603 
1604   // If we can, encode the offset directly into the instruction.  If this is a
1605   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1606   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1607   // clear can be encoded.  This is extremely uncommon, because normally you
1608   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1609   // happen in invalid code.
1610   assert(OpC != PPC::DBG_VALUE &&
1611          "This should be handled in a target-independent way");
1612   // FIXME: This should be factored out to a separate function as prefixed
1613   // instructions add a number of opcodes for which we can use 34-bit imm.
1614   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1615                             isUInt<8>(Offset) :
1616                             isInt<16>(Offset);
1617   if (TII.isPrefixed(MI.getOpcode()))
1618     OffsetFitsMnemonic = isInt<34>(Offset);
1619   if (!noImmForm && ((OffsetFitsMnemonic &&
1620                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1621                      OpC == TargetOpcode::STACKMAP ||
1622                      OpC == TargetOpcode::PATCHPOINT)) {
1623     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1624     return;
1625   }
1626 
1627   // The offset doesn't fit into a single register, scavenge one to build the
1628   // offset in.
1629 
1630   bool is64Bit = TM.isPPC64();
1631   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1632   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1633   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1634   Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
1635            SReg = MF.getRegInfo().createVirtualRegister(RC);
1636   unsigned NewOpcode = 0u;
1637 
1638   // Insert a set of rA with the full offset value before the ld, st, or add
1639   if (isInt<16>(Offset))
1640     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1641         .addImm(Offset);
1642   else if (isInt<32>(Offset)) {
1643     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1644         .addImm(Offset >> 16);
1645     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1646         .addReg(SRegHi, RegState::Kill)
1647         .addImm(Offset);
1648   } else {
1649     assert(is64Bit && "Huge stack is only supported on PPC64");
1650     TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1651   }
1652 
1653   // Convert into indexed form of the instruction:
1654   //
1655   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1656   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1657   unsigned OperandBase;
1658 
1659   if (noImmForm)
1660     OperandBase = 1;
1661   else if (OpC != TargetOpcode::INLINEASM &&
1662            OpC != TargetOpcode::INLINEASM_BR) {
1663     assert(ImmToIdxMap.count(OpC) &&
1664            "No indexed form of load or store available!");
1665     NewOpcode = ImmToIdxMap.find(OpC)->second;
1666     MI.setDesc(TII.get(NewOpcode));
1667     OperandBase = 1;
1668   } else {
1669     OperandBase = OffsetOperandNo;
1670   }
1671 
1672   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1673   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1674   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1675 
1676   // Since these are not real X-Form instructions, we must
1677   // add the registers and access 0(NewReg) rather than
1678   // emitting the X-Form pseudo.
1679   if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1680     assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1681     Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1682     BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1683         .addReg(SReg, RegState::Kill)
1684         .addReg(StackReg);
1685     MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1686     MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1687     MI.getOperand(OperandBase).ChangeToImmediate(0);
1688   }
1689 }
1690 
1691 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1692   const PPCFrameLowering *TFI = getFrameLowering(MF);
1693 
1694   if (!TM.isPPC64())
1695     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1696   else
1697     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1698 }
1699 
1700 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1701   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1702   if (!hasBasePointer(MF))
1703     return getFrameRegister(MF);
1704 
1705   if (TM.isPPC64())
1706     return PPC::X30;
1707 
1708   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1709     return PPC::R29;
1710 
1711   return PPC::R30;
1712 }
1713 
1714 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1715   if (!EnableBasePointer)
1716     return false;
1717   if (AlwaysBasePointer)
1718     return true;
1719 
1720   // If we need to realign the stack, then the stack pointer can no longer
1721   // serve as an offset into the caller's stack space. As a result, we need a
1722   // base pointer.
1723   return hasStackRealignment(MF);
1724 }
1725 
1726 /// Returns true if the instruction's frame index
1727 /// reference would be better served by a base register other than FP
1728 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1729 /// references it should create new base registers for.
1730 bool PPCRegisterInfo::
1731 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1732   assert(Offset < 0 && "Local offset must be negative");
1733 
1734   // It's the load/store FI references that cause issues, as it can be difficult
1735   // to materialize the offset if it won't fit in the literal field. Estimate
1736   // based on the size of the local frame and some conservative assumptions
1737   // about the rest of the stack frame (note, this is pre-regalloc, so
1738   // we don't know everything for certain yet) whether this offset is likely
1739   // to be out of range of the immediate. Return true if so.
1740 
1741   // We only generate virtual base registers for loads and stores that have
1742   // an r+i form. Return false for everything else.
1743   unsigned OpC = MI->getOpcode();
1744   if (!ImmToIdxMap.count(OpC))
1745     return false;
1746 
1747   // Don't generate a new virtual base register just to add zero to it.
1748   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1749       MI->getOperand(2).getImm() == 0)
1750     return false;
1751 
1752   MachineBasicBlock &MBB = *MI->getParent();
1753   MachineFunction &MF = *MBB.getParent();
1754   const PPCFrameLowering *TFI = getFrameLowering(MF);
1755   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1756 
1757   // If we likely don't need a stack frame, then we probably don't need a
1758   // virtual base register either.
1759   if (!StackEst)
1760     return false;
1761 
1762   // Estimate an offset from the stack pointer.
1763   // The incoming offset is relating to the SP at the start of the function,
1764   // but when we access the local it'll be relative to the SP after local
1765   // allocation, so adjust our SP-relative offset by that allocation size.
1766   Offset += StackEst;
1767 
1768   // The frame pointer will point to the end of the stack, so estimate the
1769   // offset as the difference between the object offset and the FP location.
1770   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1771 }
1772 
1773 /// Insert defining instruction(s) for BaseReg to
1774 /// be a pointer to FrameIdx at the beginning of the basic block.
1775 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1776                                                        int FrameIdx,
1777                                                        int64_t Offset) const {
1778   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1779 
1780   MachineBasicBlock::iterator Ins = MBB->begin();
1781   DebugLoc DL;                  // Defaults to "unknown"
1782   if (Ins != MBB->end())
1783     DL = Ins->getDebugLoc();
1784 
1785   const MachineFunction &MF = *MBB->getParent();
1786   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1787   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1788   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1789   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1790   const TargetRegisterClass *RC = getPointerRegClass(MF);
1791   Register BaseReg = MRI.createVirtualRegister(RC);
1792   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1793 
1794   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1795     .addFrameIndex(FrameIdx).addImm(Offset);
1796 
1797   return BaseReg;
1798 }
1799 
1800 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1801                                         int64_t Offset) const {
1802   unsigned FIOperandNum = 0;
1803   while (!MI.getOperand(FIOperandNum).isFI()) {
1804     ++FIOperandNum;
1805     assert(FIOperandNum < MI.getNumOperands() &&
1806            "Instr doesn't have FrameIndex operand!");
1807   }
1808 
1809   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1810   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1811   Offset += MI.getOperand(OffsetOperandNo).getImm();
1812   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1813 
1814   MachineBasicBlock &MBB = *MI.getParent();
1815   MachineFunction &MF = *MBB.getParent();
1816   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1817   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1818   const MCInstrDesc &MCID = MI.getDesc();
1819   MachineRegisterInfo &MRI = MF.getRegInfo();
1820   MRI.constrainRegClass(BaseReg,
1821                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1822 }
1823 
1824 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1825                                          Register BaseReg,
1826                                          int64_t Offset) const {
1827   unsigned FIOperandNum = 0;
1828   while (!MI->getOperand(FIOperandNum).isFI()) {
1829     ++FIOperandNum;
1830     assert(FIOperandNum < MI->getNumOperands() &&
1831            "Instr doesn't have FrameIndex operand!");
1832   }
1833 
1834   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1835   Offset += MI->getOperand(OffsetOperandNo).getImm();
1836 
1837   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1838          MI->getOpcode() == TargetOpcode::STACKMAP ||
1839          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1840          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1841 }
1842