1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to prepare loops for ppc preferred addressing 10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with 11 // update) 12 // Additional PHIs are created for loop induction variables used by load/store 13 // instructions so that preferred addressing modes can be used. 14 // 15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they 16 // can satisfy the DS/DQ form displacement requirements. 17 // Generically, this means transforming loops like this: 18 // for (int i = 0; i < n; ++i) { 19 // unsigned long x1 = *(unsigned long *)(p + i + 5); 20 // unsigned long x2 = *(unsigned long *)(p + i + 9); 21 // } 22 // 23 // to look like this: 24 // 25 // unsigned NewP = p + 5; 26 // for (int i = 0; i < n; ++i) { 27 // unsigned long x1 = *(unsigned long *)(i + NewP); 28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4); 29 // } 30 // 31 // 2: D/DS form with update preparation, prepare the load/store instructions so 32 // that we can use update form to do pre-increment. 33 // Generically, this means transforming loops like this: 34 // for (int i = 0; i < n; ++i) 35 // array[i] = c; 36 // 37 // to look like this: 38 // 39 // T *p = array[-1]; 40 // for (int i = 0; i < n; ++i) 41 // *++p = c; 42 // 43 // 3: common multiple chains for the load/stores with same offsets in the loop, 44 // so that we can reuse the offsets and reduce the register pressure in the 45 // loop. This transformation can also increase the loop ILP as now each chain 46 // uses its own loop induction add/addi. But this will increase the number of 47 // add/addi in the loop. 48 // 49 // Generically, this means transforming loops like this: 50 // 51 // char *p; 52 // A1 = p + base1 53 // A2 = p + base1 + offset 54 // B1 = p + base2 55 // B2 = p + base2 + offset 56 // 57 // for (int i = 0; i < n; i++) 58 // unsigned long x1 = *(unsigned long *)(A1 + i); 59 // unsigned long x2 = *(unsigned long *)(A2 + i) 60 // unsigned long x3 = *(unsigned long *)(B1 + i); 61 // unsigned long x4 = *(unsigned long *)(B2 + i); 62 // } 63 // 64 // to look like this: 65 // 66 // A1_new = p + base1 // chain 1 67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is 68 // // reused. 69 // 70 // for (long long i = 0; i < n; i+=count) { 71 // unsigned long x1 = *(unsigned long *)(A1_new + i); 72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); 73 // unsigned long x3 = *(unsigned long *)(B1_new + i); 74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); 75 // } 76 //===----------------------------------------------------------------------===// 77 78 #include "PPC.h" 79 #include "PPCSubtarget.h" 80 #include "PPCTargetMachine.h" 81 #include "llvm/ADT/DepthFirstIterator.h" 82 #include "llvm/ADT/SmallPtrSet.h" 83 #include "llvm/ADT/SmallSet.h" 84 #include "llvm/ADT/SmallVector.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/ScalarEvolution.h" 88 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 89 #include "llvm/IR/BasicBlock.h" 90 #include "llvm/IR/CFG.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/IntrinsicsPowerPC.h" 96 #include "llvm/IR/Module.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/InitializePasses.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Transforms/Scalar.h" 105 #include "llvm/Transforms/Utils.h" 106 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 107 #include "llvm/Transforms/Utils/Local.h" 108 #include "llvm/Transforms/Utils/LoopUtils.h" 109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 110 #include <cassert> 111 #include <iterator> 112 #include <utility> 113 114 #define DEBUG_TYPE "ppc-loop-instr-form-prep" 115 116 using namespace llvm; 117 118 static cl::opt<unsigned> MaxVarsPrep("ppc-formprep-max-vars", 119 cl::Hidden, cl::init(24), 120 cl::desc("Potential common base number threshold per function for PPC loop " 121 "prep")); 122 123 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update", 124 cl::init(true), cl::Hidden, 125 cl::desc("prefer update form when ds form is also a update form")); 126 127 static cl::opt<bool> EnableChainCommoning( 128 "ppc-formprep-chain-commoning", cl::init(true), cl::Hidden, 129 cl::desc("Enable chain commoning in PPC loop prepare pass.")); 130 131 // Sum of following 3 per loop thresholds for all loops can not be larger 132 // than MaxVarsPrep. 133 // now the thresholds for each kind prep are exterimental values on Power9. 134 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars", 135 cl::Hidden, cl::init(3), 136 cl::desc("Potential PHI threshold per loop for PPC loop prep of update " 137 "form")); 138 139 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars", 140 cl::Hidden, cl::init(3), 141 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); 142 143 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars", 144 cl::Hidden, cl::init(8), 145 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); 146 147 // Commoning chain will reduce the register pressure, so we don't consider about 148 // the PHI nodes number. 149 // But commoning chain will increase the addi/add number in the loop and also 150 // increase loop ILP. Maximum chain number should be same with hardware 151 // IssueWidth, because we won't benefit from ILP if the parallel chains number 152 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so 153 // there would be 4 buckets at most on P9(IssueWidth is 8). 154 static cl::opt<unsigned> MaxVarsChainCommon( 155 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), 156 cl::desc("Bucket number per loop for PPC loop chain common")); 157 158 // If would not be profitable if the common base has only one load/store, ISEL 159 // should already be able to choose best load/store form based on offset for 160 // single load/store. Set minimal profitable value default to 2 and make it as 161 // an option. 162 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold", 163 cl::Hidden, cl::init(2), 164 cl::desc("Minimal common base load/store instructions triggering DS/DQ form " 165 "preparation")); 166 167 static cl::opt<unsigned> ChainCommonPrepMinThreshold( 168 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), 169 cl::desc("Minimal common base load/store instructions triggering chain " 170 "commoning preparation. Must be not smaller than 4")); 171 172 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); 173 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); 174 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); 175 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); 176 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); 177 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); 178 STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); 179 180 namespace { 181 struct BucketElement { 182 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} 183 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} 184 185 const SCEV *Offset; 186 Instruction *Instr; 187 }; 188 189 struct Bucket { 190 Bucket(const SCEV *B, Instruction *I) 191 : BaseSCEV(B), Elements(1, BucketElement(I)) { 192 ChainSize = 0; 193 } 194 195 // The base of the whole bucket. 196 const SCEV *BaseSCEV; 197 198 // All elements in the bucket. In the bucket, the element with the BaseSCEV 199 // has no offset and all other elements are stored as offsets to the 200 // BaseSCEV. 201 SmallVector<BucketElement, 16> Elements; 202 203 // The potential chains size. This is used for chain commoning only. 204 unsigned ChainSize; 205 206 // The base for each potential chain. This is used for chain commoning only. 207 SmallVector<BucketElement, 16> ChainBases; 208 }; 209 210 // "UpdateForm" is not a real PPC instruction form, it stands for dform 211 // load/store with update like ldu/stdu, or Prefetch intrinsic. 212 // For DS form instructions, their displacements must be multiple of 4. 213 // For DQ form instructions, their displacements must be multiple of 16. 214 enum InstrForm { UpdateForm = 1, DSForm = 4, DQForm = 16 }; 215 216 class PPCLoopInstrFormPrep : public FunctionPass { 217 public: 218 static char ID; // Pass ID, replacement for typeid 219 220 PPCLoopInstrFormPrep() : FunctionPass(ID) { 221 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 222 } 223 224 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 225 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 226 } 227 228 void getAnalysisUsage(AnalysisUsage &AU) const override { 229 AU.addPreserved<DominatorTreeWrapperPass>(); 230 AU.addRequired<LoopInfoWrapperPass>(); 231 AU.addPreserved<LoopInfoWrapperPass>(); 232 AU.addRequired<ScalarEvolutionWrapperPass>(); 233 } 234 235 bool runOnFunction(Function &F) override; 236 237 private: 238 PPCTargetMachine *TM = nullptr; 239 const PPCSubtarget *ST; 240 DominatorTree *DT; 241 LoopInfo *LI; 242 ScalarEvolution *SE; 243 bool PreserveLCSSA; 244 bool HasCandidateForPrepare; 245 246 /// Successful preparation number for Update/DS/DQ form in all inner most 247 /// loops. One successful preparation will put one common base out of loop, 248 /// this may leads to register presure like LICM does. 249 /// Make sure total preparation number can be controlled by option. 250 unsigned SuccPrepCount; 251 252 bool runOnLoop(Loop *L); 253 254 /// Check if required PHI node is already exist in Loop \p L. 255 bool alreadyPrepared(Loop *L, Instruction *MemI, 256 const SCEV *BasePtrStartSCEV, 257 const SCEV *BasePtrIncSCEV, InstrForm Form); 258 259 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. 260 Value *getNodeForInc(Loop *L, Instruction *MemI, 261 const SCEV *BasePtrIncSCEV); 262 263 /// Common chains to reuse offsets for a loop to reduce register pressure. 264 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets); 265 266 /// Find out the potential commoning chains and their bases. 267 bool prepareBasesForCommoningChains(Bucket &BucketChain); 268 269 /// Rewrite load/store according to the common chains. 270 bool 271 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, 272 SmallSet<BasicBlock *, 16> &BBChanged); 273 274 /// Collect condition matched(\p isValidCandidate() returns true) 275 /// candidates in Loop \p L. 276 SmallVector<Bucket, 16> collectCandidates( 277 Loop *L, 278 std::function<bool(const Instruction *, Value *, const Type *)> 279 isValidCandidate, 280 std::function<bool(const SCEV *)> isValidDiff, 281 unsigned MaxCandidateNum); 282 283 /// Add a candidate to candidates \p Buckets if diff between candidate and 284 /// one base in \p Buckets matches \p isValidDiff. 285 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, 286 SmallVector<Bucket, 16> &Buckets, 287 std::function<bool(const SCEV *)> isValidDiff, 288 unsigned MaxCandidateNum); 289 290 /// Prepare all candidates in \p Buckets for update form. 291 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets); 292 293 /// Prepare all candidates in \p Buckets for displacement form, now for 294 /// ds/dq. 295 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, 296 InstrForm Form); 297 298 /// Prepare for one chain \p BucketChain, find the best base element and 299 /// update all other elements in \p BucketChain accordingly. 300 /// \p Form is used to find the best base element. 301 /// If success, best base element must be stored as the first element of 302 /// \p BucketChain. 303 /// Return false if no base element found, otherwise return true. 304 bool prepareBaseForDispFormChain(Bucket &BucketChain, 305 InstrForm Form); 306 307 /// Prepare for one chain \p BucketChain, find the best base element and 308 /// update all other elements in \p BucketChain accordingly. 309 /// If success, best base element must be stored as the first element of 310 /// \p BucketChain. 311 /// Return false if no base element found, otherwise return true. 312 bool prepareBaseForUpdateFormChain(Bucket &BucketChain); 313 314 /// Rewrite load/store instructions in \p BucketChain according to 315 /// preparation. 316 bool rewriteLoadStores(Loop *L, Bucket &BucketChain, 317 SmallSet<BasicBlock *, 16> &BBChanged, 318 InstrForm Form); 319 320 /// Rewrite for the base load/store of a chain. 321 std::pair<Instruction *, Instruction *> 322 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 323 Instruction *BaseMemI, bool CanPreInc, InstrForm Form, 324 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs); 325 326 /// Rewrite for the other load/stores of a chain according to the new \p 327 /// Base. 328 Instruction * 329 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base, 330 const BucketElement &Element, Value *OffToBase, 331 SmallPtrSet<Value *, 16> &DeletedPtrs); 332 }; 333 334 } // end anonymous namespace 335 336 char PPCLoopInstrFormPrep::ID = 0; 337 static const char *name = "Prepare loop for ppc preferred instruction forms"; 338 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 339 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 340 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 341 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 342 343 static constexpr StringRef PHINodeNameSuffix = ".phi"; 344 static constexpr StringRef CastNodeNameSuffix = ".cast"; 345 static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; 346 static constexpr StringRef GEPNodeOffNameSuffix = ".off"; 347 348 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { 349 return new PPCLoopInstrFormPrep(TM); 350 } 351 352 static bool IsPtrInBounds(Value *BasePtr) { 353 Value *StrippedBasePtr = BasePtr; 354 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr)) 355 StrippedBasePtr = BC->getOperand(0); 356 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr)) 357 return GEP->isInBounds(); 358 359 return false; 360 } 361 362 static std::string getInstrName(const Value *I, StringRef Suffix) { 363 assert(I && "Invalid paramater!"); 364 if (I->hasName()) 365 return (I->getName() + Suffix).str(); 366 else 367 return ""; 368 } 369 370 static Value *getPointerOperandAndType(Value *MemI, 371 Type **PtrElementType = nullptr) { 372 373 Value *PtrValue = nullptr; 374 Type *PointerElementType = nullptr; 375 376 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) { 377 PtrValue = LMemI->getPointerOperand(); 378 PointerElementType = LMemI->getType(); 379 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) { 380 PtrValue = SMemI->getPointerOperand(); 381 PointerElementType = SMemI->getValueOperand()->getType(); 382 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) { 383 PointerElementType = Type::getInt8Ty(MemI->getContext()); 384 if (IMemI->getIntrinsicID() == Intrinsic::prefetch || 385 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { 386 PtrValue = IMemI->getArgOperand(0); 387 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { 388 PtrValue = IMemI->getArgOperand(1); 389 } 390 } 391 /*Get ElementType if PtrElementType is not null.*/ 392 if (PtrElementType) 393 *PtrElementType = PointerElementType; 394 395 return PtrValue; 396 } 397 398 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { 399 if (skipFunction(F)) 400 return false; 401 402 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 403 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 404 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 405 DT = DTWP ? &DTWP->getDomTree() : nullptr; 406 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 407 ST = TM ? TM->getSubtargetImpl(F) : nullptr; 408 SuccPrepCount = 0; 409 410 bool MadeChange = false; 411 412 for (auto I = LI->begin(), IE = LI->end(); I != IE; ++I) 413 for (auto L = df_begin(*I), LE = df_end(*I); L != LE; ++L) 414 MadeChange |= runOnLoop(*L); 415 416 return MadeChange; 417 } 418 419 // Finding the minimal(chain_number + reusable_offset_number) is a complicated 420 // algorithmic problem. 421 // For now, the algorithm used here is simply adjusted to handle the case for 422 // manually unrolling cases. 423 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and 424 // reusable_offset_number for one base with multiple offsets. 425 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { 426 // The minimal size for profitable chain commoning: 427 // A1 = base + offset1 428 // A2 = base + offset2 (offset2 - offset1 = X) 429 // A3 = base + offset3 430 // A4 = base + offset4 (offset4 - offset3 = X) 431 // ======> 432 // base1 = base + offset1 433 // base2 = base + offset3 434 // A1 = base1 435 // A2 = base1 + X 436 // A3 = base2 437 // A4 = base2 + X 438 // 439 // There is benefit because of reuse of offest 'X'. 440 441 assert(ChainCommonPrepMinThreshold >= 4 && 442 "Thredhold can not be smaller than 4!\n"); 443 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) 444 return false; 445 446 // We simply select the FirstOffset as the first reusable offset between each 447 // chain element 1 and element 0. 448 const SCEV *FirstOffset = CBucket.Elements[1].Offset; 449 450 // Figure out how many times above FirstOffset is used in the chain. 451 // For a success commoning chain candidate, offset difference between each 452 // chain element 1 and element 0 must be also FirstOffset. 453 unsigned FirstOffsetReusedCount = 1; 454 455 // Figure out how many times above FirstOffset is used in the first chain. 456 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain 457 unsigned FirstOffsetReusedCountInFirstChain = 1; 458 459 unsigned EleNum = CBucket.Elements.size(); 460 bool SawChainSeparater = false; 461 for (unsigned j = 2; j != EleNum; ++j) { 462 if (SE->getMinusSCEV(CBucket.Elements[j].Offset, 463 CBucket.Elements[j - 1].Offset) == FirstOffset) { 464 if (!SawChainSeparater) 465 FirstOffsetReusedCountInFirstChain++; 466 FirstOffsetReusedCount++; 467 } else 468 // For now, if we meet any offset which is not FirstOffset, we assume we 469 // find a new Chain. 470 // This makes us miss some opportunities. 471 // For example, we can common: 472 // 473 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} 474 // 475 // as two chains: 476 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} 477 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 478 // 479 // But we fail to common: 480 // 481 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} 482 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 483 484 SawChainSeparater = true; 485 } 486 487 // FirstOffset is not reused, skip this bucket. 488 if (FirstOffsetReusedCount == 1) 489 return false; 490 491 unsigned ChainNum = 492 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; 493 494 // All elements are increased by FirstOffset. 495 // The number of chains should be sqrt(EleNum). 496 if (!SawChainSeparater) 497 ChainNum = (unsigned)sqrt(EleNum); 498 499 CBucket.ChainSize = (unsigned)(EleNum / ChainNum); 500 501 // If this is not a perfect chain(eg: not all elements can be put inside 502 // commoning chains.), skip now. 503 if (CBucket.ChainSize * ChainNum != EleNum) 504 return false; 505 506 if (SawChainSeparater) { 507 // Check that the offset seqs are the same for all chains. 508 for (unsigned i = 1; i < CBucket.ChainSize; i++) 509 for (unsigned j = 1; j < ChainNum; j++) 510 if (CBucket.Elements[i].Offset != 511 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, 512 CBucket.Elements[j * CBucket.ChainSize].Offset)) 513 return false; 514 } 515 516 for (unsigned i = 0; i < ChainNum; i++) 517 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); 518 519 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); 520 521 return true; 522 } 523 524 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, 525 SmallVector<Bucket, 16> &Buckets) { 526 bool MadeChange = false; 527 528 if (Buckets.empty()) 529 return MadeChange; 530 531 SmallSet<BasicBlock *, 16> BBChanged; 532 533 for (auto &Bucket : Buckets) { 534 if (prepareBasesForCommoningChains(Bucket)) 535 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); 536 } 537 538 if (MadeChange) 539 for (auto *BB : BBChanged) 540 DeleteDeadPHIs(BB); 541 return MadeChange; 542 } 543 544 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( 545 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) { 546 bool MadeChange = false; 547 548 assert(Bucket.Elements.size() == 549 Bucket.ChainBases.size() * Bucket.ChainSize && 550 "invalid bucket for chain commoning!\n"); 551 SmallPtrSet<Value *, 16> DeletedPtrs; 552 553 BasicBlock *Header = L->getHeader(); 554 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 555 556 Type *I64Ty = Type::getInt64Ty(Header->getContext()); 557 558 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 559 "loopprepare-chaincommon"); 560 561 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { 562 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; 563 const SCEV *BaseSCEV = 564 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, 565 Bucket.Elements[BaseElemIdx].Offset) 566 : Bucket.BaseSCEV; 567 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV); 568 569 // Make sure the base is able to expand. 570 if (!isSafeToExpand(BasePtrSCEV->getStart(), *SE)) 571 return MadeChange; 572 573 assert(BasePtrSCEV->isAffine() && 574 "Invalid SCEV type for the base ptr for a candidate chain!\n"); 575 576 std::pair<Instruction *, Instruction *> Base = 577 rewriteForBase(L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, 578 false /* CanPreInc */, UpdateForm, SCEVE, DeletedPtrs); 579 580 if (!Base.first || !Base.second) 581 return MadeChange; 582 583 // Keep track of the replacement pointer values we've inserted so that we 584 // don't generate more pointer values than necessary. 585 SmallPtrSet<Value *, 16> NewPtrs; 586 NewPtrs.insert(Base.first); 587 588 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; 589 ++Idx) { 590 BucketElement &I = Bucket.Elements[Idx]; 591 Value *Ptr = getPointerOperandAndType(I.Instr); 592 assert(Ptr && "No pointer operand"); 593 if (NewPtrs.count(Ptr)) 594 continue; 595 596 const SCEV *OffsetSCEV = 597 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, 598 Bucket.Elements[BaseElemIdx].Offset) 599 : Bucket.Elements[Idx].Offset; 600 601 // Make sure offset is able to expand. Only need to check one time as the 602 // offsets are reused between different chains. 603 if (!BaseElemIdx) 604 if (!isSafeToExpand(OffsetSCEV, *SE)) 605 return false; 606 607 Value *OffsetValue = SCEVE.expandCodeFor( 608 OffsetSCEV, I64Ty, LoopPredecessor->getTerminator()); 609 610 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], 611 OffsetValue, DeletedPtrs); 612 613 assert(NewPtr && "Wrong rewrite!\n"); 614 NewPtrs.insert(NewPtr); 615 } 616 617 ++ChainCommoningRewritten; 618 } 619 620 // Clear the rewriter cache, because values that are in the rewriter's cache 621 // can be deleted below, causing the AssertingVH in the cache to trigger. 622 SCEVE.clear(); 623 624 for (auto *Ptr : DeletedPtrs) { 625 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 626 BBChanged.insert(IDel->getParent()); 627 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 628 } 629 630 MadeChange = true; 631 return MadeChange; 632 } 633 634 // Rewrite the new base according to BasePtrSCEV. 635 // bb.loop.preheader: 636 // %newstart = ... 637 // bb.loop.body: 638 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] 639 // ... 640 // %add = getelementptr %phinode, %inc 641 // 642 // First returned instruciton is %phinode (or a type cast to %phinode), caller 643 // needs this value to rewrite other load/stores in the same chain. 644 // Second returned instruction is %add, caller needs this value to rewrite other 645 // load/stores in the same chain. 646 std::pair<Instruction *, Instruction *> 647 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 648 Instruction *BaseMemI, bool CanPreInc, 649 InstrForm Form, SCEVExpander &SCEVE, 650 SmallPtrSet<Value *, 16> &DeletedPtrs) { 651 652 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); 653 654 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); 655 656 Value *BasePtr = getPointerOperandAndType(BaseMemI); 657 assert(BasePtr && "No pointer operand"); 658 659 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); 660 Type *I8PtrTy = 661 Type::getInt8PtrTy(BaseMemI->getParent()->getContext(), 662 BasePtr->getType()->getPointerAddressSpace()); 663 664 bool IsConstantInc = false; 665 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); 666 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); 667 668 const SCEVConstant *BasePtrIncConstantSCEV = 669 dyn_cast<SCEVConstant>(BasePtrIncSCEV); 670 if (BasePtrIncConstantSCEV) 671 IsConstantInc = true; 672 673 // No valid representation for the increment. 674 if (!IncNode) { 675 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); 676 return std::make_pair(nullptr, nullptr); 677 } 678 679 const SCEV *BasePtrStartSCEV = nullptr; 680 if (CanPreInc) { 681 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && 682 "Increment is not loop invariant!\n"); 683 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), 684 IsConstantInc ? BasePtrIncConstantSCEV 685 : BasePtrIncSCEV); 686 } else 687 BasePtrStartSCEV = BasePtrSCEV->getStart(); 688 689 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { 690 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); 691 return std::make_pair(nullptr, nullptr); 692 } 693 694 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); 695 696 BasicBlock *Header = L->getHeader(); 697 unsigned HeaderLoopPredCount = pred_size(Header); 698 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 699 700 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, 701 getInstrName(BaseMemI, PHINodeNameSuffix), 702 Header->getFirstNonPHI()); 703 704 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, 705 LoopPredecessor->getTerminator()); 706 707 // Note that LoopPredecessor might occur in the predecessor list multiple 708 // times, and we need to add it the right number of times. 709 for (auto PI : predecessors(Header)) { 710 if (PI != LoopPredecessor) 711 continue; 712 713 NewPHI->addIncoming(BasePtrStart, LoopPredecessor); 714 } 715 716 Instruction *PtrInc = nullptr; 717 Instruction *NewBasePtr = nullptr; 718 if (CanPreInc) { 719 Instruction *InsPoint = &*Header->getFirstInsertionPt(); 720 PtrInc = GetElementPtrInst::Create( 721 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 722 InsPoint); 723 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 724 for (auto PI : predecessors(Header)) { 725 if (PI == LoopPredecessor) 726 continue; 727 728 NewPHI->addIncoming(PtrInc, PI); 729 } 730 if (PtrInc->getType() != BasePtr->getType()) 731 NewBasePtr = 732 new BitCastInst(PtrInc, BasePtr->getType(), 733 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); 734 else 735 NewBasePtr = PtrInc; 736 } else { 737 // Note that LoopPredecessor might occur in the predecessor list multiple 738 // times, and we need to make sure no more incoming value for them in PHI. 739 for (auto PI : predecessors(Header)) { 740 if (PI == LoopPredecessor) 741 continue; 742 743 // For the latch predecessor, we need to insert a GEP just before the 744 // terminator to increase the address. 745 BasicBlock *BB = PI; 746 Instruction *InsPoint = BB->getTerminator(); 747 PtrInc = GetElementPtrInst::Create( 748 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 749 InsPoint); 750 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 751 752 NewPHI->addIncoming(PtrInc, PI); 753 } 754 PtrInc = NewPHI; 755 if (NewPHI->getType() != BasePtr->getType()) 756 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), 757 getInstrName(NewPHI, CastNodeNameSuffix), 758 &*Header->getFirstInsertionPt()); 759 else 760 NewBasePtr = NewPHI; 761 } 762 763 BasePtr->replaceAllUsesWith(NewBasePtr); 764 765 DeletedPtrs.insert(BasePtr); 766 767 return std::make_pair(NewBasePtr, PtrInc); 768 } 769 770 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( 771 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element, 772 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) { 773 Instruction *NewBasePtr = Base.first; 774 Instruction *PtrInc = Base.second; 775 assert((NewBasePtr && PtrInc) && "base does not exist!\n"); 776 777 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); 778 779 Value *Ptr = getPointerOperandAndType(Element.Instr); 780 assert(Ptr && "No pointer operand"); 781 782 Instruction *RealNewPtr; 783 if (!Element.Offset || 784 (isa<SCEVConstant>(Element.Offset) && 785 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) { 786 RealNewPtr = NewBasePtr; 787 } else { 788 Instruction *PtrIP = dyn_cast<Instruction>(Ptr); 789 if (PtrIP && isa<Instruction>(NewBasePtr) && 790 cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent()) 791 PtrIP = nullptr; 792 else if (PtrIP && isa<PHINode>(PtrIP)) 793 PtrIP = &*PtrIP->getParent()->getFirstInsertionPt(); 794 else if (!PtrIP) 795 PtrIP = Element.Instr; 796 797 assert(OffToBase && "There should be an offset for non base element!\n"); 798 GetElementPtrInst *NewPtr = GetElementPtrInst::Create( 799 I8Ty, PtrInc, OffToBase, 800 getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP); 801 if (!PtrIP) 802 NewPtr->insertAfter(cast<Instruction>(PtrInc)); 803 NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); 804 RealNewPtr = NewPtr; 805 } 806 807 Instruction *ReplNewPtr; 808 if (Ptr->getType() != RealNewPtr->getType()) { 809 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), 810 getInstrName(Ptr, CastNodeNameSuffix)); 811 ReplNewPtr->insertAfter(RealNewPtr); 812 } else 813 ReplNewPtr = RealNewPtr; 814 815 Ptr->replaceAllUsesWith(ReplNewPtr); 816 DeletedPtrs.insert(Ptr); 817 818 return ReplNewPtr; 819 } 820 821 void PPCLoopInstrFormPrep::addOneCandidate( 822 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets, 823 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 824 assert((MemI && getPointerOperandAndType(MemI)) && 825 "Candidate should be a memory instruction."); 826 assert(LSCEV && "Invalid SCEV for Ptr value."); 827 828 bool FoundBucket = false; 829 for (auto &B : Buckets) { 830 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) != 831 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE)) 832 continue; 833 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); 834 if (isValidDiff(Diff)) { 835 B.Elements.push_back(BucketElement(Diff, MemI)); 836 FoundBucket = true; 837 break; 838 } 839 } 840 841 if (!FoundBucket) { 842 if (Buckets.size() == MaxCandidateNum) { 843 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " 844 << MaxCandidateNum << "\n"); 845 return; 846 } 847 Buckets.push_back(Bucket(LSCEV, MemI)); 848 } 849 } 850 851 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates( 852 Loop *L, 853 std::function<bool(const Instruction *, Value *, const Type *)> 854 isValidCandidate, 855 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 856 SmallVector<Bucket, 16> Buckets; 857 858 for (const auto &BB : L->blocks()) 859 for (auto &J : *BB) { 860 Value *PtrValue = nullptr; 861 Type *PointerElementType = nullptr; 862 PtrValue = getPointerOperandAndType(&J, &PointerElementType); 863 864 if (!PtrValue) 865 continue; 866 867 if (PtrValue->getType()->getPointerAddressSpace()) 868 continue; 869 870 if (L->isLoopInvariant(PtrValue)) 871 continue; 872 873 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); 874 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 875 if (!LARSCEV || LARSCEV->getLoop() != L) 876 continue; 877 878 // Mark that we have candidates for preparing. 879 HasCandidateForPrepare = true; 880 881 if (isValidCandidate(&J, PtrValue, PointerElementType)) 882 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); 883 } 884 return Buckets; 885 } 886 887 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, 888 InstrForm Form) { 889 // RemainderOffsetInfo details: 890 // key: value of (Offset urem DispConstraint). For DSForm, it can 891 // be [0, 4). 892 // first of pair: the index of first BucketElement whose remainder is equal 893 // to key. For key 0, this value must be 0. 894 // second of pair: number of load/stores with the same remainder. 895 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo; 896 897 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 898 if (!BucketChain.Elements[j].Offset) 899 RemainderOffsetInfo[0] = std::make_pair(0, 1); 900 else { 901 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset) 902 ->getAPInt() 903 .urem(Form); 904 if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end()) 905 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); 906 else 907 RemainderOffsetInfo[Remainder].second++; 908 } 909 } 910 // Currently we choose the most profitable base as the one which has the max 911 // number of load/store with same remainder. 912 // FIXME: adjust the base selection strategy according to load/store offset 913 // distribution. 914 // For example, if we have one candidate chain for DS form preparation, which 915 // contains following load/stores with different remainders: 916 // 1: 10 load/store whose remainder is 1; 917 // 2: 9 load/store whose remainder is 2; 918 // 3: 1 for remainder 3 and 0 for remainder 0; 919 // Now we will choose the first load/store whose remainder is 1 as base and 920 // adjust all other load/stores according to new base, so we will get 10 DS 921 // form and 10 X form. 922 // But we should be more clever, for this case we could use two bases, one for 923 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 924 // 1 X form. 925 unsigned MaxCountRemainder = 0; 926 for (unsigned j = 0; j < (unsigned)Form; j++) 927 if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) && 928 RemainderOffsetInfo[j].second > 929 RemainderOffsetInfo[MaxCountRemainder].second) 930 MaxCountRemainder = j; 931 932 // Abort when there are too few insts with common base. 933 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) 934 return false; 935 936 // If the first value is most profitable, no needed to adjust BucketChain 937 // elements as they are substracted the first value when collecting. 938 if (MaxCountRemainder == 0) 939 return true; 940 941 // Adjust load/store to the new chosen base. 942 const SCEV *Offset = 943 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; 944 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 945 for (auto &E : BucketChain.Elements) { 946 if (E.Offset) 947 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 948 else 949 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 950 } 951 952 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], 953 BucketChain.Elements[0]); 954 return true; 955 } 956 957 // FIXME: implement a more clever base choosing policy. 958 // Currently we always choose an exist load/store offset. This maybe lead to 959 // suboptimal code sequences. For example, for one DS chain with offsets 960 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp 961 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a 962 // multipler of 4, it cannot be represented by sint16. 963 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { 964 // We have a choice now of which instruction's memory operand we use as the 965 // base for the generated PHI. Always picking the first instruction in each 966 // bucket does not work well, specifically because that instruction might 967 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, 968 // the choice is somewhat arbitrary, because the backend will happily 969 // generate direct offsets from both the pre-incremented and 970 // post-incremented pointer values. Thus, we'll pick the first non-prefetch 971 // instruction in each bucket, and adjust the recurrence and other offsets 972 // accordingly. 973 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 974 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr)) 975 if (II->getIntrinsicID() == Intrinsic::prefetch) 976 continue; 977 978 // If we'd otherwise pick the first element anyway, there's nothing to do. 979 if (j == 0) 980 break; 981 982 // If our chosen element has no offset from the base pointer, there's 983 // nothing to do. 984 if (!BucketChain.Elements[j].Offset || 985 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero()) 986 break; 987 988 const SCEV *Offset = BucketChain.Elements[j].Offset; 989 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 990 for (auto &E : BucketChain.Elements) { 991 if (E.Offset) 992 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 993 else 994 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 995 } 996 997 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); 998 break; 999 } 1000 return true; 1001 } 1002 1003 bool PPCLoopInstrFormPrep::rewriteLoadStores( 1004 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged, 1005 InstrForm Form) { 1006 bool MadeChange = false; 1007 1008 const SCEVAddRecExpr *BasePtrSCEV = 1009 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV); 1010 if (!BasePtrSCEV->isAffine()) 1011 return MadeChange; 1012 1013 if (!isSafeToExpand(BasePtrSCEV->getStart(), *SE)) 1014 return MadeChange; 1015 1016 SmallPtrSet<Value *, 16> DeletedPtrs; 1017 1018 BasicBlock *Header = L->getHeader(); 1019 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(), 1020 "loopprepare-formrewrite"); 1021 1022 // For some DS form load/store instructions, it can also be an update form, 1023 // if the stride is constant and is a multipler of 4. Use update form if 1024 // prefer it. 1025 bool CanPreInc = (Form == UpdateForm || 1026 ((Form == DSForm) && 1027 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) && 1028 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) 1029 ->getAPInt() 1030 .urem(4) && 1031 PreferUpdateForm)); 1032 1033 std::pair<Instruction *, Instruction *> Base = 1034 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, 1035 CanPreInc, Form, SCEVE, DeletedPtrs); 1036 1037 if (!Base.first || !Base.second) 1038 return MadeChange; 1039 1040 // Keep track of the replacement pointer values we've inserted so that we 1041 // don't generate more pointer values than necessary. 1042 SmallPtrSet<Value *, 16> NewPtrs; 1043 NewPtrs.insert(Base.first); 1044 1045 for (auto I = std::next(BucketChain.Elements.begin()), 1046 IE = BucketChain.Elements.end(); I != IE; ++I) { 1047 Value *Ptr = getPointerOperandAndType(I->Instr); 1048 assert(Ptr && "No pointer operand"); 1049 if (NewPtrs.count(Ptr)) 1050 continue; 1051 1052 Instruction *NewPtr = rewriteForBucketElement( 1053 Base, *I, 1054 I->Offset ? cast<SCEVConstant>(I->Offset)->getValue() : nullptr, 1055 DeletedPtrs); 1056 assert(NewPtr && "wrong rewrite!\n"); 1057 NewPtrs.insert(NewPtr); 1058 } 1059 1060 // Clear the rewriter cache, because values that are in the rewriter's cache 1061 // can be deleted below, causing the AssertingVH in the cache to trigger. 1062 SCEVE.clear(); 1063 1064 for (auto *Ptr : DeletedPtrs) { 1065 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 1066 BBChanged.insert(IDel->getParent()); 1067 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 1068 } 1069 1070 MadeChange = true; 1071 1072 SuccPrepCount++; 1073 1074 if (Form == DSForm && !CanPreInc) 1075 DSFormChainRewritten++; 1076 else if (Form == DQForm) 1077 DQFormChainRewritten++; 1078 else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) 1079 UpdFormChainRewritten++; 1080 1081 return MadeChange; 1082 } 1083 1084 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, 1085 SmallVector<Bucket, 16> &Buckets) { 1086 bool MadeChange = false; 1087 if (Buckets.empty()) 1088 return MadeChange; 1089 SmallSet<BasicBlock *, 16> BBChanged; 1090 for (auto &Bucket : Buckets) 1091 // The base address of each bucket is transformed into a phi and the others 1092 // are rewritten based on new base. 1093 if (prepareBaseForUpdateFormChain(Bucket)) 1094 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); 1095 1096 if (MadeChange) 1097 for (auto *BB : BBChanged) 1098 DeleteDeadPHIs(BB); 1099 return MadeChange; 1100 } 1101 1102 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, 1103 InstrForm Form) { 1104 bool MadeChange = false; 1105 1106 if (Buckets.empty()) 1107 return MadeChange; 1108 1109 SmallSet<BasicBlock *, 16> BBChanged; 1110 for (auto &Bucket : Buckets) { 1111 if (Bucket.Elements.size() < DispFormPrepMinThreshold) 1112 continue; 1113 if (prepareBaseForDispFormChain(Bucket, Form)) 1114 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); 1115 } 1116 1117 if (MadeChange) 1118 for (auto *BB : BBChanged) 1119 DeleteDeadPHIs(BB); 1120 return MadeChange; 1121 } 1122 1123 // Find the loop invariant increment node for SCEV BasePtrIncSCEV. 1124 // bb.loop.preheader: 1125 // %start = ... 1126 // bb.loop.body: 1127 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] 1128 // ... 1129 // %add = add %phinode, %inc ; %inc is what we want to get. 1130 // 1131 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, 1132 const SCEV *BasePtrIncSCEV) { 1133 // If the increment is a constant, no definition is needed. 1134 // Return the value directly. 1135 if (isa<SCEVConstant>(BasePtrIncSCEV)) 1136 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue(); 1137 1138 if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) 1139 return nullptr; 1140 1141 BasicBlock *BB = MemI->getParent(); 1142 if (!BB) 1143 return nullptr; 1144 1145 BasicBlock *LatchBB = L->getLoopLatch(); 1146 1147 if (!LatchBB) 1148 return nullptr; 1149 1150 // Run through the PHIs and check their operands to find valid representation 1151 // for the increment SCEV. 1152 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1153 for (auto &CurrentPHI : PHIIter) { 1154 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1155 if (!CurrentPHINode) 1156 continue; 1157 1158 if (!SE->isSCEVable(CurrentPHINode->getType())) 1159 continue; 1160 1161 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1162 1163 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1164 if (!PHIBasePtrSCEV) 1165 continue; 1166 1167 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); 1168 1169 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) 1170 continue; 1171 1172 // Get the incoming value from the loop latch and check if the value has 1173 // the add form with the required increment. 1174 if (Instruction *I = dyn_cast<Instruction>( 1175 CurrentPHINode->getIncomingValueForBlock(LatchBB))) { 1176 Value *StrippedBaseI = I; 1177 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI)) 1178 StrippedBaseI = BC->getOperand(0); 1179 1180 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI); 1181 if (!StrippedI) 1182 continue; 1183 1184 // LSR pass may add a getelementptr instruction to do the loop increment, 1185 // also search in that getelementptr instruction. 1186 if (StrippedI->getOpcode() == Instruction::Add || 1187 (StrippedI->getOpcode() == Instruction::GetElementPtr && 1188 StrippedI->getNumOperands() == 2)) { 1189 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) 1190 return StrippedI->getOperand(0); 1191 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) 1192 return StrippedI->getOperand(1); 1193 } 1194 } 1195 } 1196 return nullptr; 1197 } 1198 1199 // In order to prepare for the preferred instruction form, a PHI is added. 1200 // This function will check to see if that PHI already exists and will return 1201 // true if it found an existing PHI with the matched start and increment as the 1202 // one we wanted to create. 1203 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, 1204 const SCEV *BasePtrStartSCEV, 1205 const SCEV *BasePtrIncSCEV, 1206 InstrForm Form) { 1207 BasicBlock *BB = MemI->getParent(); 1208 if (!BB) 1209 return false; 1210 1211 BasicBlock *PredBB = L->getLoopPredecessor(); 1212 BasicBlock *LatchBB = L->getLoopLatch(); 1213 1214 if (!PredBB || !LatchBB) 1215 return false; 1216 1217 // Run through the PHIs and see if we have some that looks like a preparation 1218 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1219 for (auto & CurrentPHI : PHIIter) { 1220 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1221 if (!CurrentPHINode) 1222 continue; 1223 1224 if (!SE->isSCEVable(CurrentPHINode->getType())) 1225 continue; 1226 1227 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1228 1229 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1230 if (!PHIBasePtrSCEV) 1231 continue; 1232 1233 const SCEVConstant *PHIBasePtrIncSCEV = 1234 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE)); 1235 if (!PHIBasePtrIncSCEV) 1236 continue; 1237 1238 if (CurrentPHINode->getNumIncomingValues() == 2) { 1239 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && 1240 CurrentPHINode->getIncomingBlock(1) == PredBB) || 1241 (CurrentPHINode->getIncomingBlock(1) == LatchBB && 1242 CurrentPHINode->getIncomingBlock(0) == PredBB)) { 1243 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { 1244 // The existing PHI (CurrentPHINode) has the same start and increment 1245 // as the PHI that we wanted to create. 1246 if (Form == UpdateForm && 1247 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { 1248 ++PHINodeAlreadyExistsUpdate; 1249 return true; 1250 } 1251 if (Form == DSForm || Form == DQForm) { 1252 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 1253 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); 1254 if (Diff && !Diff->getAPInt().urem(Form)) { 1255 if (Form == DSForm) 1256 ++PHINodeAlreadyExistsDS; 1257 else 1258 ++PHINodeAlreadyExistsDQ; 1259 return true; 1260 } 1261 } 1262 } 1263 } 1264 } 1265 } 1266 return false; 1267 } 1268 1269 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { 1270 bool MadeChange = false; 1271 1272 // Only prep. the inner-most loop 1273 if (!L->isInnermost()) 1274 return MadeChange; 1275 1276 // Return if already done enough preparation. 1277 if (SuccPrepCount >= MaxVarsPrep) 1278 return MadeChange; 1279 1280 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); 1281 1282 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 1283 // If there is no loop predecessor, or the loop predecessor's terminator 1284 // returns a value (which might contribute to determining the loop's 1285 // iteration space), insert a new preheader for the loop. 1286 if (!LoopPredecessor || 1287 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { 1288 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); 1289 if (LoopPredecessor) 1290 MadeChange = true; 1291 } 1292 if (!LoopPredecessor) { 1293 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); 1294 return MadeChange; 1295 } 1296 // Check if a load/store has update form. This lambda is used by function 1297 // collectCandidates which can collect candidates for types defined by lambda. 1298 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, 1299 const Type *PointerElementType) { 1300 assert((PtrValue && I) && "Invalid parameter!"); 1301 // There are no update forms for Altivec vector load/stores. 1302 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) 1303 return false; 1304 // There are no update forms for P10 lxvp/stxvp intrinsic. 1305 auto *II = dyn_cast<IntrinsicInst>(I); 1306 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || 1307 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) 1308 return false; 1309 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to 1310 // be 4's multiple (DS-form). For i64 loads/stores when the displacement 1311 // fits in a 16-bit signed field but isn't a multiple of 4, it will be 1312 // useless and possible to break some original well-form addressing mode 1313 // to make this pre-inc prep for it. 1314 if (PointerElementType->isIntegerTy(64)) { 1315 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L); 1316 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 1317 if (!LARSCEV || LARSCEV->getLoop() != L) 1318 return false; 1319 if (const SCEVConstant *StepConst = 1320 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) { 1321 const APInt &ConstInt = StepConst->getValue()->getValue(); 1322 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) 1323 return false; 1324 } 1325 } 1326 return true; 1327 }; 1328 1329 // Check if a load/store has DS form. 1330 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, 1331 const Type *PointerElementType) { 1332 assert((PtrValue && I) && "Invalid parameter!"); 1333 if (isa<IntrinsicInst>(I)) 1334 return false; 1335 return (PointerElementType->isIntegerTy(64)) || 1336 (PointerElementType->isFloatTy()) || 1337 (PointerElementType->isDoubleTy()) || 1338 (PointerElementType->isIntegerTy(32) && 1339 llvm::any_of(I->users(), 1340 [](const User *U) { return isa<SExtInst>(U); })); 1341 }; 1342 1343 // Check if a load/store has DQ form. 1344 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, 1345 const Type *PointerElementType) { 1346 assert((PtrValue && I) && "Invalid parameter!"); 1347 // Check if it is a P10 lxvp/stxvp intrinsic. 1348 auto *II = dyn_cast<IntrinsicInst>(I); 1349 if (II) 1350 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || 1351 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; 1352 // Check if it is a P9 vector load/store. 1353 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); 1354 }; 1355 1356 // Check if a load/store is candidate for chain commoning. 1357 // If the SCEV is only with one ptr operand in its start, we can use that 1358 // start as a chain separator. Mark this load/store as a candidate. 1359 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, 1360 const Type *PointerElementType) { 1361 const SCEVAddRecExpr *ARSCEV = 1362 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L)); 1363 if (!ARSCEV) 1364 return false; 1365 1366 if (!ARSCEV->isAffine()) 1367 return false; 1368 1369 const SCEV *Start = ARSCEV->getStart(); 1370 1371 // A single pointer. We can treat it as offset 0. 1372 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy()) 1373 return true; 1374 1375 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start); 1376 1377 // We need a SCEVAddExpr to include both base and offset. 1378 if (!ASCEV) 1379 return false; 1380 1381 // Make sure there is only one pointer operand(base) and all other operands 1382 // are integer type. 1383 bool SawPointer = false; 1384 for (const SCEV *Op : ASCEV->operands()) { 1385 if (Op->getType()->isPointerTy()) { 1386 if (SawPointer) 1387 return false; 1388 SawPointer = true; 1389 } else if (!Op->getType()->isIntegerTy()) 1390 return false; 1391 } 1392 1393 return SawPointer; 1394 }; 1395 1396 // Check if the diff is a constant type. This is used for update/DS/DQ form 1397 // preparation. 1398 auto isValidConstantDiff = [](const SCEV *Diff) { 1399 return dyn_cast<SCEVConstant>(Diff) != nullptr; 1400 }; 1401 1402 // Make sure the diff between the base and new candidate is required type. 1403 // This is used for chain commoning preparation. 1404 auto isValidChainCommoningDiff = [](const SCEV *Diff) { 1405 assert(Diff && "Invalid Diff!\n"); 1406 1407 // Don't mess up previous dform prepare. 1408 if (isa<SCEVConstant>(Diff)) 1409 return false; 1410 1411 // A single integer type offset. 1412 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy()) 1413 return true; 1414 1415 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff); 1416 if (!ADiff) 1417 return false; 1418 1419 for (const SCEV *Op : ADiff->operands()) 1420 if (!Op->getType()->isIntegerTy()) 1421 return false; 1422 1423 return true; 1424 }; 1425 1426 HasCandidateForPrepare = false; 1427 1428 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); 1429 // Collect buckets of comparable addresses used by loads and stores for update 1430 // form. 1431 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates( 1432 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); 1433 1434 // Prepare for update form. 1435 if (!UpdateFormBuckets.empty()) 1436 MadeChange |= updateFormPrep(L, UpdateFormBuckets); 1437 else if (!HasCandidateForPrepare) { 1438 LLVM_DEBUG( 1439 dbgs() 1440 << "No prepare candidates found, stop praparation for current loop!\n"); 1441 // If no candidate for preparing, return early. 1442 return MadeChange; 1443 } 1444 1445 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); 1446 // Collect buckets of comparable addresses used by loads and stores for DS 1447 // form. 1448 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates( 1449 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); 1450 1451 // Prepare for DS form. 1452 if (!DSFormBuckets.empty()) 1453 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); 1454 1455 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); 1456 // Collect buckets of comparable addresses used by loads and stores for DQ 1457 // form. 1458 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates( 1459 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); 1460 1461 // Prepare for DQ form. 1462 if (!DQFormBuckets.empty()) 1463 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); 1464 1465 // Collect buckets of comparable addresses used by loads and stores for chain 1466 // commoning. With chain commoning, we reuse offsets between the chains, so 1467 // the register pressure will be reduced. 1468 if (!EnableChainCommoning) { 1469 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); 1470 return MadeChange; 1471 } 1472 1473 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); 1474 SmallVector<Bucket, 16> Buckets = 1475 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, 1476 MaxVarsChainCommon); 1477 1478 // Prepare for chain commoning. 1479 if (!Buckets.empty()) 1480 MadeChange |= chainCommoning(L, Buckets); 1481 1482 return MadeChange; 1483 } 1484