xref: /llvm-project/llvm/lib/Target/PowerPC/PPCReduceCRLogicals.cpp (revision 6f590bf8bb3328f33dde73f50f1e408a13cf53a9)
1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass aims to reduce the number of logical operations on bits in the CR
11 // register. These instructions have a fairly high latency and only a single
12 // pipeline at their disposal in modern PPC cores. Furthermore, they have a
13 // tendency to occur in fairly small blocks where there's little opportunity
14 // to hide the latency between the CR logical operation and its user.
15 //
16 //===---------------------------------------------------------------------===//
17 
18 #include "PPCInstrInfo.h"
19 #include "PPC.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/ADT/Statistic.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "ppc-reduce-cr-ops"
29 #include "PPCMachineBasicBlockUtils.h"
30 
31 STATISTIC(NumContainedSingleUseBinOps,
32           "Number of single-use binary CR logical ops contained in a block");
33 STATISTIC(NumToSplitBlocks,
34           "Number of binary CR logical ops that can be used to split blocks");
35 STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
36 STATISTIC(TotalNullaryCRLogicals,
37           "Number of nullary CR logical ops (CRSET/CRUNSET).");
38 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
39 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
40 STATISTIC(NumBlocksSplitOnBinaryCROp,
41           "Number of blocks split on CR binary logical ops.");
42 STATISTIC(NumNotSplitIdenticalOperands,
43           "Number of blocks not split due to operands being identical.");
44 STATISTIC(NumNotSplitChainCopies,
45           "Number of blocks not split due to operands being chained copies.");
46 STATISTIC(NumNotSplitWrongOpcode,
47           "Number of blocks not split due to the wrong opcode.");
48 
49 namespace llvm {
50   void initializePPCReduceCRLogicalsPass(PassRegistry&);
51 }
52 
53 namespace {
54 
55 static bool isBinary(MachineInstr &MI) {
56   return MI.getNumOperands() == 3;
57 }
58 
59 static bool isNullary(MachineInstr &MI) {
60   return MI.getNumOperands() == 1;
61 }
62 
63 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
64 /// a flag to indicate if the first operand of \p CROp is used as the
65 /// SplitBefore operand, determines whether either of the branches are to be
66 /// inverted as well as whether the new target should be the original
67 /// fall-through block.
68 static void
69 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
70                                 bool &InvertNewBranch, bool &InvertOrigBranch,
71                                 bool &TargetIsFallThrough) {
72   // The conditions under which each of the output operands should be [un]set
73   // can certainly be written much more concisely with just 3 if statements or
74   // ternary expressions. However, this provides a much clearer overview to the
75   // reader as to what is set for each <CROp, BROp, OpUsed> combination.
76   if (BROp == PPC::BC || BROp == PPC::BCLR) {
77     // Regular branches.
78     switch (CROp) {
79     default:
80       llvm_unreachable("Don't know how to handle this CR logical.");
81     case PPC::CROR:
82       InvertNewBranch = false;
83       InvertOrigBranch = false;
84       TargetIsFallThrough = false;
85       return;
86     case PPC::CRAND:
87       InvertNewBranch = true;
88       InvertOrigBranch = false;
89       TargetIsFallThrough = true;
90       return;
91     case PPC::CRNAND:
92       InvertNewBranch = true;
93       InvertOrigBranch = true;
94       TargetIsFallThrough = false;
95       return;
96     case PPC::CRNOR:
97       InvertNewBranch = false;
98       InvertOrigBranch = true;
99       TargetIsFallThrough = true;
100       return;
101     case PPC::CRORC:
102       InvertNewBranch = UsingDef1;
103       InvertOrigBranch = !UsingDef1;
104       TargetIsFallThrough = false;
105       return;
106     case PPC::CRANDC:
107       InvertNewBranch = !UsingDef1;
108       InvertOrigBranch = !UsingDef1;
109       TargetIsFallThrough = true;
110       return;
111     }
112   } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
113     // Negated branches.
114     switch (CROp) {
115     default:
116       llvm_unreachable("Don't know how to handle this CR logical.");
117     case PPC::CROR:
118       InvertNewBranch = true;
119       InvertOrigBranch = false;
120       TargetIsFallThrough = true;
121       return;
122     case PPC::CRAND:
123       InvertNewBranch = false;
124       InvertOrigBranch = false;
125       TargetIsFallThrough = false;
126       return;
127     case PPC::CRNAND:
128       InvertNewBranch = false;
129       InvertOrigBranch = true;
130       TargetIsFallThrough = true;
131       return;
132     case PPC::CRNOR:
133       InvertNewBranch = true;
134       InvertOrigBranch = true;
135       TargetIsFallThrough = false;
136       return;
137     case PPC::CRORC:
138       InvertNewBranch = !UsingDef1;
139       InvertOrigBranch = !UsingDef1;
140       TargetIsFallThrough = true;
141       return;
142     case PPC::CRANDC:
143       InvertNewBranch = UsingDef1;
144       InvertOrigBranch = !UsingDef1;
145       TargetIsFallThrough = false;
146       return;
147     }
148   } else
149     llvm_unreachable("Don't know how to handle this branch.");
150 }
151 
152 class PPCReduceCRLogicals : public MachineFunctionPass {
153 
154 public:
155   static char ID;
156   struct CRLogicalOpInfo {
157     MachineInstr *MI;
158     // FIXME: If chains of copies are to be handled, this should be a vector.
159     std::pair<MachineInstr*, MachineInstr*> CopyDefs;
160     std::pair<MachineInstr*, MachineInstr*> TrueDefs;
161     unsigned IsBinary : 1;
162     unsigned IsNullary : 1;
163     unsigned ContainedInBlock : 1;
164     unsigned FeedsISEL : 1;
165     unsigned FeedsBR : 1;
166     unsigned FeedsLogical : 1;
167     unsigned SingleUse : 1;
168     unsigned DefsSingleUse : 1;
169     unsigned SubregDef1;
170     unsigned SubregDef2;
171     CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
172                         ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
173                         FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
174                         SubregDef1(0), SubregDef2(0) { }
175     void dump();
176   };
177 
178 private:
179   const PPCInstrInfo *TII;
180   MachineFunction *MF;
181   MachineRegisterInfo *MRI;
182   const MachineBranchProbabilityInfo *MBPI;
183 
184   // A vector to contain all the CR logical operations
185   std::vector<CRLogicalOpInfo> AllCRLogicalOps;
186   void initialize(MachineFunction &MFParm);
187   void collectCRLogicals();
188   bool handleCROp(CRLogicalOpInfo &CRI);
189   bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
190   static bool isCRLogical(MachineInstr &MI) {
191     unsigned Opc = MI.getOpcode();
192     return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
193       Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
194       Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
195       Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
196   }
197   bool simplifyCode() {
198     bool Changed = false;
199     // Not using a range-based for loop here as the vector may grow while being
200     // operated on.
201     for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
202       Changed |= handleCROp(AllCRLogicalOps[i]);
203     return Changed;
204   }
205 
206 public:
207   PPCReduceCRLogicals() : MachineFunctionPass(ID) {
208     initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
209   }
210 
211   MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
212                                   MachineInstr *&CpDef);
213   bool runOnMachineFunction(MachineFunction &MF) override {
214     if (skipFunction(*MF.getFunction()))
215       return false;
216 
217     // If the subtarget doesn't use CR bits, there's nothing to do.
218     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
219     if (!STI.useCRBits())
220       return false;
221 
222     initialize(MF);
223     collectCRLogicals();
224     return simplifyCode();
225   }
226   CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
227   void getAnalysisUsage(AnalysisUsage &AU) const override {
228     AU.addRequired<MachineBranchProbabilityInfo>();
229     AU.addRequired<MachineDominatorTree>();
230     MachineFunctionPass::getAnalysisUsage(AU);
231   }
232 };
233 
234 void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
235   dbgs() << "CRLogicalOpMI: ";
236   MI->dump();
237   dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
238   dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
239   dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
240   dbgs() << ", DefsSingleUse: " << DefsSingleUse;
241   dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
242   dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
243   if (!IsNullary) {
244     dbgs() << "\nDefs:\n";
245     TrueDefs.first->dump();
246   }
247   if (IsBinary)
248     TrueDefs.second->dump();
249   dbgs() << "\n";
250   if (CopyDefs.first) {
251     dbgs() << "CopyDef1: ";
252     CopyDefs.first->dump();
253   }
254   if (CopyDefs.second) {
255     dbgs() << "CopyDef2: ";
256     CopyDefs.second->dump();
257   }
258 }
259 
260 PPCReduceCRLogicals::CRLogicalOpInfo
261 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
262   CRLogicalOpInfo Ret;
263   Ret.MI = &MIParam;
264   // Get the defs
265   if (isNullary(MIParam)) {
266     Ret.IsNullary = 1;
267     Ret.TrueDefs = std::make_pair(nullptr, nullptr);
268     Ret.CopyDefs = std::make_pair(nullptr, nullptr);
269   } else {
270     MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
271                                            Ret.SubregDef1, Ret.CopyDefs.first);
272     Ret.DefsSingleUse &=
273       MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
274     Ret.DefsSingleUse &=
275       MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
276     assert(Def1 && "Must be able to find a definition of operand 1.");
277     if (isBinary(MIParam)) {
278       Ret.IsBinary = 1;
279       MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
280                                              Ret.SubregDef2,
281                                              Ret.CopyDefs.second);
282       Ret.DefsSingleUse &=
283         MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
284       Ret.DefsSingleUse &=
285         MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
286       assert(Def2 && "Must be able to find a definition of operand 2.");
287       Ret.TrueDefs = std::make_pair(Def1, Def2);
288     } else {
289       Ret.TrueDefs = std::make_pair(Def1, nullptr);
290       Ret.CopyDefs.second = nullptr;
291     }
292   }
293 
294   Ret.ContainedInBlock = 1;
295   // Get the uses
296   for (MachineInstr &UseMI :
297        MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
298     unsigned Opc = UseMI.getOpcode();
299     if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
300       Ret.FeedsISEL = 1;
301     if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
302         Opc == PPC::BCLRn)
303       Ret.FeedsBR = 1;
304     Ret.FeedsLogical = isCRLogical(UseMI);
305     if (UseMI.getParent() != MIParam.getParent())
306       Ret.ContainedInBlock = 0;
307   }
308   Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
309 
310   // We now know whether all the uses of the CR logical are in the same block.
311   if (!Ret.IsNullary) {
312     Ret.ContainedInBlock &=
313       (MIParam.getParent() == Ret.TrueDefs.first->getParent());
314     if (Ret.IsBinary)
315       Ret.ContainedInBlock &=
316         (MIParam.getParent() == Ret.TrueDefs.second->getParent());
317   }
318   DEBUG(Ret.dump());
319   if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
320     NumContainedSingleUseBinOps++;
321     if (Ret.FeedsBR && Ret.DefsSingleUse)
322       NumToSplitBlocks++;
323   }
324   return Ret;
325 }
326 
327 /// Looks trhough a COPY instruction to the actual definition of the CR-bit
328 /// register and returns the instruction that defines it.
329 /// FIXME: This currently handles what is by-far the most common case:
330 /// an instruction that defines a CR field followed by a single copy of a bit
331 /// from that field into a virtual register. If chains of copies need to be
332 /// handled, this should have a loop until a non-copy instruction is found.
333 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
334                                                      unsigned &Subreg,
335                                                      MachineInstr *&CpDef) {
336   Subreg = -1;
337   if (!TargetRegisterInfo::isVirtualRegister(Reg))
338     return nullptr;
339   MachineInstr *Copy = MRI->getVRegDef(Reg);
340   CpDef = Copy;
341   if (!Copy->isCopy())
342     return Copy;
343   unsigned CopySrc = Copy->getOperand(1).getReg();
344   Subreg = Copy->getOperand(1).getSubReg();
345   if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
346     const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
347     // Set the Subreg
348     if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
349       Subreg = PPC::sub_eq;
350     if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
351       Subreg = PPC::sub_lt;
352     if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
353       Subreg = PPC::sub_gt;
354     if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
355       Subreg = PPC::sub_un;
356     // Loop backwards and return the first MI that modifies the physical CR Reg.
357     MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
358     while (Me != B)
359       if ((--Me)->modifiesRegister(CopySrc, TRI))
360         return &*Me;
361     return nullptr;
362   }
363   return MRI->getVRegDef(CopySrc);
364 }
365 
366 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
367   MF = &MFParam;
368   MRI = &MF->getRegInfo();
369   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
370   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
371 
372   AllCRLogicalOps.clear();
373 }
374 
375 /// Contains all the implemented transformations on CR logical operations.
376 /// For example, a binary CR logical can be used to split a block on its inputs,
377 /// a unary CR logical might be used to change the condition code on a
378 /// comparison feeding it. A nullary CR logical might simply be removable
379 /// if the user of the bit it [un]sets can be transformed.
380 bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
381   // We can definitely split a block on the inputs to a binary CR operation
382   // whose defs and (single) use are within the same block.
383   bool Changed = false;
384   if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
385       CRI.DefsSingleUse) {
386     Changed = splitBlockOnBinaryCROp(CRI);
387     if (Changed)
388       NumBlocksSplitOnBinaryCROp++;
389   }
390   return Changed;
391 }
392 
393 /// Splits a block that contains a CR-logical operation that feeds a branch
394 /// and whose operands are produced within the block.
395 /// Example:
396 ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
397 ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
398 ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
399 ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
400 ///    %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
401 ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
402 /// Becomes:
403 ///    %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
404 ///    %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
405 ///    BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
406 ///
407 ///    %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
408 ///    %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
409 ///    BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
410 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
411   if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
412     DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
413     NumNotSplitIdenticalOperands++;
414     return false;
415   }
416   if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
417       CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
418     DEBUG(dbgs() << "Unable to split because one of the operands is a PHI or "
419           "chain of copies.\n");
420     NumNotSplitChainCopies++;
421     return false;
422   }
423   // Note: keep in sync with computeBranchTargetAndInversion().
424   if (CRI.MI->getOpcode() != PPC::CROR &&
425       CRI.MI->getOpcode() != PPC::CRAND &&
426       CRI.MI->getOpcode() != PPC::CRNOR &&
427       CRI.MI->getOpcode() != PPC::CRNAND &&
428       CRI.MI->getOpcode() != PPC::CRORC &&
429       CRI.MI->getOpcode() != PPC::CRANDC) {
430     DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
431     NumNotSplitWrongOpcode++;
432     return false;
433   }
434   DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
435   MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
436   MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
437 
438   bool UsingDef1 = false;
439   MachineInstr *SplitBefore = &*Def2It;
440   for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
441     if (Def1It == Def2It) { // Def2 comes before Def1.
442       SplitBefore = &*Def1It;
443       UsingDef1 = true;
444       break;
445     }
446   }
447 
448   DEBUG(dbgs() << "We will split the following block:\n";);
449   DEBUG(CRI.MI->getParent()->dump());
450   DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
451 
452   // Get the branch instruction.
453   MachineInstr *Branch =
454     MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
455 
456   // We want the new block to have no code in it other than the definition
457   // of the input to the CR logical and the CR logical itself. So we move
458   // those to the bottom of the block (just before the branch). Then we
459   // will split before the CR logical.
460   MachineBasicBlock *MBB = SplitBefore->getParent();
461   auto FirstTerminator = MBB->getFirstTerminator();
462   MachineBasicBlock::iterator FirstInstrToMove =
463     UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
464   MachineBasicBlock::iterator SecondInstrToMove =
465     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
466 
467   // The instructions that need to be moved are not guaranteed to be
468   // contiguous. Move them individually.
469   // FIXME: If one of the operands is a chain of (single use) copies, they
470   // can all be moved and we can still split.
471   MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
472   if (FirstInstrToMove != SecondInstrToMove)
473     MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
474   MBB->splice(FirstTerminator, MBB, CRI.MI);
475 
476   unsigned Opc = CRI.MI->getOpcode();
477   bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
478   computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
479                                   InvertNewBranch, InvertOrigBranch,
480                                   TargetIsFallThrough);
481   MachineInstr *SplitCond =
482     UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
483   DEBUG(dbgs() << "We will " <<  (InvertNewBranch ? "invert" : "copy"));
484   DEBUG(dbgs() << " the original branch and the target is the " <<
485         (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n"));
486   DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
487   BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
488     InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
489     UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
490   bool Changed = splitMBB(BSI);
491   // If we've split on a CR logical that is fed by a CR logical,
492   // recompute the source CR logical as it may be usable for splitting.
493   if (Changed) {
494     bool Input1CRlogical =
495       CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
496     bool Input2CRlogical =
497       CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
498     if (Input1CRlogical)
499       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
500     if (Input2CRlogical)
501       AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
502   }
503   return Changed;
504 }
505 
506 void PPCReduceCRLogicals::collectCRLogicals() {
507   for (MachineBasicBlock &MBB : *MF) {
508     for (MachineInstr &MI : MBB) {
509       if (isCRLogical(MI)) {
510         AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
511         TotalCRLogicals++;
512         if (AllCRLogicalOps.back().IsNullary)
513           TotalNullaryCRLogicals++;
514         else if (AllCRLogicalOps.back().IsBinary)
515           TotalBinaryCRLogicals++;
516         else
517           TotalUnaryCRLogicals++;
518       }
519     }
520   }
521 }
522 
523 } // end annonymous namespace
524 
525 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
526                       "PowerPC Reduce CR logical Operation", false, false)
527 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
528 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
529                     "PowerPC Reduce CR logical Operation", false, false)
530 
531 char PPCReduceCRLogicals::ID = 0;
532 FunctionPass*
533 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }
534