1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PPC implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCFrameLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPCInstrBuilder.h" 16 #include "PPCInstrInfo.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RegisterScavenging.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Target/TargetOptions.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "framelowering" 34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue"); 35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue"); 36 STATISTIC(NumPrologProbed, "Number of prologues probed"); 37 38 static cl::opt<bool> 39 EnablePEVectorSpills("ppc-enable-pe-vector-spills", 40 cl::desc("Enable spills in prologue to vector registers."), 41 cl::init(false), cl::Hidden); 42 43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) { 44 if (STI.isAIXABI()) 45 return STI.isPPC64() ? 16 : 8; 46 // SVR4 ABI: 47 return STI.isPPC64() ? 16 : 4; 48 } 49 50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) { 51 if (STI.isAIXABI()) 52 return STI.isPPC64() ? 40 : 20; 53 return STI.isELFv2ABI() ? 24 : 40; 54 } 55 56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) { 57 // First slot in the general register save area. 58 return STI.isPPC64() ? -8U : -4U; 59 } 60 61 static unsigned computeLinkageSize(const PPCSubtarget &STI) { 62 if (STI.isAIXABI() || STI.isPPC64()) 63 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4); 64 65 // 32-bit SVR4 ABI: 66 return 8; 67 } 68 69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) { 70 // Third slot in the general purpose register save area. 71 if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent()) 72 return -12U; 73 74 // Second slot in the general purpose register save area. 75 return STI.isPPC64() ? -16U : -8U; 76 } 77 78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) { 79 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8; 80 } 81 82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI) 83 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, 84 STI.getPlatformStackAlignment(), 0), 85 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)), 86 TOCSaveOffset(computeTOCSaveOffset(Subtarget)), 87 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)), 88 LinkageSize(computeLinkageSize(Subtarget)), 89 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)), 90 CRSaveOffset(computeCRSaveOffset(Subtarget)) {} 91 92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack. 93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots( 94 unsigned &NumEntries) const { 95 96 // Floating-point register save area offsets. 97 #define CALLEE_SAVED_FPRS \ 98 {PPC::F31, -8}, \ 99 {PPC::F30, -16}, \ 100 {PPC::F29, -24}, \ 101 {PPC::F28, -32}, \ 102 {PPC::F27, -40}, \ 103 {PPC::F26, -48}, \ 104 {PPC::F25, -56}, \ 105 {PPC::F24, -64}, \ 106 {PPC::F23, -72}, \ 107 {PPC::F22, -80}, \ 108 {PPC::F21, -88}, \ 109 {PPC::F20, -96}, \ 110 {PPC::F19, -104}, \ 111 {PPC::F18, -112}, \ 112 {PPC::F17, -120}, \ 113 {PPC::F16, -128}, \ 114 {PPC::F15, -136}, \ 115 {PPC::F14, -144} 116 117 // 32-bit general purpose register save area offsets shared by ELF and 118 // AIX. AIX has an extra CSR with r13. 119 #define CALLEE_SAVED_GPRS32 \ 120 {PPC::R31, -4}, \ 121 {PPC::R30, -8}, \ 122 {PPC::R29, -12}, \ 123 {PPC::R28, -16}, \ 124 {PPC::R27, -20}, \ 125 {PPC::R26, -24}, \ 126 {PPC::R25, -28}, \ 127 {PPC::R24, -32}, \ 128 {PPC::R23, -36}, \ 129 {PPC::R22, -40}, \ 130 {PPC::R21, -44}, \ 131 {PPC::R20, -48}, \ 132 {PPC::R19, -52}, \ 133 {PPC::R18, -56}, \ 134 {PPC::R17, -60}, \ 135 {PPC::R16, -64}, \ 136 {PPC::R15, -68}, \ 137 {PPC::R14, -72} 138 139 // 64-bit general purpose register save area offsets. 140 #define CALLEE_SAVED_GPRS64 \ 141 {PPC::X31, -8}, \ 142 {PPC::X30, -16}, \ 143 {PPC::X29, -24}, \ 144 {PPC::X28, -32}, \ 145 {PPC::X27, -40}, \ 146 {PPC::X26, -48}, \ 147 {PPC::X25, -56}, \ 148 {PPC::X24, -64}, \ 149 {PPC::X23, -72}, \ 150 {PPC::X22, -80}, \ 151 {PPC::X21, -88}, \ 152 {PPC::X20, -96}, \ 153 {PPC::X19, -104}, \ 154 {PPC::X18, -112}, \ 155 {PPC::X17, -120}, \ 156 {PPC::X16, -128}, \ 157 {PPC::X15, -136}, \ 158 {PPC::X14, -144} 159 160 // Vector register save area offsets. 161 #define CALLEE_SAVED_VRS \ 162 {PPC::V31, -16}, \ 163 {PPC::V30, -32}, \ 164 {PPC::V29, -48}, \ 165 {PPC::V28, -64}, \ 166 {PPC::V27, -80}, \ 167 {PPC::V26, -96}, \ 168 {PPC::V25, -112}, \ 169 {PPC::V24, -128}, \ 170 {PPC::V23, -144}, \ 171 {PPC::V22, -160}, \ 172 {PPC::V21, -176}, \ 173 {PPC::V20, -192} 174 175 // Note that the offsets here overlap, but this is fixed up in 176 // processFunctionBeforeFrameFinalized. 177 178 static const SpillSlot ELFOffsets32[] = { 179 CALLEE_SAVED_FPRS, 180 CALLEE_SAVED_GPRS32, 181 182 // CR save area offset. We map each of the nonvolatile CR fields 183 // to the slot for CR2, which is the first of the nonvolatile CR 184 // fields to be assigned, so that we only allocate one save slot. 185 // See PPCRegisterInfo::hasReservedSpillSlot() for more information. 186 {PPC::CR2, -4}, 187 188 // VRSAVE save area offset. 189 {PPC::VRSAVE, -4}, 190 191 CALLEE_SAVED_VRS, 192 193 // SPE register save area (overlaps Vector save area). 194 {PPC::S31, -8}, 195 {PPC::S30, -16}, 196 {PPC::S29, -24}, 197 {PPC::S28, -32}, 198 {PPC::S27, -40}, 199 {PPC::S26, -48}, 200 {PPC::S25, -56}, 201 {PPC::S24, -64}, 202 {PPC::S23, -72}, 203 {PPC::S22, -80}, 204 {PPC::S21, -88}, 205 {PPC::S20, -96}, 206 {PPC::S19, -104}, 207 {PPC::S18, -112}, 208 {PPC::S17, -120}, 209 {PPC::S16, -128}, 210 {PPC::S15, -136}, 211 {PPC::S14, -144}}; 212 213 static const SpillSlot ELFOffsets64[] = { 214 CALLEE_SAVED_FPRS, 215 CALLEE_SAVED_GPRS64, 216 217 // VRSAVE save area offset. 218 {PPC::VRSAVE, -4}, 219 CALLEE_SAVED_VRS 220 }; 221 222 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS, 223 CALLEE_SAVED_GPRS32, 224 // Add AIX's extra CSR. 225 {PPC::R13, -76}, 226 CALLEE_SAVED_VRS}; 227 228 static const SpillSlot AIXOffsets64[] = { 229 CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS}; 230 231 if (Subtarget.is64BitELFABI()) { 232 NumEntries = std::size(ELFOffsets64); 233 return ELFOffsets64; 234 } 235 236 if (Subtarget.is32BitELFABI()) { 237 NumEntries = std::size(ELFOffsets32); 238 return ELFOffsets32; 239 } 240 241 assert(Subtarget.isAIXABI() && "Unexpected ABI."); 242 243 if (Subtarget.isPPC64()) { 244 NumEntries = std::size(AIXOffsets64); 245 return AIXOffsets64; 246 } 247 248 NumEntries = std::size(AIXOffsets32); 249 return AIXOffsets32; 250 } 251 252 static bool spillsCR(const MachineFunction &MF) { 253 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 254 return FuncInfo->isCRSpilled(); 255 } 256 257 static bool hasSpills(const MachineFunction &MF) { 258 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 259 return FuncInfo->hasSpills(); 260 } 261 262 static bool hasNonRISpills(const MachineFunction &MF) { 263 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 264 return FuncInfo->hasNonRISpills(); 265 } 266 267 /// MustSaveLR - Return true if this function requires that we save the LR 268 /// register onto the stack in the prolog and restore it in the epilog of the 269 /// function. 270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) { 271 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>(); 272 273 // We need a save/restore of LR if there is any def of LR (which is 274 // defined by calls, including the PIC setup sequence), or if there is 275 // some use of the LR stack slot (e.g. for builtin_return_address). 276 // (LR comes in 32 and 64 bit versions.) 277 MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR); 278 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired(); 279 } 280 281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum 282 /// call frame size. Update the MachineFunction object with the stack size. 283 uint64_t 284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF, 285 bool UseEstimate) const { 286 unsigned NewMaxCallFrameSize = 0; 287 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate, 288 &NewMaxCallFrameSize); 289 MF.getFrameInfo().setStackSize(FrameSize); 290 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize); 291 return FrameSize; 292 } 293 294 /// determineFrameLayout - Determine the size of the frame and maximum call 295 /// frame size. 296 uint64_t 297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF, 298 bool UseEstimate, 299 unsigned *NewMaxCallFrameSize) const { 300 const MachineFrameInfo &MFI = MF.getFrameInfo(); 301 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 302 303 // Get the number of bytes to allocate from the FrameInfo 304 uint64_t FrameSize = 305 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize(); 306 307 // Get stack alignments. The frame must be aligned to the greatest of these: 308 Align TargetAlign = getStackAlign(); // alignment required per the ABI 309 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame 310 Align Alignment = std::max(TargetAlign, MaxAlign); 311 312 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 313 314 unsigned LR = RegInfo->getRARegister(); 315 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone); 316 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca. 317 !MFI.adjustsStack() && // No calls. 318 !MustSaveLR(MF, LR) && // No need to save LR. 319 !FI->mustSaveTOC() && // No need to save TOC. 320 !RegInfo->hasBasePointer(MF); // No special alignment. 321 322 // Note: for PPC32 SVR4ABI, we can still generate stackless 323 // code if all local vars are reg-allocated. 324 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize(); 325 326 // Check whether we can skip adjusting the stack pointer (by using red zone) 327 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) { 328 // No need for frame 329 return 0; 330 } 331 332 // Get the maximum call frame size of all the calls. 333 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 334 335 // Maximum call frame needs to be at least big enough for linkage area. 336 unsigned minCallFrameSize = getLinkageSize(); 337 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); 338 339 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so 340 // that allocations will be aligned. 341 if (MFI.hasVarSizedObjects()) 342 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment); 343 344 // Update the new max call frame size if the caller passes in a valid pointer. 345 if (NewMaxCallFrameSize) 346 *NewMaxCallFrameSize = maxCallFrameSize; 347 348 // Include call frame size in total. 349 FrameSize += maxCallFrameSize; 350 351 // Make sure the frame is aligned. 352 FrameSize = alignTo(FrameSize, Alignment); 353 354 return FrameSize; 355 } 356 357 // hasFP - Return true if the specified function actually has a dedicated frame 358 // pointer register. 359 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const { 360 const MachineFrameInfo &MFI = MF.getFrameInfo(); 361 // FIXME: This is pretty much broken by design: hasFP() might be called really 362 // early, before the stack layout was calculated and thus hasFP() might return 363 // true or false here depending on the time of call. 364 return (MFI.getStackSize()) && needsFP(MF); 365 } 366 367 // needsFP - Return true if the specified function should have a dedicated frame 368 // pointer register. This is true if the function has variable sized allocas or 369 // if frame pointer elimination is disabled. 370 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const { 371 const MachineFrameInfo &MFI = MF.getFrameInfo(); 372 373 // Naked functions have no stack frame pushed, so we don't have a frame 374 // pointer. 375 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 376 return false; 377 378 return MF.getTarget().Options.DisableFramePointerElim(MF) || 379 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() || 380 MF.exposesReturnsTwice() || 381 (MF.getTarget().Options.GuaranteedTailCallOpt && 382 MF.getInfo<PPCFunctionInfo>()->hasFastCall()); 383 } 384 385 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const { 386 bool is31 = needsFP(MF); 387 unsigned FPReg = is31 ? PPC::R31 : PPC::R1; 388 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1; 389 390 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 391 bool HasBP = RegInfo->hasBasePointer(MF); 392 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg; 393 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg; 394 395 for (MachineBasicBlock &MBB : MF) 396 for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) { 397 --MBBI; 398 for (MachineOperand &MO : MBBI->operands()) { 399 if (!MO.isReg()) 400 continue; 401 402 switch (MO.getReg()) { 403 case PPC::FP: 404 MO.setReg(FPReg); 405 break; 406 case PPC::FP8: 407 MO.setReg(FP8Reg); 408 break; 409 case PPC::BP: 410 MO.setReg(BPReg); 411 break; 412 case PPC::BP8: 413 MO.setReg(BP8Reg); 414 break; 415 416 } 417 } 418 } 419 } 420 421 /* This function will do the following: 422 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12 423 respectively (defaults recommended by the ABI) and return true 424 - If MBB is not an entry block, initialize the register scavenger and look 425 for available registers. 426 - If the defaults (R0/R12) are available, return true 427 - If TwoUniqueRegsRequired is set to true, it looks for two unique 428 registers. Otherwise, look for a single available register. 429 - If the required registers are found, set SR1 and SR2 and return true. 430 - If the required registers are not found, set SR2 or both SR1 and SR2 to 431 PPC::NoRegister and return false. 432 433 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired 434 is not set, this function will attempt to find two different registers, but 435 still return true if only one register is available (and set SR1 == SR2). 436 */ 437 bool 438 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB, 439 bool UseAtEnd, 440 bool TwoUniqueRegsRequired, 441 Register *SR1, 442 Register *SR2) const { 443 RegScavenger RS; 444 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0; 445 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12; 446 447 // Set the defaults for the two scratch registers. 448 if (SR1) 449 *SR1 = R0; 450 451 if (SR2) { 452 assert (SR1 && "Asking for the second scratch register but not the first?"); 453 *SR2 = R12; 454 } 455 456 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers. 457 if ((UseAtEnd && MBB->isReturnBlock()) || 458 (!UseAtEnd && (&MBB->getParent()->front() == MBB))) 459 return true; 460 461 if (UseAtEnd) { 462 // The scratch register will be used before the first terminator (or at the 463 // end of the block if there are no terminators). 464 MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator(); 465 if (MBBI == MBB->begin()) { 466 RS.enterBasicBlock(*MBB); 467 } else { 468 RS.enterBasicBlockEnd(*MBB); 469 RS.backward(MBBI); 470 } 471 } else { 472 // The scratch register will be used at the start of the block. 473 RS.enterBasicBlock(*MBB); 474 } 475 476 // If the two registers are available, we're all good. 477 // Note that we only return here if both R0 and R12 are available because 478 // although the function may not require two unique registers, it may benefit 479 // from having two so we should try to provide them. 480 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12)) 481 return true; 482 483 // Get the list of callee-saved registers for the target. 484 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 485 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent()); 486 487 // Get all the available registers in the block. 488 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass : 489 &PPC::GPRCRegClass); 490 491 // We shouldn't use callee-saved registers as scratch registers as they may be 492 // available when looking for a candidate block for shrink wrapping but not 493 // available when the actual prologue/epilogue is being emitted because they 494 // were added as live-in to the prologue block by PrologueEpilogueInserter. 495 for (int i = 0; CSRegs[i]; ++i) 496 BV.reset(CSRegs[i]); 497 498 // Set the first scratch register to the first available one. 499 if (SR1) { 500 int FirstScratchReg = BV.find_first(); 501 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg; 502 } 503 504 // If there is another one available, set the second scratch register to that. 505 // Otherwise, set it to either PPC::NoRegister if this function requires two 506 // or to whatever SR1 is set to if this function doesn't require two. 507 if (SR2) { 508 int SecondScratchReg = BV.find_next(*SR1); 509 if (SecondScratchReg != -1) 510 *SR2 = SecondScratchReg; 511 else 512 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1; 513 } 514 515 // Now that we've done our best to provide both registers, double check 516 // whether we were unable to provide enough. 517 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U)) 518 return false; 519 520 return true; 521 } 522 523 // We need a scratch register for spilling LR and for spilling CR. By default, 524 // we use two scratch registers to hide latency. However, if only one scratch 525 // register is available, we can adjust for that by not overlapping the spill 526 // code. However, if we need to realign the stack (i.e. have a base pointer) 527 // and the stack frame is large, we need two scratch registers. 528 // Also, stack probe requires two scratch registers, one for old sp, one for 529 // large frame and large probe size. 530 bool 531 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const { 532 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 533 MachineFunction &MF = *(MBB->getParent()); 534 bool HasBP = RegInfo->hasBasePointer(MF); 535 unsigned FrameSize = determineFrameLayout(MF); 536 int NegFrameSize = -FrameSize; 537 bool IsLargeFrame = !isInt<16>(NegFrameSize); 538 MachineFrameInfo &MFI = MF.getFrameInfo(); 539 Align MaxAlign = MFI.getMaxAlign(); 540 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 541 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 542 543 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) || 544 TLI.hasInlineStackProbe(MF); 545 } 546 547 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 548 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 549 550 return findScratchRegister(TmpMBB, false, 551 twoUniqueScratchRegsRequired(TmpMBB)); 552 } 553 554 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 555 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 556 557 return findScratchRegister(TmpMBB, true); 558 } 559 560 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const { 561 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 562 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 563 564 // Abort if there is no register info or function info. 565 if (!RegInfo || !FI) 566 return false; 567 568 // Only move the stack update on ELFv2 ABI and PPC64. 569 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64()) 570 return false; 571 572 // Check the frame size first and return false if it does not fit the 573 // requirements. 574 // We need a non-zero frame size as well as a frame that will fit in the red 575 // zone. This is because by moving the stack pointer update we are now storing 576 // to the red zone until the stack pointer is updated. If we get an interrupt 577 // inside the prologue but before the stack update we now have a number of 578 // stores to the red zone and those stores must all fit. 579 MachineFrameInfo &MFI = MF.getFrameInfo(); 580 unsigned FrameSize = MFI.getStackSize(); 581 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize()) 582 return false; 583 584 // Frame pointers and base pointers complicate matters so don't do anything 585 // if we have them. For example having a frame pointer will sometimes require 586 // a copy of r1 into r31 and that makes keeping track of updates to r1 more 587 // difficult. Similar situation exists with setjmp. 588 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice()) 589 return false; 590 591 // Calls to fast_cc functions use different rules for passing parameters on 592 // the stack from the ABI and using PIC base in the function imposes 593 // similar restrictions to using the base pointer. It is not generally safe 594 // to move the stack pointer update in these situations. 595 if (FI->hasFastCall() || FI->usesPICBase()) 596 return false; 597 598 // Finally we can move the stack update if we do not require register 599 // scavenging. Register scavenging can introduce more spills and so 600 // may make the frame size larger than we have computed. 601 return !RegInfo->requiresFrameIndexScavenging(MF); 602 } 603 604 void PPCFrameLowering::emitPrologue(MachineFunction &MF, 605 MachineBasicBlock &MBB) const { 606 MachineBasicBlock::iterator MBBI = MBB.begin(); 607 MachineFrameInfo &MFI = MF.getFrameInfo(); 608 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 609 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 610 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 611 612 MachineModuleInfo &MMI = MF.getMMI(); 613 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 614 DebugLoc dl; 615 // AIX assembler does not support cfi directives. 616 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 617 618 const bool HasFastMFLR = Subtarget.hasFastMFLR(); 619 620 // Get processor type. 621 bool isPPC64 = Subtarget.isPPC64(); 622 // Get the ABI. 623 bool isSVR4ABI = Subtarget.isSVR4ABI(); 624 bool isELFv2ABI = Subtarget.isELFv2ABI(); 625 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI."); 626 627 // Work out frame sizes. 628 uint64_t FrameSize = determineFrameLayoutAndUpdate(MF); 629 int64_t NegFrameSize = -FrameSize; 630 if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize))) 631 llvm_unreachable("Unhandled stack size!"); 632 633 if (MFI.isFrameAddressTaken()) 634 replaceFPWithRealFP(MF); 635 636 // Check if the link register (LR) must be saved. 637 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 638 bool MustSaveLR = FI->mustSaveLR(); 639 bool MustSaveTOC = FI->mustSaveTOC(); 640 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 641 bool MustSaveCR = !MustSaveCRs.empty(); 642 // Do we have a frame pointer and/or base pointer for this function? 643 bool HasFP = hasFP(MF); 644 bool HasBP = RegInfo->hasBasePointer(MF); 645 bool HasRedZone = isPPC64 || !isSVR4ABI; 646 bool HasROPProtect = Subtarget.hasROPProtect(); 647 bool HasPrivileged = Subtarget.hasPrivileged(); 648 649 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 650 Register BPReg = RegInfo->getBaseRegister(MF); 651 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 652 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR; 653 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2; 654 Register ScratchReg; 655 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 656 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.) 657 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8 658 : PPC::MFLR ); 659 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD 660 : PPC::STW ); 661 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU 662 : PPC::STWU ); 663 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX 664 : PPC::STWUX); 665 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 666 : PPC::OR ); 667 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8 668 : PPC::SUBFC); 669 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8 670 : PPC::SUBFIC); 671 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8 672 : PPC::MFCR); 673 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW); 674 const MCInstrDesc &HashST = 675 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8) 676 : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST)); 677 678 // Regarding this assert: Even though LR is saved in the caller's frame (i.e., 679 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no 680 // Red Zone, an asynchronous event (a form of "callee") could claim a frame & 681 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR. 682 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) && 683 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4."); 684 685 // Using the same bool variable as below to suppress compiler warnings. 686 bool SingleScratchReg = findScratchRegister( 687 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg); 688 assert(SingleScratchReg && 689 "Required number of registers not available in this block"); 690 691 SingleScratchReg = ScratchReg == TempReg; 692 693 int64_t LROffset = getReturnSaveOffset(); 694 695 int64_t FPOffset = 0; 696 if (HasFP) { 697 MachineFrameInfo &MFI = MF.getFrameInfo(); 698 int FPIndex = FI->getFramePointerSaveIndex(); 699 assert(FPIndex && "No Frame Pointer Save Slot!"); 700 FPOffset = MFI.getObjectOffset(FPIndex); 701 } 702 703 int64_t BPOffset = 0; 704 if (HasBP) { 705 MachineFrameInfo &MFI = MF.getFrameInfo(); 706 int BPIndex = FI->getBasePointerSaveIndex(); 707 assert(BPIndex && "No Base Pointer Save Slot!"); 708 BPOffset = MFI.getObjectOffset(BPIndex); 709 } 710 711 int64_t PBPOffset = 0; 712 if (FI->usesPICBase()) { 713 MachineFrameInfo &MFI = MF.getFrameInfo(); 714 int PBPIndex = FI->getPICBasePointerSaveIndex(); 715 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 716 PBPOffset = MFI.getObjectOffset(PBPIndex); 717 } 718 719 // Get stack alignments. 720 Align MaxAlign = MFI.getMaxAlign(); 721 if (HasBP && MaxAlign > 1) 722 assert(Log2(MaxAlign) < 16 && "Invalid alignment!"); 723 724 // Frames of 32KB & larger require special handling because they cannot be 725 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand. 726 bool isLargeFrame = !isInt<16>(NegFrameSize); 727 728 // Check if we can move the stack update instruction (stdu) down the prologue 729 // past the callee saves. Hopefully this will avoid the situation where the 730 // saves are waiting for the update on the store with update to complete. 731 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 732 bool MovingStackUpdateDown = false; 733 734 // Check if we can move the stack update. 735 if (stackUpdateCanBeMoved(MF)) { 736 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 737 for (CalleeSavedInfo CSI : Info) { 738 // If the callee saved register is spilled to a register instead of the 739 // stack then the spill no longer uses the stack pointer. 740 // This can lead to two consequences: 741 // 1) We no longer need to update the stack because the function does not 742 // spill any callee saved registers to stack. 743 // 2) We have a situation where we still have to update the stack pointer 744 // even though some registers are spilled to other registers. In 745 // this case the current code moves the stack update to an incorrect 746 // position. 747 // In either case we should abort moving the stack update operation. 748 if (CSI.isSpilledToReg()) { 749 StackUpdateLoc = MBBI; 750 MovingStackUpdateDown = false; 751 break; 752 } 753 754 int FrIdx = CSI.getFrameIdx(); 755 // If the frame index is not negative the callee saved info belongs to a 756 // stack object that is not a fixed stack object. We ignore non-fixed 757 // stack objects because we won't move the stack update pointer past them. 758 if (FrIdx >= 0) 759 continue; 760 761 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) { 762 StackUpdateLoc++; 763 MovingStackUpdateDown = true; 764 } else { 765 // We need all of the Frame Indices to meet these conditions. 766 // If they do not, abort the whole operation. 767 StackUpdateLoc = MBBI; 768 MovingStackUpdateDown = false; 769 break; 770 } 771 } 772 773 // If the operation was not aborted then update the object offset. 774 if (MovingStackUpdateDown) { 775 for (CalleeSavedInfo CSI : Info) { 776 int FrIdx = CSI.getFrameIdx(); 777 if (FrIdx < 0) 778 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize); 779 } 780 } 781 } 782 783 // Where in the prologue we move the CR fields depends on how many scratch 784 // registers we have, and if we need to save the link register or not. This 785 // lambda is to avoid duplicating the logic in 2 places. 786 auto BuildMoveFromCR = [&]() { 787 if (isELFv2ABI && MustSaveCRs.size() == 1) { 788 // In the ELFv2 ABI, we are not required to save all CR fields. 789 // If only one CR field is clobbered, it is more efficient to use 790 // mfocrf to selectively save just that field, because mfocrf has short 791 // latency compares to mfcr. 792 assert(isPPC64 && "V2 ABI is 64-bit only."); 793 MachineInstrBuilder MIB = 794 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg); 795 MIB.addReg(MustSaveCRs[0], RegState::Kill); 796 } else { 797 MachineInstrBuilder MIB = 798 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg); 799 for (unsigned CRfield : MustSaveCRs) 800 MIB.addReg(CRfield, RegState::ImplicitKill); 801 } 802 }; 803 804 // If we need to spill the CR and the LR but we don't have two separate 805 // registers available, we must spill them one at a time 806 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 807 BuildMoveFromCR(); 808 BuildMI(MBB, MBBI, dl, StoreWordInst) 809 .addReg(TempReg, getKillRegState(true)) 810 .addImm(CRSaveOffset) 811 .addReg(SPReg); 812 } 813 814 if (MustSaveLR) 815 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg); 816 817 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) 818 BuildMoveFromCR(); 819 820 if (HasRedZone) { 821 if (HasFP) 822 BuildMI(MBB, MBBI, dl, StoreInst) 823 .addReg(FPReg) 824 .addImm(FPOffset) 825 .addReg(SPReg); 826 if (FI->usesPICBase()) 827 BuildMI(MBB, MBBI, dl, StoreInst) 828 .addReg(PPC::R30) 829 .addImm(PBPOffset) 830 .addReg(SPReg); 831 if (HasBP) 832 BuildMI(MBB, MBBI, dl, StoreInst) 833 .addReg(BPReg) 834 .addImm(BPOffset) 835 .addReg(SPReg); 836 } 837 838 // Generate the instruction to store the LR. In the case where ROP protection 839 // is required the register holding the LR should not be killed as it will be 840 // used by the hash store instruction. 841 auto SaveLR = [&](int64_t Offset) { 842 assert(MustSaveLR && "LR is not required to be saved!"); 843 BuildMI(MBB, StackUpdateLoc, dl, StoreInst) 844 .addReg(ScratchReg, getKillRegState(!HasROPProtect)) 845 .addImm(Offset) 846 .addReg(SPReg); 847 848 // Add the ROP protection Hash Store instruction. 849 // NOTE: This is technically a violation of the ABI. The hash can be saved 850 // up to 512 bytes into the Protected Zone. This can be outside of the 851 // initial 288 byte volatile program storage region in the Protected Zone. 852 // However, this restriction will be removed in an upcoming revision of the 853 // ABI. 854 if (HasROPProtect) { 855 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 856 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 857 assert((ImmOffset <= -8 && ImmOffset >= -512) && 858 "ROP hash save offset out of range."); 859 assert(((ImmOffset & 0x7) == 0) && 860 "ROP hash save offset must be 8 byte aligned."); 861 BuildMI(MBB, StackUpdateLoc, dl, HashST) 862 .addReg(ScratchReg, getKillRegState(true)) 863 .addImm(ImmOffset) 864 .addReg(SPReg); 865 } 866 }; 867 868 if (MustSaveLR && HasFastMFLR) 869 SaveLR(LROffset); 870 871 if (MustSaveCR && 872 !(SingleScratchReg && MustSaveLR)) { 873 assert(HasRedZone && "A red zone is always available on PPC64"); 874 BuildMI(MBB, MBBI, dl, StoreWordInst) 875 .addReg(TempReg, getKillRegState(true)) 876 .addImm(CRSaveOffset) 877 .addReg(SPReg); 878 } 879 880 // Skip the rest if this is a leaf function & all spills fit in the Red Zone. 881 if (!FrameSize) { 882 if (MustSaveLR && !HasFastMFLR) 883 SaveLR(LROffset); 884 return; 885 } 886 887 // Adjust stack pointer: r1 += NegFrameSize. 888 // If there is a preferred stack alignment, align R1 now 889 890 if (HasBP && HasRedZone) { 891 // Save a copy of r1 as the base pointer. 892 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 893 .addReg(SPReg) 894 .addReg(SPReg); 895 } 896 897 // Have we generated a STUX instruction to claim stack frame? If so, 898 // the negated frame size will be placed in ScratchReg. 899 bool HasSTUX = 900 (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) || 901 (HasBP && MaxAlign > 1) || isLargeFrame; 902 903 // If we use STUX to update the stack pointer, we need the two scratch 904 // registers TempReg and ScratchReg, we have to save LR here which is stored 905 // in ScratchReg. 906 // If the offset can not be encoded into the store instruction, we also have 907 // to save LR here. 908 if (MustSaveLR && !HasFastMFLR && 909 (HasSTUX || !isInt<16>(FrameSize + LROffset))) 910 SaveLR(LROffset); 911 912 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain 913 // pointer is always stored at SP, we will get a free probe due to an essential 914 // STU(X) instruction. 915 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) { 916 // To be consistent with other targets, a pseudo instruction is emitted and 917 // will be later expanded in `inlineStackProbe`. 918 BuildMI(MBB, MBBI, dl, 919 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64 920 : PPC::PROBED_STACKALLOC_32)) 921 .addDef(TempReg) 922 .addDef(ScratchReg) // ScratchReg stores the old sp. 923 .addImm(NegFrameSize); 924 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we 925 // update the ScratchReg to meet the assumption that ScratchReg contains 926 // the NegFrameSize. This solution is rather tricky. 927 if (!HasRedZone) { 928 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 929 .addReg(ScratchReg) 930 .addReg(SPReg); 931 } 932 } else { 933 // This condition must be kept in sync with canUseAsPrologue. 934 if (HasBP && MaxAlign > 1) { 935 if (isPPC64) 936 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg) 937 .addReg(SPReg) 938 .addImm(0) 939 .addImm(64 - Log2(MaxAlign)); 940 else // PPC32... 941 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg) 942 .addReg(SPReg) 943 .addImm(0) 944 .addImm(32 - Log2(MaxAlign)) 945 .addImm(31); 946 if (!isLargeFrame) { 947 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg) 948 .addReg(ScratchReg, RegState::Kill) 949 .addImm(NegFrameSize); 950 } else { 951 assert(!SingleScratchReg && "Only a single scratch reg available"); 952 TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize); 953 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg) 954 .addReg(ScratchReg, RegState::Kill) 955 .addReg(TempReg, RegState::Kill); 956 } 957 958 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 959 .addReg(SPReg, RegState::Kill) 960 .addReg(SPReg) 961 .addReg(ScratchReg); 962 } else if (!isLargeFrame) { 963 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg) 964 .addReg(SPReg) 965 .addImm(NegFrameSize) 966 .addReg(SPReg); 967 } else { 968 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize); 969 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg) 970 .addReg(SPReg, RegState::Kill) 971 .addReg(SPReg) 972 .addReg(ScratchReg); 973 } 974 } 975 976 // Save the TOC register after the stack pointer update if a prologue TOC 977 // save is required for the function. 978 if (MustSaveTOC) { 979 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2"); 980 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD)) 981 .addReg(TOCReg, getKillRegState(true)) 982 .addImm(TOCSaveOffset) 983 .addReg(SPReg); 984 } 985 986 if (!HasRedZone) { 987 assert(!isPPC64 && "A red zone is always available on PPC64"); 988 if (HasSTUX) { 989 // The negated frame size is in ScratchReg, and the SPReg has been 990 // decremented by the frame size: SPReg = old SPReg + ScratchReg. 991 // Since FPOffset, PBPOffset, etc. are relative to the beginning of 992 // the stack frame (i.e. the old SP), ideally, we would put the old 993 // SP into a register and use it as the base for the stores. The 994 // problem is that the only available register may be ScratchReg, 995 // which could be R0, and R0 cannot be used as a base address. 996 997 // First, set ScratchReg to the old SP. This may need to be modified 998 // later. 999 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg) 1000 .addReg(ScratchReg, RegState::Kill) 1001 .addReg(SPReg); 1002 1003 if (ScratchReg == PPC::R0) { 1004 // R0 cannot be used as a base register, but it can be used as an 1005 // index in a store-indexed. 1006 int LastOffset = 0; 1007 if (HasFP) { 1008 // R0 += (FPOffset-LastOffset). 1009 // Need addic, since addi treats R0 as 0. 1010 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1011 .addReg(ScratchReg) 1012 .addImm(FPOffset-LastOffset); 1013 LastOffset = FPOffset; 1014 // Store FP into *R0. 1015 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1016 .addReg(FPReg, RegState::Kill) // Save FP. 1017 .addReg(PPC::ZERO) 1018 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1019 } 1020 if (FI->usesPICBase()) { 1021 // R0 += (PBPOffset-LastOffset). 1022 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1023 .addReg(ScratchReg) 1024 .addImm(PBPOffset-LastOffset); 1025 LastOffset = PBPOffset; 1026 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1027 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer. 1028 .addReg(PPC::ZERO) 1029 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1030 } 1031 if (HasBP) { 1032 // R0 += (BPOffset-LastOffset). 1033 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg) 1034 .addReg(ScratchReg) 1035 .addImm(BPOffset-LastOffset); 1036 LastOffset = BPOffset; 1037 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX)) 1038 .addReg(BPReg, RegState::Kill) // Save BP. 1039 .addReg(PPC::ZERO) 1040 .addReg(ScratchReg); // This will be the index (R0 is ok here). 1041 // BP = R0-LastOffset 1042 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg) 1043 .addReg(ScratchReg, RegState::Kill) 1044 .addImm(-LastOffset); 1045 } 1046 } else { 1047 // ScratchReg is not R0, so use it as the base register. It is 1048 // already set to the old SP, so we can use the offsets directly. 1049 1050 // Now that the stack frame has been allocated, save all the necessary 1051 // registers using ScratchReg as the base address. 1052 if (HasFP) 1053 BuildMI(MBB, MBBI, dl, StoreInst) 1054 .addReg(FPReg) 1055 .addImm(FPOffset) 1056 .addReg(ScratchReg); 1057 if (FI->usesPICBase()) 1058 BuildMI(MBB, MBBI, dl, StoreInst) 1059 .addReg(PPC::R30) 1060 .addImm(PBPOffset) 1061 .addReg(ScratchReg); 1062 if (HasBP) { 1063 BuildMI(MBB, MBBI, dl, StoreInst) 1064 .addReg(BPReg) 1065 .addImm(BPOffset) 1066 .addReg(ScratchReg); 1067 BuildMI(MBB, MBBI, dl, OrInst, BPReg) 1068 .addReg(ScratchReg, RegState::Kill) 1069 .addReg(ScratchReg); 1070 } 1071 } 1072 } else { 1073 // The frame size is a known 16-bit constant (fitting in the immediate 1074 // field of STWU). To be here we have to be compiling for PPC32. 1075 // Since the SPReg has been decreased by FrameSize, add it back to each 1076 // offset. 1077 if (HasFP) 1078 BuildMI(MBB, MBBI, dl, StoreInst) 1079 .addReg(FPReg) 1080 .addImm(FrameSize + FPOffset) 1081 .addReg(SPReg); 1082 if (FI->usesPICBase()) 1083 BuildMI(MBB, MBBI, dl, StoreInst) 1084 .addReg(PPC::R30) 1085 .addImm(FrameSize + PBPOffset) 1086 .addReg(SPReg); 1087 if (HasBP) { 1088 BuildMI(MBB, MBBI, dl, StoreInst) 1089 .addReg(BPReg) 1090 .addImm(FrameSize + BPOffset) 1091 .addReg(SPReg); 1092 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg) 1093 .addReg(SPReg) 1094 .addImm(FrameSize); 1095 } 1096 } 1097 } 1098 1099 // Save the LR now. 1100 if (!HasSTUX && MustSaveLR && !HasFastMFLR && isInt<16>(FrameSize + LROffset)) 1101 SaveLR(LROffset + FrameSize); 1102 1103 // Add Call Frame Information for the instructions we generated above. 1104 if (needsCFI) { 1105 unsigned CFIIndex; 1106 1107 if (HasBP) { 1108 // Define CFA in terms of BP. Do this in preference to using FP/SP, 1109 // because if the stack needed aligning then CFA won't be at a fixed 1110 // offset from FP/SP. 1111 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1112 CFIIndex = MF.addFrameInst( 1113 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1114 } else { 1115 // Adjust the definition of CFA to account for the change in SP. 1116 assert(NegFrameSize); 1117 CFIIndex = MF.addFrameInst( 1118 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize)); 1119 } 1120 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1121 .addCFIIndex(CFIIndex); 1122 1123 if (HasFP) { 1124 // Describe where FP was saved, at a fixed offset from CFA. 1125 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1126 CFIIndex = MF.addFrameInst( 1127 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset)); 1128 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1129 .addCFIIndex(CFIIndex); 1130 } 1131 1132 if (FI->usesPICBase()) { 1133 // Describe where FP was saved, at a fixed offset from CFA. 1134 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true); 1135 CFIIndex = MF.addFrameInst( 1136 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset)); 1137 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1138 .addCFIIndex(CFIIndex); 1139 } 1140 1141 if (HasBP) { 1142 // Describe where BP was saved, at a fixed offset from CFA. 1143 unsigned Reg = MRI->getDwarfRegNum(BPReg, true); 1144 CFIIndex = MF.addFrameInst( 1145 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset)); 1146 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1147 .addCFIIndex(CFIIndex); 1148 } 1149 1150 if (MustSaveLR) { 1151 // Describe where LR was saved, at a fixed offset from CFA. 1152 unsigned Reg = MRI->getDwarfRegNum(LRReg, true); 1153 CFIIndex = MF.addFrameInst( 1154 MCCFIInstruction::createOffset(nullptr, Reg, LROffset)); 1155 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1156 .addCFIIndex(CFIIndex); 1157 } 1158 } 1159 1160 // If there is a frame pointer, copy R1 into R31 1161 if (HasFP) { 1162 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1163 .addReg(SPReg) 1164 .addReg(SPReg); 1165 1166 if (!HasBP && needsCFI) { 1167 // Change the definition of CFA from SP+offset to FP+offset, because SP 1168 // will change at every alloca. 1169 unsigned Reg = MRI->getDwarfRegNum(FPReg, true); 1170 unsigned CFIIndex = MF.addFrameInst( 1171 MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1172 1173 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1174 .addCFIIndex(CFIIndex); 1175 } 1176 } 1177 1178 if (needsCFI) { 1179 // Describe where callee saved registers were saved, at fixed offsets from 1180 // CFA. 1181 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 1182 for (const CalleeSavedInfo &I : CSI) { 1183 Register Reg = I.getReg(); 1184 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue; 1185 1186 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just 1187 // subregisters of CR2. We just need to emit a move of CR2. 1188 if (PPC::CRBITRCRegClass.contains(Reg)) 1189 continue; 1190 1191 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 1192 continue; 1193 1194 // For 64-bit SVR4 when we have spilled CRs, the spill location 1195 // is SP+8, not a frame-relative slot. 1196 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) { 1197 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for 1198 // the whole CR word. In the ELFv2 ABI, every CR that was 1199 // actually saved gets its own CFI record. 1200 Register CRReg = isELFv2ABI? Reg : PPC::CR2; 1201 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1202 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset)); 1203 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1204 .addCFIIndex(CFIIndex); 1205 continue; 1206 } 1207 1208 if (I.isSpilledToReg()) { 1209 unsigned SpilledReg = I.getDstReg(); 1210 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister( 1211 nullptr, MRI->getDwarfRegNum(Reg, true), 1212 MRI->getDwarfRegNum(SpilledReg, true))); 1213 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1214 .addCFIIndex(CFIRegister); 1215 } else { 1216 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 1217 // We have changed the object offset above but we do not want to change 1218 // the actual offsets in the CFI instruction so we have to undo the 1219 // offset change here. 1220 if (MovingStackUpdateDown) 1221 Offset -= NegFrameSize; 1222 1223 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1224 nullptr, MRI->getDwarfRegNum(Reg, true), Offset)); 1225 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1226 .addCFIIndex(CFIIndex); 1227 } 1228 } 1229 } 1230 } 1231 1232 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF, 1233 MachineBasicBlock &PrologMBB) const { 1234 bool isPPC64 = Subtarget.isPPC64(); 1235 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering(); 1236 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1237 MachineFrameInfo &MFI = MF.getFrameInfo(); 1238 MachineModuleInfo &MMI = MF.getMMI(); 1239 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 1240 // AIX assembler does not support cfi directives. 1241 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI(); 1242 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 1243 int Opc = MI.getOpcode(); 1244 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32; 1245 }); 1246 if (StackAllocMIPos == PrologMBB.end()) 1247 return; 1248 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock(); 1249 MachineBasicBlock *CurrentMBB = &PrologMBB; 1250 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos); 1251 MachineInstr &MI = *StackAllocMIPos; 1252 int64_t NegFrameSize = MI.getOperand(2).getImm(); 1253 unsigned ProbeSize = TLI.getStackProbeSize(MF); 1254 int64_t NegProbeSize = -(int64_t)ProbeSize; 1255 assert(isInt<32>(NegProbeSize) && "Unhandled probe size"); 1256 int64_t NumBlocks = NegFrameSize / NegProbeSize; 1257 int64_t NegResidualSize = NegFrameSize % NegProbeSize; 1258 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1259 Register ScratchReg = MI.getOperand(0).getReg(); 1260 Register FPReg = MI.getOperand(1).getReg(); 1261 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1262 bool HasBP = RegInfo->hasBasePointer(MF); 1263 Register BPReg = RegInfo->getBaseRegister(MF); 1264 Align MaxAlign = MFI.getMaxAlign(); 1265 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1266 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR); 1267 // Subroutines to generate .cfi_* directives. 1268 auto buildDefCFAReg = [&](MachineBasicBlock &MBB, 1269 MachineBasicBlock::iterator MBBI, Register Reg) { 1270 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1271 unsigned CFIIndex = MF.addFrameInst( 1272 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum)); 1273 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1274 .addCFIIndex(CFIIndex); 1275 }; 1276 auto buildDefCFA = [&](MachineBasicBlock &MBB, 1277 MachineBasicBlock::iterator MBBI, Register Reg, 1278 int Offset) { 1279 unsigned RegNum = MRI->getDwarfRegNum(Reg, true); 1280 unsigned CFIIndex = MBB.getParent()->addFrameInst( 1281 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset)); 1282 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1283 .addCFIIndex(CFIIndex); 1284 }; 1285 // Subroutine to determine if we can use the Imm as part of d-form. 1286 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; }; 1287 // Subroutine to materialize the Imm into TempReg. 1288 auto MaterializeImm = [&](MachineBasicBlock &MBB, 1289 MachineBasicBlock::iterator MBBI, int64_t Imm, 1290 Register &TempReg) { 1291 assert(isInt<32>(Imm) && "Unhandled imm"); 1292 if (isInt<16>(Imm)) 1293 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg) 1294 .addImm(Imm); 1295 else { 1296 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 1297 .addImm(Imm >> 16); 1298 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg) 1299 .addReg(TempReg) 1300 .addImm(Imm & 0xFFFF); 1301 } 1302 }; 1303 // Subroutine to store frame pointer and decrease stack pointer by probe size. 1304 auto allocateAndProbe = [&](MachineBasicBlock &MBB, 1305 MachineBasicBlock::iterator MBBI, int64_t NegSize, 1306 Register NegSizeReg, bool UseDForm, 1307 Register StoreReg) { 1308 if (UseDForm) 1309 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg) 1310 .addReg(StoreReg) 1311 .addImm(NegSize) 1312 .addReg(SPReg); 1313 else 1314 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 1315 .addReg(StoreReg) 1316 .addReg(SPReg) 1317 .addReg(NegSizeReg); 1318 }; 1319 // Used to probe stack when realignment is required. 1320 // Note that, according to ABI's requirement, *sp must always equals the 1321 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp. 1322 // Following is pseudo code: 1323 // final_sp = (sp & align) + negframesize; 1324 // neg_gap = final_sp - sp; 1325 // while (neg_gap < negprobesize) { 1326 // stdu fp, negprobesize(sp); 1327 // neg_gap -= negprobesize; 1328 // } 1329 // stdux fp, sp, neg_gap 1330 // 1331 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg 1332 // before probe code, we don't need to save it, so we get one additional reg 1333 // that can be used to materialize the probeside if needed to use xform. 1334 // Otherwise, we can NOT materialize probeside, so we can only use Dform for 1335 // now. 1336 // 1337 // The allocations are: 1338 // if (HasBP && HasRedzone) { 1339 // r0: materialize the probesize if needed so that we can use xform. 1340 // r12: `neg_gap` 1341 // } else { 1342 // r0: back-chain pointer 1343 // r12: `neg_gap`. 1344 // } 1345 auto probeRealignedStack = [&](MachineBasicBlock &MBB, 1346 MachineBasicBlock::iterator MBBI, 1347 Register ScratchReg, Register TempReg) { 1348 assert(HasBP && "The function is supposed to have base pointer when its " 1349 "stack is realigned."); 1350 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2"); 1351 1352 // FIXME: We can eliminate this limitation if we get more infomation about 1353 // which part of redzone are already used. Used redzone can be treated 1354 // probed. But there might be `holes' in redzone probed, this could 1355 // complicate the implementation. 1356 assert(ProbeSize >= Subtarget.getRedZoneSize() && 1357 "Probe size should be larger or equal to the size of red-zone so " 1358 "that red-zone is not clobbered by probing."); 1359 1360 Register &FinalStackPtr = TempReg; 1361 // FIXME: We only support NegProbeSize materializable by DForm currently. 1362 // When HasBP && HasRedzone, we can use xform if we have an additional idle 1363 // register. 1364 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15)); 1365 assert(isInt<16>(NegProbeSize) && 1366 "NegProbeSize should be materializable by DForm"); 1367 Register CRReg = PPC::CR0; 1368 // Layout of output assembly kinda like: 1369 // bb.0: 1370 // ... 1371 // sub $scratchreg, $finalsp, r1 1372 // cmpdi $scratchreg, <negprobesize> 1373 // bge bb.2 1374 // bb.1: 1375 // stdu <backchain>, <negprobesize>(r1) 1376 // sub $scratchreg, $scratchreg, negprobesize 1377 // cmpdi $scratchreg, <negprobesize> 1378 // blt bb.1 1379 // bb.2: 1380 // stdux <backchain>, r1, $scratchreg 1381 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 1382 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB); 1383 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB); 1384 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1385 MF.insert(MBBInsertPoint, ProbeExitMBB); 1386 // bb.2 1387 { 1388 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1389 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false, 1390 BackChainPointer); 1391 if (HasRedZone) 1392 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg 1393 // to TempReg to satisfy it. 1394 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg) 1395 .addReg(BPReg) 1396 .addReg(BPReg); 1397 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end()); 1398 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 1399 } 1400 // bb.0 1401 { 1402 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg) 1403 .addReg(SPReg) 1404 .addReg(FinalStackPtr); 1405 if (!HasRedZone) 1406 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg); 1407 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg) 1408 .addReg(ScratchReg) 1409 .addImm(NegProbeSize); 1410 BuildMI(&MBB, DL, TII.get(PPC::BCC)) 1411 .addImm(PPC::PRED_GE) 1412 .addReg(CRReg) 1413 .addMBB(ProbeExitMBB); 1414 MBB.addSuccessor(ProbeLoopBodyMBB); 1415 MBB.addSuccessor(ProbeExitMBB); 1416 } 1417 // bb.1 1418 { 1419 Register BackChainPointer = HasRedZone ? BPReg : TempReg; 1420 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize, 1421 0, true /*UseDForm*/, BackChainPointer); 1422 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI), 1423 ScratchReg) 1424 .addReg(ScratchReg) 1425 .addImm(-NegProbeSize); 1426 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), 1427 CRReg) 1428 .addReg(ScratchReg) 1429 .addImm(NegProbeSize); 1430 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC)) 1431 .addImm(PPC::PRED_LT) 1432 .addReg(CRReg) 1433 .addMBB(ProbeLoopBodyMBB); 1434 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB); 1435 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB); 1436 } 1437 // Update liveins. 1438 fullyRecomputeLiveIns({ProbeExitMBB, ProbeLoopBodyMBB}); 1439 return ProbeExitMBB; 1440 }; 1441 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing 1442 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since 1443 // the offset subtracted from SP is determined by SP's runtime value. 1444 if (HasBP && MaxAlign > 1) { 1445 // Calculate final stack pointer. 1446 if (isPPC64) 1447 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg) 1448 .addReg(SPReg) 1449 .addImm(0) 1450 .addImm(64 - Log2(MaxAlign)); 1451 else 1452 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg) 1453 .addReg(SPReg) 1454 .addImm(0) 1455 .addImm(32 - Log2(MaxAlign)) 1456 .addImm(31); 1457 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), 1458 FPReg) 1459 .addReg(ScratchReg) 1460 .addReg(SPReg); 1461 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg); 1462 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 1463 FPReg) 1464 .addReg(ScratchReg) 1465 .addReg(FPReg); 1466 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg); 1467 if (needsCFI) 1468 buildDefCFAReg(*CurrentMBB, {MI}, FPReg); 1469 } else { 1470 // Initialize current frame pointer. 1471 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg); 1472 // Use FPReg to calculate CFA. 1473 if (needsCFI) 1474 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0); 1475 // Probe residual part. 1476 if (NegResidualSize) { 1477 bool ResidualUseDForm = CanUseDForm(NegResidualSize); 1478 if (!ResidualUseDForm) 1479 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg); 1480 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg, 1481 ResidualUseDForm, FPReg); 1482 } 1483 bool UseDForm = CanUseDForm(NegProbeSize); 1484 // If number of blocks is small, just probe them directly. 1485 if (NumBlocks < 3) { 1486 if (!UseDForm) 1487 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1488 for (int i = 0; i < NumBlocks; ++i) 1489 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm, 1490 FPReg); 1491 if (needsCFI) { 1492 // Restore using SPReg to calculate CFA. 1493 buildDefCFAReg(*CurrentMBB, {MI}, SPReg); 1494 } 1495 } else { 1496 // Since CTR is a volatile register and current shrinkwrap implementation 1497 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a 1498 // CTR loop to probe. 1499 // Calculate trip count and stores it in CTRReg. 1500 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg); 1501 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)) 1502 .addReg(ScratchReg, RegState::Kill); 1503 if (!UseDForm) 1504 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg); 1505 // Create MBBs of the loop. 1506 MachineFunction::iterator MBBInsertPoint = 1507 std::next(CurrentMBB->getIterator()); 1508 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB); 1509 MF.insert(MBBInsertPoint, LoopMBB); 1510 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB); 1511 MF.insert(MBBInsertPoint, ExitMBB); 1512 // Synthesize the loop body. 1513 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg, 1514 UseDForm, FPReg); 1515 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)) 1516 .addMBB(LoopMBB); 1517 LoopMBB->addSuccessor(ExitMBB); 1518 LoopMBB->addSuccessor(LoopMBB); 1519 // Synthesize the exit MBB. 1520 ExitMBB->splice(ExitMBB->end(), CurrentMBB, 1521 std::next(MachineBasicBlock::iterator(MI)), 1522 CurrentMBB->end()); 1523 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB); 1524 CurrentMBB->addSuccessor(LoopMBB); 1525 if (needsCFI) { 1526 // Restore using SPReg to calculate CFA. 1527 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg); 1528 } 1529 // Update liveins. 1530 fullyRecomputeLiveIns({ExitMBB, LoopMBB}); 1531 } 1532 } 1533 ++NumPrologProbed; 1534 MI.eraseFromParent(); 1535 } 1536 1537 void PPCFrameLowering::emitEpilogue(MachineFunction &MF, 1538 MachineBasicBlock &MBB) const { 1539 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1540 DebugLoc dl; 1541 1542 if (MBBI != MBB.end()) 1543 dl = MBBI->getDebugLoc(); 1544 1545 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1546 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1547 1548 // Get alignment info so we know how to restore the SP. 1549 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1550 1551 // Get the number of bytes allocated from the FrameInfo. 1552 int64_t FrameSize = MFI.getStackSize(); 1553 1554 // Get processor type. 1555 bool isPPC64 = Subtarget.isPPC64(); 1556 1557 // Check if the link register (LR) has been saved. 1558 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1559 bool MustSaveLR = FI->mustSaveLR(); 1560 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs(); 1561 bool MustSaveCR = !MustSaveCRs.empty(); 1562 // Do we have a frame pointer and/or base pointer for this function? 1563 bool HasFP = hasFP(MF); 1564 bool HasBP = RegInfo->hasBasePointer(MF); 1565 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI(); 1566 bool HasROPProtect = Subtarget.hasROPProtect(); 1567 bool HasPrivileged = Subtarget.hasPrivileged(); 1568 1569 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 1570 Register BPReg = RegInfo->getBaseRegister(MF); 1571 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31; 1572 Register ScratchReg; 1573 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg 1574 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8 1575 : PPC::MTLR ); 1576 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD 1577 : PPC::LWZ ); 1578 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8 1579 : PPC::LIS ); 1580 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8 1581 : PPC::OR ); 1582 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8 1583 : PPC::ORI ); 1584 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8 1585 : PPC::ADDI ); 1586 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8 1587 : PPC::ADD4 ); 1588 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8 1589 : PPC::LWZ); 1590 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8 1591 : PPC::MTOCRF); 1592 const MCInstrDesc &HashChk = 1593 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8) 1594 : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK)); 1595 int64_t LROffset = getReturnSaveOffset(); 1596 1597 int64_t FPOffset = 0; 1598 1599 // Using the same bool variable as below to suppress compiler warnings. 1600 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg, 1601 &TempReg); 1602 assert(SingleScratchReg && 1603 "Could not find an available scratch register"); 1604 1605 SingleScratchReg = ScratchReg == TempReg; 1606 1607 if (HasFP) { 1608 int FPIndex = FI->getFramePointerSaveIndex(); 1609 assert(FPIndex && "No Frame Pointer Save Slot!"); 1610 FPOffset = MFI.getObjectOffset(FPIndex); 1611 } 1612 1613 int64_t BPOffset = 0; 1614 if (HasBP) { 1615 int BPIndex = FI->getBasePointerSaveIndex(); 1616 assert(BPIndex && "No Base Pointer Save Slot!"); 1617 BPOffset = MFI.getObjectOffset(BPIndex); 1618 } 1619 1620 int64_t PBPOffset = 0; 1621 if (FI->usesPICBase()) { 1622 int PBPIndex = FI->getPICBasePointerSaveIndex(); 1623 assert(PBPIndex && "No PIC Base Pointer Save Slot!"); 1624 PBPOffset = MFI.getObjectOffset(PBPIndex); 1625 } 1626 1627 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn()); 1628 1629 if (IsReturnBlock) { 1630 unsigned RetOpcode = MBBI->getOpcode(); 1631 bool UsesTCRet = RetOpcode == PPC::TCRETURNri || 1632 RetOpcode == PPC::TCRETURNdi || 1633 RetOpcode == PPC::TCRETURNai || 1634 RetOpcode == PPC::TCRETURNri8 || 1635 RetOpcode == PPC::TCRETURNdi8 || 1636 RetOpcode == PPC::TCRETURNai8; 1637 1638 if (UsesTCRet) { 1639 int MaxTCRetDelta = FI->getTailCallSPDelta(); 1640 MachineOperand &StackAdjust = MBBI->getOperand(1); 1641 assert(StackAdjust.isImm() && "Expecting immediate value."); 1642 // Adjust stack pointer. 1643 int StackAdj = StackAdjust.getImm(); 1644 int Delta = StackAdj - MaxTCRetDelta; 1645 assert((Delta >= 0) && "Delta must be positive"); 1646 if (MaxTCRetDelta>0) 1647 FrameSize += (StackAdj +Delta); 1648 else 1649 FrameSize += StackAdj; 1650 } 1651 } 1652 1653 // Frames of 32KB & larger require special handling because they cannot be 1654 // indexed into with a simple LD/LWZ immediate offset operand. 1655 bool isLargeFrame = !isInt<16>(FrameSize); 1656 1657 // On targets without red zone, the SP needs to be restored last, so that 1658 // all live contents of the stack frame are upwards of the SP. This means 1659 // that we cannot restore SP just now, since there may be more registers 1660 // to restore from the stack frame (e.g. R31). If the frame size is not 1661 // a simple immediate value, we will need a spare register to hold the 1662 // restored SP. If the frame size is known and small, we can simply adjust 1663 // the offsets of the registers to be restored, and still use SP to restore 1664 // them. In such case, the final update of SP will be to add the frame 1665 // size to it. 1666 // To simplify the code, set RBReg to the base register used to restore 1667 // values from the stack, and set SPAdd to the value that needs to be added 1668 // to the SP at the end. The default values are as if red zone was present. 1669 unsigned RBReg = SPReg; 1670 uint64_t SPAdd = 0; 1671 1672 // Check if we can move the stack update instruction up the epilogue 1673 // past the callee saves. This will allow the move to LR instruction 1674 // to be executed before the restores of the callee saves which means 1675 // that the callee saves can hide the latency from the MTLR instrcution. 1676 MachineBasicBlock::iterator StackUpdateLoc = MBBI; 1677 if (stackUpdateCanBeMoved(MF)) { 1678 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo(); 1679 for (CalleeSavedInfo CSI : Info) { 1680 // If the callee saved register is spilled to another register abort the 1681 // stack update movement. 1682 if (CSI.isSpilledToReg()) { 1683 StackUpdateLoc = MBBI; 1684 break; 1685 } 1686 int FrIdx = CSI.getFrameIdx(); 1687 // If the frame index is not negative the callee saved info belongs to a 1688 // stack object that is not a fixed stack object. We ignore non-fixed 1689 // stack objects because we won't move the update of the stack pointer 1690 // past them. 1691 if (FrIdx >= 0) 1692 continue; 1693 1694 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) 1695 StackUpdateLoc--; 1696 else { 1697 // Abort the operation as we can't update all CSR restores. 1698 StackUpdateLoc = MBBI; 1699 break; 1700 } 1701 } 1702 } 1703 1704 if (FrameSize) { 1705 // In the prologue, the loaded (or persistent) stack pointer value is 1706 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red 1707 // zone add this offset back now. 1708 1709 // If the function has a base pointer, the stack pointer has been copied 1710 // to it so we can restore it by copying in the other direction. 1711 if (HasRedZone && HasBP) { 1712 BuildMI(MBB, MBBI, dl, OrInst, RBReg). 1713 addReg(BPReg). 1714 addReg(BPReg); 1715 } 1716 // If this function contained a fastcc call and GuaranteedTailCallOpt is 1717 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail 1718 // call which invalidates the stack pointer value in SP(0). So we use the 1719 // value of R31 in this case. Similar situation exists with setjmp. 1720 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) { 1721 assert(HasFP && "Expecting a valid frame pointer."); 1722 if (!HasRedZone) 1723 RBReg = FPReg; 1724 if (!isLargeFrame) { 1725 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg) 1726 .addReg(FPReg).addImm(FrameSize); 1727 } else { 1728 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize); 1729 BuildMI(MBB, MBBI, dl, AddInst) 1730 .addReg(RBReg) 1731 .addReg(FPReg) 1732 .addReg(ScratchReg); 1733 } 1734 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) { 1735 if (HasRedZone) { 1736 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg) 1737 .addReg(SPReg) 1738 .addImm(FrameSize); 1739 } else { 1740 // Make sure that adding FrameSize will not overflow the max offset 1741 // size. 1742 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 && 1743 "Local offsets should be negative"); 1744 SPAdd = FrameSize; 1745 FPOffset += FrameSize; 1746 BPOffset += FrameSize; 1747 PBPOffset += FrameSize; 1748 } 1749 } else { 1750 // We don't want to use ScratchReg as a base register, because it 1751 // could happen to be R0. Use FP instead, but make sure to preserve it. 1752 if (!HasRedZone) { 1753 // If FP is not saved, copy it to ScratchReg. 1754 if (!HasFP) 1755 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg) 1756 .addReg(FPReg) 1757 .addReg(FPReg); 1758 RBReg = FPReg; 1759 } 1760 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg) 1761 .addImm(0) 1762 .addReg(SPReg); 1763 } 1764 } 1765 assert(RBReg != ScratchReg && "Should have avoided ScratchReg"); 1766 // If there is no red zone, ScratchReg may be needed for holding a useful 1767 // value (although not the base register). Make sure it is not overwritten 1768 // too early. 1769 1770 // If we need to restore both the LR and the CR and we only have one 1771 // available scratch register, we must do them one at a time. 1772 if (MustSaveCR && SingleScratchReg && MustSaveLR) { 1773 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg 1774 // is live here. 1775 assert(HasRedZone && "Expecting red zone"); 1776 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1777 .addImm(CRSaveOffset) 1778 .addReg(SPReg); 1779 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1780 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1781 .addReg(TempReg, getKillRegState(i == e-1)); 1782 } 1783 1784 // Delay restoring of the LR if ScratchReg is needed. This is ok, since 1785 // LR is stored in the caller's stack frame. ScratchReg will be needed 1786 // if RBReg is anything other than SP. We shouldn't use ScratchReg as 1787 // a base register anyway, because it may happen to be R0. 1788 bool LoadedLR = false; 1789 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) { 1790 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg) 1791 .addImm(LROffset+SPAdd) 1792 .addReg(RBReg); 1793 LoadedLR = true; 1794 } 1795 1796 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) { 1797 assert(RBReg == SPReg && "Should be using SP as a base register"); 1798 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg) 1799 .addImm(CRSaveOffset) 1800 .addReg(RBReg); 1801 } 1802 1803 if (HasFP) { 1804 // If there is red zone, restore FP directly, since SP has already been 1805 // restored. Otherwise, restore the value of FP into ScratchReg. 1806 if (HasRedZone || RBReg == SPReg) 1807 BuildMI(MBB, MBBI, dl, LoadInst, FPReg) 1808 .addImm(FPOffset) 1809 .addReg(SPReg); 1810 else 1811 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1812 .addImm(FPOffset) 1813 .addReg(RBReg); 1814 } 1815 1816 if (FI->usesPICBase()) 1817 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30) 1818 .addImm(PBPOffset) 1819 .addReg(RBReg); 1820 1821 if (HasBP) 1822 BuildMI(MBB, MBBI, dl, LoadInst, BPReg) 1823 .addImm(BPOffset) 1824 .addReg(RBReg); 1825 1826 // There is nothing more to be loaded from the stack, so now we can 1827 // restore SP: SP = RBReg + SPAdd. 1828 if (RBReg != SPReg || SPAdd != 0) { 1829 assert(!HasRedZone && "This should not happen with red zone"); 1830 // If SPAdd is 0, generate a copy. 1831 if (SPAdd == 0) 1832 BuildMI(MBB, MBBI, dl, OrInst, SPReg) 1833 .addReg(RBReg) 1834 .addReg(RBReg); 1835 else 1836 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1837 .addReg(RBReg) 1838 .addImm(SPAdd); 1839 1840 assert(RBReg != ScratchReg && "Should be using FP or SP as base register"); 1841 if (RBReg == FPReg) 1842 BuildMI(MBB, MBBI, dl, OrInst, FPReg) 1843 .addReg(ScratchReg) 1844 .addReg(ScratchReg); 1845 1846 // Now load the LR from the caller's stack frame. 1847 if (MustSaveLR && !LoadedLR) 1848 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg) 1849 .addImm(LROffset) 1850 .addReg(SPReg); 1851 } 1852 1853 if (MustSaveCR && 1854 !(SingleScratchReg && MustSaveLR)) 1855 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i) 1856 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i]) 1857 .addReg(TempReg, getKillRegState(i == e-1)); 1858 1859 if (MustSaveLR) { 1860 // If ROP protection is required, an extra instruction is added to compute a 1861 // hash and then compare it to the hash stored in the prologue. 1862 if (HasROPProtect) { 1863 const int SaveIndex = FI->getROPProtectionHashSaveIndex(); 1864 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex); 1865 assert((ImmOffset <= -8 && ImmOffset >= -512) && 1866 "ROP hash check location offset out of range."); 1867 assert(((ImmOffset & 0x7) == 0) && 1868 "ROP hash check location offset must be 8 byte aligned."); 1869 BuildMI(MBB, StackUpdateLoc, dl, HashChk) 1870 .addReg(ScratchReg) 1871 .addImm(ImmOffset) 1872 .addReg(SPReg); 1873 } 1874 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg); 1875 } 1876 1877 // Callee pop calling convention. Pop parameter/linkage area. Used for tail 1878 // call optimization 1879 if (IsReturnBlock) { 1880 unsigned RetOpcode = MBBI->getOpcode(); 1881 if (MF.getTarget().Options.GuaranteedTailCallOpt && 1882 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) && 1883 MF.getFunction().getCallingConv() == CallingConv::Fast) { 1884 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1885 unsigned CallerAllocatedAmt = FI->getMinReservedArea(); 1886 1887 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) { 1888 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg) 1889 .addReg(SPReg).addImm(CallerAllocatedAmt); 1890 } else { 1891 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg) 1892 .addImm(CallerAllocatedAmt >> 16); 1893 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg) 1894 .addReg(ScratchReg, RegState::Kill) 1895 .addImm(CallerAllocatedAmt & 0xFFFF); 1896 BuildMI(MBB, MBBI, dl, AddInst) 1897 .addReg(SPReg) 1898 .addReg(FPReg) 1899 .addReg(ScratchReg); 1900 } 1901 } else { 1902 createTailCallBranchInstr(MBB); 1903 } 1904 } 1905 } 1906 1907 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const { 1908 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1909 1910 // If we got this far a first terminator should exist. 1911 assert(MBBI != MBB.end() && "Failed to find the first terminator."); 1912 1913 DebugLoc dl = MBBI->getDebugLoc(); 1914 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1915 1916 // Create branch instruction for pseudo tail call return instruction. 1917 // The TCRETURNdi variants are direct calls. Valid targets for those are 1918 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel 1919 // since we can tail call external functions with PC-Rel (i.e. we don't need 1920 // to worry about different TOC pointers). Some of the external functions will 1921 // be MO_GlobalAddress while others like memcpy for example, are going to 1922 // be MO_ExternalSymbol. 1923 unsigned RetOpcode = MBBI->getOpcode(); 1924 if (RetOpcode == PPC::TCRETURNdi) { 1925 MBBI = MBB.getLastNonDebugInstr(); 1926 MachineOperand &JumpTarget = MBBI->getOperand(0); 1927 if (JumpTarget.isGlobal()) 1928 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1929 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1930 else if (JumpTarget.isSymbol()) 1931 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)). 1932 addExternalSymbol(JumpTarget.getSymbolName()); 1933 else 1934 llvm_unreachable("Expecting Global or External Symbol"); 1935 } else if (RetOpcode == PPC::TCRETURNri) { 1936 MBBI = MBB.getLastNonDebugInstr(); 1937 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1938 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR)); 1939 } else if (RetOpcode == PPC::TCRETURNai) { 1940 MBBI = MBB.getLastNonDebugInstr(); 1941 MachineOperand &JumpTarget = MBBI->getOperand(0); 1942 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); 1943 } else if (RetOpcode == PPC::TCRETURNdi8) { 1944 MBBI = MBB.getLastNonDebugInstr(); 1945 MachineOperand &JumpTarget = MBBI->getOperand(0); 1946 if (JumpTarget.isGlobal()) 1947 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1948 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1949 else if (JumpTarget.isSymbol()) 1950 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)). 1951 addExternalSymbol(JumpTarget.getSymbolName()); 1952 else 1953 llvm_unreachable("Expecting Global or External Symbol"); 1954 } else if (RetOpcode == PPC::TCRETURNri8) { 1955 MBBI = MBB.getLastNonDebugInstr(); 1956 assert(MBBI->getOperand(0).isReg() && "Expecting register operand."); 1957 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8)); 1958 } else if (RetOpcode == PPC::TCRETURNai8) { 1959 MBBI = MBB.getLastNonDebugInstr(); 1960 MachineOperand &JumpTarget = MBBI->getOperand(0); 1961 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); 1962 } 1963 } 1964 1965 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF, 1966 BitVector &SavedRegs, 1967 RegScavenger *RS) const { 1968 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1969 1970 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1971 1972 // Do not explicitly save the callee saved VSRp registers. 1973 // The individual VSR subregisters will be saved instead. 1974 SavedRegs.reset(PPC::VSRp26); 1975 SavedRegs.reset(PPC::VSRp27); 1976 SavedRegs.reset(PPC::VSRp28); 1977 SavedRegs.reset(PPC::VSRp29); 1978 SavedRegs.reset(PPC::VSRp30); 1979 SavedRegs.reset(PPC::VSRp31); 1980 1981 // Save and clear the LR state. 1982 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1983 unsigned LR = RegInfo->getRARegister(); 1984 FI->setMustSaveLR(MustSaveLR(MF, LR)); 1985 SavedRegs.reset(LR); 1986 1987 // Save R31 if necessary 1988 int FPSI = FI->getFramePointerSaveIndex(); 1989 const bool isPPC64 = Subtarget.isPPC64(); 1990 MachineFrameInfo &MFI = MF.getFrameInfo(); 1991 1992 // If the frame pointer save index hasn't been defined yet. 1993 if (!FPSI && needsFP(MF)) { 1994 // Find out what the fix offset of the frame pointer save area. 1995 int FPOffset = getFramePointerSaveOffset(); 1996 // Allocate the frame index for frame pointer save area. 1997 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 1998 // Save the result. 1999 FI->setFramePointerSaveIndex(FPSI); 2000 } 2001 2002 int BPSI = FI->getBasePointerSaveIndex(); 2003 if (!BPSI && RegInfo->hasBasePointer(MF)) { 2004 int BPOffset = getBasePointerSaveOffset(); 2005 // Allocate the frame index for the base pointer save area. 2006 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true); 2007 // Save the result. 2008 FI->setBasePointerSaveIndex(BPSI); 2009 } 2010 2011 // Reserve stack space for the PIC Base register (R30). 2012 // Only used in SVR4 32-bit. 2013 if (FI->usesPICBase()) { 2014 int PBPSI = MFI.CreateFixedObject(4, -8, true); 2015 FI->setPICBasePointerSaveIndex(PBPSI); 2016 } 2017 2018 // Make sure we don't explicitly spill r31, because, for example, we have 2019 // some inline asm which explicitly clobbers it, when we otherwise have a 2020 // frame pointer and are using r31's spill slot for the prologue/epilogue 2021 // code. Same goes for the base pointer and the PIC base register. 2022 if (needsFP(MF)) 2023 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31); 2024 if (RegInfo->hasBasePointer(MF)) 2025 SavedRegs.reset(RegInfo->getBaseRegister(MF)); 2026 if (FI->usesPICBase()) 2027 SavedRegs.reset(PPC::R30); 2028 2029 // Reserve stack space to move the linkage area to in case of a tail call. 2030 int TCSPDelta = 0; 2031 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2032 (TCSPDelta = FI->getTailCallSPDelta()) < 0) { 2033 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true); 2034 } 2035 2036 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4. 2037 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack 2038 // object at the offset of the CR-save slot in the linkage area. The actual 2039 // save and restore of the condition register will be created as part of the 2040 // prologue and epilogue insertion, but the FixedStack object is needed to 2041 // keep the CalleSavedInfo valid. 2042 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) || 2043 SavedRegs.test(PPC::CR4))) { 2044 const uint64_t SpillSize = 4; // Condition register is always 4 bytes. 2045 const int64_t SpillOffset = 2046 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4; 2047 int FrameIdx = 2048 MFI.CreateFixedObject(SpillSize, SpillOffset, 2049 /* IsImmutable */ true, /* IsAliased */ false); 2050 FI->setCRSpillFrameIndex(FrameIdx); 2051 } 2052 } 2053 2054 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF, 2055 RegScavenger *RS) const { 2056 // Get callee saved register information. 2057 MachineFrameInfo &MFI = MF.getFrameInfo(); 2058 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 2059 2060 // If the function is shrink-wrapped, and if the function has a tail call, the 2061 // tail call might not be in the new RestoreBlock, so real branch instruction 2062 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new 2063 // RestoreBlock. So we handle this case here. 2064 if (MFI.getSavePoint() && MFI.hasTailCall()) { 2065 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint(); 2066 for (MachineBasicBlock &MBB : MF) { 2067 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock) 2068 createTailCallBranchInstr(MBB); 2069 } 2070 } 2071 2072 // Early exit if no callee saved registers are modified! 2073 if (CSI.empty() && !needsFP(MF)) { 2074 addScavengingSpillSlot(MF, RS); 2075 return; 2076 } 2077 2078 unsigned MinGPR = PPC::R31; 2079 unsigned MinG8R = PPC::X31; 2080 unsigned MinFPR = PPC::F31; 2081 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31; 2082 2083 bool HasGPSaveArea = false; 2084 bool HasG8SaveArea = false; 2085 bool HasFPSaveArea = false; 2086 bool HasVRSaveArea = false; 2087 2088 SmallVector<CalleeSavedInfo, 18> GPRegs; 2089 SmallVector<CalleeSavedInfo, 18> G8Regs; 2090 SmallVector<CalleeSavedInfo, 18> FPRegs; 2091 SmallVector<CalleeSavedInfo, 18> VRegs; 2092 2093 for (const CalleeSavedInfo &I : CSI) { 2094 Register Reg = I.getReg(); 2095 assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() || 2096 (Reg != PPC::X2 && Reg != PPC::R2)) && 2097 "Not expecting to try to spill R2 in a function that must save TOC"); 2098 if (PPC::GPRCRegClass.contains(Reg)) { 2099 HasGPSaveArea = true; 2100 2101 GPRegs.push_back(I); 2102 2103 if (Reg < MinGPR) { 2104 MinGPR = Reg; 2105 } 2106 } else if (PPC::G8RCRegClass.contains(Reg)) { 2107 HasG8SaveArea = true; 2108 2109 G8Regs.push_back(I); 2110 2111 if (Reg < MinG8R) { 2112 MinG8R = Reg; 2113 } 2114 } else if (PPC::F8RCRegClass.contains(Reg)) { 2115 HasFPSaveArea = true; 2116 2117 FPRegs.push_back(I); 2118 2119 if (Reg < MinFPR) { 2120 MinFPR = Reg; 2121 } 2122 } else if (PPC::CRBITRCRegClass.contains(Reg) || 2123 PPC::CRRCRegClass.contains(Reg)) { 2124 ; // do nothing, as we already know whether CRs are spilled 2125 } else if (PPC::VRRCRegClass.contains(Reg) || 2126 PPC::SPERCRegClass.contains(Reg)) { 2127 // Altivec and SPE are mutually exclusive, but have the same stack 2128 // alignment requirements, so overload the save area for both cases. 2129 HasVRSaveArea = true; 2130 2131 VRegs.push_back(I); 2132 2133 if (Reg < MinVR) { 2134 MinVR = Reg; 2135 } 2136 } else { 2137 llvm_unreachable("Unknown RegisterClass!"); 2138 } 2139 } 2140 2141 PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>(); 2142 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2143 2144 int64_t LowerBound = 0; 2145 2146 // Take into account stack space reserved for tail calls. 2147 int TCSPDelta = 0; 2148 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2149 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) { 2150 LowerBound = TCSPDelta; 2151 } 2152 2153 // The Floating-point register save area is right below the back chain word 2154 // of the previous stack frame. 2155 if (HasFPSaveArea) { 2156 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) { 2157 int FI = FPRegs[i].getFrameIdx(); 2158 2159 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2160 } 2161 2162 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8; 2163 } 2164 2165 // Check whether the frame pointer register is allocated. If so, make sure it 2166 // is spilled to the correct offset. 2167 if (needsFP(MF)) { 2168 int FI = PFI->getFramePointerSaveIndex(); 2169 assert(FI && "No Frame Pointer Save Slot!"); 2170 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2171 // FP is R31/X31, so no need to update MinGPR/MinG8R. 2172 HasGPSaveArea = true; 2173 } 2174 2175 if (PFI->usesPICBase()) { 2176 int FI = PFI->getPICBasePointerSaveIndex(); 2177 assert(FI && "No PIC Base Pointer Save Slot!"); 2178 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2179 2180 MinGPR = std::min<unsigned>(MinGPR, PPC::R30); 2181 HasGPSaveArea = true; 2182 } 2183 2184 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2185 if (RegInfo->hasBasePointer(MF)) { 2186 int FI = PFI->getBasePointerSaveIndex(); 2187 assert(FI && "No Base Pointer Save Slot!"); 2188 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2189 2190 Register BP = RegInfo->getBaseRegister(MF); 2191 if (PPC::G8RCRegClass.contains(BP)) { 2192 MinG8R = std::min<unsigned>(MinG8R, BP); 2193 HasG8SaveArea = true; 2194 } else if (PPC::GPRCRegClass.contains(BP)) { 2195 MinGPR = std::min<unsigned>(MinGPR, BP); 2196 HasGPSaveArea = true; 2197 } 2198 } 2199 2200 // General register save area starts right below the Floating-point 2201 // register save area. 2202 if (HasGPSaveArea || HasG8SaveArea) { 2203 // Move general register save area spill slots down, taking into account 2204 // the size of the Floating-point register save area. 2205 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) { 2206 if (!GPRegs[i].isSpilledToReg()) { 2207 int FI = GPRegs[i].getFrameIdx(); 2208 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2209 } 2210 } 2211 2212 // Move general register save area spill slots down, taking into account 2213 // the size of the Floating-point register save area. 2214 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) { 2215 if (!G8Regs[i].isSpilledToReg()) { 2216 int FI = G8Regs[i].getFrameIdx(); 2217 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2218 } 2219 } 2220 2221 unsigned MinReg = 2222 std::min<unsigned>(TRI->getEncodingValue(MinGPR), 2223 TRI->getEncodingValue(MinG8R)); 2224 2225 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4; 2226 LowerBound -= (31 - MinReg + 1) * GPRegSize; 2227 } 2228 2229 // For 32-bit only, the CR save area is below the general register 2230 // save area. For 64-bit SVR4, the CR save area is addressed relative 2231 // to the stack pointer and hence does not need an adjustment here. 2232 // Only CR2 (the first nonvolatile spilled) has an associated frame 2233 // index so that we have a single uniform save area. 2234 if (spillsCR(MF) && Subtarget.is32BitELFABI()) { 2235 // Adjust the frame index of the CR spill slot. 2236 for (const auto &CSInfo : CSI) { 2237 if (CSInfo.getReg() == PPC::CR2) { 2238 int FI = CSInfo.getFrameIdx(); 2239 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2240 break; 2241 } 2242 } 2243 2244 LowerBound -= 4; // The CR save area is always 4 bytes long. 2245 } 2246 2247 // Both Altivec and SPE have the same alignment and padding requirements 2248 // within the stack frame. 2249 if (HasVRSaveArea) { 2250 // Insert alignment padding, we need 16-byte alignment. Note: for positive 2251 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since 2252 // we are using negative number here (the stack grows downward). We should 2253 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n 2254 // is the alignment size ( n = 16 here) and y is the size after aligning. 2255 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!"); 2256 LowerBound &= ~(15); 2257 2258 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) { 2259 int FI = VRegs[i].getFrameIdx(); 2260 2261 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI)); 2262 } 2263 } 2264 2265 addScavengingSpillSlot(MF, RS); 2266 } 2267 2268 void 2269 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF, 2270 RegScavenger *RS) const { 2271 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or 2272 // a large stack, which will require scavenging a register to materialize a 2273 // large offset. 2274 2275 // We need to have a scavenger spill slot for spills if the frame size is 2276 // large. In case there is no free register for large-offset addressing, 2277 // this slot is used for the necessary emergency spill. Also, we need the 2278 // slot for dynamic stack allocations. 2279 2280 // The scavenger might be invoked if the frame offset does not fit into 2281 // the 16-bit immediate in case of not SPE and 8-bit in case of SPE. 2282 // We don't know the complete frame size here because we've not yet computed 2283 // callee-saved register spills or the needed alignment padding. 2284 unsigned StackSize = determineFrameLayout(MF, true); 2285 MachineFrameInfo &MFI = MF.getFrameInfo(); 2286 bool NeedSpills = Subtarget.hasSPE() ? !isInt<8>(StackSize) : !isInt<16>(StackSize); 2287 2288 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) || 2289 (hasSpills(MF) && NeedSpills)) { 2290 const TargetRegisterClass &GPRC = PPC::GPRCRegClass; 2291 const TargetRegisterClass &G8RC = PPC::G8RCRegClass; 2292 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC; 2293 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 2294 unsigned Size = TRI.getSpillSize(RC); 2295 Align Alignment = TRI.getSpillAlign(RC); 2296 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false)); 2297 2298 // Might we have over-aligned allocas? 2299 bool HasAlVars = 2300 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign(); 2301 2302 // These kinds of spills might need two registers. 2303 if (spillsCR(MF) || HasAlVars) 2304 RS->addScavengingFrameIndex( 2305 MFI.CreateStackObject(Size, Alignment, false)); 2306 } 2307 } 2308 2309 // This function checks if a callee saved gpr can be spilled to a volatile 2310 // vector register. This occurs for leaf functions when the option 2311 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers 2312 // which were not spilled to vectors, return false so the target independent 2313 // code can handle them by assigning a FrameIdx to a stack slot. 2314 bool PPCFrameLowering::assignCalleeSavedSpillSlots( 2315 MachineFunction &MF, const TargetRegisterInfo *TRI, 2316 std::vector<CalleeSavedInfo> &CSI) const { 2317 2318 if (CSI.empty()) 2319 return true; // Early exit if no callee saved registers are modified! 2320 2321 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 2322 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2323 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2324 2325 if (Subtarget.hasSPE()) { 2326 // In case of SPE we only have SuperRegs and CRs 2327 // in our CalleSaveInfo vector. 2328 2329 for (auto &CalleeSaveReg : CSI) { 2330 MCPhysReg Reg = CalleeSaveReg.getReg(); 2331 MCPhysReg Lower = RegInfo->getSubReg(Reg, 1); 2332 MCPhysReg Higher = RegInfo->getSubReg(Reg, 2); 2333 2334 if ( // Check only for SuperRegs. 2335 Lower && 2336 // Replace Reg if only lower-32 bits modified 2337 !MRI.isPhysRegModified(Higher)) 2338 CalleeSaveReg = CalleeSavedInfo(Lower); 2339 } 2340 } 2341 2342 // Early exit if cannot spill gprs to volatile vector registers. 2343 MachineFrameInfo &MFI = MF.getFrameInfo(); 2344 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector()) 2345 return false; 2346 2347 // Build a BitVector of VSRs that can be used for spilling GPRs. 2348 BitVector BVAllocatable = TRI->getAllocatableSet(MF); 2349 BitVector BVCalleeSaved(TRI->getNumRegs()); 2350 for (unsigned i = 0; CSRegs[i]; ++i) 2351 BVCalleeSaved.set(CSRegs[i]); 2352 2353 for (unsigned Reg : BVAllocatable.set_bits()) { 2354 // Set to 0 if the register is not a volatile VSX register, or if it is 2355 // used in the function. 2356 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) || 2357 MRI.isPhysRegUsed(Reg)) 2358 BVAllocatable.reset(Reg); 2359 } 2360 2361 bool AllSpilledToReg = true; 2362 unsigned LastVSRUsedForSpill = 0; 2363 for (auto &CS : CSI) { 2364 if (BVAllocatable.none()) 2365 return false; 2366 2367 Register Reg = CS.getReg(); 2368 2369 if (!PPC::G8RCRegClass.contains(Reg)) { 2370 AllSpilledToReg = false; 2371 continue; 2372 } 2373 2374 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs 2375 // into one VSR using the mtvsrdd instruction. 2376 if (LastVSRUsedForSpill != 0) { 2377 CS.setDstReg(LastVSRUsedForSpill); 2378 BVAllocatable.reset(LastVSRUsedForSpill); 2379 LastVSRUsedForSpill = 0; 2380 continue; 2381 } 2382 2383 unsigned VolatileVFReg = BVAllocatable.find_first(); 2384 if (VolatileVFReg < BVAllocatable.size()) { 2385 CS.setDstReg(VolatileVFReg); 2386 LastVSRUsedForSpill = VolatileVFReg; 2387 } else { 2388 AllSpilledToReg = false; 2389 } 2390 } 2391 return AllSpilledToReg; 2392 } 2393 2394 bool PPCFrameLowering::spillCalleeSavedRegisters( 2395 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2396 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2397 2398 MachineFunction *MF = MBB.getParent(); 2399 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2400 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2401 bool MustSaveTOC = FI->mustSaveTOC(); 2402 DebugLoc DL; 2403 bool CRSpilled = false; 2404 MachineInstrBuilder CRMIB; 2405 BitVector Spilled(TRI->getNumRegs()); 2406 2407 VSRContainingGPRs.clear(); 2408 2409 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one 2410 // or two GPRs, so we need table to record information for later save/restore. 2411 for (const CalleeSavedInfo &Info : CSI) { 2412 if (Info.isSpilledToReg()) { 2413 auto &SpilledVSR = 2414 VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second; 2415 assert(SpilledVSR.second == 0 && 2416 "Can't spill more than two GPRs into VSR!"); 2417 if (SpilledVSR.first == 0) 2418 SpilledVSR.first = Info.getReg(); 2419 else 2420 SpilledVSR.second = Info.getReg(); 2421 } 2422 } 2423 2424 for (const CalleeSavedInfo &I : CSI) { 2425 Register Reg = I.getReg(); 2426 2427 // CR2 through CR4 are the nonvolatile CR fields. 2428 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4; 2429 2430 // Add the callee-saved register as live-in; it's killed at the spill. 2431 // Do not do this for callee-saved registers that are live-in to the 2432 // function because they will already be marked live-in and this will be 2433 // adding it for a second time. It is an error to add the same register 2434 // to the set more than once. 2435 const MachineRegisterInfo &MRI = MF->getRegInfo(); 2436 bool IsLiveIn = MRI.isLiveIn(Reg); 2437 if (!IsLiveIn) 2438 MBB.addLiveIn(Reg); 2439 2440 if (CRSpilled && IsCRField) { 2441 CRMIB.addReg(Reg, RegState::ImplicitKill); 2442 continue; 2443 } 2444 2445 // The actual spill will happen in the prologue. 2446 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2447 continue; 2448 2449 // Insert the spill to the stack frame. 2450 if (IsCRField) { 2451 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); 2452 if (!Subtarget.is32BitELFABI()) { 2453 // The actual spill will happen at the start of the prologue. 2454 FuncInfo->addMustSaveCR(Reg); 2455 } else { 2456 CRSpilled = true; 2457 FuncInfo->setSpillsCR(); 2458 2459 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have 2460 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot. 2461 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12) 2462 .addReg(Reg, RegState::ImplicitKill); 2463 2464 MBB.insert(MI, CRMIB); 2465 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW)) 2466 .addReg(PPC::R12, 2467 getKillRegState(true)), 2468 I.getFrameIdx())); 2469 } 2470 } else { 2471 if (I.isSpilledToReg()) { 2472 unsigned Dst = I.getDstReg(); 2473 2474 if (Spilled[Dst]) 2475 continue; 2476 2477 if (VSRContainingGPRs[Dst].second != 0) { 2478 assert(Subtarget.hasP9Vector() && 2479 "mtvsrdd is unavailable on pre-P9 targets."); 2480 2481 NumPESpillVSR += 2; 2482 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst) 2483 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)) 2484 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true)); 2485 } else if (VSRContainingGPRs[Dst].second == 0) { 2486 assert(Subtarget.hasP8Vector() && 2487 "Can't move GPR to VSR on pre-P8 targets."); 2488 2489 ++NumPESpillVSR; 2490 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), 2491 TRI->getSubReg(Dst, PPC::sub_64)) 2492 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true)); 2493 } else { 2494 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2495 } 2496 Spilled.set(Dst); 2497 } else { 2498 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2499 // Use !IsLiveIn for the kill flag. 2500 // We do not want to kill registers that are live in this function 2501 // before their use because they will become undefined registers. 2502 // Functions without NoUnwind need to preserve the order of elements in 2503 // saved vector registers. 2504 if (Subtarget.needsSwapsForVSXMemOps() && 2505 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2506 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn, 2507 I.getFrameIdx(), RC, TRI); 2508 else 2509 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC, 2510 TRI, Register()); 2511 } 2512 } 2513 } 2514 return true; 2515 } 2516 2517 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, 2518 bool CR4Spilled, MachineBasicBlock &MBB, 2519 MachineBasicBlock::iterator MI, 2520 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) { 2521 2522 MachineFunction *MF = MBB.getParent(); 2523 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 2524 DebugLoc DL; 2525 unsigned MoveReg = PPC::R12; 2526 2527 // 32-bit: FP-relative 2528 MBB.insert(MI, 2529 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg), 2530 CSI[CSIIndex].getFrameIdx())); 2531 2532 unsigned RestoreOp = PPC::MTOCRF; 2533 if (CR2Spilled) 2534 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2) 2535 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled))); 2536 2537 if (CR3Spilled) 2538 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3) 2539 .addReg(MoveReg, getKillRegState(!CR4Spilled))); 2540 2541 if (CR4Spilled) 2542 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4) 2543 .addReg(MoveReg, getKillRegState(true))); 2544 } 2545 2546 MachineBasicBlock::iterator PPCFrameLowering:: 2547 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2548 MachineBasicBlock::iterator I) const { 2549 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 2550 if (MF.getTarget().Options.GuaranteedTailCallOpt && 2551 I->getOpcode() == PPC::ADJCALLSTACKUP) { 2552 // Add (actually subtract) back the amount the callee popped on return. 2553 if (int CalleeAmt = I->getOperand(1).getImm()) { 2554 bool is64Bit = Subtarget.isPPC64(); 2555 CalleeAmt *= -1; 2556 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; 2557 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; 2558 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; 2559 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; 2560 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; 2561 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; 2562 const DebugLoc &dl = I->getDebugLoc(); 2563 2564 if (isInt<16>(CalleeAmt)) { 2565 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg) 2566 .addReg(StackReg, RegState::Kill) 2567 .addImm(CalleeAmt); 2568 } else { 2569 MachineBasicBlock::iterator MBBI = I; 2570 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg) 2571 .addImm(CalleeAmt >> 16); 2572 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg) 2573 .addReg(TmpReg, RegState::Kill) 2574 .addImm(CalleeAmt & 0xFFFF); 2575 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg) 2576 .addReg(StackReg, RegState::Kill) 2577 .addReg(TmpReg); 2578 } 2579 } 2580 } 2581 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. 2582 return MBB.erase(I); 2583 } 2584 2585 static bool isCalleeSavedCR(unsigned Reg) { 2586 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4; 2587 } 2588 2589 bool PPCFrameLowering::restoreCalleeSavedRegisters( 2590 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2591 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2592 MachineFunction *MF = MBB.getParent(); 2593 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 2594 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 2595 bool MustSaveTOC = FI->mustSaveTOC(); 2596 bool CR2Spilled = false; 2597 bool CR3Spilled = false; 2598 bool CR4Spilled = false; 2599 unsigned CSIIndex = 0; 2600 BitVector Restored(TRI->getNumRegs()); 2601 2602 // Initialize insertion-point logic; we will be restoring in reverse 2603 // order of spill. 2604 MachineBasicBlock::iterator I = MI, BeforeI = I; 2605 bool AtStart = I == MBB.begin(); 2606 2607 if (!AtStart) 2608 --BeforeI; 2609 2610 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2611 Register Reg = CSI[i].getReg(); 2612 2613 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC) 2614 continue; 2615 2616 // Restore of callee saved condition register field is handled during 2617 // epilogue insertion. 2618 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI()) 2619 continue; 2620 2621 if (Reg == PPC::CR2) { 2622 CR2Spilled = true; 2623 // The spill slot is associated only with CR2, which is the 2624 // first nonvolatile spilled. Save it here. 2625 CSIIndex = i; 2626 continue; 2627 } else if (Reg == PPC::CR3) { 2628 CR3Spilled = true; 2629 continue; 2630 } else if (Reg == PPC::CR4) { 2631 CR4Spilled = true; 2632 continue; 2633 } else { 2634 // On 32-bit ELF when we first encounter a non-CR register after seeing at 2635 // least one CR register, restore all spilled CRs together. 2636 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2637 bool is31 = needsFP(*MF); 2638 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, 2639 CSIIndex); 2640 CR2Spilled = CR3Spilled = CR4Spilled = false; 2641 } 2642 2643 if (CSI[i].isSpilledToReg()) { 2644 DebugLoc DL; 2645 unsigned Dst = CSI[i].getDstReg(); 2646 2647 if (Restored[Dst]) 2648 continue; 2649 2650 if (VSRContainingGPRs[Dst].second != 0) { 2651 assert(Subtarget.hasP9Vector()); 2652 NumPEReloadVSR += 2; 2653 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD), 2654 VSRContainingGPRs[Dst].second) 2655 .addReg(Dst); 2656 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2657 VSRContainingGPRs[Dst].first) 2658 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2659 } else if (VSRContainingGPRs[Dst].second == 0) { 2660 assert(Subtarget.hasP8Vector()); 2661 ++NumPEReloadVSR; 2662 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), 2663 VSRContainingGPRs[Dst].first) 2664 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true)); 2665 } else { 2666 llvm_unreachable("More than two GPRs spilled to a VSR!"); 2667 } 2668 2669 Restored.set(Dst); 2670 2671 } else { 2672 // Default behavior for non-CR saves. 2673 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 2674 2675 // Functions without NoUnwind need to preserve the order of elements in 2676 // saved vector registers. 2677 if (Subtarget.needsSwapsForVSXMemOps() && 2678 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind)) 2679 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC, 2680 TRI); 2681 else 2682 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI, 2683 Register()); 2684 2685 assert(I != MBB.begin() && 2686 "loadRegFromStackSlot didn't insert any code!"); 2687 } 2688 } 2689 2690 // Insert in reverse order. 2691 if (AtStart) 2692 I = MBB.begin(); 2693 else { 2694 I = BeforeI; 2695 ++I; 2696 } 2697 } 2698 2699 // If we haven't yet spilled the CRs, do so now. 2700 if (CR2Spilled || CR3Spilled || CR4Spilled) { 2701 assert(Subtarget.is32BitELFABI() && 2702 "Only set CR[2|3|4]Spilled on 32-bit SVR4."); 2703 bool is31 = needsFP(*MF); 2704 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex); 2705 } 2706 2707 return true; 2708 } 2709 2710 uint64_t PPCFrameLowering::getTOCSaveOffset() const { 2711 return TOCSaveOffset; 2712 } 2713 2714 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const { 2715 return FramePointerSaveOffset; 2716 } 2717 2718 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const { 2719 return BasePointerSaveOffset; 2720 } 2721 2722 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2723 if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled()) 2724 return false; 2725 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI(); 2726 } 2727 2728 uint64_t PPCFrameLowering::getStackThreshold() const { 2729 // On PPC64, we use `stux r1, r1, <scratch_reg>` to extend the stack; 2730 // use `add r1, r1, <scratch_reg>` to release the stack frame. 2731 // Scratch register contains a signed 64-bit number, which is negative 2732 // when extending the stack and is positive when releasing the stack frame. 2733 // To make `stux` and `add` paired, the absolute value of the number contained 2734 // in the scratch register should be the same. Thus the maximum stack size 2735 // is (2^63)-1, i.e., LONG_MAX. 2736 if (Subtarget.isPPC64()) 2737 return LONG_MAX; 2738 2739 return TargetFrameLowering::getStackThreshold(); 2740 } 2741