1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCFrameLowering.h" 14 #include "PPCInstrBuilder.h" 15 #include "PPCInstrInfo.h" 16 #include "PPCMachineFunctionInfo.h" 17 #include "PPCSubtarget.h" 18 #include "PPCTargetMachine.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterScavenging.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/Target/TargetOptions.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "framelowering" 32 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 33 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 34 35 static cl::opt<bool> 36 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 37 cl::desc("Enable spills in prologue to vector registers."), 38 cl::init(false), cl::Hidden); 39 40 /// VRRegNo - Map from a numbered VR register to its enum value. 41 /// 42 static const MCPhysReg VRRegNo[] = { 43 PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , 44 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15, 45 PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23, 46 PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31 47 }; 48 49 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 50 if (STI.isAIXABI()) 51 return STI.isPPC64() ? 16 : 8; 52 // SVR4 ABI: 53 return STI.isPPC64() ? 16 : 4; 54 } 55 56 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 57 if (STI.isAIXABI()) 58 return STI.isPPC64() ? 40 : 20; 59 return STI.isELFv2ABI() ? 24 : 40; 60 } 61 62 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 63 // First slot in the general register save area. 64 return STI.isPPC64() ? -8U : -4U; 65 } 66 67 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 68 if (STI.isAIXABI() || STI.isPPC64()) 69 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 70 71 // 32-bit SVR4 ABI: 72 return 8; 73 } 74 75 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 76 // SVR4 ABI: First slot in the general register save area. 77 return STI.isPPC64() 78 ? -16U 79 : STI.getTargetMachine().isPositionIndependent() ? -12U : -8U; 80 } 81 82 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 83 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 84 } 85 86 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 87 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 88 STI.getPlatformStackAlignment(), 0), 89 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 90 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 91 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 92 LinkageSize(computeLinkageSize(Subtarget)), 93 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 94 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 95 96 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 97 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 98 unsigned &NumEntries) const { 99 // Early exit if not using the SVR4 ABI. 100 if (!Subtarget.isSVR4ABI()) { 101 NumEntries = 0; 102 return nullptr; 103 } 104 105 // Floating-point register save area offsets. 106 #define CALLEE_SAVED_FPRS \ 107 {PPC::F31, -8}, \ 108 {PPC::F30, -16}, \ 109 {PPC::F29, -24}, \ 110 {PPC::F28, -32}, \ 111 {PPC::F27, -40}, \ 112 {PPC::F26, -48}, \ 113 {PPC::F25, -56}, \ 114 {PPC::F24, -64}, \ 115 {PPC::F23, -72}, \ 116 {PPC::F22, -80}, \ 117 {PPC::F21, -88}, \ 118 {PPC::F20, -96}, \ 119 {PPC::F19, -104}, \ 120 {PPC::F18, -112}, \ 121 {PPC::F17, -120}, \ 122 {PPC::F16, -128}, \ 123 {PPC::F15, -136}, \ 124 {PPC::F14, -144} 125 126 // 32-bit general purpose register save area offsets. 127 #define CALLEE_SAVED_GPRS32 \ 128 {PPC::R31, -4}, \ 129 {PPC::R30, -8}, \ 130 {PPC::R29, -12}, \ 131 {PPC::R28, -16}, \ 132 {PPC::R27, -20}, \ 133 {PPC::R26, -24}, \ 134 {PPC::R25, -28}, \ 135 {PPC::R24, -32}, \ 136 {PPC::R23, -36}, \ 137 {PPC::R22, -40}, \ 138 {PPC::R21, -44}, \ 139 {PPC::R20, -48}, \ 140 {PPC::R19, -52}, \ 141 {PPC::R18, -56}, \ 142 {PPC::R17, -60}, \ 143 {PPC::R16, -64}, \ 144 {PPC::R15, -68}, \ 145 {PPC::R14, -72} 146 147 // 64-bit general purpose register save area offsets. 148 #define CALLEE_SAVED_GPRS64 \ 149 {PPC::X31, -8}, \ 150 {PPC::X30, -16}, \ 151 {PPC::X29, -24}, \ 152 {PPC::X28, -32}, \ 153 {PPC::X27, -40}, \ 154 {PPC::X26, -48}, \ 155 {PPC::X25, -56}, \ 156 {PPC::X24, -64}, \ 157 {PPC::X23, -72}, \ 158 {PPC::X22, -80}, \ 159 {PPC::X21, -88}, \ 160 {PPC::X20, -96}, \ 161 {PPC::X19, -104}, \ 162 {PPC::X18, -112}, \ 163 {PPC::X17, -120}, \ 164 {PPC::X16, -128}, \ 165 {PPC::X15, -136}, \ 166 {PPC::X14, -144} 167 168 // Vector register save area offsets. 169 #define CALLEE_SAVED_VRS \ 170 {PPC::V31, -16}, \ 171 {PPC::V30, -32}, \ 172 {PPC::V29, -48}, \ 173 {PPC::V28, -64}, \ 174 {PPC::V27, -80}, \ 175 {PPC::V26, -96}, \ 176 {PPC::V25, -112}, \ 177 {PPC::V24, -128}, \ 178 {PPC::V23, -144}, \ 179 {PPC::V22, -160}, \ 180 {PPC::V21, -176}, \ 181 {PPC::V20, -192} 182 183 // Note that the offsets here overlap, but this is fixed up in 184 // processFunctionBeforeFrameFinalized. 185 186 static const SpillSlot Offsets[] = { 187 CALLEE_SAVED_FPRS, 188 CALLEE_SAVED_GPRS32, 189 190 // CR save area offset. We map each of the nonvolatile CR fields 191 // to the slot for CR2, which is the first of the nonvolatile CR 192 // fields to be assigned, so that we only allocate one save slot. 193 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 194 {PPC::CR2, -4}, 195 196 // VRSAVE save area offset. 197 {PPC::VRSAVE, -4}, 198 199 CALLEE_SAVED_VRS, 200 201 // SPE register save area (overlaps Vector save area). 202 {PPC::S31, -8}, 203 {PPC::S30, -16}, 204 {PPC::S29, -24}, 205 {PPC::S28, -32}, 206 {PPC::S27, -40}, 207 {PPC::S26, -48}, 208 {PPC::S25, -56}, 209 {PPC::S24, -64}, 210 {PPC::S23, -72}, 211 {PPC::S22, -80}, 212 {PPC::S21, -88}, 213 {PPC::S20, -96}, 214 {PPC::S19, -104}, 215 {PPC::S18, -112}, 216 {PPC::S17, -120}, 217 {PPC::S16, -128}, 218 {PPC::S15, -136}, 219 {PPC::S14, -144}}; 220 221 static const SpillSlot Offsets64[] = { 222 CALLEE_SAVED_FPRS, 223 CALLEE_SAVED_GPRS64, 224 225 // VRSAVE save area offset. 226 {PPC::VRSAVE, -4}, 227 228 CALLEE_SAVED_VRS 229 }; 230 231 if (Subtarget.isPPC64()) { 232 NumEntries = array_lengthof(Offsets64); 233 234 return Offsets64; 235 } else { 236 NumEntries = array_lengthof(Offsets); 237 238 return Offsets; 239 } 240 } 241 242 /// RemoveVRSaveCode - We have found that this function does not need any code 243 /// to manipulate the VRSAVE register, even though it uses vector registers. 244 /// This can happen when the only registers used are known to be live in or out 245 /// of the function. Remove all of the VRSAVE related code from the function. 246 /// FIXME: The removal of the code results in a compile failure at -O0 when the 247 /// function contains a function call, as the GPR containing original VRSAVE 248 /// contents is spilled and reloaded around the call. Without the prolog code, 249 /// the spill instruction refers to an undefined register. This code needs 250 /// to account for all uses of that GPR. 251 static void RemoveVRSaveCode(MachineInstr &MI) { 252 MachineBasicBlock *Entry = MI.getParent(); 253 MachineFunction *MF = Entry->getParent(); 254 255 // We know that the MTVRSAVE instruction immediately follows MI. Remove it. 256 MachineBasicBlock::iterator MBBI = MI; 257 ++MBBI; 258 assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE); 259 MBBI->eraseFromParent(); 260 261 bool RemovedAllMTVRSAVEs = true; 262 // See if we can find and remove the MTVRSAVE instruction from all of the 263 // epilog blocks. 264 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { 265 // If last instruction is a return instruction, add an epilogue 266 if (I->isReturnBlock()) { 267 bool FoundIt = false; 268 for (MBBI = I->end(); MBBI != I->begin(); ) { 269 --MBBI; 270 if (MBBI->getOpcode() == PPC::MTVRSAVE) { 271 MBBI->eraseFromParent(); // remove it. 272 FoundIt = true; 273 break; 274 } 275 } 276 RemovedAllMTVRSAVEs &= FoundIt; 277 } 278 } 279 280 // If we found and removed all MTVRSAVE instructions, remove the read of 281 // VRSAVE as well. 282 if (RemovedAllMTVRSAVEs) { 283 MBBI = MI; 284 assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?"); 285 --MBBI; 286 assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?"); 287 MBBI->eraseFromParent(); 288 } 289 290 // Finally, nuke the UPDATE_VRSAVE. 291 MI.eraseFromParent(); 292 } 293 294 // HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the 295 // instruction selector. Based on the vector registers that have been used, 296 // transform this into the appropriate ORI instruction. 297 static void HandleVRSaveUpdate(MachineInstr &MI, const TargetInstrInfo &TII) { 298 MachineFunction *MF = MI.getParent()->getParent(); 299 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 300 DebugLoc dl = MI.getDebugLoc(); 301 302 const MachineRegisterInfo &MRI = MF->getRegInfo(); 303 unsigned UsedRegMask = 0; 304 for (unsigned i = 0; i != 32; ++i) 305 if (MRI.isPhysRegModified(VRRegNo[i])) 306 UsedRegMask |= 1 << (31-i); 307 308 // Live in and live out values already must be in the mask, so don't bother 309 // marking them. 310 for (std::pair<unsigned, unsigned> LI : MF->getRegInfo().liveins()) { 311 unsigned RegNo = TRI->getEncodingValue(LI.first); 312 if (VRRegNo[RegNo] == LI.first) // If this really is a vector reg. 313 UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked. 314 } 315 316 // Live out registers appear as use operands on return instructions. 317 for (MachineFunction::const_iterator BI = MF->begin(), BE = MF->end(); 318 UsedRegMask != 0 && BI != BE; ++BI) { 319 const MachineBasicBlock &MBB = *BI; 320 if (!MBB.isReturnBlock()) 321 continue; 322 const MachineInstr &Ret = MBB.back(); 323 for (unsigned I = 0, E = Ret.getNumOperands(); I != E; ++I) { 324 const MachineOperand &MO = Ret.getOperand(I); 325 if (!MO.isReg() || !PPC::VRRCRegClass.contains(MO.getReg())) 326 continue; 327 unsigned RegNo = TRI->getEncodingValue(MO.getReg()); 328 UsedRegMask &= ~(1 << (31-RegNo)); 329 } 330 } 331 332 // If no registers are used, turn this into a copy. 333 if (UsedRegMask == 0) { 334 // Remove all VRSAVE code. 335 RemoveVRSaveCode(MI); 336 return; 337 } 338 339 Register SrcReg = MI.getOperand(1).getReg(); 340 Register DstReg = MI.getOperand(0).getReg(); 341 342 if ((UsedRegMask & 0xFFFF) == UsedRegMask) { 343 if (DstReg != SrcReg) 344 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg) 345 .addReg(SrcReg) 346 .addImm(UsedRegMask); 347 else 348 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg) 349 .addReg(SrcReg, RegState::Kill) 350 .addImm(UsedRegMask); 351 } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) { 352 if (DstReg != SrcReg) 353 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 354 .addReg(SrcReg) 355 .addImm(UsedRegMask >> 16); 356 else 357 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 358 .addReg(SrcReg, RegState::Kill) 359 .addImm(UsedRegMask >> 16); 360 } else { 361 if (DstReg != SrcReg) 362 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 363 .addReg(SrcReg) 364 .addImm(UsedRegMask >> 16); 365 else 366 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg) 367 .addReg(SrcReg, RegState::Kill) 368 .addImm(UsedRegMask >> 16); 369 370 BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg) 371 .addReg(DstReg, RegState::Kill) 372 .addImm(UsedRegMask & 0xFFFF); 373 } 374 375 // Remove the old UPDATE_VRSAVE instruction. 376 MI.eraseFromParent(); 377 } 378 379 static bool spillsCR(const MachineFunction &MF) { 380 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 381 return FuncInfo->isCRSpilled(); 382 } 383 384 static bool spillsVRSAVE(const MachineFunction &MF) { 385 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 386 return FuncInfo->isVRSAVESpilled(); 387 } 388 389 static bool hasSpills(const MachineFunction &MF) { 390 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 391 return FuncInfo->hasSpills(); 392 } 393 394 static bool hasNonRISpills(const MachineFunction &MF) { 395 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 396 return FuncInfo->hasNonRISpills(); 397 } 398 399 /// MustSaveLR - Return true if this function requires that we save the LR 400 /// register onto the stack in the prolog and restore it in the epilog of the 401 /// function. 402 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 403 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 404 405 // We need a save/restore of LR if there is any def of LR (which is 406 // defined by calls, including the PIC setup sequence), or if there is 407 // some use of the LR stack slot (e.g. for builtin_return_address). 408 // (LR comes in 32 and 64 bit versions.) 409 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 410 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 411 } 412 413 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 414 /// call frame size. Update the MachineFunction object with the stack size. 415 unsigned 416 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 417 bool UseEstimate) const { 418 unsigned NewMaxCallFrameSize = 0; 419 unsigned FrameSize = determineFrameLayout(MF, UseEstimate, 420 &NewMaxCallFrameSize); 421 MF.getFrameInfo().setStackSize(FrameSize); 422 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 423 return FrameSize; 424 } 425 426 /// determineFrameLayout - Determine the size of the frame and maximum call 427 /// frame size. 428 unsigned 429 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 430 bool UseEstimate, 431 unsigned *NewMaxCallFrameSize) const { 432 const MachineFrameInfo &MFI = MF.getFrameInfo(); 433 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 434 435 // Get the number of bytes to allocate from the FrameInfo 436 unsigned FrameSize = 437 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 438 439 // Get stack alignments. The frame must be aligned to the greatest of these: 440 Align TargetAlign = getStackAlign(); // alignment required per the ABI 441 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 442 Align Alignment = std::max(TargetAlign, MaxAlign); 443 444 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 445 446 unsigned LR = RegInfo->getRARegister(); 447 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 448 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 449 !MFI.adjustsStack() && // No calls. 450 !MustSaveLR(MF, LR) && // No need to save LR. 451 !FI->mustSaveTOC() && // No need to save TOC. 452 !RegInfo->hasBasePointer(MF); // No special alignment. 453 454 // Note: for PPC32 SVR4ABI (Non-DarwinABI), we can still generate stackless 455 // code if all local vars are reg-allocated. 456 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 457 458 // Check whether we can skip adjusting the stack pointer (by using red zone) 459 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 460 // No need for frame 461 return 0; 462 } 463 464 // Get the maximum call frame size of all the calls. 465 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 466 467 // Maximum call frame needs to be at least big enough for linkage area. 468 unsigned minCallFrameSize = getLinkageSize(); 469 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 470 471 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 472 // that allocations will be aligned. 473 if (MFI.hasVarSizedObjects()) 474 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 475 476 // Update the new max call frame size if the caller passes in a valid pointer. 477 if (NewMaxCallFrameSize) 478 *NewMaxCallFrameSize = maxCallFrameSize; 479 480 // Include call frame size in total. 481 FrameSize += maxCallFrameSize; 482 483 // Make sure the frame is aligned. 484 FrameSize = alignTo(FrameSize, Alignment); 485 486 return FrameSize; 487 } 488 489 // hasFP - Return true if the specified function actually has a dedicated frame 490 // pointer register. 491 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 492 const MachineFrameInfo &MFI = MF.getFrameInfo(); 493 // FIXME: This is pretty much broken by design: hasFP() might be called really 494 // early, before the stack layout was calculated and thus hasFP() might return 495 // true or false here depending on the time of call. 496 return (MFI.getStackSize()) && needsFP(MF); 497 } 498 499 // needsFP - Return true if the specified function should have a dedicated frame 500 // pointer register. This is true if the function has variable sized allocas or 501 // if frame pointer elimination is disabled. 502 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 503 const MachineFrameInfo &MFI = MF.getFrameInfo(); 504 505 // Naked functions have no stack frame pushed, so we don't have a frame 506 // pointer. 507 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 508 return false; 509 510 return MF.getTarget().Options.DisableFramePointerElim(MF) || 511 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 512 (MF.getTarget().Options.GuaranteedTailCallOpt && 513 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 514 } 515 516 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 517 bool is31 = needsFP(MF); 518 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 519 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 520 521 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 522 bool HasBP = RegInfo->hasBasePointer(MF); 523 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 524 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 525 526 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); 527 BI != BE; ++BI) 528 for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) { 529 --MBBI; 530 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 531 MachineOperand &MO = MBBI->getOperand(I); 532 if (!MO.isReg()) 533 continue; 534 535 switch (MO.getReg()) { 536 case PPC::FP: 537 MO.setReg(FPReg); 538 break; 539 case PPC::FP8: 540 MO.setReg(FP8Reg); 541 break; 542 case PPC::BP: 543 MO.setReg(BPReg); 544 break; 545 case PPC::BP8: 546 MO.setReg(BP8Reg); 547 break; 548 549 } 550 } 551 } 552 } 553 554 /* This function will do the following: 555 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 556 respectively (defaults recommended by the ABI) and return true 557 - If MBB is not an entry block, initialize the register scavenger and look 558 for available registers. 559 - If the defaults (R0/R12) are available, return true 560 - If TwoUniqueRegsRequired is set to true, it looks for two unique 561 registers. Otherwise, look for a single available register. 562 - If the required registers are found, set SR1 and SR2 and return true. 563 - If the required registers are not found, set SR2 or both SR1 and SR2 to 564 PPC::NoRegister and return false. 565 566 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 567 is not set, this function will attempt to find two different registers, but 568 still return true if only one register is available (and set SR1 == SR2). 569 */ 570 bool 571 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 572 bool UseAtEnd, 573 bool TwoUniqueRegsRequired, 574 unsigned *SR1, 575 unsigned *SR2) const { 576 RegScavenger RS; 577 unsigned R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 578 unsigned R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 579 580 // Set the defaults for the two scratch registers. 581 if (SR1) 582 *SR1 = R0; 583 584 if (SR2) { 585 assert (SR1 && "Asking for the second scratch register but not the first?"); 586 *SR2 = R12; 587 } 588 589 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 590 if ((UseAtEnd && MBB->isReturnBlock()) || 591 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 592 return true; 593 594 RS.enterBasicBlock(*MBB); 595 596 if (UseAtEnd && !MBB->empty()) { 597 // The scratch register will be used at the end of the block, so must 598 // consider all registers used within the block 599 600 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 601 // If no terminator, back iterator up to previous instruction. 602 if (MBBI == MBB->end()) 603 MBBI = std::prev(MBBI); 604 605 if (MBBI != MBB->begin()) 606 RS.forward(MBBI); 607 } 608 609 // If the two registers are available, we're all good. 610 // Note that we only return here if both R0 and R12 are available because 611 // although the function may not require two unique registers, it may benefit 612 // from having two so we should try to provide them. 613 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 614 return true; 615 616 // Get the list of callee-saved registers for the target. 617 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 618 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 619 620 // Get all the available registers in the block. 621 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 622 &PPC::GPRCRegClass); 623 624 // We shouldn't use callee-saved registers as scratch registers as they may be 625 // available when looking for a candidate block for shrink wrapping but not 626 // available when the actual prologue/epilogue is being emitted because they 627 // were added as live-in to the prologue block by PrologueEpilogueInserter. 628 for (int i = 0; CSRegs[i]; ++i) 629 BV.reset(CSRegs[i]); 630 631 // Set the first scratch register to the first available one. 632 if (SR1) { 633 int FirstScratchReg = BV.find_first(); 634 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 635 } 636 637 // If there is another one available, set the second scratch register to that. 638 // Otherwise, set it to either PPC::NoRegister if this function requires two 639 // or to whatever SR1 is set to if this function doesn't require two. 640 if (SR2) { 641 int SecondScratchReg = BV.find_next(*SR1); 642 if (SecondScratchReg != -1) 643 *SR2 = SecondScratchReg; 644 else 645 *SR2 = TwoUniqueRegsRequired ? (unsigned)PPC::NoRegister : *SR1; 646 } 647 648 // Now that we've done our best to provide both registers, double check 649 // whether we were unable to provide enough. 650 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 651 return false; 652 653 return true; 654 } 655 656 // We need a scratch register for spilling LR and for spilling CR. By default, 657 // we use two scratch registers to hide latency. However, if only one scratch 658 // register is available, we can adjust for that by not overlapping the spill 659 // code. However, if we need to realign the stack (i.e. have a base pointer) 660 // and the stack frame is large, we need two scratch registers. 661 bool 662 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 663 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 664 MachineFunction &MF = *(MBB->getParent()); 665 bool HasBP = RegInfo->hasBasePointer(MF); 666 unsigned FrameSize = determineFrameLayout(MF); 667 int NegFrameSize = -FrameSize; 668 bool IsLargeFrame = !isInt<16>(NegFrameSize); 669 MachineFrameInfo &MFI = MF.getFrameInfo(); 670 Align MaxAlign = MFI.getMaxAlign(); 671 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 672 673 return (IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1; 674 } 675 676 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 677 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 678 679 return findScratchRegister(TmpMBB, false, 680 twoUniqueScratchRegsRequired(TmpMBB)); 681 } 682 683 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 684 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 685 686 return findScratchRegister(TmpMBB, true); 687 } 688 689 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 690 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 691 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 692 693 // Abort if there is no register info or function info. 694 if (!RegInfo || !FI) 695 return false; 696 697 // Only move the stack update on ELFv2 ABI and PPC64. 698 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 699 return false; 700 701 // Check the frame size first and return false if it does not fit the 702 // requirements. 703 // We need a non-zero frame size as well as a frame that will fit in the red 704 // zone. This is because by moving the stack pointer update we are now storing 705 // to the red zone until the stack pointer is updated. If we get an interrupt 706 // inside the prologue but before the stack update we now have a number of 707 // stores to the red zone and those stores must all fit. 708 MachineFrameInfo &MFI = MF.getFrameInfo(); 709 unsigned FrameSize = MFI.getStackSize(); 710 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 711 return false; 712 713 // Frame pointers and base pointers complicate matters so don't do anything 714 // if we have them. For example having a frame pointer will sometimes require 715 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 716 // difficult. 717 if (hasFP(MF) || RegInfo->hasBasePointer(MF)) 718 return false; 719 720 // Calls to fast_cc functions use different rules for passing parameters on 721 // the stack from the ABI and using PIC base in the function imposes 722 // similar restrictions to using the base pointer. It is not generally safe 723 // to move the stack pointer update in these situations. 724 if (FI->hasFastCall() || FI->usesPICBase()) 725 return false; 726 727 // Finally we can move the stack update if we do not require register 728 // scavenging. Register scavenging can introduce more spills and so 729 // may make the frame size larger than we have computed. 730 return !RegInfo->requiresFrameIndexScavenging(MF); 731 } 732 733 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 734 MachineBasicBlock &MBB) const { 735 MachineBasicBlock::iterator MBBI = MBB.begin(); 736 MachineFrameInfo &MFI = MF.getFrameInfo(); 737 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 738 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 739 740 MachineModuleInfo &MMI = MF.getMMI(); 741 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 742 DebugLoc dl; 743 // AIX assembler does not support cfi directives. 744 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 745 746 // Get processor type. 747 bool isPPC64 = Subtarget.isPPC64(); 748 // Get the ABI. 749 bool isSVR4ABI = Subtarget.isSVR4ABI(); 750 bool isAIXABI = Subtarget.isAIXABI(); 751 bool isELFv2ABI = Subtarget.isELFv2ABI(); 752 assert((isSVR4ABI || isAIXABI) && "Unsupported PPC ABI."); 753 754 // Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it, 755 // process it. 756 if (!isSVR4ABI) 757 for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) { 758 if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) { 759 if (isAIXABI) 760 report_fatal_error("UPDATE_VRSAVE is unexpected on AIX."); 761 HandleVRSaveUpdate(*MBBI, TII); 762 break; 763 } 764 } 765 766 // Move MBBI back to the beginning of the prologue block. 767 MBBI = MBB.begin(); 768 769 // Work out frame sizes. 770 unsigned FrameSize = determineFrameLayoutAndUpdate(MF); 771 int NegFrameSize = -FrameSize; 772 if (!isInt<32>(NegFrameSize)) 773 llvm_unreachable("Unhandled stack size!"); 774 775 if (MFI.isFrameAddressTaken()) 776 replaceFPWithRealFP(MF); 777 778 // Check if the link register (LR) must be saved. 779 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 780 bool MustSaveLR = FI->mustSaveLR(); 781 bool MustSaveTOC = FI->mustSaveTOC(); 782 const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs(); 783 bool MustSaveCR = !MustSaveCRs.empty(); 784 // Do we have a frame pointer and/or base pointer for this function? 785 bool HasFP = hasFP(MF); 786 bool HasBP = RegInfo->hasBasePointer(MF); 787 bool HasRedZone = isPPC64 || !isSVR4ABI; 788 789 unsigned SPReg = isPPC64 ? PPC::X1 : PPC::R1; 790 Register BPReg = RegInfo->getBaseRegister(MF); 791 unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31; 792 unsigned LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 793 unsigned TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 794 unsigned ScratchReg = 0; 795 unsigned TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 796 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 797 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 798 : PPC::MFLR ); 799 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 800 : PPC::STW ); 801 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 802 : PPC::STWU ); 803 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 804 : PPC::STWUX); 805 const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8 806 : PPC::LIS ); 807 const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8 808 : PPC::ORI ); 809 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 810 : PPC::OR ); 811 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 812 : PPC::SUBFC); 813 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 814 : PPC::SUBFIC); 815 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 816 : PPC::MFCR); 817 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 818 819 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 820 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 821 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 822 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 823 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 824 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 825 826 // Using the same bool variable as below to suppress compiler warnings. 827 bool SingleScratchReg = 828 findScratchRegister(&MBB, false, twoUniqueScratchRegsRequired(&MBB), 829 &ScratchReg, &TempReg); 830 assert(SingleScratchReg && 831 "Required number of registers not available in this block"); 832 833 SingleScratchReg = ScratchReg == TempReg; 834 835 int LROffset = getReturnSaveOffset(); 836 837 int FPOffset = 0; 838 if (HasFP) { 839 if (isSVR4ABI) { 840 MachineFrameInfo &MFI = MF.getFrameInfo(); 841 int FPIndex = FI->getFramePointerSaveIndex(); 842 assert(FPIndex && "No Frame Pointer Save Slot!"); 843 FPOffset = MFI.getObjectOffset(FPIndex); 844 } else { 845 FPOffset = getFramePointerSaveOffset(); 846 } 847 } 848 849 int BPOffset = 0; 850 if (HasBP) { 851 if (isSVR4ABI) { 852 MachineFrameInfo &MFI = MF.getFrameInfo(); 853 int BPIndex = FI->getBasePointerSaveIndex(); 854 assert(BPIndex && "No Base Pointer Save Slot!"); 855 BPOffset = MFI.getObjectOffset(BPIndex); 856 } else { 857 BPOffset = getBasePointerSaveOffset(); 858 } 859 } 860 861 int PBPOffset = 0; 862 if (FI->usesPICBase()) { 863 MachineFrameInfo &MFI = MF.getFrameInfo(); 864 int PBPIndex = FI->getPICBasePointerSaveIndex(); 865 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 866 PBPOffset = MFI.getObjectOffset(PBPIndex); 867 } 868 869 // Get stack alignments. 870 Align MaxAlign = MFI.getMaxAlign(); 871 if (HasBP && MaxAlign > 1) 872 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 873 874 // Frames of 32KB & larger require special handling because they cannot be 875 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 876 bool isLargeFrame = !isInt<16>(NegFrameSize); 877 878 // Check if we can move the stack update instruction (stdu) down the prologue 879 // past the callee saves. Hopefully this will avoid the situation where the 880 // saves are waiting for the update on the store with update to complete. 881 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 882 bool MovingStackUpdateDown = false; 883 884 // Check if we can move the stack update. 885 if (stackUpdateCanBeMoved(MF)) { 886 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 887 for (CalleeSavedInfo CSI : Info) { 888 int FrIdx = CSI.getFrameIdx(); 889 // If the frame index is not negative the callee saved info belongs to a 890 // stack object that is not a fixed stack object. We ignore non-fixed 891 // stack objects because we won't move the stack update pointer past them. 892 if (FrIdx >= 0) 893 continue; 894 895 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 896 StackUpdateLoc++; 897 MovingStackUpdateDown = true; 898 } else { 899 // We need all of the Frame Indices to meet these conditions. 900 // If they do not, abort the whole operation. 901 StackUpdateLoc = MBBI; 902 MovingStackUpdateDown = false; 903 break; 904 } 905 } 906 907 // If the operation was not aborted then update the object offset. 908 if (MovingStackUpdateDown) { 909 for (CalleeSavedInfo CSI : Info) { 910 int FrIdx = CSI.getFrameIdx(); 911 if (FrIdx < 0) 912 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 913 } 914 } 915 } 916 917 // Where in the prologue we move the CR fields depends on how many scratch 918 // registers we have, and if we need to save the link register or not. This 919 // lambda is to avoid duplicating the logic in 2 places. 920 auto BuildMoveFromCR = [&]() { 921 if (isELFv2ABI && MustSaveCRs.size() == 1) { 922 // In the ELFv2 ABI, we are not required to save all CR fields. 923 // If only one CR field is clobbered, it is more efficient to use 924 // mfocrf to selectively save just that field, because mfocrf has short 925 // latency compares to mfcr. 926 assert(isPPC64 && "V2 ABI is 64-bit only."); 927 MachineInstrBuilder MIB = 928 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 929 MIB.addReg(MustSaveCRs[0], RegState::Kill); 930 } else { 931 MachineInstrBuilder MIB = 932 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 933 for (unsigned CRfield : MustSaveCRs) 934 MIB.addReg(CRfield, RegState::ImplicitKill); 935 } 936 }; 937 938 // If we need to spill the CR and the LR but we don't have two separate 939 // registers available, we must spill them one at a time 940 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 941 BuildMoveFromCR(); 942 BuildMI(MBB, MBBI, dl, StoreWordInst) 943 .addReg(TempReg, getKillRegState(true)) 944 .addImm(CRSaveOffset) 945 .addReg(SPReg); 946 } 947 948 if (MustSaveLR) 949 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 950 951 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 952 BuildMoveFromCR(); 953 954 if (HasRedZone) { 955 if (HasFP) 956 BuildMI(MBB, MBBI, dl, StoreInst) 957 .addReg(FPReg) 958 .addImm(FPOffset) 959 .addReg(SPReg); 960 if (FI->usesPICBase()) 961 BuildMI(MBB, MBBI, dl, StoreInst) 962 .addReg(PPC::R30) 963 .addImm(PBPOffset) 964 .addReg(SPReg); 965 if (HasBP) 966 BuildMI(MBB, MBBI, dl, StoreInst) 967 .addReg(BPReg) 968 .addImm(BPOffset) 969 .addReg(SPReg); 970 } 971 972 if (MustSaveLR) 973 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 974 .addReg(ScratchReg, getKillRegState(true)) 975 .addImm(LROffset) 976 .addReg(SPReg); 977 978 if (MustSaveCR && 979 !(SingleScratchReg && MustSaveLR)) { 980 assert(HasRedZone && "A red zone is always available on PPC64"); 981 BuildMI(MBB, MBBI, dl, StoreWordInst) 982 .addReg(TempReg, getKillRegState(true)) 983 .addImm(CRSaveOffset) 984 .addReg(SPReg); 985 } 986 987 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 988 if (!FrameSize) 989 return; 990 991 // Adjust stack pointer: r1 += NegFrameSize. 992 // If there is a preferred stack alignment, align R1 now 993 994 if (HasBP && HasRedZone) { 995 // Save a copy of r1 as the base pointer. 996 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 997 .addReg(SPReg) 998 .addReg(SPReg); 999 } 1000 1001 // Have we generated a STUX instruction to claim stack frame? If so, 1002 // the negated frame size will be placed in ScratchReg. 1003 bool HasSTUX = false; 1004 1005 // This condition must be kept in sync with canUseAsPrologue. 1006 if (HasBP && MaxAlign > 1) { 1007 if (isPPC64) 1008 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 1009 .addReg(SPReg) 1010 .addImm(0) 1011 .addImm(64 - Log2(MaxAlign)); 1012 else // PPC32... 1013 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 1014 .addReg(SPReg) 1015 .addImm(0) 1016 .addImm(32 - Log2(MaxAlign)) 1017 .addImm(31); 1018 if (!isLargeFrame) { 1019 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 1020 .addReg(ScratchReg, RegState::Kill) 1021 .addImm(NegFrameSize); 1022 } else { 1023 assert(!SingleScratchReg && "Only a single scratch reg available"); 1024 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg) 1025 .addImm(NegFrameSize >> 16); 1026 BuildMI(MBB, MBBI, dl, OrImmInst, TempReg) 1027 .addReg(TempReg, RegState::Kill) 1028 .addImm(NegFrameSize & 0xFFFF); 1029 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 1030 .addReg(ScratchReg, RegState::Kill) 1031 .addReg(TempReg, RegState::Kill); 1032 } 1033 1034 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 1035 .addReg(SPReg, RegState::Kill) 1036 .addReg(SPReg) 1037 .addReg(ScratchReg); 1038 HasSTUX = true; 1039 1040 } else if (!isLargeFrame) { 1041 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 1042 .addReg(SPReg) 1043 .addImm(NegFrameSize) 1044 .addReg(SPReg); 1045 1046 } else { 1047 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1048 .addImm(NegFrameSize >> 16); 1049 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1050 .addReg(ScratchReg, RegState::Kill) 1051 .addImm(NegFrameSize & 0xFFFF); 1052 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 1053 .addReg(SPReg, RegState::Kill) 1054 .addReg(SPReg) 1055 .addReg(ScratchReg); 1056 HasSTUX = true; 1057 } 1058 1059 // Save the TOC register after the stack pointer update if a prologue TOC 1060 // save is required for the function. 1061 if (MustSaveTOC) { 1062 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 1063 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 1064 .addReg(TOCReg, getKillRegState(true)) 1065 .addImm(TOCSaveOffset) 1066 .addReg(SPReg); 1067 } 1068 1069 if (!HasRedZone) { 1070 assert(!isPPC64 && "A red zone is always available on PPC64"); 1071 if (HasSTUX) { 1072 // The negated frame size is in ScratchReg, and the SPReg has been 1073 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 1074 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 1075 // the stack frame (i.e. the old SP), ideally, we would put the old 1076 // SP into a register and use it as the base for the stores. The 1077 // problem is that the only available register may be ScratchReg, 1078 // which could be R0, and R0 cannot be used as a base address. 1079 1080 // First, set ScratchReg to the old SP. This may need to be modified 1081 // later. 1082 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1083 .addReg(ScratchReg, RegState::Kill) 1084 .addReg(SPReg); 1085 1086 if (ScratchReg == PPC::R0) { 1087 // R0 cannot be used as a base register, but it can be used as an 1088 // index in a store-indexed. 1089 int LastOffset = 0; 1090 if (HasFP) { 1091 // R0 += (FPOffset-LastOffset). 1092 // Need addic, since addi treats R0 as 0. 1093 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1094 .addReg(ScratchReg) 1095 .addImm(FPOffset-LastOffset); 1096 LastOffset = FPOffset; 1097 // Store FP into *R0. 1098 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1099 .addReg(FPReg, RegState::Kill) // Save FP. 1100 .addReg(PPC::ZERO) 1101 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1102 } 1103 if (FI->usesPICBase()) { 1104 // R0 += (PBPOffset-LastOffset). 1105 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1106 .addReg(ScratchReg) 1107 .addImm(PBPOffset-LastOffset); 1108 LastOffset = PBPOffset; 1109 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1110 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1111 .addReg(PPC::ZERO) 1112 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1113 } 1114 if (HasBP) { 1115 // R0 += (BPOffset-LastOffset). 1116 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1117 .addReg(ScratchReg) 1118 .addImm(BPOffset-LastOffset); 1119 LastOffset = BPOffset; 1120 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1121 .addReg(BPReg, RegState::Kill) // Save BP. 1122 .addReg(PPC::ZERO) 1123 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1124 // BP = R0-LastOffset 1125 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1126 .addReg(ScratchReg, RegState::Kill) 1127 .addImm(-LastOffset); 1128 } 1129 } else { 1130 // ScratchReg is not R0, so use it as the base register. It is 1131 // already set to the old SP, so we can use the offsets directly. 1132 1133 // Now that the stack frame has been allocated, save all the necessary 1134 // registers using ScratchReg as the base address. 1135 if (HasFP) 1136 BuildMI(MBB, MBBI, dl, StoreInst) 1137 .addReg(FPReg) 1138 .addImm(FPOffset) 1139 .addReg(ScratchReg); 1140 if (FI->usesPICBase()) 1141 BuildMI(MBB, MBBI, dl, StoreInst) 1142 .addReg(PPC::R30) 1143 .addImm(PBPOffset) 1144 .addReg(ScratchReg); 1145 if (HasBP) { 1146 BuildMI(MBB, MBBI, dl, StoreInst) 1147 .addReg(BPReg) 1148 .addImm(BPOffset) 1149 .addReg(ScratchReg); 1150 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1151 .addReg(ScratchReg, RegState::Kill) 1152 .addReg(ScratchReg); 1153 } 1154 } 1155 } else { 1156 // The frame size is a known 16-bit constant (fitting in the immediate 1157 // field of STWU). To be here we have to be compiling for PPC32. 1158 // Since the SPReg has been decreased by FrameSize, add it back to each 1159 // offset. 1160 if (HasFP) 1161 BuildMI(MBB, MBBI, dl, StoreInst) 1162 .addReg(FPReg) 1163 .addImm(FrameSize + FPOffset) 1164 .addReg(SPReg); 1165 if (FI->usesPICBase()) 1166 BuildMI(MBB, MBBI, dl, StoreInst) 1167 .addReg(PPC::R30) 1168 .addImm(FrameSize + PBPOffset) 1169 .addReg(SPReg); 1170 if (HasBP) { 1171 BuildMI(MBB, MBBI, dl, StoreInst) 1172 .addReg(BPReg) 1173 .addImm(FrameSize + BPOffset) 1174 .addReg(SPReg); 1175 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1176 .addReg(SPReg) 1177 .addImm(FrameSize); 1178 } 1179 } 1180 } 1181 1182 // Add Call Frame Information for the instructions we generated above. 1183 if (needsCFI) { 1184 unsigned CFIIndex; 1185 1186 if (HasBP) { 1187 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1188 // because if the stack needed aligning then CFA won't be at a fixed 1189 // offset from FP/SP. 1190 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1191 CFIIndex = MF.addFrameInst( 1192 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1193 } else { 1194 // Adjust the definition of CFA to account for the change in SP. 1195 assert(NegFrameSize); 1196 CFIIndex = MF.addFrameInst( 1197 MCCFIInstruction::createDefCfaOffset(nullptr, NegFrameSize)); 1198 } 1199 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1200 .addCFIIndex(CFIIndex); 1201 1202 if (HasFP) { 1203 // Describe where FP was saved, at a fixed offset from CFA. 1204 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1205 CFIIndex = MF.addFrameInst( 1206 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1207 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1208 .addCFIIndex(CFIIndex); 1209 } 1210 1211 if (FI->usesPICBase()) { 1212 // Describe where FP was saved, at a fixed offset from CFA. 1213 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1214 CFIIndex = MF.addFrameInst( 1215 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1216 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1217 .addCFIIndex(CFIIndex); 1218 } 1219 1220 if (HasBP) { 1221 // Describe where BP was saved, at a fixed offset from CFA. 1222 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1223 CFIIndex = MF.addFrameInst( 1224 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1225 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1226 .addCFIIndex(CFIIndex); 1227 } 1228 1229 if (MustSaveLR) { 1230 // Describe where LR was saved, at a fixed offset from CFA. 1231 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1232 CFIIndex = MF.addFrameInst( 1233 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1234 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1235 .addCFIIndex(CFIIndex); 1236 } 1237 } 1238 1239 // If there is a frame pointer, copy R1 into R31 1240 if (HasFP) { 1241 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1242 .addReg(SPReg) 1243 .addReg(SPReg); 1244 1245 if (!HasBP && needsCFI) { 1246 // Change the definition of CFA from SP+offset to FP+offset, because SP 1247 // will change at every alloca. 1248 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1249 unsigned CFIIndex = MF.addFrameInst( 1250 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1251 1252 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1253 .addCFIIndex(CFIIndex); 1254 } 1255 } 1256 1257 if (needsCFI) { 1258 // Describe where callee saved registers were saved, at fixed offsets from 1259 // CFA. 1260 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1261 for (unsigned I = 0, E = CSI.size(); I != E; ++I) { 1262 unsigned Reg = CSI[I].getReg(); 1263 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1264 1265 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1266 // subregisters of CR2. We just need to emit a move of CR2. 1267 if (PPC::CRBITRCRegClass.contains(Reg)) 1268 continue; 1269 1270 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1271 continue; 1272 1273 // For SVR4, don't emit a move for the CR spill slot if we haven't 1274 // spilled CRs. 1275 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1276 && !MustSaveCR) 1277 continue; 1278 1279 // For 64-bit SVR4 when we have spilled CRs, the spill location 1280 // is SP+8, not a frame-relative slot. 1281 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1282 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1283 // the whole CR word. In the ELFv2 ABI, every CR that was 1284 // actually saved gets its own CFI record. 1285 unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2; 1286 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1287 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1288 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1289 .addCFIIndex(CFIIndex); 1290 continue; 1291 } 1292 1293 if (CSI[I].isSpilledToReg()) { 1294 unsigned SpilledReg = CSI[I].getDstReg(); 1295 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1296 nullptr, MRI->getDwarfRegNum(Reg, true), 1297 MRI->getDwarfRegNum(SpilledReg, true))); 1298 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1299 .addCFIIndex(CFIRegister); 1300 } else { 1301 int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx()); 1302 // We have changed the object offset above but we do not want to change 1303 // the actual offsets in the CFI instruction so we have to undo the 1304 // offset change here. 1305 if (MovingStackUpdateDown) 1306 Offset -= NegFrameSize; 1307 1308 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1309 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1310 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1311 .addCFIIndex(CFIIndex); 1312 } 1313 } 1314 } 1315 } 1316 1317 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1318 MachineBasicBlock &MBB) const { 1319 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1320 DebugLoc dl; 1321 1322 if (MBBI != MBB.end()) 1323 dl = MBBI->getDebugLoc(); 1324 1325 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1326 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1327 1328 // Get alignment info so we know how to restore the SP. 1329 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1330 1331 // Get the number of bytes allocated from the FrameInfo. 1332 int FrameSize = MFI.getStackSize(); 1333 1334 // Get processor type. 1335 bool isPPC64 = Subtarget.isPPC64(); 1336 // Get the ABI. 1337 bool isSVR4ABI = Subtarget.isSVR4ABI(); 1338 1339 // Check if the link register (LR) has been saved. 1340 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1341 bool MustSaveLR = FI->mustSaveLR(); 1342 const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs(); 1343 bool MustSaveCR = !MustSaveCRs.empty(); 1344 // Do we have a frame pointer and/or base pointer for this function? 1345 bool HasFP = hasFP(MF); 1346 bool HasBP = RegInfo->hasBasePointer(MF); 1347 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1348 1349 unsigned SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1350 Register BPReg = RegInfo->getBaseRegister(MF); 1351 unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1352 unsigned ScratchReg = 0; 1353 unsigned TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1354 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1355 : PPC::MTLR ); 1356 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1357 : PPC::LWZ ); 1358 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1359 : PPC::LIS ); 1360 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1361 : PPC::OR ); 1362 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1363 : PPC::ORI ); 1364 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1365 : PPC::ADDI ); 1366 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1367 : PPC::ADD4 ); 1368 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1369 : PPC::LWZ); 1370 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1371 : PPC::MTOCRF); 1372 int LROffset = getReturnSaveOffset(); 1373 1374 int FPOffset = 0; 1375 1376 // Using the same bool variable as below to suppress compiler warnings. 1377 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1378 &TempReg); 1379 assert(SingleScratchReg && 1380 "Could not find an available scratch register"); 1381 1382 SingleScratchReg = ScratchReg == TempReg; 1383 1384 if (HasFP) { 1385 if (isSVR4ABI) { 1386 int FPIndex = FI->getFramePointerSaveIndex(); 1387 assert(FPIndex && "No Frame Pointer Save Slot!"); 1388 FPOffset = MFI.getObjectOffset(FPIndex); 1389 } else { 1390 FPOffset = getFramePointerSaveOffset(); 1391 } 1392 } 1393 1394 int BPOffset = 0; 1395 if (HasBP) { 1396 if (isSVR4ABI) { 1397 int BPIndex = FI->getBasePointerSaveIndex(); 1398 assert(BPIndex && "No Base Pointer Save Slot!"); 1399 BPOffset = MFI.getObjectOffset(BPIndex); 1400 } else { 1401 BPOffset = getBasePointerSaveOffset(); 1402 } 1403 } 1404 1405 int PBPOffset = 0; 1406 if (FI->usesPICBase()) { 1407 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1408 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1409 PBPOffset = MFI.getObjectOffset(PBPIndex); 1410 } 1411 1412 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1413 1414 if (IsReturnBlock) { 1415 unsigned RetOpcode = MBBI->getOpcode(); 1416 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1417 RetOpcode == PPC::TCRETURNdi || 1418 RetOpcode == PPC::TCRETURNai || 1419 RetOpcode == PPC::TCRETURNri8 || 1420 RetOpcode == PPC::TCRETURNdi8 || 1421 RetOpcode == PPC::TCRETURNai8; 1422 1423 if (UsesTCRet) { 1424 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1425 MachineOperand &StackAdjust = MBBI->getOperand(1); 1426 assert(StackAdjust.isImm() && "Expecting immediate value."); 1427 // Adjust stack pointer. 1428 int StackAdj = StackAdjust.getImm(); 1429 int Delta = StackAdj - MaxTCRetDelta; 1430 assert((Delta >= 0) && "Delta must be positive"); 1431 if (MaxTCRetDelta>0) 1432 FrameSize += (StackAdj +Delta); 1433 else 1434 FrameSize += StackAdj; 1435 } 1436 } 1437 1438 // Frames of 32KB & larger require special handling because they cannot be 1439 // indexed into with a simple LD/LWZ immediate offset operand. 1440 bool isLargeFrame = !isInt<16>(FrameSize); 1441 1442 // On targets without red zone, the SP needs to be restored last, so that 1443 // all live contents of the stack frame are upwards of the SP. This means 1444 // that we cannot restore SP just now, since there may be more registers 1445 // to restore from the stack frame (e.g. R31). If the frame size is not 1446 // a simple immediate value, we will need a spare register to hold the 1447 // restored SP. If the frame size is known and small, we can simply adjust 1448 // the offsets of the registers to be restored, and still use SP to restore 1449 // them. In such case, the final update of SP will be to add the frame 1450 // size to it. 1451 // To simplify the code, set RBReg to the base register used to restore 1452 // values from the stack, and set SPAdd to the value that needs to be added 1453 // to the SP at the end. The default values are as if red zone was present. 1454 unsigned RBReg = SPReg; 1455 unsigned SPAdd = 0; 1456 1457 // Check if we can move the stack update instruction up the epilogue 1458 // past the callee saves. This will allow the move to LR instruction 1459 // to be executed before the restores of the callee saves which means 1460 // that the callee saves can hide the latency from the MTLR instrcution. 1461 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1462 if (stackUpdateCanBeMoved(MF)) { 1463 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1464 for (CalleeSavedInfo CSI : Info) { 1465 int FrIdx = CSI.getFrameIdx(); 1466 // If the frame index is not negative the callee saved info belongs to a 1467 // stack object that is not a fixed stack object. We ignore non-fixed 1468 // stack objects because we won't move the update of the stack pointer 1469 // past them. 1470 if (FrIdx >= 0) 1471 continue; 1472 1473 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1474 StackUpdateLoc--; 1475 else { 1476 // Abort the operation as we can't update all CSR restores. 1477 StackUpdateLoc = MBBI; 1478 break; 1479 } 1480 } 1481 } 1482 1483 if (FrameSize) { 1484 // In the prologue, the loaded (or persistent) stack pointer value is 1485 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1486 // zone add this offset back now. 1487 1488 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1489 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1490 // call which invalidates the stack pointer value in SP(0). So we use the 1491 // value of R31 in this case. 1492 if (FI->hasFastCall()) { 1493 assert(HasFP && "Expecting a valid frame pointer."); 1494 if (!HasRedZone) 1495 RBReg = FPReg; 1496 if (!isLargeFrame) { 1497 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1498 .addReg(FPReg).addImm(FrameSize); 1499 } else { 1500 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1501 .addImm(FrameSize >> 16); 1502 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1503 .addReg(ScratchReg, RegState::Kill) 1504 .addImm(FrameSize & 0xFFFF); 1505 BuildMI(MBB, MBBI, dl, AddInst) 1506 .addReg(RBReg) 1507 .addReg(FPReg) 1508 .addReg(ScratchReg); 1509 } 1510 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1511 if (HasRedZone) { 1512 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1513 .addReg(SPReg) 1514 .addImm(FrameSize); 1515 } else { 1516 // Make sure that adding FrameSize will not overflow the max offset 1517 // size. 1518 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1519 "Local offsets should be negative"); 1520 SPAdd = FrameSize; 1521 FPOffset += FrameSize; 1522 BPOffset += FrameSize; 1523 PBPOffset += FrameSize; 1524 } 1525 } else { 1526 // We don't want to use ScratchReg as a base register, because it 1527 // could happen to be R0. Use FP instead, but make sure to preserve it. 1528 if (!HasRedZone) { 1529 // If FP is not saved, copy it to ScratchReg. 1530 if (!HasFP) 1531 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1532 .addReg(FPReg) 1533 .addReg(FPReg); 1534 RBReg = FPReg; 1535 } 1536 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1537 .addImm(0) 1538 .addReg(SPReg); 1539 } 1540 } 1541 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1542 // If there is no red zone, ScratchReg may be needed for holding a useful 1543 // value (although not the base register). Make sure it is not overwritten 1544 // too early. 1545 1546 // If we need to restore both the LR and the CR and we only have one 1547 // available scratch register, we must do them one at a time. 1548 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1549 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1550 // is live here. 1551 assert(HasRedZone && "Expecting red zone"); 1552 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1553 .addImm(CRSaveOffset) 1554 .addReg(SPReg); 1555 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1556 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1557 .addReg(TempReg, getKillRegState(i == e-1)); 1558 } 1559 1560 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1561 // LR is stored in the caller's stack frame. ScratchReg will be needed 1562 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1563 // a base register anyway, because it may happen to be R0. 1564 bool LoadedLR = false; 1565 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1566 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1567 .addImm(LROffset+SPAdd) 1568 .addReg(RBReg); 1569 LoadedLR = true; 1570 } 1571 1572 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1573 assert(RBReg == SPReg && "Should be using SP as a base register"); 1574 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1575 .addImm(CRSaveOffset) 1576 .addReg(RBReg); 1577 } 1578 1579 if (HasFP) { 1580 // If there is red zone, restore FP directly, since SP has already been 1581 // restored. Otherwise, restore the value of FP into ScratchReg. 1582 if (HasRedZone || RBReg == SPReg) 1583 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1584 .addImm(FPOffset) 1585 .addReg(SPReg); 1586 else 1587 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1588 .addImm(FPOffset) 1589 .addReg(RBReg); 1590 } 1591 1592 if (FI->usesPICBase()) 1593 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1594 .addImm(PBPOffset) 1595 .addReg(RBReg); 1596 1597 if (HasBP) 1598 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1599 .addImm(BPOffset) 1600 .addReg(RBReg); 1601 1602 // There is nothing more to be loaded from the stack, so now we can 1603 // restore SP: SP = RBReg + SPAdd. 1604 if (RBReg != SPReg || SPAdd != 0) { 1605 assert(!HasRedZone && "This should not happen with red zone"); 1606 // If SPAdd is 0, generate a copy. 1607 if (SPAdd == 0) 1608 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1609 .addReg(RBReg) 1610 .addReg(RBReg); 1611 else 1612 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1613 .addReg(RBReg) 1614 .addImm(SPAdd); 1615 1616 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1617 if (RBReg == FPReg) 1618 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1619 .addReg(ScratchReg) 1620 .addReg(ScratchReg); 1621 1622 // Now load the LR from the caller's stack frame. 1623 if (MustSaveLR && !LoadedLR) 1624 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1625 .addImm(LROffset) 1626 .addReg(SPReg); 1627 } 1628 1629 if (MustSaveCR && 1630 !(SingleScratchReg && MustSaveLR)) 1631 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1632 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1633 .addReg(TempReg, getKillRegState(i == e-1)); 1634 1635 if (MustSaveLR) 1636 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1637 1638 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1639 // call optimization 1640 if (IsReturnBlock) { 1641 unsigned RetOpcode = MBBI->getOpcode(); 1642 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1643 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1644 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1645 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1646 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1647 1648 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1649 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1650 .addReg(SPReg).addImm(CallerAllocatedAmt); 1651 } else { 1652 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1653 .addImm(CallerAllocatedAmt >> 16); 1654 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1655 .addReg(ScratchReg, RegState::Kill) 1656 .addImm(CallerAllocatedAmt & 0xFFFF); 1657 BuildMI(MBB, MBBI, dl, AddInst) 1658 .addReg(SPReg) 1659 .addReg(FPReg) 1660 .addReg(ScratchReg); 1661 } 1662 } else { 1663 createTailCallBranchInstr(MBB); 1664 } 1665 } 1666 } 1667 1668 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1669 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1670 1671 // If we got this far a first terminator should exist. 1672 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1673 1674 DebugLoc dl = MBBI->getDebugLoc(); 1675 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1676 1677 // Create branch instruction for pseudo tail call return instruction 1678 unsigned RetOpcode = MBBI->getOpcode(); 1679 if (RetOpcode == PPC::TCRETURNdi) { 1680 MBBI = MBB.getLastNonDebugInstr(); 1681 MachineOperand &JumpTarget = MBBI->getOperand(0); 1682 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1683 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1684 } else if (RetOpcode == PPC::TCRETURNri) { 1685 MBBI = MBB.getLastNonDebugInstr(); 1686 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1687 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1688 } else if (RetOpcode == PPC::TCRETURNai) { 1689 MBBI = MBB.getLastNonDebugInstr(); 1690 MachineOperand &JumpTarget = MBBI->getOperand(0); 1691 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1692 } else if (RetOpcode == PPC::TCRETURNdi8) { 1693 MBBI = MBB.getLastNonDebugInstr(); 1694 MachineOperand &JumpTarget = MBBI->getOperand(0); 1695 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1696 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1697 } else if (RetOpcode == PPC::TCRETURNri8) { 1698 MBBI = MBB.getLastNonDebugInstr(); 1699 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1700 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1701 } else if (RetOpcode == PPC::TCRETURNai8) { 1702 MBBI = MBB.getLastNonDebugInstr(); 1703 MachineOperand &JumpTarget = MBBI->getOperand(0); 1704 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1705 } 1706 } 1707 1708 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1709 BitVector &SavedRegs, 1710 RegScavenger *RS) const { 1711 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1712 1713 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1714 1715 // Save and clear the LR state. 1716 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1717 unsigned LR = RegInfo->getRARegister(); 1718 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1719 SavedRegs.reset(LR); 1720 1721 // Save R31 if necessary 1722 int FPSI = FI->getFramePointerSaveIndex(); 1723 const bool isPPC64 = Subtarget.isPPC64(); 1724 MachineFrameInfo &MFI = MF.getFrameInfo(); 1725 1726 // If the frame pointer save index hasn't been defined yet. 1727 if (!FPSI && needsFP(MF)) { 1728 // Find out what the fix offset of the frame pointer save area. 1729 int FPOffset = getFramePointerSaveOffset(); 1730 // Allocate the frame index for frame pointer save area. 1731 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 1732 // Save the result. 1733 FI->setFramePointerSaveIndex(FPSI); 1734 } 1735 1736 int BPSI = FI->getBasePointerSaveIndex(); 1737 if (!BPSI && RegInfo->hasBasePointer(MF)) { 1738 int BPOffset = getBasePointerSaveOffset(); 1739 // Allocate the frame index for the base pointer save area. 1740 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 1741 // Save the result. 1742 FI->setBasePointerSaveIndex(BPSI); 1743 } 1744 1745 // Reserve stack space for the PIC Base register (R30). 1746 // Only used in SVR4 32-bit. 1747 if (FI->usesPICBase()) { 1748 int PBPSI = MFI.CreateFixedObject(4, -8, true); 1749 FI->setPICBasePointerSaveIndex(PBPSI); 1750 } 1751 1752 // Make sure we don't explicitly spill r31, because, for example, we have 1753 // some inline asm which explicitly clobbers it, when we otherwise have a 1754 // frame pointer and are using r31's spill slot for the prologue/epilogue 1755 // code. Same goes for the base pointer and the PIC base register. 1756 if (needsFP(MF)) 1757 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 1758 if (RegInfo->hasBasePointer(MF)) 1759 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 1760 if (FI->usesPICBase()) 1761 SavedRegs.reset(PPC::R30); 1762 1763 // Reserve stack space to move the linkage area to in case of a tail call. 1764 int TCSPDelta = 0; 1765 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1766 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 1767 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 1768 } 1769 1770 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 1771 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 1772 // object at the offset of the CR-save slot in the linkage area. The actual 1773 // save and restore of the condition register will be created as part of the 1774 // prologue and epilogue insertion, but the FixedStack object is needed to 1775 // keep the CalleSavedInfo valid. 1776 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 1777 SavedRegs.test(PPC::CR4))) { 1778 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 1779 const int64_t SpillOffset = 1780 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 1781 int FrameIdx = 1782 MFI.CreateFixedObject(SpillSize, SpillOffset, 1783 /* IsImmutable */ true, /* IsAliased */ false); 1784 FI->setCRSpillFrameIndex(FrameIdx); 1785 } 1786 } 1787 1788 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 1789 RegScavenger *RS) const { 1790 // Early exit if not using the SVR4 ABI. 1791 if (!Subtarget.isSVR4ABI()) { 1792 addScavengingSpillSlot(MF, RS); 1793 return; 1794 } 1795 1796 // Get callee saved register information. 1797 MachineFrameInfo &MFI = MF.getFrameInfo(); 1798 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1799 1800 // If the function is shrink-wrapped, and if the function has a tail call, the 1801 // tail call might not be in the new RestoreBlock, so real branch instruction 1802 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 1803 // RestoreBlock. So we handle this case here. 1804 if (MFI.getSavePoint() && MFI.hasTailCall()) { 1805 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 1806 for (MachineBasicBlock &MBB : MF) { 1807 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 1808 createTailCallBranchInstr(MBB); 1809 } 1810 } 1811 1812 // Early exit if no callee saved registers are modified! 1813 if (CSI.empty() && !needsFP(MF)) { 1814 addScavengingSpillSlot(MF, RS); 1815 return; 1816 } 1817 1818 unsigned MinGPR = PPC::R31; 1819 unsigned MinG8R = PPC::X31; 1820 unsigned MinFPR = PPC::F31; 1821 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 1822 1823 bool HasGPSaveArea = false; 1824 bool HasG8SaveArea = false; 1825 bool HasFPSaveArea = false; 1826 bool HasVRSAVESaveArea = false; 1827 bool HasVRSaveArea = false; 1828 1829 SmallVector<CalleeSavedInfo, 18> GPRegs; 1830 SmallVector<CalleeSavedInfo, 18> G8Regs; 1831 SmallVector<CalleeSavedInfo, 18> FPRegs; 1832 SmallVector<CalleeSavedInfo, 18> VRegs; 1833 1834 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1835 unsigned Reg = CSI[i].getReg(); 1836 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 1837 (Reg != PPC::X2 && Reg != PPC::R2)) && 1838 "Not expecting to try to spill R2 in a function that must save TOC"); 1839 if (PPC::GPRCRegClass.contains(Reg)) { 1840 HasGPSaveArea = true; 1841 1842 GPRegs.push_back(CSI[i]); 1843 1844 if (Reg < MinGPR) { 1845 MinGPR = Reg; 1846 } 1847 } else if (PPC::G8RCRegClass.contains(Reg)) { 1848 HasG8SaveArea = true; 1849 1850 G8Regs.push_back(CSI[i]); 1851 1852 if (Reg < MinG8R) { 1853 MinG8R = Reg; 1854 } 1855 } else if (PPC::F8RCRegClass.contains(Reg)) { 1856 HasFPSaveArea = true; 1857 1858 FPRegs.push_back(CSI[i]); 1859 1860 if (Reg < MinFPR) { 1861 MinFPR = Reg; 1862 } 1863 } else if (PPC::CRBITRCRegClass.contains(Reg) || 1864 PPC::CRRCRegClass.contains(Reg)) { 1865 ; // do nothing, as we already know whether CRs are spilled 1866 } else if (PPC::VRSAVERCRegClass.contains(Reg)) { 1867 HasVRSAVESaveArea = true; 1868 } else if (PPC::VRRCRegClass.contains(Reg) || 1869 PPC::SPERCRegClass.contains(Reg)) { 1870 // Altivec and SPE are mutually exclusive, but have the same stack 1871 // alignment requirements, so overload the save area for both cases. 1872 HasVRSaveArea = true; 1873 1874 VRegs.push_back(CSI[i]); 1875 1876 if (Reg < MinVR) { 1877 MinVR = Reg; 1878 } 1879 } else { 1880 llvm_unreachable("Unknown RegisterClass!"); 1881 } 1882 } 1883 1884 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 1885 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1886 1887 int64_t LowerBound = 0; 1888 1889 // Take into account stack space reserved for tail calls. 1890 int TCSPDelta = 0; 1891 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1892 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 1893 LowerBound = TCSPDelta; 1894 } 1895 1896 // The Floating-point register save area is right below the back chain word 1897 // of the previous stack frame. 1898 if (HasFPSaveArea) { 1899 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 1900 int FI = FPRegs[i].getFrameIdx(); 1901 1902 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1903 } 1904 1905 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 1906 } 1907 1908 // Check whether the frame pointer register is allocated. If so, make sure it 1909 // is spilled to the correct offset. 1910 if (needsFP(MF)) { 1911 int FI = PFI->getFramePointerSaveIndex(); 1912 assert(FI && "No Frame Pointer Save Slot!"); 1913 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1914 // FP is R31/X31, so no need to update MinGPR/MinG8R. 1915 HasGPSaveArea = true; 1916 } 1917 1918 if (PFI->usesPICBase()) { 1919 int FI = PFI->getPICBasePointerSaveIndex(); 1920 assert(FI && "No PIC Base Pointer Save Slot!"); 1921 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1922 1923 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 1924 HasGPSaveArea = true; 1925 } 1926 1927 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1928 if (RegInfo->hasBasePointer(MF)) { 1929 int FI = PFI->getBasePointerSaveIndex(); 1930 assert(FI && "No Base Pointer Save Slot!"); 1931 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1932 1933 Register BP = RegInfo->getBaseRegister(MF); 1934 if (PPC::G8RCRegClass.contains(BP)) { 1935 MinG8R = std::min<unsigned>(MinG8R, BP); 1936 HasG8SaveArea = true; 1937 } else if (PPC::GPRCRegClass.contains(BP)) { 1938 MinGPR = std::min<unsigned>(MinGPR, BP); 1939 HasGPSaveArea = true; 1940 } 1941 } 1942 1943 // General register save area starts right below the Floating-point 1944 // register save area. 1945 if (HasGPSaveArea || HasG8SaveArea) { 1946 // Move general register save area spill slots down, taking into account 1947 // the size of the Floating-point register save area. 1948 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 1949 if (!GPRegs[i].isSpilledToReg()) { 1950 int FI = GPRegs[i].getFrameIdx(); 1951 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1952 } 1953 } 1954 1955 // Move general register save area spill slots down, taking into account 1956 // the size of the Floating-point register save area. 1957 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 1958 if (!G8Regs[i].isSpilledToReg()) { 1959 int FI = G8Regs[i].getFrameIdx(); 1960 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1961 } 1962 } 1963 1964 unsigned MinReg = 1965 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 1966 TRI->getEncodingValue(MinG8R)); 1967 1968 if (Subtarget.isPPC64()) { 1969 LowerBound -= (31 - MinReg + 1) * 8; 1970 } else { 1971 LowerBound -= (31 - MinReg + 1) * 4; 1972 } 1973 } 1974 1975 // For 32-bit only, the CR save area is below the general register 1976 // save area. For 64-bit SVR4, the CR save area is addressed relative 1977 // to the stack pointer and hence does not need an adjustment here. 1978 // Only CR2 (the first nonvolatile spilled) has an associated frame 1979 // index so that we have a single uniform save area. 1980 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 1981 // Adjust the frame index of the CR spill slot. 1982 for (const auto &CSInfo : CSI) { 1983 if (CSInfo.getReg() == PPC::CR2) { 1984 int FI = CSInfo.getFrameIdx(); 1985 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 1986 break; 1987 } 1988 } 1989 1990 LowerBound -= 4; // The CR save area is always 4 bytes long. 1991 } 1992 1993 if (HasVRSAVESaveArea) { 1994 // FIXME SVR4: Is it actually possible to have multiple elements in CSI 1995 // which have the VRSAVE register class? 1996 // Adjust the frame index of the VRSAVE spill slot. 1997 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1998 unsigned Reg = CSI[i].getReg(); 1999 2000 if (PPC::VRSAVERCRegClass.contains(Reg)) { 2001 int FI = CSI[i].getFrameIdx(); 2002 2003 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2004 } 2005 } 2006 2007 LowerBound -= 4; // The VRSAVE save area is always 4 bytes long. 2008 } 2009 2010 // Both Altivec and SPE have the same alignment and padding requirements 2011 // within the stack frame. 2012 if (HasVRSaveArea) { 2013 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2014 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2015 // we are using negative number here (the stack grows downward). We should 2016 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2017 // is the alignment size ( n = 16 here) and y is the size after aligning. 2018 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2019 LowerBound &= ~(15); 2020 2021 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2022 int FI = VRegs[i].getFrameIdx(); 2023 2024 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2025 } 2026 } 2027 2028 addScavengingSpillSlot(MF, RS); 2029 } 2030 2031 void 2032 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2033 RegScavenger *RS) const { 2034 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2035 // a large stack, which will require scavenging a register to materialize a 2036 // large offset. 2037 2038 // We need to have a scavenger spill slot for spills if the frame size is 2039 // large. In case there is no free register for large-offset addressing, 2040 // this slot is used for the necessary emergency spill. Also, we need the 2041 // slot for dynamic stack allocations. 2042 2043 // The scavenger might be invoked if the frame offset does not fit into 2044 // the 16-bit immediate. We don't know the complete frame size here 2045 // because we've not yet computed callee-saved register spills or the 2046 // needed alignment padding. 2047 unsigned StackSize = determineFrameLayout(MF, true); 2048 MachineFrameInfo &MFI = MF.getFrameInfo(); 2049 if (MFI.hasVarSizedObjects() || spillsCR(MF) || spillsVRSAVE(MF) || 2050 hasNonRISpills(MF) || (hasSpills(MF) && !isInt<16>(StackSize))) { 2051 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2052 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2053 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2054 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2055 unsigned Size = TRI.getSpillSize(RC); 2056 unsigned Align = TRI.getSpillAlignment(RC); 2057 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2058 2059 // Might we have over-aligned allocas? 2060 bool HasAlVars = 2061 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2062 2063 // These kinds of spills might need two registers. 2064 if (spillsCR(MF) || spillsVRSAVE(MF) || HasAlVars) 2065 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2066 2067 } 2068 } 2069 2070 // This function checks if a callee saved gpr can be spilled to a volatile 2071 // vector register. This occurs for leaf functions when the option 2072 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2073 // which were not spilled to vectors, return false so the target independent 2074 // code can handle them by assigning a FrameIdx to a stack slot. 2075 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2076 MachineFunction &MF, const TargetRegisterInfo *TRI, 2077 std::vector<CalleeSavedInfo> &CSI) const { 2078 2079 if (CSI.empty()) 2080 return true; // Early exit if no callee saved registers are modified! 2081 2082 // Early exit if cannot spill gprs to volatile vector registers. 2083 MachineFrameInfo &MFI = MF.getFrameInfo(); 2084 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2085 return false; 2086 2087 // Build a BitVector of VSRs that can be used for spilling GPRs. 2088 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2089 BitVector BVCalleeSaved(TRI->getNumRegs()); 2090 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2091 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2092 for (unsigned i = 0; CSRegs[i]; ++i) 2093 BVCalleeSaved.set(CSRegs[i]); 2094 2095 for (unsigned Reg : BVAllocatable.set_bits()) { 2096 // Set to 0 if the register is not a volatile VF/F8 register, or if it is 2097 // used in the function. 2098 if (BVCalleeSaved[Reg] || 2099 (!PPC::F8RCRegClass.contains(Reg) && 2100 !PPC::VFRCRegClass.contains(Reg)) || 2101 (MF.getRegInfo().isPhysRegUsed(Reg))) 2102 BVAllocatable.reset(Reg); 2103 } 2104 2105 bool AllSpilledToReg = true; 2106 for (auto &CS : CSI) { 2107 if (BVAllocatable.none()) 2108 return false; 2109 2110 unsigned Reg = CS.getReg(); 2111 if (!PPC::G8RCRegClass.contains(Reg) && !PPC::GPRCRegClass.contains(Reg)) { 2112 AllSpilledToReg = false; 2113 continue; 2114 } 2115 2116 unsigned VolatileVFReg = BVAllocatable.find_first(); 2117 if (VolatileVFReg < BVAllocatable.size()) { 2118 CS.setDstReg(VolatileVFReg); 2119 BVAllocatable.reset(VolatileVFReg); 2120 } else { 2121 AllSpilledToReg = false; 2122 } 2123 } 2124 return AllSpilledToReg; 2125 } 2126 2127 bool PPCFrameLowering::spillCalleeSavedRegisters( 2128 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2129 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2130 2131 MachineFunction *MF = MBB.getParent(); 2132 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2133 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2134 bool MustSaveTOC = FI->mustSaveTOC(); 2135 DebugLoc DL; 2136 bool CRSpilled = false; 2137 MachineInstrBuilder CRMIB; 2138 2139 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2140 unsigned Reg = CSI[i].getReg(); 2141 // VRSAVE can appear here if, for example, @llvm.eh.unwind.init() is used. 2142 if (Reg == PPC::VRSAVE) 2143 continue; 2144 2145 // CR2 through CR4 are the nonvolatile CR fields. 2146 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2147 2148 // Add the callee-saved register as live-in; it's killed at the spill. 2149 // Do not do this for callee-saved registers that are live-in to the 2150 // function because they will already be marked live-in and this will be 2151 // adding it for a second time. It is an error to add the same register 2152 // to the set more than once. 2153 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2154 bool IsLiveIn = MRI.isLiveIn(Reg); 2155 if (!IsLiveIn) 2156 MBB.addLiveIn(Reg); 2157 2158 if (CRSpilled && IsCRField) { 2159 CRMIB.addReg(Reg, RegState::ImplicitKill); 2160 continue; 2161 } 2162 2163 // The actual spill will happen in the prologue. 2164 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2165 continue; 2166 2167 // Insert the spill to the stack frame. 2168 if (IsCRField) { 2169 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2170 if (!Subtarget.is32BitELFABI()) { 2171 // The actual spill will happen at the start of the prologue. 2172 FuncInfo->addMustSaveCR(Reg); 2173 } else { 2174 CRSpilled = true; 2175 FuncInfo->setSpillsCR(); 2176 2177 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2178 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2179 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2180 .addReg(Reg, RegState::ImplicitKill); 2181 2182 MBB.insert(MI, CRMIB); 2183 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2184 .addReg(PPC::R12, 2185 getKillRegState(true)), 2186 CSI[i].getFrameIdx())); 2187 } 2188 } else { 2189 if (CSI[i].isSpilledToReg()) { 2190 NumPESpillVSR++; 2191 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), CSI[i].getDstReg()) 2192 .addReg(Reg, getKillRegState(true)); 2193 } else { 2194 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2195 // Use !IsLiveIn for the kill flag. 2196 // We do not want to kill registers that are live in this function 2197 // before their use because they will become undefined registers. 2198 // Functions without NoUnwind need to preserve the order of elements in 2199 // saved vector registers. 2200 if (Subtarget.needsSwapsForVSXMemOps() && 2201 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2202 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2203 CSI[i].getFrameIdx(), RC, TRI); 2204 else 2205 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(), 2206 RC, TRI); 2207 } 2208 } 2209 } 2210 return true; 2211 } 2212 2213 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2214 bool CR4Spilled, MachineBasicBlock &MBB, 2215 MachineBasicBlock::iterator MI, 2216 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2217 2218 MachineFunction *MF = MBB.getParent(); 2219 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2220 DebugLoc DL; 2221 unsigned MoveReg = PPC::R12; 2222 2223 // 32-bit: FP-relative 2224 MBB.insert(MI, 2225 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2226 CSI[CSIIndex].getFrameIdx())); 2227 2228 unsigned RestoreOp = PPC::MTOCRF; 2229 if (CR2Spilled) 2230 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2231 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2232 2233 if (CR3Spilled) 2234 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2235 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2236 2237 if (CR4Spilled) 2238 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2239 .addReg(MoveReg, getKillRegState(true))); 2240 } 2241 2242 MachineBasicBlock::iterator PPCFrameLowering:: 2243 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2244 MachineBasicBlock::iterator I) const { 2245 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2246 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2247 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2248 // Add (actually subtract) back the amount the callee popped on return. 2249 if (int CalleeAmt = I->getOperand(1).getImm()) { 2250 bool is64Bit = Subtarget.isPPC64(); 2251 CalleeAmt *= -1; 2252 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2253 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2254 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2255 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2256 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2257 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2258 const DebugLoc &dl = I->getDebugLoc(); 2259 2260 if (isInt<16>(CalleeAmt)) { 2261 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2262 .addReg(StackReg, RegState::Kill) 2263 .addImm(CalleeAmt); 2264 } else { 2265 MachineBasicBlock::iterator MBBI = I; 2266 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2267 .addImm(CalleeAmt >> 16); 2268 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2269 .addReg(TmpReg, RegState::Kill) 2270 .addImm(CalleeAmt & 0xFFFF); 2271 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2272 .addReg(StackReg, RegState::Kill) 2273 .addReg(TmpReg); 2274 } 2275 } 2276 } 2277 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2278 return MBB.erase(I); 2279 } 2280 2281 static bool isCalleeSavedCR(unsigned Reg) { 2282 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2283 } 2284 2285 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2286 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2287 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2288 MachineFunction *MF = MBB.getParent(); 2289 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2290 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2291 bool MustSaveTOC = FI->mustSaveTOC(); 2292 bool CR2Spilled = false; 2293 bool CR3Spilled = false; 2294 bool CR4Spilled = false; 2295 unsigned CSIIndex = 0; 2296 2297 // Initialize insertion-point logic; we will be restoring in reverse 2298 // order of spill. 2299 MachineBasicBlock::iterator I = MI, BeforeI = I; 2300 bool AtStart = I == MBB.begin(); 2301 2302 if (!AtStart) 2303 --BeforeI; 2304 2305 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2306 unsigned Reg = CSI[i].getReg(); 2307 2308 // VRSAVE can appear here if, for example, @llvm.eh.unwind.init() is used. 2309 if (Reg == PPC::VRSAVE) 2310 continue; 2311 2312 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2313 continue; 2314 2315 // Restore of callee saved condition register field is handled during 2316 // epilogue insertion. 2317 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2318 continue; 2319 2320 if (Reg == PPC::CR2) { 2321 CR2Spilled = true; 2322 // The spill slot is associated only with CR2, which is the 2323 // first nonvolatile spilled. Save it here. 2324 CSIIndex = i; 2325 continue; 2326 } else if (Reg == PPC::CR3) { 2327 CR3Spilled = true; 2328 continue; 2329 } else if (Reg == PPC::CR4) { 2330 CR4Spilled = true; 2331 continue; 2332 } else { 2333 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2334 // least one CR register, restore all spilled CRs together. 2335 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2336 bool is31 = needsFP(*MF); 2337 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2338 CSIIndex); 2339 CR2Spilled = CR3Spilled = CR4Spilled = false; 2340 } 2341 2342 if (CSI[i].isSpilledToReg()) { 2343 DebugLoc DL; 2344 NumPEReloadVSR++; 2345 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), Reg) 2346 .addReg(CSI[i].getDstReg(), getKillRegState(true)); 2347 } else { 2348 // Default behavior for non-CR saves. 2349 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2350 2351 // Functions without NoUnwind need to preserve the order of elements in 2352 // saved vector registers. 2353 if (Subtarget.needsSwapsForVSXMemOps() && 2354 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2355 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2356 TRI); 2357 else 2358 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI); 2359 2360 assert(I != MBB.begin() && 2361 "loadRegFromStackSlot didn't insert any code!"); 2362 } 2363 } 2364 2365 // Insert in reverse order. 2366 if (AtStart) 2367 I = MBB.begin(); 2368 else { 2369 I = BeforeI; 2370 ++I; 2371 } 2372 } 2373 2374 // If we haven't yet spilled the CRs, do so now. 2375 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2376 assert(Subtarget.is32BitELFABI() && 2377 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2378 bool is31 = needsFP(*MF); 2379 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2380 } 2381 2382 return true; 2383 } 2384 2385 unsigned PPCFrameLowering::getTOCSaveOffset() const { 2386 return TOCSaveOffset; 2387 } 2388 2389 unsigned PPCFrameLowering::getFramePointerSaveOffset() const { 2390 return FramePointerSaveOffset; 2391 } 2392 2393 unsigned PPCFrameLowering::getBasePointerSaveOffset() const { 2394 if (Subtarget.isAIXABI()) 2395 report_fatal_error("BasePointer is not implemented on AIX yet."); 2396 return BasePointerSaveOffset; 2397 } 2398 2399 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2400 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2401 return false; 2402 return (MF.getSubtarget<PPCSubtarget>().isSVR4ABI() && 2403 MF.getSubtarget<PPCSubtarget>().isPPC64()); 2404 } 2405