1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to prepare loops for ppc preferred addressing 10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with 11 // update) 12 // Additional PHIs are created for loop induction variables used by load/store 13 // instructions so that preferred addressing modes can be used. 14 // 15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they 16 // can satisfy the DS/DQ form displacement requirements. 17 // Generically, this means transforming loops like this: 18 // for (int i = 0; i < n; ++i) { 19 // unsigned long x1 = *(unsigned long *)(p + i + 5); 20 // unsigned long x2 = *(unsigned long *)(p + i + 9); 21 // } 22 // 23 // to look like this: 24 // 25 // unsigned NewP = p + 5; 26 // for (int i = 0; i < n; ++i) { 27 // unsigned long x1 = *(unsigned long *)(i + NewP); 28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4); 29 // } 30 // 31 // 2: D/DS form with update preparation, prepare the load/store instructions so 32 // that we can use update form to do pre-increment. 33 // Generically, this means transforming loops like this: 34 // for (int i = 0; i < n; ++i) 35 // array[i] = c; 36 // 37 // to look like this: 38 // 39 // T *p = array[-1]; 40 // for (int i = 0; i < n; ++i) 41 // *++p = c; 42 // 43 // 3: common multiple chains for the load/stores with same offsets in the loop, 44 // so that we can reuse the offsets and reduce the register pressure in the 45 // loop. This transformation can also increase the loop ILP as now each chain 46 // uses its own loop induction add/addi. But this will increase the number of 47 // add/addi in the loop. 48 // 49 // Generically, this means transforming loops like this: 50 // 51 // char *p; 52 // A1 = p + base1 53 // A2 = p + base1 + offset 54 // B1 = p + base2 55 // B2 = p + base2 + offset 56 // 57 // for (int i = 0; i < n; i++) 58 // unsigned long x1 = *(unsigned long *)(A1 + i); 59 // unsigned long x2 = *(unsigned long *)(A2 + i) 60 // unsigned long x3 = *(unsigned long *)(B1 + i); 61 // unsigned long x4 = *(unsigned long *)(B2 + i); 62 // } 63 // 64 // to look like this: 65 // 66 // A1_new = p + base1 // chain 1 67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is 68 // // reused. 69 // 70 // for (long long i = 0; i < n; i+=count) { 71 // unsigned long x1 = *(unsigned long *)(A1_new + i); 72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); 73 // unsigned long x3 = *(unsigned long *)(B1_new + i); 74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); 75 // } 76 //===----------------------------------------------------------------------===// 77 78 #include "PPC.h" 79 #include "PPCSubtarget.h" 80 #include "PPCTargetMachine.h" 81 #include "llvm/ADT/DepthFirstIterator.h" 82 #include "llvm/ADT/SmallPtrSet.h" 83 #include "llvm/ADT/SmallSet.h" 84 #include "llvm/ADT/SmallVector.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/ScalarEvolution.h" 88 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 89 #include "llvm/IR/BasicBlock.h" 90 #include "llvm/IR/CFG.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/IntrinsicsPowerPC.h" 96 #include "llvm/IR/Module.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/InitializePasses.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Transforms/Scalar.h" 105 #include "llvm/Transforms/Utils.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/LoopUtils.h" 109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 110 #include <cassert> 111 #include <iterator> 112 #include <utility> 113 114 #define DEBUG_TYPE "ppc-loop-instr-form-prep" 115 116 using namespace llvm; 117 118 static cl::opt<unsigned> MaxVarsPrep("ppc-formprep-max-vars", 119 cl::Hidden, cl::init(24), 120 cl::desc("Potential common base number threshold per function for PPC loop " 121 "prep")); 122 123 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update", 124 cl::init(true), cl::Hidden, 125 cl::desc("prefer update form when ds form is also a update form")); 126 127 static cl::opt<bool> EnableChainCommoning( 128 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden, 129 cl::desc("Enable chain commoning in PPC loop prepare pass.")); 130 131 // Sum of following 3 per loop thresholds for all loops can not be larger 132 // than MaxVarsPrep. 133 // now the thresholds for each kind prep are exterimental values on Power9. 134 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars", 135 cl::Hidden, cl::init(3), 136 cl::desc("Potential PHI threshold per loop for PPC loop prep of update " 137 "form")); 138 139 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars", 140 cl::Hidden, cl::init(3), 141 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); 142 143 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars", 144 cl::Hidden, cl::init(8), 145 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); 146 147 // Commoning chain will reduce the register pressure, so we don't consider about 148 // the PHI nodes number. 149 // But commoning chain will increase the addi/add number in the loop and also 150 // increase loop ILP. Maximum chain number should be same with hardware 151 // IssueWidth, because we won't benefit from ILP if the parallel chains number 152 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so 153 // there would be 4 buckets at most on P9(IssueWidth is 8). 154 static cl::opt<unsigned> MaxVarsChainCommon( 155 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), 156 cl::desc("Bucket number per loop for PPC loop chain common")); 157 158 // If would not be profitable if the common base has only one load/store, ISEL 159 // should already be able to choose best load/store form based on offset for 160 // single load/store. Set minimal profitable value default to 2 and make it as 161 // an option. 162 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold", 163 cl::Hidden, cl::init(2), 164 cl::desc("Minimal common base load/store instructions triggering DS/DQ form " 165 "preparation")); 166 167 static cl::opt<unsigned> ChainCommonPrepMinThreshold( 168 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), 169 cl::desc("Minimal common base load/store instructions triggering chain " 170 "commoning preparation. Must be not smaller than 4")); 171 172 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); 173 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); 174 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); 175 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); 176 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); 177 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); 178 STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); 179 180 namespace { 181 struct BucketElement { 182 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} 183 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} 184 185 const SCEV *Offset; 186 Instruction *Instr; 187 }; 188 189 struct Bucket { 190 Bucket(const SCEV *B, Instruction *I) 191 : BaseSCEV(B), Elements(1, BucketElement(I)) { 192 ChainSize = 0; 193 } 194 195 // The base of the whole bucket. 196 const SCEV *BaseSCEV; 197 198 // All elements in the bucket. In the bucket, the element with the BaseSCEV 199 // has no offset and all other elements are stored as offsets to the 200 // BaseSCEV. 201 SmallVector<BucketElement, 16> Elements; 202 203 // The potential chains size. This is used for chain commoning only. 204 unsigned ChainSize; 205 206 // The base for each potential chain. This is used for chain commoning only. 207 SmallVector<BucketElement, 16> ChainBases; 208 }; 209 210 // "UpdateForm" is not a real PPC instruction form, it stands for dform 211 // load/store with update like ldu/stdu, or Prefetch intrinsic. 212 // For DS form instructions, their displacements must be multiple of 4. 213 // For DQ form instructions, their displacements must be multiple of 16. 214 enum InstrForm { UpdateForm = 1, DSForm = 4, DQForm = 16 }; 215 216 class PPCLoopInstrFormPrep : public FunctionPass { 217 public: 218 static char ID; // Pass ID, replacement for typeid 219 220 PPCLoopInstrFormPrep() : FunctionPass(ID) { 221 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 222 } 223 224 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 225 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 226 } 227 228 void getAnalysisUsage(AnalysisUsage &AU) const override { 229 AU.addPreserved<DominatorTreeWrapperPass>(); 230 AU.addRequired<LoopInfoWrapperPass>(); 231 AU.addPreserved<LoopInfoWrapperPass>(); 232 AU.addRequired<ScalarEvolutionWrapperPass>(); 233 } 234 235 bool runOnFunction(Function &F) override; 236 237 private: 238 PPCTargetMachine *TM = nullptr; 239 const PPCSubtarget *ST; 240 DominatorTree *DT; 241 LoopInfo *LI; 242 ScalarEvolution *SE; 243 bool PreserveLCSSA; 244 bool HasCandidateForPrepare; 245 246 /// Successful preparation number for Update/DS/DQ form in all inner most 247 /// loops. One successful preparation will put one common base out of loop, 248 /// this may leads to register presure like LICM does. 249 /// Make sure total preparation number can be controlled by option. 250 unsigned SuccPrepCount; 251 252 bool runOnLoop(Loop *L); 253 254 /// Check if required PHI node is already exist in Loop \p L. 255 bool alreadyPrepared(Loop *L, Instruction *MemI, 256 const SCEV *BasePtrStartSCEV, 257 const SCEV *BasePtrIncSCEV, InstrForm Form); 258 259 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. 260 Value *getNodeForInc(Loop *L, Instruction *MemI, 261 const SCEV *BasePtrIncSCEV); 262 263 /// Common chains to reuse offsets for a loop to reduce register pressure. 264 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets); 265 266 /// Find out the potential commoning chains and their bases. 267 bool prepareBasesForCommoningChains(Bucket &BucketChain); 268 269 /// Rewrite load/store according to the common chains. 270 bool 271 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, 272 SmallSet<BasicBlock *, 16> &BBChanged); 273 274 /// Collect condition matched(\p isValidCandidate() returns true) 275 /// candidates in Loop \p L. 276 SmallVector<Bucket, 16> collectCandidates( 277 Loop *L, 278 std::function<bool(const Instruction *, Value *, const Type *)> 279 isValidCandidate, 280 std::function<bool(const SCEV *)> isValidDiff, 281 unsigned MaxCandidateNum); 282 283 /// Add a candidate to candidates \p Buckets if diff between candidate and 284 /// one base in \p Buckets matches \p isValidDiff. 285 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, 286 SmallVector<Bucket, 16> &Buckets, 287 std::function<bool(const SCEV *)> isValidDiff, 288 unsigned MaxCandidateNum); 289 290 /// Prepare all candidates in \p Buckets for update form. 291 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets); 292 293 /// Prepare all candidates in \p Buckets for displacement form, now for 294 /// ds/dq. 295 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, 296 InstrForm Form); 297 298 /// Prepare for one chain \p BucketChain, find the best base element and 299 /// update all other elements in \p BucketChain accordingly. 300 /// \p Form is used to find the best base element. 301 /// If success, best base element must be stored as the first element of 302 /// \p BucketChain. 303 /// Return false if no base element found, otherwise return true. 304 bool prepareBaseForDispFormChain(Bucket &BucketChain, 305 InstrForm Form); 306 307 /// Prepare for one chain \p BucketChain, find the best base element and 308 /// update all other elements in \p BucketChain accordingly. 309 /// If success, best base element must be stored as the first element of 310 /// \p BucketChain. 311 /// Return false if no base element found, otherwise return true. 312 bool prepareBaseForUpdateFormChain(Bucket &BucketChain); 313 314 /// Rewrite load/store instructions in \p BucketChain according to 315 /// preparation. 316 bool rewriteLoadStores(Loop *L, Bucket &BucketChain, 317 SmallSet<BasicBlock *, 16> &BBChanged, 318 InstrForm Form); 319 320 /// Rewrite for the base load/store of a chain. 321 std::pair<Instruction *, Instruction *> 322 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 323 Instruction *BaseMemI, bool CanPreInc, InstrForm Form, 324 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs); 325 326 /// Rewrite for the other load/stores of a chain according to the new \p 327 /// Base. 328 Instruction * 329 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base, 330 const BucketElement &Element, Value *OffToBase, 331 SmallPtrSet<Value *, 16> &DeletedPtrs); 332 }; 333 334 } // end anonymous namespace 335 336 char PPCLoopInstrFormPrep::ID = 0; 337 static const char *name = "Prepare loop for ppc preferred instruction forms"; 338 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 339 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 340 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 341 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 342 343 static constexpr StringRef PHINodeNameSuffix = ".phi"; 344 static constexpr StringRef CastNodeNameSuffix = ".cast"; 345 static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; 346 static constexpr StringRef GEPNodeOffNameSuffix = ".off"; 347 348 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { 349 return new PPCLoopInstrFormPrep(TM); 350 } 351 352 static bool IsPtrInBounds(Value *BasePtr) { 353 Value *StrippedBasePtr = BasePtr; 354 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr)) 355 StrippedBasePtr = BC->getOperand(0); 356 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr)) 357 return GEP->isInBounds(); 358 359 return false; 360 } 361 362 static std::string getInstrName(const Value *I, StringRef Suffix) { 363 assert(I && "Invalid paramater!"); 364 if (I->hasName()) 365 return (I->getName() + Suffix).str(); 366 else 367 return ""; 368 } 369 370 static Value *getPointerOperandAndType(Value *MemI, 371 Type **PtrElementType = nullptr) { 372 373 Value *PtrValue = nullptr; 374 Type *PointerElementType = nullptr; 375 376 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) { 377 PtrValue = LMemI->getPointerOperand(); 378 PointerElementType = LMemI->getType(); 379 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) { 380 PtrValue = SMemI->getPointerOperand(); 381 PointerElementType = SMemI->getValueOperand()->getType(); 382 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) { 383 PointerElementType = Type::getInt8Ty(MemI->getContext()); 384 if (IMemI->getIntrinsicID() == Intrinsic::prefetch || 385 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { 386 PtrValue = IMemI->getArgOperand(0); 387 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { 388 PtrValue = IMemI->getArgOperand(1); 389 } 390 } 391 /*Get ElementType if PtrElementType is not null.*/ 392 if (PtrElementType) 393 *PtrElementType = PointerElementType; 394 395 return PtrValue; 396 } 397 398 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { 399 if (skipFunction(F)) 400 return false; 401 402 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 403 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 404 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 405 DT = DTWP ? &DTWP->getDomTree() : nullptr; 406 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 407 ST = TM ? TM->getSubtargetImpl(F) : nullptr; 408 SuccPrepCount = 0; 409 410 bool MadeChange = false; 411 412 for (auto I = LI->begin(), IE = LI->end(); I != IE; ++I) 413 for (auto L = df_begin(*I), LE = df_end(*I); L != LE; ++L) 414 MadeChange |= runOnLoop(*L); 415 416 return MadeChange; 417 } 418 419 // Finding the minimal(chain_number + reusable_offset_number) is a complicated 420 // algorithmic problem. 421 // For now, the algorithm used here is simply adjusted to handle the case for 422 // manually unrolling cases. 423 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and 424 // reusable_offset_number for one base with multiple offsets. 425 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { 426 // The minimal size for profitable chain commoning: 427 // A1 = base + offset1 428 // A2 = base + offset2 (offset2 - offset1 = X) 429 // A3 = base + offset3 430 // A4 = base + offset4 (offset4 - offset3 = X) 431 // ======> 432 // base1 = base + offset1 433 // base2 = base + offset3 434 // A1 = base1 435 // A2 = base1 + X 436 // A3 = base2 437 // A4 = base2 + X 438 // 439 // There is benefit because of reuse of offest 'X'. 440 441 assert(ChainCommonPrepMinThreshold >= 4 && 442 "Thredhold can not be smaller than 4!\n"); 443 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) 444 return false; 445 446 // We simply select the FirstOffset as the first reusable offset between each 447 // chain element 1 and element 0. 448 const SCEV *FirstOffset = CBucket.Elements[1].Offset; 449 450 // Figure out how many times above FirstOffset is used in the chain. 451 // For a success commoning chain candidate, offset difference between each 452 // chain element 1 and element 0 must be also FirstOffset. 453 unsigned FirstOffsetReusedCount = 1; 454 455 // Figure out how many times above FirstOffset is used in the first chain. 456 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain 457 unsigned FirstOffsetReusedCountInFirstChain = 1; 458 459 unsigned EleNum = CBucket.Elements.size(); 460 bool SawChainSeparater = false; 461 for (unsigned j = 2; j != EleNum; ++j) { 462 if (SE->getMinusSCEV(CBucket.Elements[j].Offset, 463 CBucket.Elements[j - 1].Offset) == FirstOffset) { 464 if (!SawChainSeparater) 465 FirstOffsetReusedCountInFirstChain++; 466 FirstOffsetReusedCount++; 467 } else 468 // For now, if we meet any offset which is not FirstOffset, we assume we 469 // find a new Chain. 470 // This makes us miss some opportunities. 471 // For example, we can common: 472 // 473 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} 474 // 475 // as two chains: 476 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} 477 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 478 // 479 // But we fail to common: 480 // 481 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} 482 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 483 484 SawChainSeparater = true; 485 } 486 487 // FirstOffset is not reused, skip this bucket. 488 if (FirstOffsetReusedCount == 1) 489 return false; 490 491 unsigned ChainNum = 492 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; 493 494 // All elements are increased by FirstOffset. 495 // The number of chains should be sqrt(EleNum). 496 if (!SawChainSeparater) 497 ChainNum = (unsigned)sqrt((double)EleNum); 498 499 CBucket.ChainSize = (unsigned)(EleNum / ChainNum); 500 501 // If this is not a perfect chain(eg: not all elements can be put inside 502 // commoning chains.), skip now. 503 if (CBucket.ChainSize * ChainNum != EleNum) 504 return false; 505 506 if (SawChainSeparater) { 507 // Check that the offset seqs are the same for all chains. 508 for (unsigned i = 1; i < CBucket.ChainSize; i++) 509 for (unsigned j = 1; j < ChainNum; j++) 510 if (CBucket.Elements[i].Offset != 511 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, 512 CBucket.Elements[j * CBucket.ChainSize].Offset)) 513 return false; 514 } 515 516 for (unsigned i = 0; i < ChainNum; i++) 517 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); 518 519 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); 520 521 return true; 522 } 523 524 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, 525 SmallVector<Bucket, 16> &Buckets) { 526 bool MadeChange = false; 527 528 if (Buckets.empty()) 529 return MadeChange; 530 531 SmallSet<BasicBlock *, 16> BBChanged; 532 533 for (auto &Bucket : Buckets) { 534 if (prepareBasesForCommoningChains(Bucket)) 535 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); 536 } 537 538 if (MadeChange) 539 for (auto *BB : BBChanged) 540 DeleteDeadPHIs(BB); 541 return MadeChange; 542 } 543 544 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( 545 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) { 546 bool MadeChange = false; 547 548 assert(Bucket.Elements.size() == 549 Bucket.ChainBases.size() * Bucket.ChainSize && 550 "invalid bucket for chain commoning!\n"); 551 SmallPtrSet<Value *, 16> DeletedPtrs; 552 553 BasicBlock *Header = L->getHeader(); 554 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 555 556 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 557 "loopprepare-chaincommon"); 558 559 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { 560 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; 561 const SCEV *BaseSCEV = 562 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, 563 Bucket.Elements[BaseElemIdx].Offset) 564 : Bucket.BaseSCEV; 565 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV); 566 567 // Make sure the base is able to expand. 568 if (!isSafeToExpand(BasePtrSCEV->getStart(), *SE)) 569 return MadeChange; 570 571 assert(BasePtrSCEV->isAffine() && 572 "Invalid SCEV type for the base ptr for a candidate chain!\n"); 573 574 std::pair<Instruction *, Instruction *> Base = 575 rewriteForBase(L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, 576 false /* CanPreInc */, UpdateForm, SCEVE, DeletedPtrs); 577 578 if (!Base.first || !Base.second) 579 return MadeChange; 580 581 // Keep track of the replacement pointer values we've inserted so that we 582 // don't generate more pointer values than necessary. 583 SmallPtrSet<Value *, 16> NewPtrs; 584 NewPtrs.insert(Base.first); 585 586 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; 587 ++Idx) { 588 BucketElement &I = Bucket.Elements[Idx]; 589 Value *Ptr = getPointerOperandAndType(I.Instr); 590 assert(Ptr && "No pointer operand"); 591 if (NewPtrs.count(Ptr)) 592 continue; 593 594 const SCEV *OffsetSCEV = 595 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, 596 Bucket.Elements[BaseElemIdx].Offset) 597 : Bucket.Elements[Idx].Offset; 598 599 // Make sure offset is able to expand. Only need to check one time as the 600 // offsets are reused between different chains. 601 if (!BaseElemIdx) 602 if (!isSafeToExpand(OffsetSCEV, *SE)) 603 return false; 604 605 Value *OffsetValue = SCEVE.expandCodeFor( 606 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator()); 607 608 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], 609 OffsetValue, DeletedPtrs); 610 611 assert(NewPtr && "Wrong rewrite!\n"); 612 NewPtrs.insert(NewPtr); 613 } 614 615 ++ChainCommoningRewritten; 616 } 617 618 // Clear the rewriter cache, because values that are in the rewriter's cache 619 // can be deleted below, causing the AssertingVH in the cache to trigger. 620 SCEVE.clear(); 621 622 for (auto *Ptr : DeletedPtrs) { 623 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 624 BBChanged.insert(IDel->getParent()); 625 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 626 } 627 628 MadeChange = true; 629 return MadeChange; 630 } 631 632 // Rewrite the new base according to BasePtrSCEV. 633 // bb.loop.preheader: 634 // %newstart = ... 635 // bb.loop.body: 636 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] 637 // ... 638 // %add = getelementptr %phinode, %inc 639 // 640 // First returned instruciton is %phinode (or a type cast to %phinode), caller 641 // needs this value to rewrite other load/stores in the same chain. 642 // Second returned instruction is %add, caller needs this value to rewrite other 643 // load/stores in the same chain. 644 std::pair<Instruction *, Instruction *> 645 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 646 Instruction *BaseMemI, bool CanPreInc, 647 InstrForm Form, SCEVExpander &SCEVE, 648 SmallPtrSet<Value *, 16> &DeletedPtrs) { 649 650 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); 651 652 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); 653 654 Value *BasePtr = getPointerOperandAndType(BaseMemI); 655 assert(BasePtr && "No pointer operand"); 656 657 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); 658 Type *I8PtrTy = 659 Type::getInt8PtrTy(BaseMemI->getParent()->getContext(), 660 BasePtr->getType()->getPointerAddressSpace()); 661 662 bool IsConstantInc = false; 663 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); 664 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); 665 666 const SCEVConstant *BasePtrIncConstantSCEV = 667 dyn_cast<SCEVConstant>(BasePtrIncSCEV); 668 if (BasePtrIncConstantSCEV) 669 IsConstantInc = true; 670 671 // No valid representation for the increment. 672 if (!IncNode) { 673 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); 674 return std::make_pair(nullptr, nullptr); 675 } 676 677 const SCEV *BasePtrStartSCEV = nullptr; 678 if (CanPreInc) { 679 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && 680 "Increment is not loop invariant!\n"); 681 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), 682 IsConstantInc ? BasePtrIncConstantSCEV 683 : BasePtrIncSCEV); 684 } else 685 BasePtrStartSCEV = BasePtrSCEV->getStart(); 686 687 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { 688 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); 689 return std::make_pair(nullptr, nullptr); 690 } 691 692 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); 693 694 BasicBlock *Header = L->getHeader(); 695 unsigned HeaderLoopPredCount = pred_size(Header); 696 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 697 698 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, 699 getInstrName(BaseMemI, PHINodeNameSuffix), 700 Header->getFirstNonPHI()); 701 702 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, 703 LoopPredecessor->getTerminator()); 704 705 // Note that LoopPredecessor might occur in the predecessor list multiple 706 // times, and we need to add it the right number of times. 707 for (auto PI : predecessors(Header)) { 708 if (PI != LoopPredecessor) 709 continue; 710 711 NewPHI->addIncoming(BasePtrStart, LoopPredecessor); 712 } 713 714 Instruction *PtrInc = nullptr; 715 Instruction *NewBasePtr = nullptr; 716 if (CanPreInc) { 717 Instruction *InsPoint = &*Header->getFirstInsertionPt(); 718 PtrInc = GetElementPtrInst::Create( 719 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 720 InsPoint); 721 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 722 for (auto PI : predecessors(Header)) { 723 if (PI == LoopPredecessor) 724 continue; 725 726 NewPHI->addIncoming(PtrInc, PI); 727 } 728 if (PtrInc->getType() != BasePtr->getType()) 729 NewBasePtr = 730 new BitCastInst(PtrInc, BasePtr->getType(), 731 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); 732 else 733 NewBasePtr = PtrInc; 734 } else { 735 // Note that LoopPredecessor might occur in the predecessor list multiple 736 // times, and we need to make sure no more incoming value for them in PHI. 737 for (auto PI : predecessors(Header)) { 738 if (PI == LoopPredecessor) 739 continue; 740 741 // For the latch predecessor, we need to insert a GEP just before the 742 // terminator to increase the address. 743 BasicBlock *BB = PI; 744 Instruction *InsPoint = BB->getTerminator(); 745 PtrInc = GetElementPtrInst::Create( 746 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 747 InsPoint); 748 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 749 750 NewPHI->addIncoming(PtrInc, PI); 751 } 752 PtrInc = NewPHI; 753 if (NewPHI->getType() != BasePtr->getType()) 754 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), 755 getInstrName(NewPHI, CastNodeNameSuffix), 756 &*Header->getFirstInsertionPt()); 757 else 758 NewBasePtr = NewPHI; 759 } 760 761 BasePtr->replaceAllUsesWith(NewBasePtr); 762 763 DeletedPtrs.insert(BasePtr); 764 765 return std::make_pair(NewBasePtr, PtrInc); 766 } 767 768 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( 769 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element, 770 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) { 771 Instruction *NewBasePtr = Base.first; 772 Instruction *PtrInc = Base.second; 773 assert((NewBasePtr && PtrInc) && "base does not exist!\n"); 774 775 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); 776 777 Value *Ptr = getPointerOperandAndType(Element.Instr); 778 assert(Ptr && "No pointer operand"); 779 780 Instruction *RealNewPtr; 781 if (!Element.Offset || 782 (isa<SCEVConstant>(Element.Offset) && 783 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) { 784 RealNewPtr = NewBasePtr; 785 } else { 786 Instruction *PtrIP = dyn_cast<Instruction>(Ptr); 787 if (PtrIP && isa<Instruction>(NewBasePtr) && 788 cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent()) 789 PtrIP = nullptr; 790 else if (PtrIP && isa<PHINode>(PtrIP)) 791 PtrIP = &*PtrIP->getParent()->getFirstInsertionPt(); 792 else if (!PtrIP) 793 PtrIP = Element.Instr; 794 795 assert(OffToBase && "There should be an offset for non base element!\n"); 796 GetElementPtrInst *NewPtr = GetElementPtrInst::Create( 797 I8Ty, PtrInc, OffToBase, 798 getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP); 799 if (!PtrIP) 800 NewPtr->insertAfter(cast<Instruction>(PtrInc)); 801 NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); 802 RealNewPtr = NewPtr; 803 } 804 805 Instruction *ReplNewPtr; 806 if (Ptr->getType() != RealNewPtr->getType()) { 807 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), 808 getInstrName(Ptr, CastNodeNameSuffix)); 809 ReplNewPtr->insertAfter(RealNewPtr); 810 } else 811 ReplNewPtr = RealNewPtr; 812 813 Ptr->replaceAllUsesWith(ReplNewPtr); 814 DeletedPtrs.insert(Ptr); 815 816 return ReplNewPtr; 817 } 818 819 void PPCLoopInstrFormPrep::addOneCandidate( 820 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets, 821 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 822 assert((MemI && getPointerOperandAndType(MemI)) && 823 "Candidate should be a memory instruction."); 824 assert(LSCEV && "Invalid SCEV for Ptr value."); 825 826 bool FoundBucket = false; 827 for (auto &B : Buckets) { 828 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) != 829 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE)) 830 continue; 831 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); 832 if (isValidDiff(Diff)) { 833 B.Elements.push_back(BucketElement(Diff, MemI)); 834 FoundBucket = true; 835 break; 836 } 837 } 838 839 if (!FoundBucket) { 840 if (Buckets.size() == MaxCandidateNum) { 841 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " 842 << MaxCandidateNum << "\n"); 843 return; 844 } 845 Buckets.push_back(Bucket(LSCEV, MemI)); 846 } 847 } 848 849 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates( 850 Loop *L, 851 std::function<bool(const Instruction *, Value *, const Type *)> 852 isValidCandidate, 853 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 854 SmallVector<Bucket, 16> Buckets; 855 856 for (const auto &BB : L->blocks()) 857 for (auto &J : *BB) { 858 Value *PtrValue = nullptr; 859 Type *PointerElementType = nullptr; 860 PtrValue = getPointerOperandAndType(&J, &PointerElementType); 861 862 if (!PtrValue) 863 continue; 864 865 if (PtrValue->getType()->getPointerAddressSpace()) 866 continue; 867 868 if (L->isLoopInvariant(PtrValue)) 869 continue; 870 871 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); 872 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 873 if (!LARSCEV || LARSCEV->getLoop() != L) 874 continue; 875 876 // Mark that we have candidates for preparing. 877 HasCandidateForPrepare = true; 878 879 if (isValidCandidate(&J, PtrValue, PointerElementType)) 880 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); 881 } 882 return Buckets; 883 } 884 885 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, 886 InstrForm Form) { 887 // RemainderOffsetInfo details: 888 // key: value of (Offset urem DispConstraint). For DSForm, it can 889 // be [0, 4). 890 // first of pair: the index of first BucketElement whose remainder is equal 891 // to key. For key 0, this value must be 0. 892 // second of pair: number of load/stores with the same remainder. 893 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo; 894 895 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 896 if (!BucketChain.Elements[j].Offset) 897 RemainderOffsetInfo[0] = std::make_pair(0, 1); 898 else { 899 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset) 900 ->getAPInt() 901 .urem(Form); 902 if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end()) 903 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); 904 else 905 RemainderOffsetInfo[Remainder].second++; 906 } 907 } 908 // Currently we choose the most profitable base as the one which has the max 909 // number of load/store with same remainder. 910 // FIXME: adjust the base selection strategy according to load/store offset 911 // distribution. 912 // For example, if we have one candidate chain for DS form preparation, which 913 // contains following load/stores with different remainders: 914 // 1: 10 load/store whose remainder is 1; 915 // 2: 9 load/store whose remainder is 2; 916 // 3: 1 for remainder 3 and 0 for remainder 0; 917 // Now we will choose the first load/store whose remainder is 1 as base and 918 // adjust all other load/stores according to new base, so we will get 10 DS 919 // form and 10 X form. 920 // But we should be more clever, for this case we could use two bases, one for 921 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 922 // 1 X form. 923 unsigned MaxCountRemainder = 0; 924 for (unsigned j = 0; j < (unsigned)Form; j++) 925 if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) && 926 RemainderOffsetInfo[j].second > 927 RemainderOffsetInfo[MaxCountRemainder].second) 928 MaxCountRemainder = j; 929 930 // Abort when there are too few insts with common base. 931 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) 932 return false; 933 934 // If the first value is most profitable, no needed to adjust BucketChain 935 // elements as they are substracted the first value when collecting. 936 if (MaxCountRemainder == 0) 937 return true; 938 939 // Adjust load/store to the new chosen base. 940 const SCEV *Offset = 941 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; 942 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 943 for (auto &E : BucketChain.Elements) { 944 if (E.Offset) 945 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 946 else 947 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 948 } 949 950 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], 951 BucketChain.Elements[0]); 952 return true; 953 } 954 955 // FIXME: implement a more clever base choosing policy. 956 // Currently we always choose an exist load/store offset. This maybe lead to 957 // suboptimal code sequences. For example, for one DS chain with offsets 958 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp 959 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a 960 // multipler of 4, it cannot be represented by sint16. 961 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { 962 // We have a choice now of which instruction's memory operand we use as the 963 // base for the generated PHI. Always picking the first instruction in each 964 // bucket does not work well, specifically because that instruction might 965 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, 966 // the choice is somewhat arbitrary, because the backend will happily 967 // generate direct offsets from both the pre-incremented and 968 // post-incremented pointer values. Thus, we'll pick the first non-prefetch 969 // instruction in each bucket, and adjust the recurrence and other offsets 970 // accordingly. 971 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 972 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr)) 973 if (II->getIntrinsicID() == Intrinsic::prefetch) 974 continue; 975 976 // If we'd otherwise pick the first element anyway, there's nothing to do. 977 if (j == 0) 978 break; 979 980 // If our chosen element has no offset from the base pointer, there's 981 // nothing to do. 982 if (!BucketChain.Elements[j].Offset || 983 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero()) 984 break; 985 986 const SCEV *Offset = BucketChain.Elements[j].Offset; 987 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 988 for (auto &E : BucketChain.Elements) { 989 if (E.Offset) 990 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 991 else 992 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 993 } 994 995 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); 996 break; 997 } 998 return true; 999 } 1000 1001 bool PPCLoopInstrFormPrep::rewriteLoadStores( 1002 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged, 1003 InstrForm Form) { 1004 bool MadeChange = false; 1005 1006 const SCEVAddRecExpr *BasePtrSCEV = 1007 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV); 1008 if (!BasePtrSCEV->isAffine()) 1009 return MadeChange; 1010 1011 if (!isSafeToExpand(BasePtrSCEV->getStart(), *SE)) 1012 return MadeChange; 1013 1014 SmallPtrSet<Value *, 16> DeletedPtrs; 1015 1016 BasicBlock *Header = L->getHeader(); 1017 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 1018 "loopprepare-formrewrite"); 1019 1020 // For some DS form load/store instructions, it can also be an update form, 1021 // if the stride is constant and is a multipler of 4. Use update form if 1022 // prefer it. 1023 bool CanPreInc = (Form == UpdateForm || 1024 ((Form == DSForm) && 1025 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) && 1026 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) 1027 ->getAPInt() 1028 .urem(4) && 1029 PreferUpdateForm)); 1030 1031 std::pair<Instruction *, Instruction *> Base = 1032 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, 1033 CanPreInc, Form, SCEVE, DeletedPtrs); 1034 1035 if (!Base.first || !Base.second) 1036 return MadeChange; 1037 1038 // Keep track of the replacement pointer values we've inserted so that we 1039 // don't generate more pointer values than necessary. 1040 SmallPtrSet<Value *, 16> NewPtrs; 1041 NewPtrs.insert(Base.first); 1042 1043 for (auto I = std::next(BucketChain.Elements.begin()), 1044 IE = BucketChain.Elements.end(); I != IE; ++I) { 1045 Value *Ptr = getPointerOperandAndType(I->Instr); 1046 assert(Ptr && "No pointer operand"); 1047 if (NewPtrs.count(Ptr)) 1048 continue; 1049 1050 Instruction *NewPtr = rewriteForBucketElement( 1051 Base, *I, 1052 I->Offset ? cast<SCEVConstant>(I->Offset)->getValue() : nullptr, 1053 DeletedPtrs); 1054 assert(NewPtr && "wrong rewrite!\n"); 1055 NewPtrs.insert(NewPtr); 1056 } 1057 1058 // Clear the rewriter cache, because values that are in the rewriter's cache 1059 // can be deleted below, causing the AssertingVH in the cache to trigger. 1060 SCEVE.clear(); 1061 1062 for (auto *Ptr : DeletedPtrs) { 1063 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 1064 BBChanged.insert(IDel->getParent()); 1065 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 1066 } 1067 1068 MadeChange = true; 1069 1070 SuccPrepCount++; 1071 1072 if (Form == DSForm && !CanPreInc) 1073 DSFormChainRewritten++; 1074 else if (Form == DQForm) 1075 DQFormChainRewritten++; 1076 else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) 1077 UpdFormChainRewritten++; 1078 1079 return MadeChange; 1080 } 1081 1082 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, 1083 SmallVector<Bucket, 16> &Buckets) { 1084 bool MadeChange = false; 1085 if (Buckets.empty()) 1086 return MadeChange; 1087 SmallSet<BasicBlock *, 16> BBChanged; 1088 for (auto &Bucket : Buckets) 1089 // The base address of each bucket is transformed into a phi and the others 1090 // are rewritten based on new base. 1091 if (prepareBaseForUpdateFormChain(Bucket)) 1092 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); 1093 1094 if (MadeChange) 1095 for (auto *BB : BBChanged) 1096 DeleteDeadPHIs(BB); 1097 return MadeChange; 1098 } 1099 1100 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, 1101 InstrForm Form) { 1102 bool MadeChange = false; 1103 1104 if (Buckets.empty()) 1105 return MadeChange; 1106 1107 SmallSet<BasicBlock *, 16> BBChanged; 1108 for (auto &Bucket : Buckets) { 1109 if (Bucket.Elements.size() < DispFormPrepMinThreshold) 1110 continue; 1111 if (prepareBaseForDispFormChain(Bucket, Form)) 1112 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); 1113 } 1114 1115 if (MadeChange) 1116 for (auto *BB : BBChanged) 1117 DeleteDeadPHIs(BB); 1118 return MadeChange; 1119 } 1120 1121 // Find the loop invariant increment node for SCEV BasePtrIncSCEV. 1122 // bb.loop.preheader: 1123 // %start = ... 1124 // bb.loop.body: 1125 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] 1126 // ... 1127 // %add = add %phinode, %inc ; %inc is what we want to get. 1128 // 1129 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, 1130 const SCEV *BasePtrIncSCEV) { 1131 // If the increment is a constant, no definition is needed. 1132 // Return the value directly. 1133 if (isa<SCEVConstant>(BasePtrIncSCEV)) 1134 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue(); 1135 1136 if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) 1137 return nullptr; 1138 1139 BasicBlock *BB = MemI->getParent(); 1140 if (!BB) 1141 return nullptr; 1142 1143 BasicBlock *LatchBB = L->getLoopLatch(); 1144 1145 if (!LatchBB) 1146 return nullptr; 1147 1148 // Run through the PHIs and check their operands to find valid representation 1149 // for the increment SCEV. 1150 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1151 for (auto &CurrentPHI : PHIIter) { 1152 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1153 if (!CurrentPHINode) 1154 continue; 1155 1156 if (!SE->isSCEVable(CurrentPHINode->getType())) 1157 continue; 1158 1159 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1160 1161 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1162 if (!PHIBasePtrSCEV) 1163 continue; 1164 1165 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); 1166 1167 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) 1168 continue; 1169 1170 // Get the incoming value from the loop latch and check if the value has 1171 // the add form with the required increment. 1172 if (Instruction *I = dyn_cast<Instruction>( 1173 CurrentPHINode->getIncomingValueForBlock(LatchBB))) { 1174 Value *StrippedBaseI = I; 1175 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI)) 1176 StrippedBaseI = BC->getOperand(0); 1177 1178 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI); 1179 if (!StrippedI) 1180 continue; 1181 1182 // LSR pass may add a getelementptr instruction to do the loop increment, 1183 // also search in that getelementptr instruction. 1184 if (StrippedI->getOpcode() == Instruction::Add || 1185 (StrippedI->getOpcode() == Instruction::GetElementPtr && 1186 StrippedI->getNumOperands() == 2)) { 1187 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) 1188 return StrippedI->getOperand(0); 1189 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) 1190 return StrippedI->getOperand(1); 1191 } 1192 } 1193 } 1194 return nullptr; 1195 } 1196 1197 // In order to prepare for the preferred instruction form, a PHI is added. 1198 // This function will check to see if that PHI already exists and will return 1199 // true if it found an existing PHI with the matched start and increment as the 1200 // one we wanted to create. 1201 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, 1202 const SCEV *BasePtrStartSCEV, 1203 const SCEV *BasePtrIncSCEV, 1204 InstrForm Form) { 1205 BasicBlock *BB = MemI->getParent(); 1206 if (!BB) 1207 return false; 1208 1209 BasicBlock *PredBB = L->getLoopPredecessor(); 1210 BasicBlock *LatchBB = L->getLoopLatch(); 1211 1212 if (!PredBB || !LatchBB) 1213 return false; 1214 1215 // Run through the PHIs and see if we have some that looks like a preparation 1216 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1217 for (auto & CurrentPHI : PHIIter) { 1218 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1219 if (!CurrentPHINode) 1220 continue; 1221 1222 if (!SE->isSCEVable(CurrentPHINode->getType())) 1223 continue; 1224 1225 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1226 1227 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1228 if (!PHIBasePtrSCEV) 1229 continue; 1230 1231 const SCEVConstant *PHIBasePtrIncSCEV = 1232 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE)); 1233 if (!PHIBasePtrIncSCEV) 1234 continue; 1235 1236 if (CurrentPHINode->getNumIncomingValues() == 2) { 1237 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && 1238 CurrentPHINode->getIncomingBlock(1) == PredBB) || 1239 (CurrentPHINode->getIncomingBlock(1) == LatchBB && 1240 CurrentPHINode->getIncomingBlock(0) == PredBB)) { 1241 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { 1242 // The existing PHI (CurrentPHINode) has the same start and increment 1243 // as the PHI that we wanted to create. 1244 if (Form == UpdateForm && 1245 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { 1246 ++PHINodeAlreadyExistsUpdate; 1247 return true; 1248 } 1249 if (Form == DSForm || Form == DQForm) { 1250 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 1251 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); 1252 if (Diff && !Diff->getAPInt().urem(Form)) { 1253 if (Form == DSForm) 1254 ++PHINodeAlreadyExistsDS; 1255 else 1256 ++PHINodeAlreadyExistsDQ; 1257 return true; 1258 } 1259 } 1260 } 1261 } 1262 } 1263 } 1264 return false; 1265 } 1266 1267 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { 1268 bool MadeChange = false; 1269 1270 // Only prep. the inner-most loop 1271 if (!L->isInnermost()) 1272 return MadeChange; 1273 1274 // Return if already done enough preparation. 1275 if (SuccPrepCount >= MaxVarsPrep) 1276 return MadeChange; 1277 1278 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); 1279 1280 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 1281 // If there is no loop predecessor, or the loop predecessor's terminator 1282 // returns a value (which might contribute to determining the loop's 1283 // iteration space), insert a new preheader for the loop. 1284 if (!LoopPredecessor || 1285 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { 1286 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); 1287 if (LoopPredecessor) 1288 MadeChange = true; 1289 } 1290 if (!LoopPredecessor) { 1291 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); 1292 return MadeChange; 1293 } 1294 // Check if a load/store has update form. This lambda is used by function 1295 // collectCandidates which can collect candidates for types defined by lambda. 1296 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, 1297 const Type *PointerElementType) { 1298 assert((PtrValue && I) && "Invalid parameter!"); 1299 // There are no update forms for Altivec vector load/stores. 1300 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) 1301 return false; 1302 // There are no update forms for P10 lxvp/stxvp intrinsic. 1303 auto *II = dyn_cast<IntrinsicInst>(I); 1304 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || 1305 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) 1306 return false; 1307 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to 1308 // be 4's multiple (DS-form). For i64 loads/stores when the displacement 1309 // fits in a 16-bit signed field but isn't a multiple of 4, it will be 1310 // useless and possible to break some original well-form addressing mode 1311 // to make this pre-inc prep for it. 1312 if (PointerElementType->isIntegerTy(64)) { 1313 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L); 1314 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 1315 if (!LARSCEV || LARSCEV->getLoop() != L) 1316 return false; 1317 if (const SCEVConstant *StepConst = 1318 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) { 1319 const APInt &ConstInt = StepConst->getValue()->getValue(); 1320 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) 1321 return false; 1322 } 1323 } 1324 return true; 1325 }; 1326 1327 // Check if a load/store has DS form. 1328 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, 1329 const Type *PointerElementType) { 1330 assert((PtrValue && I) && "Invalid parameter!"); 1331 if (isa<IntrinsicInst>(I)) 1332 return false; 1333 return (PointerElementType->isIntegerTy(64)) || 1334 (PointerElementType->isFloatTy()) || 1335 (PointerElementType->isDoubleTy()) || 1336 (PointerElementType->isIntegerTy(32) && 1337 llvm::any_of(I->users(), 1338 [](const User *U) { return isa<SExtInst>(U); })); 1339 }; 1340 1341 // Check if a load/store has DQ form. 1342 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, 1343 const Type *PointerElementType) { 1344 assert((PtrValue && I) && "Invalid parameter!"); 1345 // Check if it is a P10 lxvp/stxvp intrinsic. 1346 auto *II = dyn_cast<IntrinsicInst>(I); 1347 if (II) 1348 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || 1349 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; 1350 // Check if it is a P9 vector load/store. 1351 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); 1352 }; 1353 1354 // Check if a load/store is candidate for chain commoning. 1355 // If the SCEV is only with one ptr operand in its start, we can use that 1356 // start as a chain separator. Mark this load/store as a candidate. 1357 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, 1358 const Type *PointerElementType) { 1359 const SCEVAddRecExpr *ARSCEV = 1360 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L)); 1361 if (!ARSCEV) 1362 return false; 1363 1364 if (!ARSCEV->isAffine()) 1365 return false; 1366 1367 const SCEV *Start = ARSCEV->getStart(); 1368 1369 // A single pointer. We can treat it as offset 0. 1370 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy()) 1371 return true; 1372 1373 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start); 1374 1375 // We need a SCEVAddExpr to include both base and offset. 1376 if (!ASCEV) 1377 return false; 1378 1379 // Make sure there is only one pointer operand(base) and all other operands 1380 // are integer type. 1381 bool SawPointer = false; 1382 for (const SCEV *Op : ASCEV->operands()) { 1383 if (Op->getType()->isPointerTy()) { 1384 if (SawPointer) 1385 return false; 1386 SawPointer = true; 1387 } else if (!Op->getType()->isIntegerTy()) 1388 return false; 1389 } 1390 1391 return SawPointer; 1392 }; 1393 1394 // Check if the diff is a constant type. This is used for update/DS/DQ form 1395 // preparation. 1396 auto isValidConstantDiff = [](const SCEV *Diff) { 1397 return dyn_cast<SCEVConstant>(Diff) != nullptr; 1398 }; 1399 1400 // Make sure the diff between the base and new candidate is required type. 1401 // This is used for chain commoning preparation. 1402 auto isValidChainCommoningDiff = [](const SCEV *Diff) { 1403 assert(Diff && "Invalid Diff!\n"); 1404 1405 // Don't mess up previous dform prepare. 1406 if (isa<SCEVConstant>(Diff)) 1407 return false; 1408 1409 // A single integer type offset. 1410 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy()) 1411 return true; 1412 1413 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff); 1414 if (!ADiff) 1415 return false; 1416 1417 for (const SCEV *Op : ADiff->operands()) 1418 if (!Op->getType()->isIntegerTy()) 1419 return false; 1420 1421 return true; 1422 }; 1423 1424 HasCandidateForPrepare = false; 1425 1426 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); 1427 // Collect buckets of comparable addresses used by loads and stores for update 1428 // form. 1429 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates( 1430 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); 1431 1432 // Prepare for update form. 1433 if (!UpdateFormBuckets.empty()) 1434 MadeChange |= updateFormPrep(L, UpdateFormBuckets); 1435 else if (!HasCandidateForPrepare) { 1436 LLVM_DEBUG( 1437 dbgs() 1438 << "No prepare candidates found, stop praparation for current loop!\n"); 1439 // If no candidate for preparing, return early. 1440 return MadeChange; 1441 } 1442 1443 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); 1444 // Collect buckets of comparable addresses used by loads and stores for DS 1445 // form. 1446 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates( 1447 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); 1448 1449 // Prepare for DS form. 1450 if (!DSFormBuckets.empty()) 1451 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); 1452 1453 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); 1454 // Collect buckets of comparable addresses used by loads and stores for DQ 1455 // form. 1456 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates( 1457 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); 1458 1459 // Prepare for DQ form. 1460 if (!DQFormBuckets.empty()) 1461 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); 1462 1463 // Collect buckets of comparable addresses used by loads and stores for chain 1464 // commoning. With chain commoning, we reuse offsets between the chains, so 1465 // the register pressure will be reduced. 1466 if (!EnableChainCommoning) { 1467 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); 1468 return MadeChange; 1469 } 1470 1471 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); 1472 SmallVector<Bucket, 16> Buckets = 1473 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, 1474 MaxVarsChainCommon); 1475 1476 // Prepare for chain commoning. 1477 if (!Buckets.empty()) 1478 MadeChange |= chainCommoning(L, Buckets); 1479 1480 return MadeChange; 1481 } 1482