1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to prepare loops for ppc preferred addressing 10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with 11 // update) 12 // Additional PHIs are created for loop induction variables used by load/store 13 // instructions so that preferred addressing modes can be used. 14 // 15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they 16 // can satisfy the DS/DQ form displacement requirements. 17 // Generically, this means transforming loops like this: 18 // for (int i = 0; i < n; ++i) { 19 // unsigned long x1 = *(unsigned long *)(p + i + 5); 20 // unsigned long x2 = *(unsigned long *)(p + i + 9); 21 // } 22 // 23 // to look like this: 24 // 25 // unsigned NewP = p + 5; 26 // for (int i = 0; i < n; ++i) { 27 // unsigned long x1 = *(unsigned long *)(i + NewP); 28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4); 29 // } 30 // 31 // 2: D/DS form with update preparation, prepare the load/store instructions so 32 // that we can use update form to do pre-increment. 33 // Generically, this means transforming loops like this: 34 // for (int i = 0; i < n; ++i) 35 // array[i] = c; 36 // 37 // to look like this: 38 // 39 // T *p = array[-1]; 40 // for (int i = 0; i < n; ++i) 41 // *++p = c; 42 // 43 // 3: common multiple chains for the load/stores with same offsets in the loop, 44 // so that we can reuse the offsets and reduce the register pressure in the 45 // loop. This transformation can also increase the loop ILP as now each chain 46 // uses its own loop induction add/addi. But this will increase the number of 47 // add/addi in the loop. 48 // 49 // Generically, this means transforming loops like this: 50 // 51 // char *p; 52 // A1 = p + base1 53 // A2 = p + base1 + offset 54 // B1 = p + base2 55 // B2 = p + base2 + offset 56 // 57 // for (int i = 0; i < n; i++) 58 // unsigned long x1 = *(unsigned long *)(A1 + i); 59 // unsigned long x2 = *(unsigned long *)(A2 + i) 60 // unsigned long x3 = *(unsigned long *)(B1 + i); 61 // unsigned long x4 = *(unsigned long *)(B2 + i); 62 // } 63 // 64 // to look like this: 65 // 66 // A1_new = p + base1 // chain 1 67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is 68 // // reused. 69 // 70 // for (long long i = 0; i < n; i+=count) { 71 // unsigned long x1 = *(unsigned long *)(A1_new + i); 72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); 73 // unsigned long x3 = *(unsigned long *)(B1_new + i); 74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); 75 // } 76 //===----------------------------------------------------------------------===// 77 78 #include "PPC.h" 79 #include "PPCSubtarget.h" 80 #include "PPCTargetMachine.h" 81 #include "llvm/ADT/DepthFirstIterator.h" 82 #include "llvm/ADT/SmallPtrSet.h" 83 #include "llvm/ADT/SmallSet.h" 84 #include "llvm/ADT/SmallVector.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/ScalarEvolution.h" 88 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 89 #include "llvm/IR/BasicBlock.h" 90 #include "llvm/IR/CFG.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/IntrinsicsPowerPC.h" 96 #include "llvm/IR/Module.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/InitializePasses.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Transforms/Scalar.h" 105 #include "llvm/Transforms/Utils.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/LoopUtils.h" 109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 110 #include <cassert> 111 #include <iterator> 112 #include <utility> 113 114 #define DEBUG_TYPE "ppc-loop-instr-form-prep" 115 116 using namespace llvm; 117 118 static cl::opt<unsigned> 119 MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24), 120 cl::ZeroOrMore, 121 cl::desc("Potential common base number threshold per function " 122 "for PPC loop prep")); 123 124 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update", 125 cl::init(true), cl::Hidden, 126 cl::desc("prefer update form when ds form is also a update form")); 127 128 static cl::opt<bool> EnableChainCommoning( 129 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden, 130 cl::desc("Enable chain commoning in PPC loop prepare pass.")); 131 132 // Sum of following 3 per loop thresholds for all loops can not be larger 133 // than MaxVarsPrep. 134 // now the thresholds for each kind prep are exterimental values on Power9. 135 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars", 136 cl::Hidden, cl::init(3), 137 cl::desc("Potential PHI threshold per loop for PPC loop prep of update " 138 "form")); 139 140 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars", 141 cl::Hidden, cl::init(3), 142 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); 143 144 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars", 145 cl::Hidden, cl::init(8), 146 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); 147 148 // Commoning chain will reduce the register pressure, so we don't consider about 149 // the PHI nodes number. 150 // But commoning chain will increase the addi/add number in the loop and also 151 // increase loop ILP. Maximum chain number should be same with hardware 152 // IssueWidth, because we won't benefit from ILP if the parallel chains number 153 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so 154 // there would be 4 buckets at most on P9(IssueWidth is 8). 155 static cl::opt<unsigned> MaxVarsChainCommon( 156 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), 157 cl::desc("Bucket number per loop for PPC loop chain common")); 158 159 // If would not be profitable if the common base has only one load/store, ISEL 160 // should already be able to choose best load/store form based on offset for 161 // single load/store. Set minimal profitable value default to 2 and make it as 162 // an option. 163 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold", 164 cl::Hidden, cl::init(2), 165 cl::desc("Minimal common base load/store instructions triggering DS/DQ form " 166 "preparation")); 167 168 static cl::opt<unsigned> ChainCommonPrepMinThreshold( 169 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), 170 cl::desc("Minimal common base load/store instructions triggering chain " 171 "commoning preparation. Must be not smaller than 4")); 172 173 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); 174 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); 175 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); 176 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); 177 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); 178 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); 179 STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); 180 181 namespace { 182 struct BucketElement { 183 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} 184 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} 185 186 const SCEV *Offset; 187 Instruction *Instr; 188 }; 189 190 struct Bucket { 191 Bucket(const SCEV *B, Instruction *I) 192 : BaseSCEV(B), Elements(1, BucketElement(I)) { 193 ChainSize = 0; 194 } 195 196 // The base of the whole bucket. 197 const SCEV *BaseSCEV; 198 199 // All elements in the bucket. In the bucket, the element with the BaseSCEV 200 // has no offset and all other elements are stored as offsets to the 201 // BaseSCEV. 202 SmallVector<BucketElement, 16> Elements; 203 204 // The potential chains size. This is used for chain commoning only. 205 unsigned ChainSize; 206 207 // The base for each potential chain. This is used for chain commoning only. 208 SmallVector<BucketElement, 16> ChainBases; 209 }; 210 211 // "UpdateForm" is not a real PPC instruction form, it stands for dform 212 // load/store with update like ldu/stdu, or Prefetch intrinsic. 213 // For DS form instructions, their displacements must be multiple of 4. 214 // For DQ form instructions, their displacements must be multiple of 16. 215 enum InstrForm { UpdateForm = 1, DSForm = 4, DQForm = 16 }; 216 217 class PPCLoopInstrFormPrep : public FunctionPass { 218 public: 219 static char ID; // Pass ID, replacement for typeid 220 221 PPCLoopInstrFormPrep() : FunctionPass(ID) { 222 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 223 } 224 225 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 226 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 227 } 228 229 void getAnalysisUsage(AnalysisUsage &AU) const override { 230 AU.addPreserved<DominatorTreeWrapperPass>(); 231 AU.addRequired<LoopInfoWrapperPass>(); 232 AU.addPreserved<LoopInfoWrapperPass>(); 233 AU.addRequired<ScalarEvolutionWrapperPass>(); 234 } 235 236 bool runOnFunction(Function &F) override; 237 238 private: 239 PPCTargetMachine *TM = nullptr; 240 const PPCSubtarget *ST; 241 DominatorTree *DT; 242 LoopInfo *LI; 243 ScalarEvolution *SE; 244 bool PreserveLCSSA; 245 bool HasCandidateForPrepare; 246 247 /// Successful preparation number for Update/DS/DQ form in all inner most 248 /// loops. One successful preparation will put one common base out of loop, 249 /// this may leads to register presure like LICM does. 250 /// Make sure total preparation number can be controlled by option. 251 unsigned SuccPrepCount; 252 253 bool runOnLoop(Loop *L); 254 255 /// Check if required PHI node is already exist in Loop \p L. 256 bool alreadyPrepared(Loop *L, Instruction *MemI, 257 const SCEV *BasePtrStartSCEV, 258 const SCEV *BasePtrIncSCEV, InstrForm Form); 259 260 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. 261 Value *getNodeForInc(Loop *L, Instruction *MemI, 262 const SCEV *BasePtrIncSCEV); 263 264 /// Common chains to reuse offsets for a loop to reduce register pressure. 265 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets); 266 267 /// Find out the potential commoning chains and their bases. 268 bool prepareBasesForCommoningChains(Bucket &BucketChain); 269 270 /// Rewrite load/store according to the common chains. 271 bool 272 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, 273 SmallSet<BasicBlock *, 16> &BBChanged); 274 275 /// Collect condition matched(\p isValidCandidate() returns true) 276 /// candidates in Loop \p L. 277 SmallVector<Bucket, 16> collectCandidates( 278 Loop *L, 279 std::function<bool(const Instruction *, Value *, const Type *)> 280 isValidCandidate, 281 std::function<bool(const SCEV *)> isValidDiff, 282 unsigned MaxCandidateNum); 283 284 /// Add a candidate to candidates \p Buckets if diff between candidate and 285 /// one base in \p Buckets matches \p isValidDiff. 286 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, 287 SmallVector<Bucket, 16> &Buckets, 288 std::function<bool(const SCEV *)> isValidDiff, 289 unsigned MaxCandidateNum); 290 291 /// Prepare all candidates in \p Buckets for update form. 292 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets); 293 294 /// Prepare all candidates in \p Buckets for displacement form, now for 295 /// ds/dq. 296 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, 297 InstrForm Form); 298 299 /// Prepare for one chain \p BucketChain, find the best base element and 300 /// update all other elements in \p BucketChain accordingly. 301 /// \p Form is used to find the best base element. 302 /// If success, best base element must be stored as the first element of 303 /// \p BucketChain. 304 /// Return false if no base element found, otherwise return true. 305 bool prepareBaseForDispFormChain(Bucket &BucketChain, 306 InstrForm Form); 307 308 /// Prepare for one chain \p BucketChain, find the best base element and 309 /// update all other elements in \p BucketChain accordingly. 310 /// If success, best base element must be stored as the first element of 311 /// \p BucketChain. 312 /// Return false if no base element found, otherwise return true. 313 bool prepareBaseForUpdateFormChain(Bucket &BucketChain); 314 315 /// Rewrite load/store instructions in \p BucketChain according to 316 /// preparation. 317 bool rewriteLoadStores(Loop *L, Bucket &BucketChain, 318 SmallSet<BasicBlock *, 16> &BBChanged, 319 InstrForm Form); 320 321 /// Rewrite for the base load/store of a chain. 322 std::pair<Instruction *, Instruction *> 323 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 324 Instruction *BaseMemI, bool CanPreInc, InstrForm Form, 325 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs); 326 327 /// Rewrite for the other load/stores of a chain according to the new \p 328 /// Base. 329 Instruction * 330 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base, 331 const BucketElement &Element, Value *OffToBase, 332 SmallPtrSet<Value *, 16> &DeletedPtrs); 333 }; 334 335 } // end anonymous namespace 336 337 char PPCLoopInstrFormPrep::ID = 0; 338 static const char *name = "Prepare loop for ppc preferred instruction forms"; 339 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 340 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 341 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 342 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 343 344 static constexpr StringRef PHINodeNameSuffix = ".phi"; 345 static constexpr StringRef CastNodeNameSuffix = ".cast"; 346 static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; 347 static constexpr StringRef GEPNodeOffNameSuffix = ".off"; 348 349 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { 350 return new PPCLoopInstrFormPrep(TM); 351 } 352 353 static bool IsPtrInBounds(Value *BasePtr) { 354 Value *StrippedBasePtr = BasePtr; 355 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr)) 356 StrippedBasePtr = BC->getOperand(0); 357 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr)) 358 return GEP->isInBounds(); 359 360 return false; 361 } 362 363 static std::string getInstrName(const Value *I, StringRef Suffix) { 364 assert(I && "Invalid paramater!"); 365 if (I->hasName()) 366 return (I->getName() + Suffix).str(); 367 else 368 return ""; 369 } 370 371 static Value *getPointerOperandAndType(Value *MemI, 372 Type **PtrElementType = nullptr) { 373 374 Value *PtrValue = nullptr; 375 Type *PointerElementType = nullptr; 376 377 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) { 378 PtrValue = LMemI->getPointerOperand(); 379 PointerElementType = LMemI->getType(); 380 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) { 381 PtrValue = SMemI->getPointerOperand(); 382 PointerElementType = SMemI->getValueOperand()->getType(); 383 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) { 384 PointerElementType = Type::getInt8Ty(MemI->getContext()); 385 if (IMemI->getIntrinsicID() == Intrinsic::prefetch || 386 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { 387 PtrValue = IMemI->getArgOperand(0); 388 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { 389 PtrValue = IMemI->getArgOperand(1); 390 } 391 } 392 /*Get ElementType if PtrElementType is not null.*/ 393 if (PtrElementType) 394 *PtrElementType = PointerElementType; 395 396 return PtrValue; 397 } 398 399 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { 400 if (skipFunction(F)) 401 return false; 402 403 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 404 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 405 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 406 DT = DTWP ? &DTWP->getDomTree() : nullptr; 407 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 408 ST = TM ? TM->getSubtargetImpl(F) : nullptr; 409 SuccPrepCount = 0; 410 411 bool MadeChange = false; 412 413 for (auto I = LI->begin(), IE = LI->end(); I != IE; ++I) 414 for (auto L = df_begin(*I), LE = df_end(*I); L != LE; ++L) 415 MadeChange |= runOnLoop(*L); 416 417 return MadeChange; 418 } 419 420 // Finding the minimal(chain_number + reusable_offset_number) is a complicated 421 // algorithmic problem. 422 // For now, the algorithm used here is simply adjusted to handle the case for 423 // manually unrolling cases. 424 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and 425 // reusable_offset_number for one base with multiple offsets. 426 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { 427 // The minimal size for profitable chain commoning: 428 // A1 = base + offset1 429 // A2 = base + offset2 (offset2 - offset1 = X) 430 // A3 = base + offset3 431 // A4 = base + offset4 (offset4 - offset3 = X) 432 // ======> 433 // base1 = base + offset1 434 // base2 = base + offset3 435 // A1 = base1 436 // A2 = base1 + X 437 // A3 = base2 438 // A4 = base2 + X 439 // 440 // There is benefit because of reuse of offest 'X'. 441 442 assert(ChainCommonPrepMinThreshold >= 4 && 443 "Thredhold can not be smaller than 4!\n"); 444 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) 445 return false; 446 447 // We simply select the FirstOffset as the first reusable offset between each 448 // chain element 1 and element 0. 449 const SCEV *FirstOffset = CBucket.Elements[1].Offset; 450 451 // Figure out how many times above FirstOffset is used in the chain. 452 // For a success commoning chain candidate, offset difference between each 453 // chain element 1 and element 0 must be also FirstOffset. 454 unsigned FirstOffsetReusedCount = 1; 455 456 // Figure out how many times above FirstOffset is used in the first chain. 457 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain 458 unsigned FirstOffsetReusedCountInFirstChain = 1; 459 460 unsigned EleNum = CBucket.Elements.size(); 461 bool SawChainSeparater = false; 462 for (unsigned j = 2; j != EleNum; ++j) { 463 if (SE->getMinusSCEV(CBucket.Elements[j].Offset, 464 CBucket.Elements[j - 1].Offset) == FirstOffset) { 465 if (!SawChainSeparater) 466 FirstOffsetReusedCountInFirstChain++; 467 FirstOffsetReusedCount++; 468 } else 469 // For now, if we meet any offset which is not FirstOffset, we assume we 470 // find a new Chain. 471 // This makes us miss some opportunities. 472 // For example, we can common: 473 // 474 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} 475 // 476 // as two chains: 477 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} 478 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 479 // 480 // But we fail to common: 481 // 482 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} 483 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 484 485 SawChainSeparater = true; 486 } 487 488 // FirstOffset is not reused, skip this bucket. 489 if (FirstOffsetReusedCount == 1) 490 return false; 491 492 unsigned ChainNum = 493 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; 494 495 // All elements are increased by FirstOffset. 496 // The number of chains should be sqrt(EleNum). 497 if (!SawChainSeparater) 498 ChainNum = (unsigned)sqrt((double)EleNum); 499 500 CBucket.ChainSize = (unsigned)(EleNum / ChainNum); 501 502 // If this is not a perfect chain(eg: not all elements can be put inside 503 // commoning chains.), skip now. 504 if (CBucket.ChainSize * ChainNum != EleNum) 505 return false; 506 507 if (SawChainSeparater) { 508 // Check that the offset seqs are the same for all chains. 509 for (unsigned i = 1; i < CBucket.ChainSize; i++) 510 for (unsigned j = 1; j < ChainNum; j++) 511 if (CBucket.Elements[i].Offset != 512 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, 513 CBucket.Elements[j * CBucket.ChainSize].Offset)) 514 return false; 515 } 516 517 for (unsigned i = 0; i < ChainNum; i++) 518 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); 519 520 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); 521 522 return true; 523 } 524 525 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, 526 SmallVector<Bucket, 16> &Buckets) { 527 bool MadeChange = false; 528 529 if (Buckets.empty()) 530 return MadeChange; 531 532 SmallSet<BasicBlock *, 16> BBChanged; 533 534 for (auto &Bucket : Buckets) { 535 if (prepareBasesForCommoningChains(Bucket)) 536 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); 537 } 538 539 if (MadeChange) 540 for (auto *BB : BBChanged) 541 DeleteDeadPHIs(BB); 542 return MadeChange; 543 } 544 545 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( 546 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) { 547 bool MadeChange = false; 548 549 assert(Bucket.Elements.size() == 550 Bucket.ChainBases.size() * Bucket.ChainSize && 551 "invalid bucket for chain commoning!\n"); 552 SmallPtrSet<Value *, 16> DeletedPtrs; 553 554 BasicBlock *Header = L->getHeader(); 555 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 556 557 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 558 "loopprepare-chaincommon"); 559 560 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { 561 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; 562 const SCEV *BaseSCEV = 563 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, 564 Bucket.Elements[BaseElemIdx].Offset) 565 : Bucket.BaseSCEV; 566 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV); 567 568 // Make sure the base is able to expand. 569 if (!isSafeToExpand(BasePtrSCEV->getStart(), *SE)) 570 return MadeChange; 571 572 assert(BasePtrSCEV->isAffine() && 573 "Invalid SCEV type for the base ptr for a candidate chain!\n"); 574 575 std::pair<Instruction *, Instruction *> Base = 576 rewriteForBase(L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, 577 false /* CanPreInc */, UpdateForm, SCEVE, DeletedPtrs); 578 579 if (!Base.first || !Base.second) 580 return MadeChange; 581 582 // Keep track of the replacement pointer values we've inserted so that we 583 // don't generate more pointer values than necessary. 584 SmallPtrSet<Value *, 16> NewPtrs; 585 NewPtrs.insert(Base.first); 586 587 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; 588 ++Idx) { 589 BucketElement &I = Bucket.Elements[Idx]; 590 Value *Ptr = getPointerOperandAndType(I.Instr); 591 assert(Ptr && "No pointer operand"); 592 if (NewPtrs.count(Ptr)) 593 continue; 594 595 const SCEV *OffsetSCEV = 596 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, 597 Bucket.Elements[BaseElemIdx].Offset) 598 : Bucket.Elements[Idx].Offset; 599 600 // Make sure offset is able to expand. Only need to check one time as the 601 // offsets are reused between different chains. 602 if (!BaseElemIdx) 603 if (!isSafeToExpand(OffsetSCEV, *SE)) 604 return false; 605 606 Value *OffsetValue = SCEVE.expandCodeFor( 607 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator()); 608 609 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], 610 OffsetValue, DeletedPtrs); 611 612 assert(NewPtr && "Wrong rewrite!\n"); 613 NewPtrs.insert(NewPtr); 614 } 615 616 ++ChainCommoningRewritten; 617 } 618 619 // Clear the rewriter cache, because values that are in the rewriter's cache 620 // can be deleted below, causing the AssertingVH in the cache to trigger. 621 SCEVE.clear(); 622 623 for (auto *Ptr : DeletedPtrs) { 624 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 625 BBChanged.insert(IDel->getParent()); 626 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 627 } 628 629 MadeChange = true; 630 return MadeChange; 631 } 632 633 // Rewrite the new base according to BasePtrSCEV. 634 // bb.loop.preheader: 635 // %newstart = ... 636 // bb.loop.body: 637 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] 638 // ... 639 // %add = getelementptr %phinode, %inc 640 // 641 // First returned instruciton is %phinode (or a type cast to %phinode), caller 642 // needs this value to rewrite other load/stores in the same chain. 643 // Second returned instruction is %add, caller needs this value to rewrite other 644 // load/stores in the same chain. 645 std::pair<Instruction *, Instruction *> 646 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 647 Instruction *BaseMemI, bool CanPreInc, 648 InstrForm Form, SCEVExpander &SCEVE, 649 SmallPtrSet<Value *, 16> &DeletedPtrs) { 650 651 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); 652 653 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); 654 655 Value *BasePtr = getPointerOperandAndType(BaseMemI); 656 assert(BasePtr && "No pointer operand"); 657 658 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); 659 Type *I8PtrTy = 660 Type::getInt8PtrTy(BaseMemI->getParent()->getContext(), 661 BasePtr->getType()->getPointerAddressSpace()); 662 663 bool IsConstantInc = false; 664 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); 665 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); 666 667 const SCEVConstant *BasePtrIncConstantSCEV = 668 dyn_cast<SCEVConstant>(BasePtrIncSCEV); 669 if (BasePtrIncConstantSCEV) 670 IsConstantInc = true; 671 672 // No valid representation for the increment. 673 if (!IncNode) { 674 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); 675 return std::make_pair(nullptr, nullptr); 676 } 677 678 const SCEV *BasePtrStartSCEV = nullptr; 679 if (CanPreInc) { 680 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && 681 "Increment is not loop invariant!\n"); 682 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), 683 IsConstantInc ? BasePtrIncConstantSCEV 684 : BasePtrIncSCEV); 685 } else 686 BasePtrStartSCEV = BasePtrSCEV->getStart(); 687 688 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { 689 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); 690 return std::make_pair(nullptr, nullptr); 691 } 692 693 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); 694 695 BasicBlock *Header = L->getHeader(); 696 unsigned HeaderLoopPredCount = pred_size(Header); 697 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 698 699 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, 700 getInstrName(BaseMemI, PHINodeNameSuffix), 701 Header->getFirstNonPHI()); 702 703 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, 704 LoopPredecessor->getTerminator()); 705 706 // Note that LoopPredecessor might occur in the predecessor list multiple 707 // times, and we need to add it the right number of times. 708 for (auto PI : predecessors(Header)) { 709 if (PI != LoopPredecessor) 710 continue; 711 712 NewPHI->addIncoming(BasePtrStart, LoopPredecessor); 713 } 714 715 Instruction *PtrInc = nullptr; 716 Instruction *NewBasePtr = nullptr; 717 if (CanPreInc) { 718 Instruction *InsPoint = &*Header->getFirstInsertionPt(); 719 PtrInc = GetElementPtrInst::Create( 720 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 721 InsPoint); 722 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 723 for (auto PI : predecessors(Header)) { 724 if (PI == LoopPredecessor) 725 continue; 726 727 NewPHI->addIncoming(PtrInc, PI); 728 } 729 if (PtrInc->getType() != BasePtr->getType()) 730 NewBasePtr = 731 new BitCastInst(PtrInc, BasePtr->getType(), 732 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); 733 else 734 NewBasePtr = PtrInc; 735 } else { 736 // Note that LoopPredecessor might occur in the predecessor list multiple 737 // times, and we need to make sure no more incoming value for them in PHI. 738 for (auto PI : predecessors(Header)) { 739 if (PI == LoopPredecessor) 740 continue; 741 742 // For the latch predecessor, we need to insert a GEP just before the 743 // terminator to increase the address. 744 BasicBlock *BB = PI; 745 Instruction *InsPoint = BB->getTerminator(); 746 PtrInc = GetElementPtrInst::Create( 747 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 748 InsPoint); 749 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 750 751 NewPHI->addIncoming(PtrInc, PI); 752 } 753 PtrInc = NewPHI; 754 if (NewPHI->getType() != BasePtr->getType()) 755 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), 756 getInstrName(NewPHI, CastNodeNameSuffix), 757 &*Header->getFirstInsertionPt()); 758 else 759 NewBasePtr = NewPHI; 760 } 761 762 BasePtr->replaceAllUsesWith(NewBasePtr); 763 764 DeletedPtrs.insert(BasePtr); 765 766 return std::make_pair(NewBasePtr, PtrInc); 767 } 768 769 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( 770 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element, 771 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) { 772 Instruction *NewBasePtr = Base.first; 773 Instruction *PtrInc = Base.second; 774 assert((NewBasePtr && PtrInc) && "base does not exist!\n"); 775 776 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); 777 778 Value *Ptr = getPointerOperandAndType(Element.Instr); 779 assert(Ptr && "No pointer operand"); 780 781 Instruction *RealNewPtr; 782 if (!Element.Offset || 783 (isa<SCEVConstant>(Element.Offset) && 784 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) { 785 RealNewPtr = NewBasePtr; 786 } else { 787 Instruction *PtrIP = dyn_cast<Instruction>(Ptr); 788 if (PtrIP && isa<Instruction>(NewBasePtr) && 789 cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent()) 790 PtrIP = nullptr; 791 else if (PtrIP && isa<PHINode>(PtrIP)) 792 PtrIP = &*PtrIP->getParent()->getFirstInsertionPt(); 793 else if (!PtrIP) 794 PtrIP = Element.Instr; 795 796 assert(OffToBase && "There should be an offset for non base element!\n"); 797 GetElementPtrInst *NewPtr = GetElementPtrInst::Create( 798 I8Ty, PtrInc, OffToBase, 799 getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP); 800 if (!PtrIP) 801 NewPtr->insertAfter(cast<Instruction>(PtrInc)); 802 NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); 803 RealNewPtr = NewPtr; 804 } 805 806 Instruction *ReplNewPtr; 807 if (Ptr->getType() != RealNewPtr->getType()) { 808 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), 809 getInstrName(Ptr, CastNodeNameSuffix)); 810 ReplNewPtr->insertAfter(RealNewPtr); 811 } else 812 ReplNewPtr = RealNewPtr; 813 814 Ptr->replaceAllUsesWith(ReplNewPtr); 815 DeletedPtrs.insert(Ptr); 816 817 return ReplNewPtr; 818 } 819 820 void PPCLoopInstrFormPrep::addOneCandidate( 821 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets, 822 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 823 assert((MemI && getPointerOperandAndType(MemI)) && 824 "Candidate should be a memory instruction."); 825 assert(LSCEV && "Invalid SCEV for Ptr value."); 826 827 bool FoundBucket = false; 828 for (auto &B : Buckets) { 829 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) != 830 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE)) 831 continue; 832 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); 833 if (isValidDiff(Diff)) { 834 B.Elements.push_back(BucketElement(Diff, MemI)); 835 FoundBucket = true; 836 break; 837 } 838 } 839 840 if (!FoundBucket) { 841 if (Buckets.size() == MaxCandidateNum) { 842 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " 843 << MaxCandidateNum << "\n"); 844 return; 845 } 846 Buckets.push_back(Bucket(LSCEV, MemI)); 847 } 848 } 849 850 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates( 851 Loop *L, 852 std::function<bool(const Instruction *, Value *, const Type *)> 853 isValidCandidate, 854 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 855 SmallVector<Bucket, 16> Buckets; 856 857 for (const auto &BB : L->blocks()) 858 for (auto &J : *BB) { 859 Value *PtrValue = nullptr; 860 Type *PointerElementType = nullptr; 861 PtrValue = getPointerOperandAndType(&J, &PointerElementType); 862 863 if (!PtrValue) 864 continue; 865 866 if (PtrValue->getType()->getPointerAddressSpace()) 867 continue; 868 869 if (L->isLoopInvariant(PtrValue)) 870 continue; 871 872 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); 873 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 874 if (!LARSCEV || LARSCEV->getLoop() != L) 875 continue; 876 877 // Mark that we have candidates for preparing. 878 HasCandidateForPrepare = true; 879 880 if (isValidCandidate(&J, PtrValue, PointerElementType)) 881 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); 882 } 883 return Buckets; 884 } 885 886 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, 887 InstrForm Form) { 888 // RemainderOffsetInfo details: 889 // key: value of (Offset urem DispConstraint). For DSForm, it can 890 // be [0, 4). 891 // first of pair: the index of first BucketElement whose remainder is equal 892 // to key. For key 0, this value must be 0. 893 // second of pair: number of load/stores with the same remainder. 894 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo; 895 896 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 897 if (!BucketChain.Elements[j].Offset) 898 RemainderOffsetInfo[0] = std::make_pair(0, 1); 899 else { 900 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset) 901 ->getAPInt() 902 .urem(Form); 903 if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end()) 904 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); 905 else 906 RemainderOffsetInfo[Remainder].second++; 907 } 908 } 909 // Currently we choose the most profitable base as the one which has the max 910 // number of load/store with same remainder. 911 // FIXME: adjust the base selection strategy according to load/store offset 912 // distribution. 913 // For example, if we have one candidate chain for DS form preparation, which 914 // contains following load/stores with different remainders: 915 // 1: 10 load/store whose remainder is 1; 916 // 2: 9 load/store whose remainder is 2; 917 // 3: 1 for remainder 3 and 0 for remainder 0; 918 // Now we will choose the first load/store whose remainder is 1 as base and 919 // adjust all other load/stores according to new base, so we will get 10 DS 920 // form and 10 X form. 921 // But we should be more clever, for this case we could use two bases, one for 922 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 923 // 1 X form. 924 unsigned MaxCountRemainder = 0; 925 for (unsigned j = 0; j < (unsigned)Form; j++) 926 if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) && 927 RemainderOffsetInfo[j].second > 928 RemainderOffsetInfo[MaxCountRemainder].second) 929 MaxCountRemainder = j; 930 931 // Abort when there are too few insts with common base. 932 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) 933 return false; 934 935 // If the first value is most profitable, no needed to adjust BucketChain 936 // elements as they are substracted the first value when collecting. 937 if (MaxCountRemainder == 0) 938 return true; 939 940 // Adjust load/store to the new chosen base. 941 const SCEV *Offset = 942 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; 943 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 944 for (auto &E : BucketChain.Elements) { 945 if (E.Offset) 946 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 947 else 948 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 949 } 950 951 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], 952 BucketChain.Elements[0]); 953 return true; 954 } 955 956 // FIXME: implement a more clever base choosing policy. 957 // Currently we always choose an exist load/store offset. This maybe lead to 958 // suboptimal code sequences. For example, for one DS chain with offsets 959 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp 960 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a 961 // multipler of 4, it cannot be represented by sint16. 962 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { 963 // We have a choice now of which instruction's memory operand we use as the 964 // base for the generated PHI. Always picking the first instruction in each 965 // bucket does not work well, specifically because that instruction might 966 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, 967 // the choice is somewhat arbitrary, because the backend will happily 968 // generate direct offsets from both the pre-incremented and 969 // post-incremented pointer values. Thus, we'll pick the first non-prefetch 970 // instruction in each bucket, and adjust the recurrence and other offsets 971 // accordingly. 972 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 973 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr)) 974 if (II->getIntrinsicID() == Intrinsic::prefetch) 975 continue; 976 977 // If we'd otherwise pick the first element anyway, there's nothing to do. 978 if (j == 0) 979 break; 980 981 // If our chosen element has no offset from the base pointer, there's 982 // nothing to do. 983 if (!BucketChain.Elements[j].Offset || 984 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero()) 985 break; 986 987 const SCEV *Offset = BucketChain.Elements[j].Offset; 988 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 989 for (auto &E : BucketChain.Elements) { 990 if (E.Offset) 991 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 992 else 993 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 994 } 995 996 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); 997 break; 998 } 999 return true; 1000 } 1001 1002 bool PPCLoopInstrFormPrep::rewriteLoadStores( 1003 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged, 1004 InstrForm Form) { 1005 bool MadeChange = false; 1006 1007 const SCEVAddRecExpr *BasePtrSCEV = 1008 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV); 1009 if (!BasePtrSCEV->isAffine()) 1010 return MadeChange; 1011 1012 if (!isSafeToExpand(BasePtrSCEV->getStart(), *SE)) 1013 return MadeChange; 1014 1015 SmallPtrSet<Value *, 16> DeletedPtrs; 1016 1017 BasicBlock *Header = L->getHeader(); 1018 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 1019 "loopprepare-formrewrite"); 1020 1021 // For some DS form load/store instructions, it can also be an update form, 1022 // if the stride is constant and is a multipler of 4. Use update form if 1023 // prefer it. 1024 bool CanPreInc = (Form == UpdateForm || 1025 ((Form == DSForm) && 1026 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) && 1027 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) 1028 ->getAPInt() 1029 .urem(4) && 1030 PreferUpdateForm)); 1031 1032 std::pair<Instruction *, Instruction *> Base = 1033 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, 1034 CanPreInc, Form, SCEVE, DeletedPtrs); 1035 1036 if (!Base.first || !Base.second) 1037 return MadeChange; 1038 1039 // Keep track of the replacement pointer values we've inserted so that we 1040 // don't generate more pointer values than necessary. 1041 SmallPtrSet<Value *, 16> NewPtrs; 1042 NewPtrs.insert(Base.first); 1043 1044 for (auto I = std::next(BucketChain.Elements.begin()), 1045 IE = BucketChain.Elements.end(); I != IE; ++I) { 1046 Value *Ptr = getPointerOperandAndType(I->Instr); 1047 assert(Ptr && "No pointer operand"); 1048 if (NewPtrs.count(Ptr)) 1049 continue; 1050 1051 Instruction *NewPtr = rewriteForBucketElement( 1052 Base, *I, 1053 I->Offset ? cast<SCEVConstant>(I->Offset)->getValue() : nullptr, 1054 DeletedPtrs); 1055 assert(NewPtr && "wrong rewrite!\n"); 1056 NewPtrs.insert(NewPtr); 1057 } 1058 1059 // Clear the rewriter cache, because values that are in the rewriter's cache 1060 // can be deleted below, causing the AssertingVH in the cache to trigger. 1061 SCEVE.clear(); 1062 1063 for (auto *Ptr : DeletedPtrs) { 1064 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 1065 BBChanged.insert(IDel->getParent()); 1066 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 1067 } 1068 1069 MadeChange = true; 1070 1071 SuccPrepCount++; 1072 1073 if (Form == DSForm && !CanPreInc) 1074 DSFormChainRewritten++; 1075 else if (Form == DQForm) 1076 DQFormChainRewritten++; 1077 else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) 1078 UpdFormChainRewritten++; 1079 1080 return MadeChange; 1081 } 1082 1083 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, 1084 SmallVector<Bucket, 16> &Buckets) { 1085 bool MadeChange = false; 1086 if (Buckets.empty()) 1087 return MadeChange; 1088 SmallSet<BasicBlock *, 16> BBChanged; 1089 for (auto &Bucket : Buckets) 1090 // The base address of each bucket is transformed into a phi and the others 1091 // are rewritten based on new base. 1092 if (prepareBaseForUpdateFormChain(Bucket)) 1093 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); 1094 1095 if (MadeChange) 1096 for (auto *BB : BBChanged) 1097 DeleteDeadPHIs(BB); 1098 return MadeChange; 1099 } 1100 1101 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, 1102 InstrForm Form) { 1103 bool MadeChange = false; 1104 1105 if (Buckets.empty()) 1106 return MadeChange; 1107 1108 SmallSet<BasicBlock *, 16> BBChanged; 1109 for (auto &Bucket : Buckets) { 1110 if (Bucket.Elements.size() < DispFormPrepMinThreshold) 1111 continue; 1112 if (prepareBaseForDispFormChain(Bucket, Form)) 1113 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); 1114 } 1115 1116 if (MadeChange) 1117 for (auto *BB : BBChanged) 1118 DeleteDeadPHIs(BB); 1119 return MadeChange; 1120 } 1121 1122 // Find the loop invariant increment node for SCEV BasePtrIncSCEV. 1123 // bb.loop.preheader: 1124 // %start = ... 1125 // bb.loop.body: 1126 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] 1127 // ... 1128 // %add = add %phinode, %inc ; %inc is what we want to get. 1129 // 1130 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, 1131 const SCEV *BasePtrIncSCEV) { 1132 // If the increment is a constant, no definition is needed. 1133 // Return the value directly. 1134 if (isa<SCEVConstant>(BasePtrIncSCEV)) 1135 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue(); 1136 1137 if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) 1138 return nullptr; 1139 1140 BasicBlock *BB = MemI->getParent(); 1141 if (!BB) 1142 return nullptr; 1143 1144 BasicBlock *LatchBB = L->getLoopLatch(); 1145 1146 if (!LatchBB) 1147 return nullptr; 1148 1149 // Run through the PHIs and check their operands to find valid representation 1150 // for the increment SCEV. 1151 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1152 for (auto &CurrentPHI : PHIIter) { 1153 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1154 if (!CurrentPHINode) 1155 continue; 1156 1157 if (!SE->isSCEVable(CurrentPHINode->getType())) 1158 continue; 1159 1160 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1161 1162 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1163 if (!PHIBasePtrSCEV) 1164 continue; 1165 1166 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); 1167 1168 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) 1169 continue; 1170 1171 // Get the incoming value from the loop latch and check if the value has 1172 // the add form with the required increment. 1173 if (Instruction *I = dyn_cast<Instruction>( 1174 CurrentPHINode->getIncomingValueForBlock(LatchBB))) { 1175 Value *StrippedBaseI = I; 1176 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI)) 1177 StrippedBaseI = BC->getOperand(0); 1178 1179 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI); 1180 if (!StrippedI) 1181 continue; 1182 1183 // LSR pass may add a getelementptr instruction to do the loop increment, 1184 // also search in that getelementptr instruction. 1185 if (StrippedI->getOpcode() == Instruction::Add || 1186 (StrippedI->getOpcode() == Instruction::GetElementPtr && 1187 StrippedI->getNumOperands() == 2)) { 1188 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) 1189 return StrippedI->getOperand(0); 1190 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) 1191 return StrippedI->getOperand(1); 1192 } 1193 } 1194 } 1195 return nullptr; 1196 } 1197 1198 // In order to prepare for the preferred instruction form, a PHI is added. 1199 // This function will check to see if that PHI already exists and will return 1200 // true if it found an existing PHI with the matched start and increment as the 1201 // one we wanted to create. 1202 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, 1203 const SCEV *BasePtrStartSCEV, 1204 const SCEV *BasePtrIncSCEV, 1205 InstrForm Form) { 1206 BasicBlock *BB = MemI->getParent(); 1207 if (!BB) 1208 return false; 1209 1210 BasicBlock *PredBB = L->getLoopPredecessor(); 1211 BasicBlock *LatchBB = L->getLoopLatch(); 1212 1213 if (!PredBB || !LatchBB) 1214 return false; 1215 1216 // Run through the PHIs and see if we have some that looks like a preparation 1217 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1218 for (auto & CurrentPHI : PHIIter) { 1219 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1220 if (!CurrentPHINode) 1221 continue; 1222 1223 if (!SE->isSCEVable(CurrentPHINode->getType())) 1224 continue; 1225 1226 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1227 1228 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1229 if (!PHIBasePtrSCEV) 1230 continue; 1231 1232 const SCEVConstant *PHIBasePtrIncSCEV = 1233 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE)); 1234 if (!PHIBasePtrIncSCEV) 1235 continue; 1236 1237 if (CurrentPHINode->getNumIncomingValues() == 2) { 1238 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && 1239 CurrentPHINode->getIncomingBlock(1) == PredBB) || 1240 (CurrentPHINode->getIncomingBlock(1) == LatchBB && 1241 CurrentPHINode->getIncomingBlock(0) == PredBB)) { 1242 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { 1243 // The existing PHI (CurrentPHINode) has the same start and increment 1244 // as the PHI that we wanted to create. 1245 if (Form == UpdateForm && 1246 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { 1247 ++PHINodeAlreadyExistsUpdate; 1248 return true; 1249 } 1250 if (Form == DSForm || Form == DQForm) { 1251 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 1252 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); 1253 if (Diff && !Diff->getAPInt().urem(Form)) { 1254 if (Form == DSForm) 1255 ++PHINodeAlreadyExistsDS; 1256 else 1257 ++PHINodeAlreadyExistsDQ; 1258 return true; 1259 } 1260 } 1261 } 1262 } 1263 } 1264 } 1265 return false; 1266 } 1267 1268 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { 1269 bool MadeChange = false; 1270 1271 // Only prep. the inner-most loop 1272 if (!L->isInnermost()) 1273 return MadeChange; 1274 1275 // Return if already done enough preparation. 1276 if (SuccPrepCount >= MaxVarsPrep) 1277 return MadeChange; 1278 1279 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); 1280 1281 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 1282 // If there is no loop predecessor, or the loop predecessor's terminator 1283 // returns a value (which might contribute to determining the loop's 1284 // iteration space), insert a new preheader for the loop. 1285 if (!LoopPredecessor || 1286 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { 1287 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); 1288 if (LoopPredecessor) 1289 MadeChange = true; 1290 } 1291 if (!LoopPredecessor) { 1292 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); 1293 return MadeChange; 1294 } 1295 // Check if a load/store has update form. This lambda is used by function 1296 // collectCandidates which can collect candidates for types defined by lambda. 1297 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, 1298 const Type *PointerElementType) { 1299 assert((PtrValue && I) && "Invalid parameter!"); 1300 // There are no update forms for Altivec vector load/stores. 1301 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) 1302 return false; 1303 // There are no update forms for P10 lxvp/stxvp intrinsic. 1304 auto *II = dyn_cast<IntrinsicInst>(I); 1305 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || 1306 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) 1307 return false; 1308 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to 1309 // be 4's multiple (DS-form). For i64 loads/stores when the displacement 1310 // fits in a 16-bit signed field but isn't a multiple of 4, it will be 1311 // useless and possible to break some original well-form addressing mode 1312 // to make this pre-inc prep for it. 1313 if (PointerElementType->isIntegerTy(64)) { 1314 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L); 1315 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 1316 if (!LARSCEV || LARSCEV->getLoop() != L) 1317 return false; 1318 if (const SCEVConstant *StepConst = 1319 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) { 1320 const APInt &ConstInt = StepConst->getValue()->getValue(); 1321 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) 1322 return false; 1323 } 1324 } 1325 return true; 1326 }; 1327 1328 // Check if a load/store has DS form. 1329 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, 1330 const Type *PointerElementType) { 1331 assert((PtrValue && I) && "Invalid parameter!"); 1332 if (isa<IntrinsicInst>(I)) 1333 return false; 1334 return (PointerElementType->isIntegerTy(64)) || 1335 (PointerElementType->isFloatTy()) || 1336 (PointerElementType->isDoubleTy()) || 1337 (PointerElementType->isIntegerTy(32) && 1338 llvm::any_of(I->users(), 1339 [](const User *U) { return isa<SExtInst>(U); })); 1340 }; 1341 1342 // Check if a load/store has DQ form. 1343 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, 1344 const Type *PointerElementType) { 1345 assert((PtrValue && I) && "Invalid parameter!"); 1346 // Check if it is a P10 lxvp/stxvp intrinsic. 1347 auto *II = dyn_cast<IntrinsicInst>(I); 1348 if (II) 1349 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || 1350 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; 1351 // Check if it is a P9 vector load/store. 1352 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); 1353 }; 1354 1355 // Check if a load/store is candidate for chain commoning. 1356 // If the SCEV is only with one ptr operand in its start, we can use that 1357 // start as a chain separator. Mark this load/store as a candidate. 1358 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, 1359 const Type *PointerElementType) { 1360 const SCEVAddRecExpr *ARSCEV = 1361 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L)); 1362 if (!ARSCEV) 1363 return false; 1364 1365 if (!ARSCEV->isAffine()) 1366 return false; 1367 1368 const SCEV *Start = ARSCEV->getStart(); 1369 1370 // A single pointer. We can treat it as offset 0. 1371 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy()) 1372 return true; 1373 1374 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start); 1375 1376 // We need a SCEVAddExpr to include both base and offset. 1377 if (!ASCEV) 1378 return false; 1379 1380 // Make sure there is only one pointer operand(base) and all other operands 1381 // are integer type. 1382 bool SawPointer = false; 1383 for (const SCEV *Op : ASCEV->operands()) { 1384 if (Op->getType()->isPointerTy()) { 1385 if (SawPointer) 1386 return false; 1387 SawPointer = true; 1388 } else if (!Op->getType()->isIntegerTy()) 1389 return false; 1390 } 1391 1392 return SawPointer; 1393 }; 1394 1395 // Check if the diff is a constant type. This is used for update/DS/DQ form 1396 // preparation. 1397 auto isValidConstantDiff = [](const SCEV *Diff) { 1398 return dyn_cast<SCEVConstant>(Diff) != nullptr; 1399 }; 1400 1401 // Make sure the diff between the base and new candidate is required type. 1402 // This is used for chain commoning preparation. 1403 auto isValidChainCommoningDiff = [](const SCEV *Diff) { 1404 assert(Diff && "Invalid Diff!\n"); 1405 1406 // Don't mess up previous dform prepare. 1407 if (isa<SCEVConstant>(Diff)) 1408 return false; 1409 1410 // A single integer type offset. 1411 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy()) 1412 return true; 1413 1414 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff); 1415 if (!ADiff) 1416 return false; 1417 1418 for (const SCEV *Op : ADiff->operands()) 1419 if (!Op->getType()->isIntegerTy()) 1420 return false; 1421 1422 return true; 1423 }; 1424 1425 HasCandidateForPrepare = false; 1426 1427 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); 1428 // Collect buckets of comparable addresses used by loads and stores for update 1429 // form. 1430 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates( 1431 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); 1432 1433 // Prepare for update form. 1434 if (!UpdateFormBuckets.empty()) 1435 MadeChange |= updateFormPrep(L, UpdateFormBuckets); 1436 else if (!HasCandidateForPrepare) { 1437 LLVM_DEBUG( 1438 dbgs() 1439 << "No prepare candidates found, stop praparation for current loop!\n"); 1440 // If no candidate for preparing, return early. 1441 return MadeChange; 1442 } 1443 1444 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); 1445 // Collect buckets of comparable addresses used by loads and stores for DS 1446 // form. 1447 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates( 1448 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); 1449 1450 // Prepare for DS form. 1451 if (!DSFormBuckets.empty()) 1452 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); 1453 1454 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); 1455 // Collect buckets of comparable addresses used by loads and stores for DQ 1456 // form. 1457 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates( 1458 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); 1459 1460 // Prepare for DQ form. 1461 if (!DQFormBuckets.empty()) 1462 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); 1463 1464 // Collect buckets of comparable addresses used by loads and stores for chain 1465 // commoning. With chain commoning, we reuse offsets between the chains, so 1466 // the register pressure will be reduced. 1467 if (!EnableChainCommoning) { 1468 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); 1469 return MadeChange; 1470 } 1471 1472 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); 1473 SmallVector<Bucket, 16> Buckets = 1474 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, 1475 MaxVarsChainCommon); 1476 1477 // Prepare for chain commoning. 1478 if (!Buckets.empty()) 1479 MadeChange |= chainCommoning(L, Buckets); 1480 1481 return MadeChange; 1482 } 1483