xref: /llvm-project/llvm/lib/Target/Mips/MipsDelaySlotFiller.cpp (revision b3bde2ea50decc455f3b2fff02e49351e4209d92)
1 //===- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Simple pass to fill delay slots with useful instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/MipsMCNaCl.h"
15 #include "Mips.h"
16 #include "MipsInstrInfo.h"
17 #include "MipsRegisterInfo.h"
18 #include "MipsSubtarget.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/MC/MCInstrDesc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <iterator>
49 #include <memory>
50 #include <utility>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "delay-slot-filler"
55 
56 STATISTIC(FilledSlots, "Number of delay slots filled");
57 STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that"
58                        " are not NOP.");
59 
60 static cl::opt<bool> DisableDelaySlotFiller(
61   "disable-mips-delay-filler",
62   cl::init(false),
63   cl::desc("Fill all delay slots with NOPs."),
64   cl::Hidden);
65 
66 static cl::opt<bool> DisableForwardSearch(
67   "disable-mips-df-forward-search",
68   cl::init(true),
69   cl::desc("Disallow MIPS delay filler to search forward."),
70   cl::Hidden);
71 
72 static cl::opt<bool> DisableSuccBBSearch(
73   "disable-mips-df-succbb-search",
74   cl::init(true),
75   cl::desc("Disallow MIPS delay filler to search successor basic blocks."),
76   cl::Hidden);
77 
78 static cl::opt<bool> DisableBackwardSearch(
79   "disable-mips-df-backward-search",
80   cl::init(false),
81   cl::desc("Disallow MIPS delay filler to search backward."),
82   cl::Hidden);
83 
84 enum CompactBranchPolicy {
85   CB_Never,   ///< The policy 'never' may in some circumstances or for some
86               ///< ISAs not be absolutely adhered to.
87   CB_Optimal, ///< Optimal is the default and will produce compact branches
88               ///< when delay slots cannot be filled.
89   CB_Always   ///< 'always' may in some circumstances may not be
90               ///< absolutely adhered to there may not be a corresponding
91               ///< compact form of a branch.
92 };
93 
94 static cl::opt<CompactBranchPolicy> MipsCompactBranchPolicy(
95   "mips-compact-branches",cl::Optional,
96   cl::init(CB_Optimal),
97   cl::desc("MIPS Specific: Compact branch policy."),
98   cl::values(
99     clEnumValN(CB_Never, "never", "Do not use compact branches if possible."),
100     clEnumValN(CB_Optimal, "optimal", "Use compact branches where appropiate (default)."),
101     clEnumValN(CB_Always, "always", "Always use compact branches if possible.")
102   )
103 );
104 
105 namespace {
106 
107   using Iter = MachineBasicBlock::iterator;
108   using ReverseIter = MachineBasicBlock::reverse_iterator;
109   using BB2BrMap = SmallDenseMap<MachineBasicBlock *, MachineInstr *, 2>;
110 
111   class RegDefsUses {
112   public:
113     RegDefsUses(const TargetRegisterInfo &TRI);
114 
115     void init(const MachineInstr &MI);
116 
117     /// This function sets all caller-saved registers in Defs.
118     void setCallerSaved(const MachineInstr &MI);
119 
120     /// This function sets all unallocatable registers in Defs.
121     void setUnallocatableRegs(const MachineFunction &MF);
122 
123     /// Set bits in Uses corresponding to MBB's live-out registers except for
124     /// the registers that are live-in to SuccBB.
125     void addLiveOut(const MachineBasicBlock &MBB,
126                     const MachineBasicBlock &SuccBB);
127 
128     bool update(const MachineInstr &MI, unsigned Begin, unsigned End);
129 
130   private:
131     bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg,
132                           bool IsDef) const;
133 
134     /// Returns true if Reg or its alias is in RegSet.
135     bool isRegInSet(const BitVector &RegSet, unsigned Reg) const;
136 
137     const TargetRegisterInfo &TRI;
138     BitVector Defs, Uses;
139   };
140 
141   /// Base class for inspecting loads and stores.
142   class InspectMemInstr {
143   public:
144     InspectMemInstr(bool ForbidMemInstr_) : ForbidMemInstr(ForbidMemInstr_) {}
145     virtual ~InspectMemInstr() = default;
146 
147     /// Return true if MI cannot be moved to delay slot.
148     bool hasHazard(const MachineInstr &MI);
149 
150   protected:
151     /// Flags indicating whether loads or stores have been seen.
152     bool OrigSeenLoad = false;
153     bool OrigSeenStore = false;
154     bool SeenLoad = false;
155     bool SeenStore = false;
156 
157     /// Memory instructions are not allowed to move to delay slot if this flag
158     /// is true.
159     bool ForbidMemInstr;
160 
161   private:
162     virtual bool hasHazard_(const MachineInstr &MI) = 0;
163   };
164 
165   /// This subclass rejects any memory instructions.
166   class NoMemInstr : public InspectMemInstr {
167   public:
168     NoMemInstr() : InspectMemInstr(true) {}
169 
170   private:
171     bool hasHazard_(const MachineInstr &MI) override { return true; }
172   };
173 
174   /// This subclass accepts loads from stacks and constant loads.
175   class LoadFromStackOrConst : public InspectMemInstr {
176   public:
177     LoadFromStackOrConst() : InspectMemInstr(false) {}
178 
179   private:
180     bool hasHazard_(const MachineInstr &MI) override;
181   };
182 
183   /// This subclass uses memory dependence information to determine whether a
184   /// memory instruction can be moved to a delay slot.
185   class MemDefsUses : public InspectMemInstr {
186   public:
187     MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI);
188 
189   private:
190     using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
191 
192     bool hasHazard_(const MachineInstr &MI) override;
193 
194     /// Update Defs and Uses. Return true if there exist dependences that
195     /// disqualify the delay slot candidate between V and values in Uses and
196     /// Defs.
197     bool updateDefsUses(ValueType V, bool MayStore);
198 
199     /// Get the list of underlying objects of MI's memory operand.
200     bool getUnderlyingObjects(const MachineInstr &MI,
201                               SmallVectorImpl<ValueType> &Objects) const;
202 
203     const MachineFrameInfo *MFI;
204     SmallPtrSet<ValueType, 4> Uses, Defs;
205     const DataLayout &DL;
206 
207     /// Flags indicating whether loads or stores with no underlying objects have
208     /// been seen.
209     bool SeenNoObjLoad = false;
210     bool SeenNoObjStore = false;
211   };
212 
213   class Filler : public MachineFunctionPass {
214   public:
215     Filler() : MachineFunctionPass(ID) {}
216 
217     StringRef getPassName() const override { return "Mips Delay Slot Filler"; }
218 
219     bool runOnMachineFunction(MachineFunction &F) override {
220       TM = &F.getTarget();
221       bool Changed = false;
222       for (MachineFunction::iterator FI = F.begin(), FE = F.end();
223            FI != FE; ++FI)
224         Changed |= runOnMachineBasicBlock(*FI);
225 
226       // This pass invalidates liveness information when it reorders
227       // instructions to fill delay slot. Without this, -verify-machineinstrs
228       // will fail.
229       if (Changed)
230         F.getRegInfo().invalidateLiveness();
231 
232       return Changed;
233     }
234 
235     MachineFunctionProperties getRequiredProperties() const override {
236       return MachineFunctionProperties().set(
237           MachineFunctionProperties::Property::NoVRegs);
238     }
239 
240     void getAnalysisUsage(AnalysisUsage &AU) const override {
241       AU.addRequired<MachineBranchProbabilityInfo>();
242       MachineFunctionPass::getAnalysisUsage(AU);
243     }
244 
245   private:
246     bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
247 
248     Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
249                                   const DebugLoc &DL);
250 
251     /// This function checks if it is valid to move Candidate to the delay slot
252     /// and returns true if it isn't. It also updates memory and register
253     /// dependence information.
254     bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
255                         InspectMemInstr &IM) const;
256 
257     /// This function searches range [Begin, End) for an instruction that can be
258     /// moved to the delay slot. Returns true on success.
259     template<typename IterTy>
260     bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
261                      RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot,
262                      IterTy &Filler) const;
263 
264     /// This function searches in the backward direction for an instruction that
265     /// can be moved to the delay slot. Returns true on success.
266     bool searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const;
267 
268     /// This function searches MBB in the forward direction for an instruction
269     /// that can be moved to the delay slot. Returns true on success.
270     bool searchForward(MachineBasicBlock &MBB, Iter Slot) const;
271 
272     /// This function searches one of MBB's successor blocks for an instruction
273     /// that can be moved to the delay slot and inserts clones of the
274     /// instruction into the successor's predecessor blocks.
275     bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const;
276 
277     /// Pick a successor block of MBB. Return NULL if MBB doesn't have a
278     /// successor block that is not a landing pad.
279     MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const;
280 
281     /// This function analyzes MBB and returns an instruction with an unoccupied
282     /// slot that branches to Dst.
283     std::pair<MipsInstrInfo::BranchType, MachineInstr *>
284     getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const;
285 
286     /// Examine Pred and see if it is possible to insert an instruction into
287     /// one of its branches delay slot or its end.
288     bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
289                      RegDefsUses &RegDU, bool &HasMultipleSuccs,
290                      BB2BrMap &BrMap) const;
291 
292     bool terminateSearch(const MachineInstr &Candidate) const;
293 
294     const TargetMachine *TM = nullptr;
295 
296     static char ID;
297   };
298 
299 } // end anonymous namespace
300 
301 char Filler::ID = 0;
302 
303 static bool hasUnoccupiedSlot(const MachineInstr *MI) {
304   return MI->hasDelaySlot() && !MI->isBundledWithSucc();
305 }
306 
307 /// This function inserts clones of Filler into predecessor blocks.
308 static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) {
309   MachineFunction *MF = Filler->getParent()->getParent();
310 
311   for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) {
312     if (I->second) {
313       MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler));
314       ++UsefulSlots;
315     } else {
316       I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler));
317     }
318   }
319 }
320 
321 /// This function adds registers Filler defines to MBB's live-in register list.
322 static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
323   for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) {
324     const MachineOperand &MO = Filler->getOperand(I);
325     unsigned R;
326 
327     if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg()))
328       continue;
329 
330 #ifndef NDEBUG
331     const MachineFunction &MF = *MBB.getParent();
332     assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
333            "Shouldn't move an instruction with unallocatable registers across "
334            "basic block boundaries.");
335 #endif
336 
337     if (!MBB.isLiveIn(R))
338       MBB.addLiveIn(R);
339   }
340 }
341 
342 RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI)
343     : TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {}
344 
345 void RegDefsUses::init(const MachineInstr &MI) {
346   // Add all register operands which are explicit and non-variadic.
347   update(MI, 0, MI.getDesc().getNumOperands());
348 
349   // If MI is a call, add RA to Defs to prevent users of RA from going into
350   // delay slot.
351   if (MI.isCall())
352     Defs.set(Mips::RA);
353 
354   // Add all implicit register operands of branch instructions except
355   // register AT.
356   if (MI.isBranch()) {
357     update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands());
358     Defs.reset(Mips::AT);
359   }
360 }
361 
362 void RegDefsUses::setCallerSaved(const MachineInstr &MI) {
363   assert(MI.isCall());
364 
365   // Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into
366   // the delay slot. The reason is that RA/RA_64 must not be changed
367   // in the delay slot so that the callee can return to the caller.
368   if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) {
369     Defs.set(Mips::RA);
370     Defs.set(Mips::RA_64);
371   }
372 
373   // If MI is a call, add all caller-saved registers to Defs.
374   BitVector CallerSavedRegs(TRI.getNumRegs(), true);
375 
376   CallerSavedRegs.reset(Mips::ZERO);
377   CallerSavedRegs.reset(Mips::ZERO_64);
378 
379   for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent());
380        *R; ++R)
381     for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI)
382       CallerSavedRegs.reset(*AI);
383 
384   Defs |= CallerSavedRegs;
385 }
386 
387 void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) {
388   BitVector AllocSet = TRI.getAllocatableSet(MF);
389 
390   for (unsigned R : AllocSet.set_bits())
391     for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI)
392       AllocSet.set(*AI);
393 
394   AllocSet.set(Mips::ZERO);
395   AllocSet.set(Mips::ZERO_64);
396 
397   Defs |= AllocSet.flip();
398 }
399 
400 void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB,
401                              const MachineBasicBlock &SuccBB) {
402   for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
403        SE = MBB.succ_end(); SI != SE; ++SI)
404     if (*SI != &SuccBB)
405       for (const auto &LI : (*SI)->liveins())
406         Uses.set(LI.PhysReg);
407 }
408 
409 bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) {
410   BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs());
411   bool HasHazard = false;
412 
413   for (unsigned I = Begin; I != End; ++I) {
414     const MachineOperand &MO = MI.getOperand(I);
415 
416     if (MO.isReg() && MO.getReg())
417       HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef());
418   }
419 
420   Defs |= NewDefs;
421   Uses |= NewUses;
422 
423   return HasHazard;
424 }
425 
426 bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses,
427                                    unsigned Reg, bool IsDef) const {
428   if (IsDef) {
429     NewDefs.set(Reg);
430     // check whether Reg has already been defined or used.
431     return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg));
432   }
433 
434   NewUses.set(Reg);
435   // check whether Reg has already been defined.
436   return isRegInSet(Defs, Reg);
437 }
438 
439 bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const {
440   // Check Reg and all aliased Registers.
441   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
442     if (RegSet.test(*AI))
443       return true;
444   return false;
445 }
446 
447 bool InspectMemInstr::hasHazard(const MachineInstr &MI) {
448   if (!MI.mayStore() && !MI.mayLoad())
449     return false;
450 
451   if (ForbidMemInstr)
452     return true;
453 
454   OrigSeenLoad = SeenLoad;
455   OrigSeenStore = SeenStore;
456   SeenLoad |= MI.mayLoad();
457   SeenStore |= MI.mayStore();
458 
459   // If MI is an ordered or volatile memory reference, disallow moving
460   // subsequent loads and stores to delay slot.
461   if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) {
462     ForbidMemInstr = true;
463     return true;
464   }
465 
466   return hasHazard_(MI);
467 }
468 
469 bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) {
470   if (MI.mayStore())
471     return true;
472 
473   if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue())
474     return true;
475 
476   if (const PseudoSourceValue *PSV =
477       (*MI.memoperands_begin())->getPseudoValue()) {
478     if (isa<FixedStackPseudoSourceValue>(PSV))
479       return false;
480     return !PSV->isConstant(nullptr) && !PSV->isStack();
481   }
482 
483   return true;
484 }
485 
486 MemDefsUses::MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI_)
487     : InspectMemInstr(false), MFI(MFI_), DL(DL) {}
488 
489 bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
490   bool HasHazard = false;
491   SmallVector<ValueType, 4> Objs;
492 
493   // Check underlying object list.
494   if (getUnderlyingObjects(MI, Objs)) {
495     for (SmallVectorImpl<ValueType>::const_iterator I = Objs.begin();
496          I != Objs.end(); ++I)
497       HasHazard |= updateDefsUses(*I, MI.mayStore());
498 
499     return HasHazard;
500   }
501 
502   // No underlying objects found.
503   HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore);
504   HasHazard |= MI.mayLoad() || OrigSeenStore;
505 
506   SeenNoObjLoad |= MI.mayLoad();
507   SeenNoObjStore |= MI.mayStore();
508 
509   return HasHazard;
510 }
511 
512 bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
513   if (MayStore)
514     return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore ||
515            SeenNoObjLoad;
516 
517   Uses.insert(V);
518   return Defs.count(V) || SeenNoObjStore;
519 }
520 
521 bool MemDefsUses::
522 getUnderlyingObjects(const MachineInstr &MI,
523                      SmallVectorImpl<ValueType> &Objects) const {
524   if (!MI.hasOneMemOperand() ||
525       (!(*MI.memoperands_begin())->getValue() &&
526        !(*MI.memoperands_begin())->getPseudoValue()))
527     return false;
528 
529   if (const PseudoSourceValue *PSV =
530       (*MI.memoperands_begin())->getPseudoValue()) {
531     if (!PSV->isAliased(MFI))
532       return false;
533     Objects.push_back(PSV);
534     return true;
535   }
536 
537   const Value *V = (*MI.memoperands_begin())->getValue();
538 
539   SmallVector<Value *, 4> Objs;
540   GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
541 
542   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), E = Objs.end();
543        I != E; ++I) {
544     if (!isIdentifiedObject(V))
545       return false;
546 
547     Objects.push_back(*I);
548   }
549 
550   return true;
551 }
552 
553 // Replace Branch with the compact branch instruction.
554 Iter Filler::replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
555                                       const DebugLoc &DL) {
556   const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
557   const MipsInstrInfo *TII = STI.getInstrInfo();
558 
559   unsigned NewOpcode = TII->getEquivalentCompactForm(Branch);
560   Branch = TII->genInstrWithNewOpc(NewOpcode, Branch);
561 
562   std::next(Branch)->eraseFromParent();
563   return Branch;
564 }
565 
566 // For given opcode returns opcode of corresponding instruction with short
567 // delay slot.
568 // For the pseudo TAILCALL*_MM instructions return the short delay slot
569 // form. Unfortunately, TAILCALL<->b16 is denied as b16 has a limited range
570 // that is too short to make use of for tail calls.
571 static int getEquivalentCallShort(int Opcode) {
572   switch (Opcode) {
573   case Mips::BGEZAL:
574     return Mips::BGEZALS_MM;
575   case Mips::BLTZAL:
576     return Mips::BLTZALS_MM;
577   case Mips::JAL:
578     return Mips::JALS_MM;
579   case Mips::JALR:
580     return Mips::JALRS_MM;
581   case Mips::JALR16_MM:
582     return Mips::JALRS16_MM;
583   case Mips::TAILCALL_MM:
584     llvm_unreachable("Attempting to shorten the TAILCALL_MM pseudo!");
585   case Mips::TAILCALLREG:
586     return Mips::JR16_MM;
587   default:
588     llvm_unreachable("Unexpected call instruction for microMIPS.");
589   }
590 }
591 
592 /// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
593 /// We assume there is only one delay slot per delayed instruction.
594 bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
595   bool Changed = false;
596   const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
597   bool InMicroMipsMode = STI.inMicroMipsMode();
598   const MipsInstrInfo *TII = STI.getInstrInfo();
599 
600   if (InMicroMipsMode && STI.hasMips32r6()) {
601     // This is microMIPS32r6 or microMIPS64r6 processor. Delay slot for
602     // branching instructions is not needed.
603     return Changed;
604   }
605 
606   for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
607     if (!hasUnoccupiedSlot(&*I))
608       continue;
609 
610     ++FilledSlots;
611     Changed = true;
612 
613     // Delay slot filling is disabled at -O0.
614     if (!DisableDelaySlotFiller && (TM->getOptLevel() != CodeGenOpt::None)) {
615       bool Filled = false;
616 
617       if (MipsCompactBranchPolicy.getValue() != CB_Always ||
618            !TII->getEquivalentCompactForm(I)) {
619         if (searchBackward(MBB, *I)) {
620           Filled = true;
621         } else if (I->isTerminator()) {
622           if (searchSuccBBs(MBB, I)) {
623             Filled = true;
624           }
625         } else if (searchForward(MBB, I)) {
626           Filled = true;
627         }
628       }
629 
630       if (Filled) {
631         // Get instruction with delay slot.
632         MachineBasicBlock::instr_iterator DSI = I.getInstrIterator();
633 
634         if (InMicroMipsMode && TII->getInstSizeInBytes(*std::next(DSI)) == 2 &&
635             DSI->isCall()) {
636           // If instruction in delay slot is 16b change opcode to
637           // corresponding instruction with short delay slot.
638 
639           // TODO: Implement an instruction mapping table of 16bit opcodes to
640           // 32bit opcodes so that an instruction can be expanded. This would
641           // save 16 bits as a TAILCALL_MM pseudo requires a fullsized nop.
642           // TODO: Permit b16 when branching backwards to the the same function
643           // if it is in range.
644           DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode())));
645         }
646         continue;
647       }
648     }
649 
650     // For microMIPS if instruction is BEQ or BNE with one ZERO register, then
651     // instead of adding NOP replace this instruction with the corresponding
652     // compact branch instruction, i.e. BEQZC or BNEZC. Additionally
653     // PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can
654     // be replaced with JRC16_MM.
655 
656     // For MIPSR6 attempt to produce the corresponding compact (no delay slot)
657     // form of the CTI. For indirect jumps this will not require inserting a
658     // NOP and for branches will hopefully avoid requiring a NOP.
659     if ((InMicroMipsMode ||
660          (STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) &&
661         TII->getEquivalentCompactForm(I)) {
662       I = replaceWithCompactBranch(MBB, I, I->getDebugLoc());
663       continue;
664     }
665 
666     // Bundle the NOP to the instruction with the delay slot.
667     BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
668     MIBundleBuilder(MBB, I, std::next(I, 2));
669   }
670 
671   return Changed;
672 }
673 
674 template<typename IterTy>
675 bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
676                          RegDefsUses &RegDU, InspectMemInstr& IM, Iter Slot,
677                          IterTy &Filler) const {
678   for (IterTy I = Begin; I != End;) {
679     IterTy CurrI = I;
680     ++I;
681 
682     // skip debug value
683     if (CurrI->isDebugValue())
684       continue;
685 
686     if (terminateSearch(*CurrI))
687       break;
688 
689     assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) &&
690            "Cannot put calls, returns or branches in delay slot.");
691 
692     if (CurrI->isKill()) {
693       CurrI->eraseFromParent();
694       continue;
695     }
696 
697     if (delayHasHazard(*CurrI, RegDU, IM))
698       continue;
699 
700     const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
701     if (STI.isTargetNaCl()) {
702       // In NaCl, instructions that must be masked are forbidden in delay slots.
703       // We only check for loads, stores and SP changes.  Calls, returns and
704       // branches are not checked because non-NaCl targets never put them in
705       // delay slots.
706       unsigned AddrIdx;
707       if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) &&
708            baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) ||
709           CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo()))
710         continue;
711     }
712 
713     bool InMicroMipsMode = STI.inMicroMipsMode();
714     const MipsInstrInfo *TII = STI.getInstrInfo();
715     unsigned Opcode = (*Slot).getOpcode();
716     // This is complicated by the tail call optimization. For non-PIC code
717     // there is only a 32bit sized unconditional branch which can be assumed
718     // to be able to reach the target. b16 only has a range of +/- 1 KB.
719     // It's entirely possible that the target function is reachable with b16
720     // but we don't have enough information to make that decision.
721      if (InMicroMipsMode && TII->getInstSizeInBytes(*CurrI) == 2 &&
722         (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch ||
723          Opcode == Mips::PseudoReturn || Opcode == Mips::TAILCALL))
724       continue;
725 
726     Filler = CurrI;
727     return true;
728   }
729 
730   return false;
731 }
732 
733 bool Filler::searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const {
734   if (DisableBackwardSearch)
735     return false;
736 
737   auto *Fn = MBB.getParent();
738   RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo());
739   MemDefsUses MemDU(Fn->getDataLayout(), &Fn->getFrameInfo());
740   ReverseIter Filler;
741 
742   RegDU.init(Slot);
743 
744   MachineBasicBlock::iterator SlotI = Slot;
745   if (!searchRange(MBB, ++SlotI.getReverse(), MBB.rend(), RegDU, MemDU, Slot,
746                    Filler))
747     return false;
748 
749   MBB.splice(std::next(SlotI), &MBB, Filler.getReverse());
750   MIBundleBuilder(MBB, SlotI, std::next(SlotI, 2));
751   ++UsefulSlots;
752   return true;
753 }
754 
755 bool Filler::searchForward(MachineBasicBlock &MBB, Iter Slot) const {
756   // Can handle only calls.
757   if (DisableForwardSearch || !Slot->isCall())
758     return false;
759 
760   RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
761   NoMemInstr NM;
762   Iter Filler;
763 
764   RegDU.setCallerSaved(*Slot);
765 
766   if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler))
767     return false;
768 
769   MBB.splice(std::next(Slot), &MBB, Filler);
770   MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
771   ++UsefulSlots;
772   return true;
773 }
774 
775 bool Filler::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const {
776   if (DisableSuccBBSearch)
777     return false;
778 
779   MachineBasicBlock *SuccBB = selectSuccBB(MBB);
780 
781   if (!SuccBB)
782     return false;
783 
784   RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
785   bool HasMultipleSuccs = false;
786   BB2BrMap BrMap;
787   std::unique_ptr<InspectMemInstr> IM;
788   Iter Filler;
789   auto *Fn = MBB.getParent();
790 
791   // Iterate over SuccBB's predecessor list.
792   for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(),
793        PE = SuccBB->pred_end(); PI != PE; ++PI)
794     if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap))
795       return false;
796 
797   // Do not allow moving instructions which have unallocatable register operands
798   // across basic block boundaries.
799   RegDU.setUnallocatableRegs(*Fn);
800 
801   // Only allow moving loads from stack or constants if any of the SuccBB's
802   // predecessors have multiple successors.
803   if (HasMultipleSuccs) {
804     IM.reset(new LoadFromStackOrConst());
805   } else {
806     const MachineFrameInfo &MFI = Fn->getFrameInfo();
807     IM.reset(new MemDefsUses(Fn->getDataLayout(), &MFI));
808   }
809 
810   if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot,
811                    Filler))
812     return false;
813 
814   insertDelayFiller(Filler, BrMap);
815   addLiveInRegs(Filler, *SuccBB);
816   Filler->eraseFromParent();
817 
818   return true;
819 }
820 
821 MachineBasicBlock *Filler::selectSuccBB(MachineBasicBlock &B) const {
822   if (B.succ_empty())
823     return nullptr;
824 
825   // Select the successor with the larget edge weight.
826   auto &Prob = getAnalysis<MachineBranchProbabilityInfo>();
827   MachineBasicBlock *S = *std::max_element(
828       B.succ_begin(), B.succ_end(),
829       [&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) {
830         return Prob.getEdgeProbability(&B, Dst0) <
831                Prob.getEdgeProbability(&B, Dst1);
832       });
833   return S->isEHPad() ? nullptr : S;
834 }
835 
836 std::pair<MipsInstrInfo::BranchType, MachineInstr *>
837 Filler::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const {
838   const MipsInstrInfo *TII =
839       MBB.getParent()->getSubtarget<MipsSubtarget>().getInstrInfo();
840   MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
841   SmallVector<MachineInstr*, 2> BranchInstrs;
842   SmallVector<MachineOperand, 2> Cond;
843 
844   MipsInstrInfo::BranchType R =
845       TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs);
846 
847   if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch))
848     return std::make_pair(R, nullptr);
849 
850   if (R != MipsInstrInfo::BT_CondUncond) {
851     if (!hasUnoccupiedSlot(BranchInstrs[0]))
852       return std::make_pair(MipsInstrInfo::BT_None, nullptr);
853 
854     assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst)));
855 
856     return std::make_pair(R, BranchInstrs[0]);
857   }
858 
859   assert((TrueBB == &Dst) || (FalseBB == &Dst));
860 
861   // Examine the conditional branch. See if its slot is occupied.
862   if (hasUnoccupiedSlot(BranchInstrs[0]))
863     return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]);
864 
865   // If that fails, try the unconditional branch.
866   if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst))
867     return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]);
868 
869   return std::make_pair(MipsInstrInfo::BT_None, nullptr);
870 }
871 
872 bool Filler::examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
873                          RegDefsUses &RegDU, bool &HasMultipleSuccs,
874                          BB2BrMap &BrMap) const {
875   std::pair<MipsInstrInfo::BranchType, MachineInstr *> P =
876     getBranch(Pred, Succ);
877 
878   // Return if either getBranch wasn't able to analyze the branches or there
879   // were no branches with unoccupied slots.
880   if (P.first == MipsInstrInfo::BT_None)
881     return false;
882 
883   if ((P.first != MipsInstrInfo::BT_Uncond) &&
884       (P.first != MipsInstrInfo::BT_NoBranch)) {
885     HasMultipleSuccs = true;
886     RegDU.addLiveOut(Pred, Succ);
887   }
888 
889   BrMap[&Pred] = P.second;
890   return true;
891 }
892 
893 bool Filler::delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
894                             InspectMemInstr &IM) const {
895   assert(!Candidate.isKill() &&
896          "KILL instructions should have been eliminated at this point.");
897 
898   bool HasHazard = Candidate.isImplicitDef();
899 
900   HasHazard |= IM.hasHazard(Candidate);
901   HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands());
902 
903   return HasHazard;
904 }
905 
906 bool Filler::terminateSearch(const MachineInstr &Candidate) const {
907   return (Candidate.isTerminator() || Candidate.isCall() ||
908           Candidate.isPosition() || Candidate.isInlineAsm() ||
909           Candidate.hasUnmodeledSideEffects());
910 }
911 
912 /// createMipsDelaySlotFillerPass - Returns a pass that fills in delay
913 /// slots in Mips MachineFunctions
914 FunctionPass *llvm::createMipsDelaySlotFillerPass() { return new Filler(); }
915