1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCFrameLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RegisterScavenging.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Target/TargetOptions.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "framelowering" 34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 36 STATISTIC(NumPrologProbed, "Number of prologues probed"); 37 38 static cl::opt<bool> 39 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 40 cl::desc("Enable spills in prologue to vector registers."), 41 cl::init(false), cl::Hidden); 42 43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 44 if (STI.isAIXABI()) 45 return STI.isPPC64() ? 16 : 8; 46 // SVR4 ABI: 47 return STI.isPPC64() ? 16 : 4; 48 } 49 50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 51 if (STI.isAIXABI()) 52 return STI.isPPC64() ? 40 : 20; 53 return STI.isELFv2ABI() ? 24 : 40; 54 } 55 56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 57 // First slot in the general register save area. 58 return STI.isPPC64() ? -8U : -4U; 59 } 60 61 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 62 if (STI.isAIXABI() || STI.isPPC64()) 63 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 64 65 // 32-bit SVR4 ABI: 66 return 8; 67 } 68 69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 70 // Third slot in the general purpose register save area. 71 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 72 return -12U; 73 74 // Second slot in the general purpose register save area. 75 return STI.isPPC64() ? -16U : -8U; 76 } 77 78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 79 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 80 } 81 82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 83 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 84 STI.getPlatformStackAlignment(), 0), 85 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 86 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 87 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 88 LinkageSize(computeLinkageSize(Subtarget)), 89 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 90 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 91 92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 94 unsigned &NumEntries) const { 95 96 // Floating-point register save area offsets. 97 #define CALLEE_SAVED_FPRS \ 98 {PPC::F31, -8}, \ 99 {PPC::F30, -16}, \ 100 {PPC::F29, -24}, \ 101 {PPC::F28, -32}, \ 102 {PPC::F27, -40}, \ 103 {PPC::F26, -48}, \ 104 {PPC::F25, -56}, \ 105 {PPC::F24, -64}, \ 106 {PPC::F23, -72}, \ 107 {PPC::F22, -80}, \ 108 {PPC::F21, -88}, \ 109 {PPC::F20, -96}, \ 110 {PPC::F19, -104}, \ 111 {PPC::F18, -112}, \ 112 {PPC::F17, -120}, \ 113 {PPC::F16, -128}, \ 114 {PPC::F15, -136}, \ 115 {PPC::F14, -144} 116 117 // 32-bit general purpose register save area offsets shared by ELF and 118 // AIX. AIX has an extra CSR with r13. 119 #define CALLEE_SAVED_GPRS32 \ 120 {PPC::R31, -4}, \ 121 {PPC::R30, -8}, \ 122 {PPC::R29, -12}, \ 123 {PPC::R28, -16}, \ 124 {PPC::R27, -20}, \ 125 {PPC::R26, -24}, \ 126 {PPC::R25, -28}, \ 127 {PPC::R24, -32}, \ 128 {PPC::R23, -36}, \ 129 {PPC::R22, -40}, \ 130 {PPC::R21, -44}, \ 131 {PPC::R20, -48}, \ 132 {PPC::R19, -52}, \ 133 {PPC::R18, -56}, \ 134 {PPC::R17, -60}, \ 135 {PPC::R16, -64}, \ 136 {PPC::R15, -68}, \ 137 {PPC::R14, -72} 138 139 // 64-bit general purpose register save area offsets. 140 #define CALLEE_SAVED_GPRS64 \ 141 {PPC::X31, -8}, \ 142 {PPC::X30, -16}, \ 143 {PPC::X29, -24}, \ 144 {PPC::X28, -32}, \ 145 {PPC::X27, -40}, \ 146 {PPC::X26, -48}, \ 147 {PPC::X25, -56}, \ 148 {PPC::X24, -64}, \ 149 {PPC::X23, -72}, \ 150 {PPC::X22, -80}, \ 151 {PPC::X21, -88}, \ 152 {PPC::X20, -96}, \ 153 {PPC::X19, -104}, \ 154 {PPC::X18, -112}, \ 155 {PPC::X17, -120}, \ 156 {PPC::X16, -128}, \ 157 {PPC::X15, -136}, \ 158 {PPC::X14, -144} 159 160 // Vector register save area offsets. 161 #define CALLEE_SAVED_VRS \ 162 {PPC::V31, -16}, \ 163 {PPC::V30, -32}, \ 164 {PPC::V29, -48}, \ 165 {PPC::V28, -64}, \ 166 {PPC::V27, -80}, \ 167 {PPC::V26, -96}, \ 168 {PPC::V25, -112}, \ 169 {PPC::V24, -128}, \ 170 {PPC::V23, -144}, \ 171 {PPC::V22, -160}, \ 172 {PPC::V21, -176}, \ 173 {PPC::V20, -192} 174 175 // Note that the offsets here overlap, but this is fixed up in 176 // processFunctionBeforeFrameFinalized. 177 178 static const SpillSlot ELFOffsets32[] = { 179 CALLEE_SAVED_FPRS, 180 CALLEE_SAVED_GPRS32, 181 182 // CR save area offset. We map each of the nonvolatile CR fields 183 // to the slot for CR2, which is the first of the nonvolatile CR 184 // fields to be assigned, so that we only allocate one save slot. 185 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 186 {PPC::CR2, -4}, 187 188 // VRSAVE save area offset. 189 {PPC::VRSAVE, -4}, 190 191 CALLEE_SAVED_VRS, 192 193 // SPE register save area (overlaps Vector save area). 194 {PPC::S31, -8}, 195 {PPC::S30, -16}, 196 {PPC::S29, -24}, 197 {PPC::S28, -32}, 198 {PPC::S27, -40}, 199 {PPC::S26, -48}, 200 {PPC::S25, -56}, 201 {PPC::S24, -64}, 202 {PPC::S23, -72}, 203 {PPC::S22, -80}, 204 {PPC::S21, -88}, 205 {PPC::S20, -96}, 206 {PPC::S19, -104}, 207 {PPC::S18, -112}, 208 {PPC::S17, -120}, 209 {PPC::S16, -128}, 210 {PPC::S15, -136}, 211 {PPC::S14, -144}}; 212 213 static const SpillSlot ELFOffsets64[] = { 214 CALLEE_SAVED_FPRS, 215 CALLEE_SAVED_GPRS64, 216 217 // VRSAVE save area offset. 218 {PPC::VRSAVE, -4}, 219 CALLEE_SAVED_VRS 220 }; 221 222 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 223 CALLEE_SAVED_GPRS32, 224 // Add AIX's extra CSR. 225 {PPC::R13, -76}, 226 CALLEE_SAVED_VRS}; 227 228 static const SpillSlot AIXOffsets64[] = { 229 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 230 231 if (Subtarget.is64BitELFABI()) { 232 NumEntries = std::size(ELFOffsets64); 233 return ELFOffsets64; 234 } 235 236 if (Subtarget.is32BitELFABI()) { 237 NumEntries = std::size(ELFOffsets32); 238 return ELFOffsets32; 239 } 240 241 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 242 243 if (Subtarget.isPPC64()) { 244 NumEntries = std::size(AIXOffsets64); 245 return AIXOffsets64; 246 } 247 248 NumEntries = std::size(AIXOffsets32); 249 return AIXOffsets32; 250 } 251 252 static bool spillsCR(const MachineFunction &MF) { 253 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 254 return FuncInfo->isCRSpilled(); 255 } 256 257 static bool hasSpills(const MachineFunction &MF) { 258 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 259 return FuncInfo->hasSpills(); 260 } 261 262 static bool hasNonRISpills(const MachineFunction &MF) { 263 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 264 return FuncInfo->hasNonRISpills(); 265 } 266 267 /// MustSaveLR - Return true if this function requires that we save the LR 268 /// register onto the stack in the prolog and restore it in the epilog of the 269 /// function. 270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 271 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 272 273 // We need a save/restore of LR if there is any def of LR (which is 274 // defined by calls, including the PIC setup sequence), or if there is 275 // some use of the LR stack slot (e.g. for builtin_return_address). 276 // (LR comes in 32 and 64 bit versions.) 277 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 278 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 279 } 280 281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 282 /// call frame size. Update the MachineFunction object with the stack size. 283 uint64_t 284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 285 bool UseEstimate) const { 286 unsigned NewMaxCallFrameSize = 0; 287 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate, 288 &NewMaxCallFrameSize); 289 MF.getFrameInfo().setStackSize(FrameSize); 290 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 291 return FrameSize; 292 } 293 294 /// determineFrameLayout - Determine the size of the frame and maximum call 295 /// frame size. 296 uint64_t 297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 298 bool UseEstimate, 299 unsigned *NewMaxCallFrameSize) const { 300 const MachineFrameInfo &MFI = MF.getFrameInfo(); 301 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 302 303 // Get the number of bytes to allocate from the FrameInfo 304 uint64_t FrameSize = 305 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 306 307 // Get stack alignments. The frame must be aligned to the greatest of these: 308 Align TargetAlign = getStackAlign(); // alignment required per the ABI 309 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 310 Align Alignment = std::max(TargetAlign, MaxAlign); 311 312 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 313 314 unsigned LR = RegInfo->getRARegister(); 315 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 316 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 317 !MFI.adjustsStack() && // No calls. 318 !MustSaveLR(MF, LR) && // No need to save LR. 319 !FI->mustSaveTOC() && // No need to save TOC. 320 !RegInfo->hasBasePointer(MF); // No special alignment. 321 322 // Note: for PPC32 SVR4ABI, we can still generate stackless 323 // code if all local vars are reg-allocated. 324 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 325 326 // Check whether we can skip adjusting the stack pointer (by using red zone) 327 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 328 // No need for frame 329 return 0; 330 } 331 332 // Get the maximum call frame size of all the calls. 333 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 334 335 // Maximum call frame needs to be at least big enough for linkage area. 336 unsigned minCallFrameSize = getLinkageSize(); 337 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 338 339 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 340 // that allocations will be aligned. 341 if (MFI.hasVarSizedObjects()) 342 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 343 344 // Update the new max call frame size if the caller passes in a valid pointer. 345 if (NewMaxCallFrameSize) 346 *NewMaxCallFrameSize = maxCallFrameSize; 347 348 // Include call frame size in total. 349 FrameSize += maxCallFrameSize; 350 351 // Make sure the frame is aligned. 352 FrameSize = alignTo(FrameSize, Alignment); 353 354 return FrameSize; 355 } 356 357 // hasFP - Return true if the specified function actually has a dedicated frame 358 // pointer register. 359 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 360 const MachineFrameInfo &MFI = MF.getFrameInfo(); 361 // FIXME: This is pretty much broken by design: hasFP() might be called really 362 // early, before the stack layout was calculated and thus hasFP() might return 363 // true or false here depending on the time of call. 364 return (MFI.getStackSize()) && needsFP(MF); 365 } 366 367 // needsFP - Return true if the specified function should have a dedicated frame 368 // pointer register. This is true if the function has variable sized allocas or 369 // if frame pointer elimination is disabled. 370 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 371 const MachineFrameInfo &MFI = MF.getFrameInfo(); 372 373 // Naked functions have no stack frame pushed, so we don't have a frame 374 // pointer. 375 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 376 return false; 377 378 return MF.getTarget().Options.DisableFramePointerElim(MF) || 379 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 380 MF.exposesReturnsTwice() || 381 (MF.getTarget().Options.GuaranteedTailCallOpt && 382 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 383 } 384 385 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 386 bool is31 = needsFP(MF); 387 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 388 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 389 390 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 391 bool HasBP = RegInfo->hasBasePointer(MF); 392 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 393 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 394 395 for (MachineBasicBlock &MBB : MF) 396 for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) { 397 --MBBI; 398 for (MachineOperand &MO : MBBI->operands()) { 399 if (!MO.isReg()) 400 continue; 401 402 switch (MO.getReg()) { 403 case PPC::FP: 404 MO.setReg(FPReg); 405 break; 406 case PPC::FP8: 407 MO.setReg(FP8Reg); 408 break; 409 case PPC::BP: 410 MO.setReg(BPReg); 411 break; 412 case PPC::BP8: 413 MO.setReg(BP8Reg); 414 break; 415 416 } 417 } 418 } 419 } 420 421 /* This function will do the following: 422 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 423 respectively (defaults recommended by the ABI) and return true 424 - If MBB is not an entry block, initialize the register scavenger and look 425 for available registers. 426 - If the defaults (R0/R12) are available, return true 427 - If TwoUniqueRegsRequired is set to true, it looks for two unique 428 registers. Otherwise, look for a single available register. 429 - If the required registers are found, set SR1 and SR2 and return true. 430 - If the required registers are not found, set SR2 or both SR1 and SR2 to 431 PPC::NoRegister and return false. 432 433 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 434 is not set, this function will attempt to find two different registers, but 435 still return true if only one register is available (and set SR1 == SR2). 436 */ 437 bool 438 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 439 bool UseAtEnd, 440 bool TwoUniqueRegsRequired, 441 Register *SR1, 442 Register *SR2) const { 443 RegScavenger RS; 444 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 445 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 446 447 // Set the defaults for the two scratch registers. 448 if (SR1) 449 *SR1 = R0; 450 451 if (SR2) { 452 assert (SR1 && "Asking for the second scratch register but not the first?"); 453 *SR2 = R12; 454 } 455 456 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 457 if ((UseAtEnd && MBB->isReturnBlock()) || 458 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 459 return true; 460 461 if (UseAtEnd) { 462 // The scratch register will be used before the first terminator (or at the 463 // end of the block if there are no terminators). 464 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 465 if (MBBI == MBB->begin()) { 466 RS.enterBasicBlock(*MBB); 467 } else { 468 RS.enterBasicBlockEnd(*MBB); 469 RS.backward(MBBI); 470 } 471 } else { 472 // The scratch register will be used at the start of the block. 473 RS.enterBasicBlock(*MBB); 474 } 475 476 // If the two registers are available, we're all good. 477 // Note that we only return here if both R0 and R12 are available because 478 // although the function may not require two unique registers, it may benefit 479 // from having two so we should try to provide them. 480 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 481 return true; 482 483 // Get the list of callee-saved registers for the target. 484 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 485 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 486 487 // Get all the available registers in the block. 488 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 489 &PPC::GPRCRegClass); 490 491 // We shouldn't use callee-saved registers as scratch registers as they may be 492 // available when looking for a candidate block for shrink wrapping but not 493 // available when the actual prologue/epilogue is being emitted because they 494 // were added as live-in to the prologue block by PrologueEpilogueInserter. 495 for (int i = 0; CSRegs[i]; ++i) 496 BV.reset(CSRegs[i]); 497 498 // Set the first scratch register to the first available one. 499 if (SR1) { 500 int FirstScratchReg = BV.find_first(); 501 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 502 } 503 504 // If there is another one available, set the second scratch register to that. 505 // Otherwise, set it to either PPC::NoRegister if this function requires two 506 // or to whatever SR1 is set to if this function doesn't require two. 507 if (SR2) { 508 int SecondScratchReg = BV.find_next(*SR1); 509 if (SecondScratchReg != -1) 510 *SR2 = SecondScratchReg; 511 else 512 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 513 } 514 515 // Now that we've done our best to provide both registers, double check 516 // whether we were unable to provide enough. 517 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 518 return false; 519 520 return true; 521 } 522 523 // We need a scratch register for spilling LR and for spilling CR. By default, 524 // we use two scratch registers to hide latency. However, if only one scratch 525 // register is available, we can adjust for that by not overlapping the spill 526 // code. However, if we need to realign the stack (i.e. have a base pointer) 527 // and the stack frame is large, we need two scratch registers. 528 // Also, stack probe requires two scratch registers, one for old sp, one for 529 // large frame and large probe size. 530 bool 531 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 532 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 533 MachineFunction &MF = *(MBB->getParent()); 534 bool HasBP = RegInfo->hasBasePointer(MF); 535 unsigned FrameSize = determineFrameLayout(MF); 536 int NegFrameSize = -FrameSize; 537 bool IsLargeFrame = !isInt<16>(NegFrameSize); 538 MachineFrameInfo &MFI = MF.getFrameInfo(); 539 Align MaxAlign = MFI.getMaxAlign(); 540 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 541 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 542 543 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 544 TLI.hasInlineStackProbe(MF); 545 } 546 547 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 548 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 549 550 return findScratchRegister(TmpMBB, false, 551 twoUniqueScratchRegsRequired(TmpMBB)); 552 } 553 554 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 555 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 556 557 return findScratchRegister(TmpMBB, true); 558 } 559 560 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 561 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 562 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 563 564 // Abort if there is no register info or function info. 565 if (!RegInfo || !FI) 566 return false; 567 568 // Only move the stack update on ELFv2 ABI and PPC64. 569 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 570 return false; 571 572 // Check the frame size first and return false if it does not fit the 573 // requirements. 574 // We need a non-zero frame size as well as a frame that will fit in the red 575 // zone. This is because by moving the stack pointer update we are now storing 576 // to the red zone until the stack pointer is updated. If we get an interrupt 577 // inside the prologue but before the stack update we now have a number of 578 // stores to the red zone and those stores must all fit. 579 MachineFrameInfo &MFI = MF.getFrameInfo(); 580 unsigned FrameSize = MFI.getStackSize(); 581 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 582 return false; 583 584 // Frame pointers and base pointers complicate matters so don't do anything 585 // if we have them. For example having a frame pointer will sometimes require 586 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 587 // difficult. Similar situation exists with setjmp. 588 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 589 return false; 590 591 // Calls to fast_cc functions use different rules for passing parameters on 592 // the stack from the ABI and using PIC base in the function imposes 593 // similar restrictions to using the base pointer. It is not generally safe 594 // to move the stack pointer update in these situations. 595 if (FI->hasFastCall() || FI->usesPICBase()) 596 return false; 597 598 // Finally we can move the stack update if we do not require register 599 // scavenging. Register scavenging can introduce more spills and so 600 // may make the frame size larger than we have computed. 601 return !RegInfo->requiresFrameIndexScavenging(MF); 602 } 603 604 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 605 MachineBasicBlock &MBB) const { 606 MachineBasicBlock::iterator MBBI = MBB.begin(); 607 MachineFrameInfo &MFI = MF.getFrameInfo(); 608 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 609 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 610 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 611 612 MachineModuleInfo &MMI = MF.getMMI(); 613 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 614 DebugLoc dl; 615 // AIX assembler does not support cfi directives. 616 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 617 618 const bool HasFastMFLR = Subtarget.hasFastMFLR(); 619 620 // Get processor type. 621 bool isPPC64 = Subtarget.isPPC64(); 622 // Get the ABI. 623 bool isSVR4ABI = Subtarget.isSVR4ABI(); 624 bool isELFv2ABI = Subtarget.isELFv2ABI(); 625 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 626 627 // Work out frame sizes. 628 uint64_t FrameSize = determineFrameLayoutAndUpdate(MF); 629 int64_t NegFrameSize = -FrameSize; 630 if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize))) 631 llvm_unreachable("Unhandled stack size!"); 632 633 if (MFI.isFrameAddressTaken()) 634 replaceFPWithRealFP(MF); 635 636 // Check if the link register (LR) must be saved. 637 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 638 bool MustSaveLR = FI->mustSaveLR(); 639 bool MustSaveTOC = FI->mustSaveTOC(); 640 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 641 bool MustSaveCR = !MustSaveCRs.empty(); 642 // Do we have a frame pointer and/or base pointer for this function? 643 bool HasFP = hasFP(MF); 644 bool HasBP = RegInfo->hasBasePointer(MF); 645 bool HasRedZone = isPPC64 || !isSVR4ABI; 646 bool HasROPProtect = Subtarget.hasROPProtect(); 647 bool HasPrivileged = Subtarget.hasPrivileged(); 648 649 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 650 Register BPReg = RegInfo->getBaseRegister(MF); 651 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 652 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 653 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 654 Register ScratchReg; 655 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 656 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 657 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 658 : PPC::MFLR ); 659 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 660 : PPC::STW ); 661 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 662 : PPC::STWU ); 663 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 664 : PPC::STWUX); 665 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 666 : PPC::OR ); 667 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 668 : PPC::SUBFC); 669 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 670 : PPC::SUBFIC); 671 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 672 : PPC::MFCR); 673 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 674 const MCInstrDesc &HashST = 675 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8) 676 : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST)); 677 678 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 679 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 680 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 681 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 682 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 683 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 684 685 // Using the same bool variable as below to suppress compiler warnings. 686 bool SingleScratchReg = findScratchRegister( 687 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 688 assert(SingleScratchReg && 689 "Required number of registers not available in this block"); 690 691 SingleScratchReg = ScratchReg == TempReg; 692 693 int64_t LROffset = getReturnSaveOffset(); 694 695 int64_t FPOffset = 0; 696 if (HasFP) { 697 MachineFrameInfo &MFI = MF.getFrameInfo(); 698 int FPIndex = FI->getFramePointerSaveIndex(); 699 assert(FPIndex && "No Frame Pointer Save Slot!"); 700 FPOffset = MFI.getObjectOffset(FPIndex); 701 } 702 703 int64_t BPOffset = 0; 704 if (HasBP) { 705 MachineFrameInfo &MFI = MF.getFrameInfo(); 706 int BPIndex = FI->getBasePointerSaveIndex(); 707 assert(BPIndex && "No Base Pointer Save Slot!"); 708 BPOffset = MFI.getObjectOffset(BPIndex); 709 } 710 711 int64_t PBPOffset = 0; 712 if (FI->usesPICBase()) { 713 MachineFrameInfo &MFI = MF.getFrameInfo(); 714 int PBPIndex = FI->getPICBasePointerSaveIndex(); 715 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 716 PBPOffset = MFI.getObjectOffset(PBPIndex); 717 } 718 719 // Get stack alignments. 720 Align MaxAlign = MFI.getMaxAlign(); 721 if (HasBP && MaxAlign > 1) 722 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 723 724 // Frames of 32KB & larger require special handling because they cannot be 725 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 726 bool isLargeFrame = !isInt<16>(NegFrameSize); 727 728 // Check if we can move the stack update instruction (stdu) down the prologue 729 // past the callee saves. Hopefully this will avoid the situation where the 730 // saves are waiting for the update on the store with update to complete. 731 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 732 bool MovingStackUpdateDown = false; 733 734 // Check if we can move the stack update. 735 if (stackUpdateCanBeMoved(MF)) { 736 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 737 for (CalleeSavedInfo CSI : Info) { 738 // If the callee saved register is spilled to a register instead of the 739 // stack then the spill no longer uses the stack pointer. 740 // This can lead to two consequences: 741 // 1) We no longer need to update the stack because the function does not 742 // spill any callee saved registers to stack. 743 // 2) We have a situation where we still have to update the stack pointer 744 // even though some registers are spilled to other registers. In 745 // this case the current code moves the stack update to an incorrect 746 // position. 747 // In either case we should abort moving the stack update operation. 748 if (CSI.isSpilledToReg()) { 749 StackUpdateLoc = MBBI; 750 MovingStackUpdateDown = false; 751 break; 752 } 753 754 int FrIdx = CSI.getFrameIdx(); 755 // If the frame index is not negative the callee saved info belongs to a 756 // stack object that is not a fixed stack object. We ignore non-fixed 757 // stack objects because we won't move the stack update pointer past them. 758 if (FrIdx >= 0) 759 continue; 760 761 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 762 StackUpdateLoc++; 763 MovingStackUpdateDown = true; 764 } else { 765 // We need all of the Frame Indices to meet these conditions. 766 // If they do not, abort the whole operation. 767 StackUpdateLoc = MBBI; 768 MovingStackUpdateDown = false; 769 break; 770 } 771 } 772 773 // If the operation was not aborted then update the object offset. 774 if (MovingStackUpdateDown) { 775 for (CalleeSavedInfo CSI : Info) { 776 int FrIdx = CSI.getFrameIdx(); 777 if (FrIdx < 0) 778 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 779 } 780 } 781 } 782 783 // Where in the prologue we move the CR fields depends on how many scratch 784 // registers we have, and if we need to save the link register or not. This 785 // lambda is to avoid duplicating the logic in 2 places. 786 auto BuildMoveFromCR = [&]() { 787 if (isELFv2ABI && MustSaveCRs.size() == 1) { 788 // In the ELFv2 ABI, we are not required to save all CR fields. 789 // If only one CR field is clobbered, it is more efficient to use 790 // mfocrf to selectively save just that field, because mfocrf has short 791 // latency compares to mfcr. 792 assert(isPPC64 && "V2 ABI is 64-bit only."); 793 MachineInstrBuilder MIB = 794 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 795 MIB.addReg(MustSaveCRs[0], RegState::Kill); 796 } else { 797 MachineInstrBuilder MIB = 798 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 799 for (unsigned CRfield : MustSaveCRs) 800 MIB.addReg(CRfield, RegState::ImplicitKill); 801 } 802 }; 803 804 // If we need to spill the CR and the LR but we don't have two separate 805 // registers available, we must spill them one at a time 806 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 807 BuildMoveFromCR(); 808 BuildMI(MBB, MBBI, dl, StoreWordInst) 809 .addReg(TempReg, getKillRegState(true)) 810 .addImm(CRSaveOffset) 811 .addReg(SPReg); 812 } 813 814 if (MustSaveLR) 815 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 816 817 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 818 BuildMoveFromCR(); 819 820 if (HasRedZone) { 821 if (HasFP) 822 BuildMI(MBB, MBBI, dl, StoreInst) 823 .addReg(FPReg) 824 .addImm(FPOffset) 825 .addReg(SPReg); 826 if (FI->usesPICBase()) 827 BuildMI(MBB, MBBI, dl, StoreInst) 828 .addReg(PPC::R30) 829 .addImm(PBPOffset) 830 .addReg(SPReg); 831 if (HasBP) 832 BuildMI(MBB, MBBI, dl, StoreInst) 833 .addReg(BPReg) 834 .addImm(BPOffset) 835 .addReg(SPReg); 836 } 837 838 // Generate the instruction to store the LR. In the case where ROP protection 839 // is required the register holding the LR should not be killed as it will be 840 // used by the hash store instruction. 841 auto SaveLR = [&](int64_t Offset) { 842 assert(MustSaveLR && "LR is not required to be saved!"); 843 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 844 .addReg(ScratchReg, getKillRegState(!HasROPProtect)) 845 .addImm(Offset) 846 .addReg(SPReg); 847 848 // Add the ROP protection Hash Store instruction. 849 // NOTE: This is technically a violation of the ABI. The hash can be saved 850 // up to 512 bytes into the Protected Zone. This can be outside of the 851 // initial 288 byte volatile program storage region in the Protected Zone. 852 // However, this restriction will be removed in an upcoming revision of the 853 // ABI. 854 if (HasROPProtect) { 855 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 856 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 857 assert((ImmOffset <= -8 && ImmOffset >= -512) && 858 "ROP hash save offset out of range."); 859 assert(((ImmOffset & 0x7) == 0) && 860 "ROP hash save offset must be 8 byte aligned."); 861 BuildMI(MBB, StackUpdateLoc, dl, HashST) 862 .addReg(ScratchReg, getKillRegState(true)) 863 .addImm(ImmOffset) 864 .addReg(SPReg); 865 } 866 }; 867 868 if (MustSaveLR && HasFastMFLR) 869 SaveLR(LROffset); 870 871 if (MustSaveCR && 872 !(SingleScratchReg && MustSaveLR)) { 873 assert(HasRedZone && "A red zone is always available on PPC64"); 874 BuildMI(MBB, MBBI, dl, StoreWordInst) 875 .addReg(TempReg, getKillRegState(true)) 876 .addImm(CRSaveOffset) 877 .addReg(SPReg); 878 } 879 880 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 881 if (!FrameSize) { 882 if (MustSaveLR && !HasFastMFLR) 883 SaveLR(LROffset); 884 return; 885 } 886 887 // Adjust stack pointer: r1 += NegFrameSize. 888 // If there is a preferred stack alignment, align R1 now 889 890 if (HasBP && HasRedZone) { 891 // Save a copy of r1 as the base pointer. 892 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 893 .addReg(SPReg) 894 .addReg(SPReg); 895 } 896 897 // Have we generated a STUX instruction to claim stack frame? If so, 898 // the negated frame size will be placed in ScratchReg. 899 bool HasSTUX = 900 (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) || 901 (HasBP && MaxAlign > 1) || isLargeFrame; 902 903 // If we use STUX to update the stack pointer, we need the two scratch 904 // registers TempReg and ScratchReg, we have to save LR here which is stored 905 // in ScratchReg. 906 // If the offset can not be encoded into the store instruction, we also have 907 // to save LR here. 908 if (MustSaveLR && !HasFastMFLR && 909 (HasSTUX || !isInt<16>(FrameSize + LROffset))) 910 SaveLR(LROffset); 911 912 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 913 // pointer is always stored at SP, we will get a free probe due to an essential 914 // STU(X) instruction. 915 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 916 // To be consistent with other targets, a pseudo instruction is emitted and 917 // will be later expanded in `inlineStackProbe`. 918 BuildMI(MBB, MBBI, dl, 919 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 920 : PPC::PROBED_STACKALLOC_32)) 921 .addDef(TempReg) 922 .addDef(ScratchReg) // ScratchReg stores the old sp. 923 .addImm(NegFrameSize); 924 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 925 // update the ScratchReg to meet the assumption that ScratchReg contains 926 // the NegFrameSize. This solution is rather tricky. 927 if (!HasRedZone) { 928 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 929 .addReg(ScratchReg) 930 .addReg(SPReg); 931 } 932 } else { 933 // This condition must be kept in sync with canUseAsPrologue. 934 if (HasBP && MaxAlign > 1) { 935 if (isPPC64) 936 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 937 .addReg(SPReg) 938 .addImm(0) 939 .addImm(64 - Log2(MaxAlign)); 940 else // PPC32... 941 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 942 .addReg(SPReg) 943 .addImm(0) 944 .addImm(32 - Log2(MaxAlign)) 945 .addImm(31); 946 if (!isLargeFrame) { 947 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 948 .addReg(ScratchReg, RegState::Kill) 949 .addImm(NegFrameSize); 950 } else { 951 assert(!SingleScratchReg && "Only a single scratch reg available"); 952 TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize); 953 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 954 .addReg(ScratchReg, RegState::Kill) 955 .addReg(TempReg, RegState::Kill); 956 } 957 958 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 959 .addReg(SPReg, RegState::Kill) 960 .addReg(SPReg) 961 .addReg(ScratchReg); 962 } else if (!isLargeFrame) { 963 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 964 .addReg(SPReg) 965 .addImm(NegFrameSize) 966 .addReg(SPReg); 967 } else { 968 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize); 969 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 970 .addReg(SPReg, RegState::Kill) 971 .addReg(SPReg) 972 .addReg(ScratchReg); 973 } 974 } 975 976 // Save the TOC register after the stack pointer update if a prologue TOC 977 // save is required for the function. 978 if (MustSaveTOC) { 979 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 980 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 981 .addReg(TOCReg, getKillRegState(true)) 982 .addImm(TOCSaveOffset) 983 .addReg(SPReg); 984 } 985 986 if (!HasRedZone) { 987 assert(!isPPC64 && "A red zone is always available on PPC64"); 988 if (HasSTUX) { 989 // The negated frame size is in ScratchReg, and the SPReg has been 990 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 991 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 992 // the stack frame (i.e. the old SP), ideally, we would put the old 993 // SP into a register and use it as the base for the stores. The 994 // problem is that the only available register may be ScratchReg, 995 // which could be R0, and R0 cannot be used as a base address. 996 997 // First, set ScratchReg to the old SP. This may need to be modified 998 // later. 999 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1000 .addReg(ScratchReg, RegState::Kill) 1001 .addReg(SPReg); 1002 1003 if (ScratchReg == PPC::R0) { 1004 // R0 cannot be used as a base register, but it can be used as an 1005 // index in a store-indexed. 1006 int LastOffset = 0; 1007 if (HasFP) { 1008 // R0 += (FPOffset-LastOffset). 1009 // Need addic, since addi treats R0 as 0. 1010 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1011 .addReg(ScratchReg) 1012 .addImm(FPOffset-LastOffset); 1013 LastOffset = FPOffset; 1014 // Store FP into *R0. 1015 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1016 .addReg(FPReg, RegState::Kill) // Save FP. 1017 .addReg(PPC::ZERO) 1018 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1019 } 1020 if (FI->usesPICBase()) { 1021 // R0 += (PBPOffset-LastOffset). 1022 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1023 .addReg(ScratchReg) 1024 .addImm(PBPOffset-LastOffset); 1025 LastOffset = PBPOffset; 1026 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1027 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1028 .addReg(PPC::ZERO) 1029 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1030 } 1031 if (HasBP) { 1032 // R0 += (BPOffset-LastOffset). 1033 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1034 .addReg(ScratchReg) 1035 .addImm(BPOffset-LastOffset); 1036 LastOffset = BPOffset; 1037 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1038 .addReg(BPReg, RegState::Kill) // Save BP. 1039 .addReg(PPC::ZERO) 1040 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1041 // BP = R0-LastOffset 1042 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1043 .addReg(ScratchReg, RegState::Kill) 1044 .addImm(-LastOffset); 1045 } 1046 } else { 1047 // ScratchReg is not R0, so use it as the base register. It is 1048 // already set to the old SP, so we can use the offsets directly. 1049 1050 // Now that the stack frame has been allocated, save all the necessary 1051 // registers using ScratchReg as the base address. 1052 if (HasFP) 1053 BuildMI(MBB, MBBI, dl, StoreInst) 1054 .addReg(FPReg) 1055 .addImm(FPOffset) 1056 .addReg(ScratchReg); 1057 if (FI->usesPICBase()) 1058 BuildMI(MBB, MBBI, dl, StoreInst) 1059 .addReg(PPC::R30) 1060 .addImm(PBPOffset) 1061 .addReg(ScratchReg); 1062 if (HasBP) { 1063 BuildMI(MBB, MBBI, dl, StoreInst) 1064 .addReg(BPReg) 1065 .addImm(BPOffset) 1066 .addReg(ScratchReg); 1067 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1068 .addReg(ScratchReg, RegState::Kill) 1069 .addReg(ScratchReg); 1070 } 1071 } 1072 } else { 1073 // The frame size is a known 16-bit constant (fitting in the immediate 1074 // field of STWU). To be here we have to be compiling for PPC32. 1075 // Since the SPReg has been decreased by FrameSize, add it back to each 1076 // offset. 1077 if (HasFP) 1078 BuildMI(MBB, MBBI, dl, StoreInst) 1079 .addReg(FPReg) 1080 .addImm(FrameSize + FPOffset) 1081 .addReg(SPReg); 1082 if (FI->usesPICBase()) 1083 BuildMI(MBB, MBBI, dl, StoreInst) 1084 .addReg(PPC::R30) 1085 .addImm(FrameSize + PBPOffset) 1086 .addReg(SPReg); 1087 if (HasBP) { 1088 BuildMI(MBB, MBBI, dl, StoreInst) 1089 .addReg(BPReg) 1090 .addImm(FrameSize + BPOffset) 1091 .addReg(SPReg); 1092 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1093 .addReg(SPReg) 1094 .addImm(FrameSize); 1095 } 1096 } 1097 } 1098 1099 // Save the LR now. 1100 if (!HasSTUX && MustSaveLR && !HasFastMFLR && isInt<16>(FrameSize + LROffset)) 1101 SaveLR(LROffset + FrameSize); 1102 1103 // Add Call Frame Information for the instructions we generated above. 1104 if (needsCFI) { 1105 unsigned CFIIndex; 1106 1107 if (HasBP) { 1108 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1109 // because if the stack needed aligning then CFA won't be at a fixed 1110 // offset from FP/SP. 1111 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1112 CFIIndex = MF.addFrameInst( 1113 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1114 } else { 1115 // Adjust the definition of CFA to account for the change in SP. 1116 assert(NegFrameSize); 1117 CFIIndex = MF.addFrameInst( 1118 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1119 } 1120 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1121 .addCFIIndex(CFIIndex); 1122 1123 if (HasFP) { 1124 // Describe where FP was saved, at a fixed offset from CFA. 1125 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1126 CFIIndex = MF.addFrameInst( 1127 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1128 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1129 .addCFIIndex(CFIIndex); 1130 } 1131 1132 if (FI->usesPICBase()) { 1133 // Describe where FP was saved, at a fixed offset from CFA. 1134 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1135 CFIIndex = MF.addFrameInst( 1136 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1137 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1138 .addCFIIndex(CFIIndex); 1139 } 1140 1141 if (HasBP) { 1142 // Describe where BP was saved, at a fixed offset from CFA. 1143 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1144 CFIIndex = MF.addFrameInst( 1145 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1146 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1147 .addCFIIndex(CFIIndex); 1148 } 1149 1150 if (MustSaveLR) { 1151 // Describe where LR was saved, at a fixed offset from CFA. 1152 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1153 CFIIndex = MF.addFrameInst( 1154 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1155 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1156 .addCFIIndex(CFIIndex); 1157 } 1158 } 1159 1160 // If there is a frame pointer, copy R1 into R31 1161 if (HasFP) { 1162 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1163 .addReg(SPReg) 1164 .addReg(SPReg); 1165 1166 if (!HasBP && needsCFI) { 1167 // Change the definition of CFA from SP+offset to FP+offset, because SP 1168 // will change at every alloca. 1169 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1170 unsigned CFIIndex = MF.addFrameInst( 1171 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1172 1173 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1174 .addCFIIndex(CFIIndex); 1175 } 1176 } 1177 1178 if (needsCFI) { 1179 // Describe where callee saved registers were saved, at fixed offsets from 1180 // CFA. 1181 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1182 for (const CalleeSavedInfo &I : CSI) { 1183 Register Reg = I.getReg(); 1184 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1185 1186 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1187 // subregisters of CR2. We just need to emit a move of CR2. 1188 if (PPC::CRBITRCRegClass.contains(Reg)) 1189 continue; 1190 1191 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1192 continue; 1193 1194 // For SVR4, don't emit a move for the CR spill slot if we haven't 1195 // spilled CRs. 1196 if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4) 1197 && !MustSaveCR) 1198 continue; 1199 1200 // For 64-bit SVR4 when we have spilled CRs, the spill location 1201 // is SP+8, not a frame-relative slot. 1202 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1203 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1204 // the whole CR word. In the ELFv2 ABI, every CR that was 1205 // actually saved gets its own CFI record. 1206 Register CRReg = isELFv2ABI? Reg : PPC::CR2; 1207 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1208 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1209 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1210 .addCFIIndex(CFIIndex); 1211 continue; 1212 } 1213 1214 if (I.isSpilledToReg()) { 1215 unsigned SpilledReg = I.getDstReg(); 1216 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1217 nullptr, MRI->getDwarfRegNum(Reg, true), 1218 MRI->getDwarfRegNum(SpilledReg, true))); 1219 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1220 .addCFIIndex(CFIRegister); 1221 } else { 1222 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 1223 // We have changed the object offset above but we do not want to change 1224 // the actual offsets in the CFI instruction so we have to undo the 1225 // offset change here. 1226 if (MovingStackUpdateDown) 1227 Offset -= NegFrameSize; 1228 1229 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1230 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1231 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1232 .addCFIIndex(CFIIndex); 1233 } 1234 } 1235 } 1236 } 1237 1238 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1239 MachineBasicBlock &PrologMBB) const { 1240 bool isPPC64 = Subtarget.isPPC64(); 1241 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1242 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1243 MachineFrameInfo &MFI = MF.getFrameInfo(); 1244 MachineModuleInfo &MMI = MF.getMMI(); 1245 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1246 // AIX assembler does not support cfi directives. 1247 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1248 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1249 int Opc = MI.getOpcode(); 1250 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1251 }); 1252 if (StackAllocMIPos == PrologMBB.end()) 1253 return; 1254 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1255 MachineBasicBlock *CurrentMBB = &PrologMBB; 1256 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1257 MachineInstr &MI = *StackAllocMIPos; 1258 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1259 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1260 int64_t NegProbeSize = -(int64_t)ProbeSize; 1261 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1262 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1263 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1264 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1265 Register ScratchReg = MI.getOperand(0).getReg(); 1266 Register FPReg = MI.getOperand(1).getReg(); 1267 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1268 bool HasBP = RegInfo->hasBasePointer(MF); 1269 Register BPReg = RegInfo->getBaseRegister(MF); 1270 Align MaxAlign = MFI.getMaxAlign(); 1271 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1272 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1273 // Subroutines to generate .cfi_* directives. 1274 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1275 MachineBasicBlock::iterator MBBI, Register Reg) { 1276 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1277 unsigned CFIIndex = MF.addFrameInst( 1278 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1279 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1280 .addCFIIndex(CFIIndex); 1281 }; 1282 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1283 MachineBasicBlock::iterator MBBI, Register Reg, 1284 int Offset) { 1285 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1286 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1287 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1288 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1289 .addCFIIndex(CFIIndex); 1290 }; 1291 // Subroutine to determine if we can use the Imm as part of d-form. 1292 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1293 // Subroutine to materialize the Imm into TempReg. 1294 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1295 MachineBasicBlock::iterator MBBI, int64_t Imm, 1296 Register &TempReg) { 1297 assert(isInt<32>(Imm) && "Unhandled imm"); 1298 if (isInt<16>(Imm)) 1299 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1300 .addImm(Imm); 1301 else { 1302 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1303 .addImm(Imm >> 16); 1304 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1305 .addReg(TempReg) 1306 .addImm(Imm & 0xFFFF); 1307 } 1308 }; 1309 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1310 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1311 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1312 Register NegSizeReg, bool UseDForm, 1313 Register StoreReg) { 1314 if (UseDForm) 1315 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1316 .addReg(StoreReg) 1317 .addImm(NegSize) 1318 .addReg(SPReg); 1319 else 1320 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1321 .addReg(StoreReg) 1322 .addReg(SPReg) 1323 .addReg(NegSizeReg); 1324 }; 1325 // Used to probe stack when realignment is required. 1326 // Note that, according to ABI's requirement, *sp must always equals the 1327 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp. 1328 // Following is pseudo code: 1329 // final_sp = (sp & align) + negframesize; 1330 // neg_gap = final_sp - sp; 1331 // while (neg_gap < negprobesize) { 1332 // stdu fp, negprobesize(sp); 1333 // neg_gap -= negprobesize; 1334 // } 1335 // stdux fp, sp, neg_gap 1336 // 1337 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg 1338 // before probe code, we don't need to save it, so we get one additional reg 1339 // that can be used to materialize the probeside if needed to use xform. 1340 // Otherwise, we can NOT materialize probeside, so we can only use Dform for 1341 // now. 1342 // 1343 // The allocations are: 1344 // if (HasBP && HasRedzone) { 1345 // r0: materialize the probesize if needed so that we can use xform. 1346 // r12: `neg_gap` 1347 // } else { 1348 // r0: back-chain pointer 1349 // r12: `neg_gap`. 1350 // } 1351 auto probeRealignedStack = [&](MachineBasicBlock &MBB, 1352 MachineBasicBlock::iterator MBBI, 1353 Register ScratchReg, Register TempReg) { 1354 assert(HasBP && "The function is supposed to have base pointer when its " 1355 "stack is realigned."); 1356 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1357 1358 // FIXME: We can eliminate this limitation if we get more infomation about 1359 // which part of redzone are already used. Used redzone can be treated 1360 // probed. But there might be `holes' in redzone probed, this could 1361 // complicate the implementation. 1362 assert(ProbeSize >= Subtarget.getRedZoneSize() && 1363 "Probe size should be larger or equal to the size of red-zone so " 1364 "that red-zone is not clobbered by probing."); 1365 1366 Register &FinalStackPtr = TempReg; 1367 // FIXME: We only support NegProbeSize materializable by DForm currently. 1368 // When HasBP && HasRedzone, we can use xform if we have an additional idle 1369 // register. 1370 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15)); 1371 assert(isInt<16>(NegProbeSize) && 1372 "NegProbeSize should be materializable by DForm"); 1373 Register CRReg = PPC::CR0; 1374 // Layout of output assembly kinda like: 1375 // bb.0: 1376 // ... 1377 // sub $scratchreg, $finalsp, r1 1378 // cmpdi $scratchreg, <negprobesize> 1379 // bge bb.2 1380 // bb.1: 1381 // stdu <backchain>, <negprobesize>(r1) 1382 // sub $scratchreg, $scratchreg, negprobesize 1383 // cmpdi $scratchreg, <negprobesize> 1384 // blt bb.1 1385 // bb.2: 1386 // stdux <backchain>, r1, $scratchreg 1387 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1388 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1389 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1390 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1391 MF.insert(MBBInsertPoint, ProbeExitMBB); 1392 // bb.2 1393 { 1394 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1395 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false, 1396 BackChainPointer); 1397 if (HasRedZone) 1398 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg 1399 // to TempReg to satisfy it. 1400 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg) 1401 .addReg(BPReg) 1402 .addReg(BPReg); 1403 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1404 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1405 } 1406 // bb.0 1407 { 1408 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg) 1409 .addReg(SPReg) 1410 .addReg(FinalStackPtr); 1411 if (!HasRedZone) 1412 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg); 1413 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg) 1414 .addReg(ScratchReg) 1415 .addImm(NegProbeSize); 1416 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1417 .addImm(PPC::PRED_GE) 1418 .addReg(CRReg) 1419 .addMBB(ProbeExitMBB); 1420 MBB.addSuccessor(ProbeLoopBodyMBB); 1421 MBB.addSuccessor(ProbeExitMBB); 1422 } 1423 // bb.1 1424 { 1425 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1426 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize, 1427 0, true /*UseDForm*/, BackChainPointer); 1428 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI), 1429 ScratchReg) 1430 .addReg(ScratchReg) 1431 .addImm(-NegProbeSize); 1432 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), 1433 CRReg) 1434 .addReg(ScratchReg) 1435 .addImm(NegProbeSize); 1436 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1437 .addImm(PPC::PRED_LT) 1438 .addReg(CRReg) 1439 .addMBB(ProbeLoopBodyMBB); 1440 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1441 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1442 } 1443 // Update liveins. 1444 recomputeLiveIns(MF); 1445 return ProbeExitMBB; 1446 }; 1447 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1448 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since 1449 // the offset subtracted from SP is determined by SP's runtime value. 1450 if (HasBP && MaxAlign > 1) { 1451 // Calculate final stack pointer. 1452 if (isPPC64) 1453 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1454 .addReg(SPReg) 1455 .addImm(0) 1456 .addImm(64 - Log2(MaxAlign)); 1457 else 1458 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1459 .addReg(SPReg) 1460 .addImm(0) 1461 .addImm(32 - Log2(MaxAlign)) 1462 .addImm(31); 1463 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), 1464 FPReg) 1465 .addReg(ScratchReg) 1466 .addReg(SPReg); 1467 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg); 1468 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 1469 FPReg) 1470 .addReg(ScratchReg) 1471 .addReg(FPReg); 1472 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg); 1473 if (needsCFI) 1474 buildDefCFAReg(*CurrentMBB, {MI}, FPReg); 1475 } else { 1476 // Initialize current frame pointer. 1477 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1478 // Use FPReg to calculate CFA. 1479 if (needsCFI) 1480 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1481 // Probe residual part. 1482 if (NegResidualSize) { 1483 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1484 if (!ResidualUseDForm) 1485 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1486 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1487 ResidualUseDForm, FPReg); 1488 } 1489 bool UseDForm = CanUseDForm(NegProbeSize); 1490 // If number of blocks is small, just probe them directly. 1491 if (NumBlocks < 3) { 1492 if (!UseDForm) 1493 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1494 for (int i = 0; i < NumBlocks; ++i) 1495 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1496 FPReg); 1497 if (needsCFI) { 1498 // Restore using SPReg to calculate CFA. 1499 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1500 } 1501 } else { 1502 // Since CTR is a volatile register and current shrinkwrap implementation 1503 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1504 // CTR loop to probe. 1505 // Calculate trip count and stores it in CTRReg. 1506 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1507 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1508 .addReg(ScratchReg, RegState::Kill); 1509 if (!UseDForm) 1510 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1511 // Create MBBs of the loop. 1512 MachineFunction::iterator MBBInsertPoint = 1513 std::next(CurrentMBB->getIterator()); 1514 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1515 MF.insert(MBBInsertPoint, LoopMBB); 1516 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1517 MF.insert(MBBInsertPoint, ExitMBB); 1518 // Synthesize the loop body. 1519 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1520 UseDForm, FPReg); 1521 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1522 .addMBB(LoopMBB); 1523 LoopMBB->addSuccessor(ExitMBB); 1524 LoopMBB->addSuccessor(LoopMBB); 1525 // Synthesize the exit MBB. 1526 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1527 std::next(MachineBasicBlock::iterator(MI)), 1528 CurrentMBB->end()); 1529 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1530 CurrentMBB->addSuccessor(LoopMBB); 1531 if (needsCFI) { 1532 // Restore using SPReg to calculate CFA. 1533 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1534 } 1535 // Update liveins. 1536 recomputeLiveIns(MF); 1537 } 1538 } 1539 ++NumPrologProbed; 1540 MI.eraseFromParent(); 1541 } 1542 1543 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1544 MachineBasicBlock &MBB) const { 1545 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1546 DebugLoc dl; 1547 1548 if (MBBI != MBB.end()) 1549 dl = MBBI->getDebugLoc(); 1550 1551 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1552 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1553 1554 // Get alignment info so we know how to restore the SP. 1555 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1556 1557 // Get the number of bytes allocated from the FrameInfo. 1558 int64_t FrameSize = MFI.getStackSize(); 1559 1560 // Get processor type. 1561 bool isPPC64 = Subtarget.isPPC64(); 1562 1563 // Check if the link register (LR) has been saved. 1564 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1565 bool MustSaveLR = FI->mustSaveLR(); 1566 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1567 bool MustSaveCR = !MustSaveCRs.empty(); 1568 // Do we have a frame pointer and/or base pointer for this function? 1569 bool HasFP = hasFP(MF); 1570 bool HasBP = RegInfo->hasBasePointer(MF); 1571 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1572 bool HasROPProtect = Subtarget.hasROPProtect(); 1573 bool HasPrivileged = Subtarget.hasPrivileged(); 1574 1575 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1576 Register BPReg = RegInfo->getBaseRegister(MF); 1577 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1578 Register ScratchReg; 1579 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1580 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1581 : PPC::MTLR ); 1582 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1583 : PPC::LWZ ); 1584 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1585 : PPC::LIS ); 1586 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1587 : PPC::OR ); 1588 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1589 : PPC::ORI ); 1590 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1591 : PPC::ADDI ); 1592 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1593 : PPC::ADD4 ); 1594 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1595 : PPC::LWZ); 1596 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1597 : PPC::MTOCRF); 1598 const MCInstrDesc &HashChk = 1599 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8) 1600 : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK)); 1601 int64_t LROffset = getReturnSaveOffset(); 1602 1603 int64_t FPOffset = 0; 1604 1605 // Using the same bool variable as below to suppress compiler warnings. 1606 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1607 &TempReg); 1608 assert(SingleScratchReg && 1609 "Could not find an available scratch register"); 1610 1611 SingleScratchReg = ScratchReg == TempReg; 1612 1613 if (HasFP) { 1614 int FPIndex = FI->getFramePointerSaveIndex(); 1615 assert(FPIndex && "No Frame Pointer Save Slot!"); 1616 FPOffset = MFI.getObjectOffset(FPIndex); 1617 } 1618 1619 int64_t BPOffset = 0; 1620 if (HasBP) { 1621 int BPIndex = FI->getBasePointerSaveIndex(); 1622 assert(BPIndex && "No Base Pointer Save Slot!"); 1623 BPOffset = MFI.getObjectOffset(BPIndex); 1624 } 1625 1626 int64_t PBPOffset = 0; 1627 if (FI->usesPICBase()) { 1628 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1629 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1630 PBPOffset = MFI.getObjectOffset(PBPIndex); 1631 } 1632 1633 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1634 1635 if (IsReturnBlock) { 1636 unsigned RetOpcode = MBBI->getOpcode(); 1637 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1638 RetOpcode == PPC::TCRETURNdi || 1639 RetOpcode == PPC::TCRETURNai || 1640 RetOpcode == PPC::TCRETURNri8 || 1641 RetOpcode == PPC::TCRETURNdi8 || 1642 RetOpcode == PPC::TCRETURNai8; 1643 1644 if (UsesTCRet) { 1645 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1646 MachineOperand &StackAdjust = MBBI->getOperand(1); 1647 assert(StackAdjust.isImm() && "Expecting immediate value."); 1648 // Adjust stack pointer. 1649 int StackAdj = StackAdjust.getImm(); 1650 int Delta = StackAdj - MaxTCRetDelta; 1651 assert((Delta >= 0) && "Delta must be positive"); 1652 if (MaxTCRetDelta>0) 1653 FrameSize += (StackAdj +Delta); 1654 else 1655 FrameSize += StackAdj; 1656 } 1657 } 1658 1659 // Frames of 32KB & larger require special handling because they cannot be 1660 // indexed into with a simple LD/LWZ immediate offset operand. 1661 bool isLargeFrame = !isInt<16>(FrameSize); 1662 1663 // On targets without red zone, the SP needs to be restored last, so that 1664 // all live contents of the stack frame are upwards of the SP. This means 1665 // that we cannot restore SP just now, since there may be more registers 1666 // to restore from the stack frame (e.g. R31). If the frame size is not 1667 // a simple immediate value, we will need a spare register to hold the 1668 // restored SP. If the frame size is known and small, we can simply adjust 1669 // the offsets of the registers to be restored, and still use SP to restore 1670 // them. In such case, the final update of SP will be to add the frame 1671 // size to it. 1672 // To simplify the code, set RBReg to the base register used to restore 1673 // values from the stack, and set SPAdd to the value that needs to be added 1674 // to the SP at the end. The default values are as if red zone was present. 1675 unsigned RBReg = SPReg; 1676 uint64_t SPAdd = 0; 1677 1678 // Check if we can move the stack update instruction up the epilogue 1679 // past the callee saves. This will allow the move to LR instruction 1680 // to be executed before the restores of the callee saves which means 1681 // that the callee saves can hide the latency from the MTLR instrcution. 1682 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1683 if (stackUpdateCanBeMoved(MF)) { 1684 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1685 for (CalleeSavedInfo CSI : Info) { 1686 // If the callee saved register is spilled to another register abort the 1687 // stack update movement. 1688 if (CSI.isSpilledToReg()) { 1689 StackUpdateLoc = MBBI; 1690 break; 1691 } 1692 int FrIdx = CSI.getFrameIdx(); 1693 // If the frame index is not negative the callee saved info belongs to a 1694 // stack object that is not a fixed stack object. We ignore non-fixed 1695 // stack objects because we won't move the update of the stack pointer 1696 // past them. 1697 if (FrIdx >= 0) 1698 continue; 1699 1700 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1701 StackUpdateLoc--; 1702 else { 1703 // Abort the operation as we can't update all CSR restores. 1704 StackUpdateLoc = MBBI; 1705 break; 1706 } 1707 } 1708 } 1709 1710 if (FrameSize) { 1711 // In the prologue, the loaded (or persistent) stack pointer value is 1712 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1713 // zone add this offset back now. 1714 1715 // If the function has a base pointer, the stack pointer has been copied 1716 // to it so we can restore it by copying in the other direction. 1717 if (HasRedZone && HasBP) { 1718 BuildMI(MBB, MBBI, dl, OrInst, RBReg). 1719 addReg(BPReg). 1720 addReg(BPReg); 1721 } 1722 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1723 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1724 // call which invalidates the stack pointer value in SP(0). So we use the 1725 // value of R31 in this case. Similar situation exists with setjmp. 1726 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1727 assert(HasFP && "Expecting a valid frame pointer."); 1728 if (!HasRedZone) 1729 RBReg = FPReg; 1730 if (!isLargeFrame) { 1731 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1732 .addReg(FPReg).addImm(FrameSize); 1733 } else { 1734 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize); 1735 BuildMI(MBB, MBBI, dl, AddInst) 1736 .addReg(RBReg) 1737 .addReg(FPReg) 1738 .addReg(ScratchReg); 1739 } 1740 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1741 if (HasRedZone) { 1742 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1743 .addReg(SPReg) 1744 .addImm(FrameSize); 1745 } else { 1746 // Make sure that adding FrameSize will not overflow the max offset 1747 // size. 1748 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1749 "Local offsets should be negative"); 1750 SPAdd = FrameSize; 1751 FPOffset += FrameSize; 1752 BPOffset += FrameSize; 1753 PBPOffset += FrameSize; 1754 } 1755 } else { 1756 // We don't want to use ScratchReg as a base register, because it 1757 // could happen to be R0. Use FP instead, but make sure to preserve it. 1758 if (!HasRedZone) { 1759 // If FP is not saved, copy it to ScratchReg. 1760 if (!HasFP) 1761 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1762 .addReg(FPReg) 1763 .addReg(FPReg); 1764 RBReg = FPReg; 1765 } 1766 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1767 .addImm(0) 1768 .addReg(SPReg); 1769 } 1770 } 1771 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1772 // If there is no red zone, ScratchReg may be needed for holding a useful 1773 // value (although not the base register). Make sure it is not overwritten 1774 // too early. 1775 1776 // If we need to restore both the LR and the CR and we only have one 1777 // available scratch register, we must do them one at a time. 1778 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1779 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1780 // is live here. 1781 assert(HasRedZone && "Expecting red zone"); 1782 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1783 .addImm(CRSaveOffset) 1784 .addReg(SPReg); 1785 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1786 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1787 .addReg(TempReg, getKillRegState(i == e-1)); 1788 } 1789 1790 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1791 // LR is stored in the caller's stack frame. ScratchReg will be needed 1792 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1793 // a base register anyway, because it may happen to be R0. 1794 bool LoadedLR = false; 1795 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1796 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1797 .addImm(LROffset+SPAdd) 1798 .addReg(RBReg); 1799 LoadedLR = true; 1800 } 1801 1802 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1803 assert(RBReg == SPReg && "Should be using SP as a base register"); 1804 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1805 .addImm(CRSaveOffset) 1806 .addReg(RBReg); 1807 } 1808 1809 if (HasFP) { 1810 // If there is red zone, restore FP directly, since SP has already been 1811 // restored. Otherwise, restore the value of FP into ScratchReg. 1812 if (HasRedZone || RBReg == SPReg) 1813 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1814 .addImm(FPOffset) 1815 .addReg(SPReg); 1816 else 1817 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1818 .addImm(FPOffset) 1819 .addReg(RBReg); 1820 } 1821 1822 if (FI->usesPICBase()) 1823 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1824 .addImm(PBPOffset) 1825 .addReg(RBReg); 1826 1827 if (HasBP) 1828 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1829 .addImm(BPOffset) 1830 .addReg(RBReg); 1831 1832 // There is nothing more to be loaded from the stack, so now we can 1833 // restore SP: SP = RBReg + SPAdd. 1834 if (RBReg != SPReg || SPAdd != 0) { 1835 assert(!HasRedZone && "This should not happen with red zone"); 1836 // If SPAdd is 0, generate a copy. 1837 if (SPAdd == 0) 1838 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1839 .addReg(RBReg) 1840 .addReg(RBReg); 1841 else 1842 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1843 .addReg(RBReg) 1844 .addImm(SPAdd); 1845 1846 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1847 if (RBReg == FPReg) 1848 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1849 .addReg(ScratchReg) 1850 .addReg(ScratchReg); 1851 1852 // Now load the LR from the caller's stack frame. 1853 if (MustSaveLR && !LoadedLR) 1854 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1855 .addImm(LROffset) 1856 .addReg(SPReg); 1857 } 1858 1859 if (MustSaveCR && 1860 !(SingleScratchReg && MustSaveLR)) 1861 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1862 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1863 .addReg(TempReg, getKillRegState(i == e-1)); 1864 1865 if (MustSaveLR) { 1866 // If ROP protection is required, an extra instruction is added to compute a 1867 // hash and then compare it to the hash stored in the prologue. 1868 if (HasROPProtect) { 1869 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 1870 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 1871 assert((ImmOffset <= -8 && ImmOffset >= -512) && 1872 "ROP hash check location offset out of range."); 1873 assert(((ImmOffset & 0x7) == 0) && 1874 "ROP hash check location offset must be 8 byte aligned."); 1875 BuildMI(MBB, StackUpdateLoc, dl, HashChk) 1876 .addReg(ScratchReg) 1877 .addImm(ImmOffset) 1878 .addReg(SPReg); 1879 } 1880 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1881 } 1882 1883 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1884 // call optimization 1885 if (IsReturnBlock) { 1886 unsigned RetOpcode = MBBI->getOpcode(); 1887 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1888 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1889 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1890 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1891 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1892 1893 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1894 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1895 .addReg(SPReg).addImm(CallerAllocatedAmt); 1896 } else { 1897 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1898 .addImm(CallerAllocatedAmt >> 16); 1899 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1900 .addReg(ScratchReg, RegState::Kill) 1901 .addImm(CallerAllocatedAmt & 0xFFFF); 1902 BuildMI(MBB, MBBI, dl, AddInst) 1903 .addReg(SPReg) 1904 .addReg(FPReg) 1905 .addReg(ScratchReg); 1906 } 1907 } else { 1908 createTailCallBranchInstr(MBB); 1909 } 1910 } 1911 } 1912 1913 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1914 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1915 1916 // If we got this far a first terminator should exist. 1917 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1918 1919 DebugLoc dl = MBBI->getDebugLoc(); 1920 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1921 1922 // Create branch instruction for pseudo tail call return instruction. 1923 // The TCRETURNdi variants are direct calls. Valid targets for those are 1924 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1925 // since we can tail call external functions with PC-Rel (i.e. we don't need 1926 // to worry about different TOC pointers). Some of the external functions will 1927 // be MO_GlobalAddress while others like memcpy for example, are going to 1928 // be MO_ExternalSymbol. 1929 unsigned RetOpcode = MBBI->getOpcode(); 1930 if (RetOpcode == PPC::TCRETURNdi) { 1931 MBBI = MBB.getLastNonDebugInstr(); 1932 MachineOperand &JumpTarget = MBBI->getOperand(0); 1933 if (JumpTarget.isGlobal()) 1934 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1935 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1936 else if (JumpTarget.isSymbol()) 1937 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1938 addExternalSymbol(JumpTarget.getSymbolName()); 1939 else 1940 llvm_unreachable("Expecting Global or External Symbol"); 1941 } else if (RetOpcode == PPC::TCRETURNri) { 1942 MBBI = MBB.getLastNonDebugInstr(); 1943 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1944 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1945 } else if (RetOpcode == PPC::TCRETURNai) { 1946 MBBI = MBB.getLastNonDebugInstr(); 1947 MachineOperand &JumpTarget = MBBI->getOperand(0); 1948 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1949 } else if (RetOpcode == PPC::TCRETURNdi8) { 1950 MBBI = MBB.getLastNonDebugInstr(); 1951 MachineOperand &JumpTarget = MBBI->getOperand(0); 1952 if (JumpTarget.isGlobal()) 1953 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1954 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1955 else if (JumpTarget.isSymbol()) 1956 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1957 addExternalSymbol(JumpTarget.getSymbolName()); 1958 else 1959 llvm_unreachable("Expecting Global or External Symbol"); 1960 } else if (RetOpcode == PPC::TCRETURNri8) { 1961 MBBI = MBB.getLastNonDebugInstr(); 1962 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1963 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1964 } else if (RetOpcode == PPC::TCRETURNai8) { 1965 MBBI = MBB.getLastNonDebugInstr(); 1966 MachineOperand &JumpTarget = MBBI->getOperand(0); 1967 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1968 } 1969 } 1970 1971 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1972 BitVector &SavedRegs, 1973 RegScavenger *RS) const { 1974 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1975 1976 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1977 1978 // Do not explicitly save the callee saved VSRp registers. 1979 // The individual VSR subregisters will be saved instead. 1980 SavedRegs.reset(PPC::VSRp26); 1981 SavedRegs.reset(PPC::VSRp27); 1982 SavedRegs.reset(PPC::VSRp28); 1983 SavedRegs.reset(PPC::VSRp29); 1984 SavedRegs.reset(PPC::VSRp30); 1985 SavedRegs.reset(PPC::VSRp31); 1986 1987 // Save and clear the LR state. 1988 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1989 unsigned LR = RegInfo->getRARegister(); 1990 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1991 SavedRegs.reset(LR); 1992 1993 // Save R31 if necessary 1994 int FPSI = FI->getFramePointerSaveIndex(); 1995 const bool isPPC64 = Subtarget.isPPC64(); 1996 MachineFrameInfo &MFI = MF.getFrameInfo(); 1997 1998 // If the frame pointer save index hasn't been defined yet. 1999 if (!FPSI && needsFP(MF)) { 2000 // Find out what the fix offset of the frame pointer save area. 2001 int FPOffset = getFramePointerSaveOffset(); 2002 // Allocate the frame index for frame pointer save area. 2003 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 2004 // Save the result. 2005 FI->setFramePointerSaveIndex(FPSI); 2006 } 2007 2008 int BPSI = FI->getBasePointerSaveIndex(); 2009 if (!BPSI && RegInfo->hasBasePointer(MF)) { 2010 int BPOffset = getBasePointerSaveOffset(); 2011 // Allocate the frame index for the base pointer save area. 2012 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 2013 // Save the result. 2014 FI->setBasePointerSaveIndex(BPSI); 2015 } 2016 2017 // Reserve stack space for the PIC Base register (R30). 2018 // Only used in SVR4 32-bit. 2019 if (FI->usesPICBase()) { 2020 int PBPSI = MFI.CreateFixedObject(4, -8, true); 2021 FI->setPICBasePointerSaveIndex(PBPSI); 2022 } 2023 2024 // Make sure we don't explicitly spill r31, because, for example, we have 2025 // some inline asm which explicitly clobbers it, when we otherwise have a 2026 // frame pointer and are using r31's spill slot for the prologue/epilogue 2027 // code. Same goes for the base pointer and the PIC base register. 2028 if (needsFP(MF)) 2029 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 2030 if (RegInfo->hasBasePointer(MF)) 2031 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 2032 if (FI->usesPICBase()) 2033 SavedRegs.reset(PPC::R30); 2034 2035 // Reserve stack space to move the linkage area to in case of a tail call. 2036 int TCSPDelta = 0; 2037 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2038 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2039 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2040 } 2041 2042 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2043 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2044 // object at the offset of the CR-save slot in the linkage area. The actual 2045 // save and restore of the condition register will be created as part of the 2046 // prologue and epilogue insertion, but the FixedStack object is needed to 2047 // keep the CalleSavedInfo valid. 2048 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2049 SavedRegs.test(PPC::CR4))) { 2050 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2051 const int64_t SpillOffset = 2052 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2053 int FrameIdx = 2054 MFI.CreateFixedObject(SpillSize, SpillOffset, 2055 /* IsImmutable */ true, /* IsAliased */ false); 2056 FI->setCRSpillFrameIndex(FrameIdx); 2057 } 2058 } 2059 2060 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2061 RegScavenger *RS) const { 2062 // Get callee saved register information. 2063 MachineFrameInfo &MFI = MF.getFrameInfo(); 2064 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2065 2066 // If the function is shrink-wrapped, and if the function has a tail call, the 2067 // tail call might not be in the new RestoreBlock, so real branch instruction 2068 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2069 // RestoreBlock. So we handle this case here. 2070 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2071 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2072 for (MachineBasicBlock &MBB : MF) { 2073 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2074 createTailCallBranchInstr(MBB); 2075 } 2076 } 2077 2078 // Early exit if no callee saved registers are modified! 2079 if (CSI.empty() && !needsFP(MF)) { 2080 addScavengingSpillSlot(MF, RS); 2081 return; 2082 } 2083 2084 unsigned MinGPR = PPC::R31; 2085 unsigned MinG8R = PPC::X31; 2086 unsigned MinFPR = PPC::F31; 2087 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2088 2089 bool HasGPSaveArea = false; 2090 bool HasG8SaveArea = false; 2091 bool HasFPSaveArea = false; 2092 bool HasVRSaveArea = false; 2093 2094 SmallVector<CalleeSavedInfo, 18> GPRegs; 2095 SmallVector<CalleeSavedInfo, 18> G8Regs; 2096 SmallVector<CalleeSavedInfo, 18> FPRegs; 2097 SmallVector<CalleeSavedInfo, 18> VRegs; 2098 2099 for (const CalleeSavedInfo &I : CSI) { 2100 Register Reg = I.getReg(); 2101 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2102 (Reg != PPC::X2 && Reg != PPC::R2)) && 2103 "Not expecting to try to spill R2 in a function that must save TOC"); 2104 if (PPC::GPRCRegClass.contains(Reg)) { 2105 HasGPSaveArea = true; 2106 2107 GPRegs.push_back(I); 2108 2109 if (Reg < MinGPR) { 2110 MinGPR = Reg; 2111 } 2112 } else if (PPC::G8RCRegClass.contains(Reg)) { 2113 HasG8SaveArea = true; 2114 2115 G8Regs.push_back(I); 2116 2117 if (Reg < MinG8R) { 2118 MinG8R = Reg; 2119 } 2120 } else if (PPC::F8RCRegClass.contains(Reg)) { 2121 HasFPSaveArea = true; 2122 2123 FPRegs.push_back(I); 2124 2125 if (Reg < MinFPR) { 2126 MinFPR = Reg; 2127 } 2128 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2129 PPC::CRRCRegClass.contains(Reg)) { 2130 ; // do nothing, as we already know whether CRs are spilled 2131 } else if (PPC::VRRCRegClass.contains(Reg) || 2132 PPC::SPERCRegClass.contains(Reg)) { 2133 // Altivec and SPE are mutually exclusive, but have the same stack 2134 // alignment requirements, so overload the save area for both cases. 2135 HasVRSaveArea = true; 2136 2137 VRegs.push_back(I); 2138 2139 if (Reg < MinVR) { 2140 MinVR = Reg; 2141 } 2142 } else { 2143 llvm_unreachable("Unknown RegisterClass!"); 2144 } 2145 } 2146 2147 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2148 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2149 2150 int64_t LowerBound = 0; 2151 2152 // Take into account stack space reserved for tail calls. 2153 int TCSPDelta = 0; 2154 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2155 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2156 LowerBound = TCSPDelta; 2157 } 2158 2159 // The Floating-point register save area is right below the back chain word 2160 // of the previous stack frame. 2161 if (HasFPSaveArea) { 2162 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2163 int FI = FPRegs[i].getFrameIdx(); 2164 2165 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2166 } 2167 2168 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2169 } 2170 2171 // Check whether the frame pointer register is allocated. If so, make sure it 2172 // is spilled to the correct offset. 2173 if (needsFP(MF)) { 2174 int FI = PFI->getFramePointerSaveIndex(); 2175 assert(FI && "No Frame Pointer Save Slot!"); 2176 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2177 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2178 HasGPSaveArea = true; 2179 } 2180 2181 if (PFI->usesPICBase()) { 2182 int FI = PFI->getPICBasePointerSaveIndex(); 2183 assert(FI && "No PIC Base Pointer Save Slot!"); 2184 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2185 2186 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2187 HasGPSaveArea = true; 2188 } 2189 2190 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2191 if (RegInfo->hasBasePointer(MF)) { 2192 int FI = PFI->getBasePointerSaveIndex(); 2193 assert(FI && "No Base Pointer Save Slot!"); 2194 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2195 2196 Register BP = RegInfo->getBaseRegister(MF); 2197 if (PPC::G8RCRegClass.contains(BP)) { 2198 MinG8R = std::min<unsigned>(MinG8R, BP); 2199 HasG8SaveArea = true; 2200 } else if (PPC::GPRCRegClass.contains(BP)) { 2201 MinGPR = std::min<unsigned>(MinGPR, BP); 2202 HasGPSaveArea = true; 2203 } 2204 } 2205 2206 // General register save area starts right below the Floating-point 2207 // register save area. 2208 if (HasGPSaveArea || HasG8SaveArea) { 2209 // Move general register save area spill slots down, taking into account 2210 // the size of the Floating-point register save area. 2211 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2212 if (!GPRegs[i].isSpilledToReg()) { 2213 int FI = GPRegs[i].getFrameIdx(); 2214 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2215 } 2216 } 2217 2218 // Move general register save area spill slots down, taking into account 2219 // the size of the Floating-point register save area. 2220 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2221 if (!G8Regs[i].isSpilledToReg()) { 2222 int FI = G8Regs[i].getFrameIdx(); 2223 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2224 } 2225 } 2226 2227 unsigned MinReg = 2228 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2229 TRI->getEncodingValue(MinG8R)); 2230 2231 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2232 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2233 } 2234 2235 // For 32-bit only, the CR save area is below the general register 2236 // save area. For 64-bit SVR4, the CR save area is addressed relative 2237 // to the stack pointer and hence does not need an adjustment here. 2238 // Only CR2 (the first nonvolatile spilled) has an associated frame 2239 // index so that we have a single uniform save area. 2240 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2241 // Adjust the frame index of the CR spill slot. 2242 for (const auto &CSInfo : CSI) { 2243 if (CSInfo.getReg() == PPC::CR2) { 2244 int FI = CSInfo.getFrameIdx(); 2245 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2246 break; 2247 } 2248 } 2249 2250 LowerBound -= 4; // The CR save area is always 4 bytes long. 2251 } 2252 2253 // Both Altivec and SPE have the same alignment and padding requirements 2254 // within the stack frame. 2255 if (HasVRSaveArea) { 2256 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2257 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2258 // we are using negative number here (the stack grows downward). We should 2259 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2260 // is the alignment size ( n = 16 here) and y is the size after aligning. 2261 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2262 LowerBound &= ~(15); 2263 2264 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2265 int FI = VRegs[i].getFrameIdx(); 2266 2267 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2268 } 2269 } 2270 2271 addScavengingSpillSlot(MF, RS); 2272 } 2273 2274 void 2275 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2276 RegScavenger *RS) const { 2277 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2278 // a large stack, which will require scavenging a register to materialize a 2279 // large offset. 2280 2281 // We need to have a scavenger spill slot for spills if the frame size is 2282 // large. In case there is no free register for large-offset addressing, 2283 // this slot is used for the necessary emergency spill. Also, we need the 2284 // slot for dynamic stack allocations. 2285 2286 // The scavenger might be invoked if the frame offset does not fit into 2287 // the 16-bit immediate in case of not SPE and 8-bit in case of SPE. 2288 // We don't know the complete frame size here because we've not yet computed 2289 // callee-saved register spills or the needed alignment padding. 2290 unsigned StackSize = determineFrameLayout(MF, true); 2291 MachineFrameInfo &MFI = MF.getFrameInfo(); 2292 bool NeedSpills = Subtarget.hasSPE() ? !isInt<8>(StackSize) : !isInt<16>(StackSize); 2293 2294 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2295 (hasSpills(MF) && NeedSpills)) { 2296 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2297 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2298 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2299 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2300 unsigned Size = TRI.getSpillSize(RC); 2301 Align Alignment = TRI.getSpillAlign(RC); 2302 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2303 2304 // Might we have over-aligned allocas? 2305 bool HasAlVars = 2306 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2307 2308 // These kinds of spills might need two registers. 2309 if (spillsCR(MF) || HasAlVars) 2310 RS->addScavengingFrameIndex( 2311 MFI.CreateStackObject(Size, Alignment, false)); 2312 } 2313 } 2314 2315 // This function checks if a callee saved gpr can be spilled to a volatile 2316 // vector register. This occurs for leaf functions when the option 2317 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2318 // which were not spilled to vectors, return false so the target independent 2319 // code can handle them by assigning a FrameIdx to a stack slot. 2320 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2321 MachineFunction &MF, const TargetRegisterInfo *TRI, 2322 std::vector<CalleeSavedInfo> &CSI) const { 2323 2324 if (CSI.empty()) 2325 return true; // Early exit if no callee saved registers are modified! 2326 2327 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2328 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2329 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2330 2331 if (Subtarget.hasSPE()) { 2332 // In case of SPE we only have SuperRegs and CRs 2333 // in our CalleSaveInfo vector. 2334 2335 for (auto &CalleeSaveReg : CSI) { 2336 MCPhysReg Reg = CalleeSaveReg.getReg(); 2337 MCPhysReg Lower = RegInfo->getSubReg(Reg, 1); 2338 MCPhysReg Higher = RegInfo->getSubReg(Reg, 2); 2339 2340 if ( // Check only for SuperRegs. 2341 Lower && 2342 // Replace Reg if only lower-32 bits modified 2343 !MRI.isPhysRegModified(Higher)) 2344 CalleeSaveReg = CalleeSavedInfo(Lower); 2345 } 2346 } 2347 2348 // Early exit if cannot spill gprs to volatile vector registers. 2349 MachineFrameInfo &MFI = MF.getFrameInfo(); 2350 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2351 return false; 2352 2353 // Build a BitVector of VSRs that can be used for spilling GPRs. 2354 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2355 BitVector BVCalleeSaved(TRI->getNumRegs()); 2356 for (unsigned i = 0; CSRegs[i]; ++i) 2357 BVCalleeSaved.set(CSRegs[i]); 2358 2359 for (unsigned Reg : BVAllocatable.set_bits()) { 2360 // Set to 0 if the register is not a volatile VSX register, or if it is 2361 // used in the function. 2362 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) || 2363 MRI.isPhysRegUsed(Reg)) 2364 BVAllocatable.reset(Reg); 2365 } 2366 2367 bool AllSpilledToReg = true; 2368 unsigned LastVSRUsedForSpill = 0; 2369 for (auto &CS : CSI) { 2370 if (BVAllocatable.none()) 2371 return false; 2372 2373 Register Reg = CS.getReg(); 2374 2375 if (!PPC::G8RCRegClass.contains(Reg)) { 2376 AllSpilledToReg = false; 2377 continue; 2378 } 2379 2380 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs 2381 // into one VSR using the mtvsrdd instruction. 2382 if (LastVSRUsedForSpill != 0) { 2383 CS.setDstReg(LastVSRUsedForSpill); 2384 BVAllocatable.reset(LastVSRUsedForSpill); 2385 LastVSRUsedForSpill = 0; 2386 continue; 2387 } 2388 2389 unsigned VolatileVFReg = BVAllocatable.find_first(); 2390 if (VolatileVFReg < BVAllocatable.size()) { 2391 CS.setDstReg(VolatileVFReg); 2392 LastVSRUsedForSpill = VolatileVFReg; 2393 } else { 2394 AllSpilledToReg = false; 2395 } 2396 } 2397 return AllSpilledToReg; 2398 } 2399 2400 bool PPCFrameLowering::spillCalleeSavedRegisters( 2401 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2402 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2403 2404 MachineFunction *MF = MBB.getParent(); 2405 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2406 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2407 bool MustSaveTOC = FI->mustSaveTOC(); 2408 DebugLoc DL; 2409 bool CRSpilled = false; 2410 MachineInstrBuilder CRMIB; 2411 BitVector Spilled(TRI->getNumRegs()); 2412 2413 VSRContainingGPRs.clear(); 2414 2415 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one 2416 // or two GPRs, so we need table to record information for later save/restore. 2417 for (const CalleeSavedInfo &Info : CSI) { 2418 if (Info.isSpilledToReg()) { 2419 auto &SpilledVSR = 2420 VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second; 2421 assert(SpilledVSR.second == 0 && 2422 "Can't spill more than two GPRs into VSR!"); 2423 if (SpilledVSR.first == 0) 2424 SpilledVSR.first = Info.getReg(); 2425 else 2426 SpilledVSR.second = Info.getReg(); 2427 } 2428 } 2429 2430 for (const CalleeSavedInfo &I : CSI) { 2431 Register Reg = I.getReg(); 2432 2433 // CR2 through CR4 are the nonvolatile CR fields. 2434 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2435 2436 // Add the callee-saved register as live-in; it's killed at the spill. 2437 // Do not do this for callee-saved registers that are live-in to the 2438 // function because they will already be marked live-in and this will be 2439 // adding it for a second time. It is an error to add the same register 2440 // to the set more than once. 2441 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2442 bool IsLiveIn = MRI.isLiveIn(Reg); 2443 if (!IsLiveIn) 2444 MBB.addLiveIn(Reg); 2445 2446 if (CRSpilled && IsCRField) { 2447 CRMIB.addReg(Reg, RegState::ImplicitKill); 2448 continue; 2449 } 2450 2451 // The actual spill will happen in the prologue. 2452 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2453 continue; 2454 2455 // Insert the spill to the stack frame. 2456 if (IsCRField) { 2457 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2458 if (!Subtarget.is32BitELFABI()) { 2459 // The actual spill will happen at the start of the prologue. 2460 FuncInfo->addMustSaveCR(Reg); 2461 } else { 2462 CRSpilled = true; 2463 FuncInfo->setSpillsCR(); 2464 2465 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2466 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2467 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2468 .addReg(Reg, RegState::ImplicitKill); 2469 2470 MBB.insert(MI, CRMIB); 2471 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2472 .addReg(PPC::R12, 2473 getKillRegState(true)), 2474 I.getFrameIdx())); 2475 } 2476 } else { 2477 if (I.isSpilledToReg()) { 2478 unsigned Dst = I.getDstReg(); 2479 2480 if (Spilled[Dst]) 2481 continue; 2482 2483 if (VSRContainingGPRs[Dst].second != 0) { 2484 assert(Subtarget.hasP9Vector() && 2485 "mtvsrdd is unavailable on pre-P9 targets."); 2486 2487 NumPESpillVSR += 2; 2488 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst) 2489 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)) 2490 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true)); 2491 } else if (VSRContainingGPRs[Dst].second == 0) { 2492 assert(Subtarget.hasP8Vector() && 2493 "Can't move GPR to VSR on pre-P8 targets."); 2494 2495 ++NumPESpillVSR; 2496 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), 2497 TRI->getSubReg(Dst, PPC::sub_64)) 2498 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)); 2499 } else { 2500 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2501 } 2502 Spilled.set(Dst); 2503 } else { 2504 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2505 // Use !IsLiveIn for the kill flag. 2506 // We do not want to kill registers that are live in this function 2507 // before their use because they will become undefined registers. 2508 // Functions without NoUnwind need to preserve the order of elements in 2509 // saved vector registers. 2510 if (Subtarget.needsSwapsForVSXMemOps() && 2511 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2512 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2513 I.getFrameIdx(), RC, TRI); 2514 else 2515 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC, 2516 TRI, Register()); 2517 } 2518 } 2519 } 2520 return true; 2521 } 2522 2523 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2524 bool CR4Spilled, MachineBasicBlock &MBB, 2525 MachineBasicBlock::iterator MI, 2526 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2527 2528 MachineFunction *MF = MBB.getParent(); 2529 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2530 DebugLoc DL; 2531 unsigned MoveReg = PPC::R12; 2532 2533 // 32-bit: FP-relative 2534 MBB.insert(MI, 2535 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2536 CSI[CSIIndex].getFrameIdx())); 2537 2538 unsigned RestoreOp = PPC::MTOCRF; 2539 if (CR2Spilled) 2540 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2541 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2542 2543 if (CR3Spilled) 2544 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2545 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2546 2547 if (CR4Spilled) 2548 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2549 .addReg(MoveReg, getKillRegState(true))); 2550 } 2551 2552 MachineBasicBlock::iterator PPCFrameLowering:: 2553 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2554 MachineBasicBlock::iterator I) const { 2555 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2556 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2557 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2558 // Add (actually subtract) back the amount the callee popped on return. 2559 if (int CalleeAmt = I->getOperand(1).getImm()) { 2560 bool is64Bit = Subtarget.isPPC64(); 2561 CalleeAmt *= -1; 2562 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2563 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2564 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2565 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2566 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2567 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2568 const DebugLoc &dl = I->getDebugLoc(); 2569 2570 if (isInt<16>(CalleeAmt)) { 2571 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2572 .addReg(StackReg, RegState::Kill) 2573 .addImm(CalleeAmt); 2574 } else { 2575 MachineBasicBlock::iterator MBBI = I; 2576 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2577 .addImm(CalleeAmt >> 16); 2578 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2579 .addReg(TmpReg, RegState::Kill) 2580 .addImm(CalleeAmt & 0xFFFF); 2581 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2582 .addReg(StackReg, RegState::Kill) 2583 .addReg(TmpReg); 2584 } 2585 } 2586 } 2587 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2588 return MBB.erase(I); 2589 } 2590 2591 static bool isCalleeSavedCR(unsigned Reg) { 2592 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2593 } 2594 2595 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2596 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2597 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2598 MachineFunction *MF = MBB.getParent(); 2599 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2600 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2601 bool MustSaveTOC = FI->mustSaveTOC(); 2602 bool CR2Spilled = false; 2603 bool CR3Spilled = false; 2604 bool CR4Spilled = false; 2605 unsigned CSIIndex = 0; 2606 BitVector Restored(TRI->getNumRegs()); 2607 2608 // Initialize insertion-point logic; we will be restoring in reverse 2609 // order of spill. 2610 MachineBasicBlock::iterator I = MI, BeforeI = I; 2611 bool AtStart = I == MBB.begin(); 2612 2613 if (!AtStart) 2614 --BeforeI; 2615 2616 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2617 Register Reg = CSI[i].getReg(); 2618 2619 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2620 continue; 2621 2622 // Restore of callee saved condition register field is handled during 2623 // epilogue insertion. 2624 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2625 continue; 2626 2627 if (Reg == PPC::CR2) { 2628 CR2Spilled = true; 2629 // The spill slot is associated only with CR2, which is the 2630 // first nonvolatile spilled. Save it here. 2631 CSIIndex = i; 2632 continue; 2633 } else if (Reg == PPC::CR3) { 2634 CR3Spilled = true; 2635 continue; 2636 } else if (Reg == PPC::CR4) { 2637 CR4Spilled = true; 2638 continue; 2639 } else { 2640 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2641 // least one CR register, restore all spilled CRs together. 2642 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2643 bool is31 = needsFP(*MF); 2644 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2645 CSIIndex); 2646 CR2Spilled = CR3Spilled = CR4Spilled = false; 2647 } 2648 2649 if (CSI[i].isSpilledToReg()) { 2650 DebugLoc DL; 2651 unsigned Dst = CSI[i].getDstReg(); 2652 2653 if (Restored[Dst]) 2654 continue; 2655 2656 if (VSRContainingGPRs[Dst].second != 0) { 2657 assert(Subtarget.hasP9Vector()); 2658 NumPEReloadVSR += 2; 2659 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD), 2660 VSRContainingGPRs[Dst].second) 2661 .addReg(Dst); 2662 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2663 VSRContainingGPRs[Dst].first) 2664 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2665 } else if (VSRContainingGPRs[Dst].second == 0) { 2666 assert(Subtarget.hasP8Vector()); 2667 ++NumPEReloadVSR; 2668 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2669 VSRContainingGPRs[Dst].first) 2670 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2671 } else { 2672 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2673 } 2674 2675 Restored.set(Dst); 2676 2677 } else { 2678 // Default behavior for non-CR saves. 2679 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2680 2681 // Functions without NoUnwind need to preserve the order of elements in 2682 // saved vector registers. 2683 if (Subtarget.needsSwapsForVSXMemOps() && 2684 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2685 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2686 TRI); 2687 else 2688 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI, 2689 Register()); 2690 2691 assert(I != MBB.begin() && 2692 "loadRegFromStackSlot didn't insert any code!"); 2693 } 2694 } 2695 2696 // Insert in reverse order. 2697 if (AtStart) 2698 I = MBB.begin(); 2699 else { 2700 I = BeforeI; 2701 ++I; 2702 } 2703 } 2704 2705 // If we haven't yet spilled the CRs, do so now. 2706 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2707 assert(Subtarget.is32BitELFABI() && 2708 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2709 bool is31 = needsFP(*MF); 2710 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2711 } 2712 2713 return true; 2714 } 2715 2716 uint64_t PPCFrameLowering::getTOCSaveOffset() const { 2717 return TOCSaveOffset; 2718 } 2719 2720 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const { 2721 return FramePointerSaveOffset; 2722 } 2723 2724 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const { 2725 return BasePointerSaveOffset; 2726 } 2727 2728 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2729 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2730 return false; 2731 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI(); 2732 } 2733 2734 uint64_t PPCFrameLowering::getStackThreshold() const { 2735 // On PPC64, we use `stux r1, r1, <scratch_reg>` to extend the stack; 2736 // use `add r1, r1, <scratch_reg>` to release the stack frame. 2737 // Scratch register contains a signed 64-bit number, which is negative 2738 // when extending the stack and is positive when releasing the stack frame. 2739 // To make `stux` and `add` paired, the absolute value of the number contained 2740 // in the scratch register should be the same. Thus the maximum stack size 2741 // is (2^63)-1, i.e., LONG_MAX. 2742 if (Subtarget.isPPC64()) 2743 return LONG_MAX; 2744 2745 return TargetFrameLowering::getStackThreshold(); 2746 } 2747