1 //===- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Simple pass to fill delay slots with useful instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/MipsMCNaCl.h" 14 #include "Mips.h" 15 #include "MipsInstrInfo.h" 16 #include "MipsRegisterInfo.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/PointerUnion.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <iterator> 48 #include <memory> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "mips-delay-slot-filler" 54 55 STATISTIC(FilledSlots, "Number of delay slots filled"); 56 STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that" 57 " are not NOP."); 58 59 static cl::opt<bool> DisableDelaySlotFiller( 60 "disable-mips-delay-filler", 61 cl::init(false), 62 cl::desc("Fill all delay slots with NOPs."), 63 cl::Hidden); 64 65 static cl::opt<bool> DisableForwardSearch( 66 "disable-mips-df-forward-search", 67 cl::init(true), 68 cl::desc("Disallow MIPS delay filler to search forward."), 69 cl::Hidden); 70 71 static cl::opt<bool> DisableSuccBBSearch( 72 "disable-mips-df-succbb-search", 73 cl::init(true), 74 cl::desc("Disallow MIPS delay filler to search successor basic blocks."), 75 cl::Hidden); 76 77 static cl::opt<bool> DisableBackwardSearch( 78 "disable-mips-df-backward-search", 79 cl::init(false), 80 cl::desc("Disallow MIPS delay filler to search backward."), 81 cl::Hidden); 82 83 enum CompactBranchPolicy { 84 CB_Never, ///< The policy 'never' may in some circumstances or for some 85 ///< ISAs not be absolutely adhered to. 86 CB_Optimal, ///< Optimal is the default and will produce compact branches 87 ///< when delay slots cannot be filled. 88 CB_Always ///< 'always' may in some circumstances may not be 89 ///< absolutely adhered to there may not be a corresponding 90 ///< compact form of a branch. 91 }; 92 93 static cl::opt<CompactBranchPolicy> MipsCompactBranchPolicy( 94 "mips-compact-branches",cl::Optional, 95 cl::init(CB_Optimal), 96 cl::desc("MIPS Specific: Compact branch policy."), 97 cl::values( 98 clEnumValN(CB_Never, "never", "Do not use compact branches if possible."), 99 clEnumValN(CB_Optimal, "optimal", "Use compact branches where appropiate (default)."), 100 clEnumValN(CB_Always, "always", "Always use compact branches if possible.") 101 ) 102 ); 103 104 namespace { 105 106 using Iter = MachineBasicBlock::iterator; 107 using ReverseIter = MachineBasicBlock::reverse_iterator; 108 using BB2BrMap = SmallDenseMap<MachineBasicBlock *, MachineInstr *, 2>; 109 110 class RegDefsUses { 111 public: 112 RegDefsUses(const TargetRegisterInfo &TRI); 113 114 void init(const MachineInstr &MI); 115 116 /// This function sets all caller-saved registers in Defs. 117 void setCallerSaved(const MachineInstr &MI); 118 119 /// This function sets all unallocatable registers in Defs. 120 void setUnallocatableRegs(const MachineFunction &MF); 121 122 /// Set bits in Uses corresponding to MBB's live-out registers except for 123 /// the registers that are live-in to SuccBB. 124 void addLiveOut(const MachineBasicBlock &MBB, 125 const MachineBasicBlock &SuccBB); 126 127 bool update(const MachineInstr &MI, unsigned Begin, unsigned End); 128 129 private: 130 bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg, 131 bool IsDef) const; 132 133 /// Returns true if Reg or its alias is in RegSet. 134 bool isRegInSet(const BitVector &RegSet, unsigned Reg) const; 135 136 const TargetRegisterInfo &TRI; 137 BitVector Defs, Uses; 138 }; 139 140 /// Base class for inspecting loads and stores. 141 class InspectMemInstr { 142 public: 143 InspectMemInstr(bool ForbidMemInstr_) : ForbidMemInstr(ForbidMemInstr_) {} 144 virtual ~InspectMemInstr() = default; 145 146 /// Return true if MI cannot be moved to delay slot. 147 bool hasHazard(const MachineInstr &MI); 148 149 protected: 150 /// Flags indicating whether loads or stores have been seen. 151 bool OrigSeenLoad = false; 152 bool OrigSeenStore = false; 153 bool SeenLoad = false; 154 bool SeenStore = false; 155 156 /// Memory instructions are not allowed to move to delay slot if this flag 157 /// is true. 158 bool ForbidMemInstr; 159 160 private: 161 virtual bool hasHazard_(const MachineInstr &MI) = 0; 162 }; 163 164 /// This subclass rejects any memory instructions. 165 class NoMemInstr : public InspectMemInstr { 166 public: 167 NoMemInstr() : InspectMemInstr(true) {} 168 169 private: 170 bool hasHazard_(const MachineInstr &MI) override { return true; } 171 }; 172 173 /// This subclass accepts loads from stacks and constant loads. 174 class LoadFromStackOrConst : public InspectMemInstr { 175 public: 176 LoadFromStackOrConst() : InspectMemInstr(false) {} 177 178 private: 179 bool hasHazard_(const MachineInstr &MI) override; 180 }; 181 182 /// This subclass uses memory dependence information to determine whether a 183 /// memory instruction can be moved to a delay slot. 184 class MemDefsUses : public InspectMemInstr { 185 public: 186 MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI); 187 188 private: 189 using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>; 190 191 bool hasHazard_(const MachineInstr &MI) override; 192 193 /// Update Defs and Uses. Return true if there exist dependences that 194 /// disqualify the delay slot candidate between V and values in Uses and 195 /// Defs. 196 bool updateDefsUses(ValueType V, bool MayStore); 197 198 /// Get the list of underlying objects of MI's memory operand. 199 bool getUnderlyingObjects(const MachineInstr &MI, 200 SmallVectorImpl<ValueType> &Objects) const; 201 202 const MachineFrameInfo *MFI; 203 SmallPtrSet<ValueType, 4> Uses, Defs; 204 const DataLayout &DL; 205 206 /// Flags indicating whether loads or stores with no underlying objects have 207 /// been seen. 208 bool SeenNoObjLoad = false; 209 bool SeenNoObjStore = false; 210 }; 211 212 class MipsDelaySlotFiller : public MachineFunctionPass { 213 public: 214 MipsDelaySlotFiller() : MachineFunctionPass(ID) { 215 initializeMipsDelaySlotFillerPass(*PassRegistry::getPassRegistry()); 216 } 217 218 StringRef getPassName() const override { return "Mips Delay Slot Filler"; } 219 220 bool runOnMachineFunction(MachineFunction &F) override { 221 TM = &F.getTarget(); 222 bool Changed = false; 223 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 224 FI != FE; ++FI) 225 Changed |= runOnMachineBasicBlock(*FI); 226 227 // This pass invalidates liveness information when it reorders 228 // instructions to fill delay slot. Without this, -verify-machineinstrs 229 // will fail. 230 if (Changed) 231 F.getRegInfo().invalidateLiveness(); 232 233 return Changed; 234 } 235 236 MachineFunctionProperties getRequiredProperties() const override { 237 return MachineFunctionProperties().set( 238 MachineFunctionProperties::Property::NoVRegs); 239 } 240 241 void getAnalysisUsage(AnalysisUsage &AU) const override { 242 AU.addRequired<MachineBranchProbabilityInfo>(); 243 MachineFunctionPass::getAnalysisUsage(AU); 244 } 245 246 static char ID; 247 248 private: 249 bool runOnMachineBasicBlock(MachineBasicBlock &MBB); 250 251 Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch, 252 const DebugLoc &DL); 253 254 /// This function checks if it is valid to move Candidate to the delay slot 255 /// and returns true if it isn't. It also updates memory and register 256 /// dependence information. 257 bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU, 258 InspectMemInstr &IM) const; 259 260 /// This function searches range [Begin, End) for an instruction that can be 261 /// moved to the delay slot. Returns true on success. 262 template<typename IterTy> 263 bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End, 264 RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot, 265 IterTy &Filler) const; 266 267 /// This function searches in the backward direction for an instruction that 268 /// can be moved to the delay slot. Returns true on success. 269 bool searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const; 270 271 /// This function searches MBB in the forward direction for an instruction 272 /// that can be moved to the delay slot. Returns true on success. 273 bool searchForward(MachineBasicBlock &MBB, Iter Slot) const; 274 275 /// This function searches one of MBB's successor blocks for an instruction 276 /// that can be moved to the delay slot and inserts clones of the 277 /// instruction into the successor's predecessor blocks. 278 bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const; 279 280 /// Pick a successor block of MBB. Return NULL if MBB doesn't have a 281 /// successor block that is not a landing pad. 282 MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const; 283 284 /// This function analyzes MBB and returns an instruction with an unoccupied 285 /// slot that branches to Dst. 286 std::pair<MipsInstrInfo::BranchType, MachineInstr *> 287 getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const; 288 289 /// Examine Pred and see if it is possible to insert an instruction into 290 /// one of its branches delay slot or its end. 291 bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ, 292 RegDefsUses &RegDU, bool &HasMultipleSuccs, 293 BB2BrMap &BrMap) const; 294 295 bool terminateSearch(const MachineInstr &Candidate) const; 296 297 const TargetMachine *TM = nullptr; 298 }; 299 300 } // end anonymous namespace 301 302 char MipsDelaySlotFiller::ID = 0; 303 304 static bool hasUnoccupiedSlot(const MachineInstr *MI) { 305 return MI->hasDelaySlot() && !MI->isBundledWithSucc(); 306 } 307 308 INITIALIZE_PASS(MipsDelaySlotFiller, DEBUG_TYPE, 309 "Fill delay slot for MIPS", false, false) 310 311 /// This function inserts clones of Filler into predecessor blocks. 312 static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) { 313 MachineFunction *MF = Filler->getParent()->getParent(); 314 315 for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) { 316 if (I->second) { 317 MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler)); 318 ++UsefulSlots; 319 } else { 320 I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler)); 321 } 322 } 323 } 324 325 /// This function adds registers Filler defines to MBB's live-in register list. 326 static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) { 327 for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) { 328 const MachineOperand &MO = Filler->getOperand(I); 329 unsigned R; 330 331 if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg())) 332 continue; 333 334 #ifndef NDEBUG 335 const MachineFunction &MF = *MBB.getParent(); 336 assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) && 337 "Shouldn't move an instruction with unallocatable registers across " 338 "basic block boundaries."); 339 #endif 340 341 if (!MBB.isLiveIn(R)) 342 MBB.addLiveIn(R); 343 } 344 } 345 346 RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI) 347 : TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {} 348 349 void RegDefsUses::init(const MachineInstr &MI) { 350 // Add all register operands which are explicit and non-variadic. 351 update(MI, 0, MI.getDesc().getNumOperands()); 352 353 // If MI is a call, add RA to Defs to prevent users of RA from going into 354 // delay slot. 355 if (MI.isCall()) 356 Defs.set(Mips::RA); 357 358 // Add all implicit register operands of branch instructions except 359 // register AT. 360 if (MI.isBranch()) { 361 update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands()); 362 Defs.reset(Mips::AT); 363 } 364 } 365 366 void RegDefsUses::setCallerSaved(const MachineInstr &MI) { 367 assert(MI.isCall()); 368 369 // Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into 370 // the delay slot. The reason is that RA/RA_64 must not be changed 371 // in the delay slot so that the callee can return to the caller. 372 if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) { 373 Defs.set(Mips::RA); 374 Defs.set(Mips::RA_64); 375 } 376 377 // If MI is a call, add all caller-saved registers to Defs. 378 BitVector CallerSavedRegs(TRI.getNumRegs(), true); 379 380 CallerSavedRegs.reset(Mips::ZERO); 381 CallerSavedRegs.reset(Mips::ZERO_64); 382 383 for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent()); 384 *R; ++R) 385 for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI) 386 CallerSavedRegs.reset(*AI); 387 388 Defs |= CallerSavedRegs; 389 } 390 391 void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) { 392 BitVector AllocSet = TRI.getAllocatableSet(MF); 393 394 for (unsigned R : AllocSet.set_bits()) 395 for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI) 396 AllocSet.set(*AI); 397 398 AllocSet.set(Mips::ZERO); 399 AllocSet.set(Mips::ZERO_64); 400 401 Defs |= AllocSet.flip(); 402 } 403 404 void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB, 405 const MachineBasicBlock &SuccBB) { 406 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 407 SE = MBB.succ_end(); SI != SE; ++SI) 408 if (*SI != &SuccBB) 409 for (const auto &LI : (*SI)->liveins()) 410 Uses.set(LI.PhysReg); 411 } 412 413 bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) { 414 BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs()); 415 bool HasHazard = false; 416 417 for (unsigned I = Begin; I != End; ++I) { 418 const MachineOperand &MO = MI.getOperand(I); 419 420 if (MO.isReg() && MO.getReg()) 421 HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef()); 422 } 423 424 Defs |= NewDefs; 425 Uses |= NewUses; 426 427 return HasHazard; 428 } 429 430 bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, 431 unsigned Reg, bool IsDef) const { 432 if (IsDef) { 433 NewDefs.set(Reg); 434 // check whether Reg has already been defined or used. 435 return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg)); 436 } 437 438 NewUses.set(Reg); 439 // check whether Reg has already been defined. 440 return isRegInSet(Defs, Reg); 441 } 442 443 bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const { 444 // Check Reg and all aliased Registers. 445 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 446 if (RegSet.test(*AI)) 447 return true; 448 return false; 449 } 450 451 bool InspectMemInstr::hasHazard(const MachineInstr &MI) { 452 if (!MI.mayStore() && !MI.mayLoad()) 453 return false; 454 455 if (ForbidMemInstr) 456 return true; 457 458 OrigSeenLoad = SeenLoad; 459 OrigSeenStore = SeenStore; 460 SeenLoad |= MI.mayLoad(); 461 SeenStore |= MI.mayStore(); 462 463 // If MI is an ordered or volatile memory reference, disallow moving 464 // subsequent loads and stores to delay slot. 465 if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) { 466 ForbidMemInstr = true; 467 return true; 468 } 469 470 return hasHazard_(MI); 471 } 472 473 bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) { 474 if (MI.mayStore()) 475 return true; 476 477 if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue()) 478 return true; 479 480 if (const PseudoSourceValue *PSV = 481 (*MI.memoperands_begin())->getPseudoValue()) { 482 if (isa<FixedStackPseudoSourceValue>(PSV)) 483 return false; 484 return !PSV->isConstant(nullptr) && !PSV->isStack(); 485 } 486 487 return true; 488 } 489 490 MemDefsUses::MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI_) 491 : InspectMemInstr(false), MFI(MFI_), DL(DL) {} 492 493 bool MemDefsUses::hasHazard_(const MachineInstr &MI) { 494 bool HasHazard = false; 495 SmallVector<ValueType, 4> Objs; 496 497 // Check underlying object list. 498 if (getUnderlyingObjects(MI, Objs)) { 499 for (SmallVectorImpl<ValueType>::const_iterator I = Objs.begin(); 500 I != Objs.end(); ++I) 501 HasHazard |= updateDefsUses(*I, MI.mayStore()); 502 503 return HasHazard; 504 } 505 506 // No underlying objects found. 507 HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore); 508 HasHazard |= MI.mayLoad() || OrigSeenStore; 509 510 SeenNoObjLoad |= MI.mayLoad(); 511 SeenNoObjStore |= MI.mayStore(); 512 513 return HasHazard; 514 } 515 516 bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) { 517 if (MayStore) 518 return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore || 519 SeenNoObjLoad; 520 521 Uses.insert(V); 522 return Defs.count(V) || SeenNoObjStore; 523 } 524 525 bool MemDefsUses:: 526 getUnderlyingObjects(const MachineInstr &MI, 527 SmallVectorImpl<ValueType> &Objects) const { 528 if (!MI.hasOneMemOperand() || 529 (!(*MI.memoperands_begin())->getValue() && 530 !(*MI.memoperands_begin())->getPseudoValue())) 531 return false; 532 533 if (const PseudoSourceValue *PSV = 534 (*MI.memoperands_begin())->getPseudoValue()) { 535 if (!PSV->isAliased(MFI)) 536 return false; 537 Objects.push_back(PSV); 538 return true; 539 } 540 541 const Value *V = (*MI.memoperands_begin())->getValue(); 542 543 SmallVector<Value *, 4> Objs; 544 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 545 546 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), E = Objs.end(); 547 I != E; ++I) { 548 if (!isIdentifiedObject(V)) 549 return false; 550 551 Objects.push_back(*I); 552 } 553 554 return true; 555 } 556 557 // Replace Branch with the compact branch instruction. 558 Iter MipsDelaySlotFiller::replaceWithCompactBranch(MachineBasicBlock &MBB, 559 Iter Branch, 560 const DebugLoc &DL) { 561 const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>(); 562 const MipsInstrInfo *TII = STI.getInstrInfo(); 563 564 unsigned NewOpcode = TII->getEquivalentCompactForm(Branch); 565 Branch = TII->genInstrWithNewOpc(NewOpcode, Branch); 566 567 std::next(Branch)->eraseFromParent(); 568 return Branch; 569 } 570 571 // For given opcode returns opcode of corresponding instruction with short 572 // delay slot. 573 // For the pseudo TAILCALL*_MM instructions return the short delay slot 574 // form. Unfortunately, TAILCALL<->b16 is denied as b16 has a limited range 575 // that is too short to make use of for tail calls. 576 static int getEquivalentCallShort(int Opcode) { 577 switch (Opcode) { 578 case Mips::BGEZAL: 579 return Mips::BGEZALS_MM; 580 case Mips::BLTZAL: 581 return Mips::BLTZALS_MM; 582 case Mips::JAL: 583 case Mips::JAL_MM: 584 return Mips::JALS_MM; 585 case Mips::JALR: 586 return Mips::JALRS_MM; 587 case Mips::JALR16_MM: 588 return Mips::JALRS16_MM; 589 case Mips::TAILCALL_MM: 590 llvm_unreachable("Attempting to shorten the TAILCALL_MM pseudo!"); 591 case Mips::TAILCALLREG: 592 return Mips::JR16_MM; 593 default: 594 llvm_unreachable("Unexpected call instruction for microMIPS."); 595 } 596 } 597 598 /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. 599 /// We assume there is only one delay slot per delayed instruction. 600 bool MipsDelaySlotFiller::runOnMachineBasicBlock(MachineBasicBlock &MBB) { 601 bool Changed = false; 602 const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>(); 603 bool InMicroMipsMode = STI.inMicroMipsMode(); 604 const MipsInstrInfo *TII = STI.getInstrInfo(); 605 606 for (Iter I = MBB.begin(); I != MBB.end(); ++I) { 607 if (!hasUnoccupiedSlot(&*I)) 608 continue; 609 610 // Delay slot filling is disabled at -O0, or in microMIPS32R6. 611 if (!DisableDelaySlotFiller && (TM->getOptLevel() != CodeGenOpt::None) && 612 !(InMicroMipsMode && STI.hasMips32r6())) { 613 614 bool Filled = false; 615 616 if (MipsCompactBranchPolicy.getValue() != CB_Always || 617 !TII->getEquivalentCompactForm(I)) { 618 if (searchBackward(MBB, *I)) { 619 Filled = true; 620 } else if (I->isTerminator()) { 621 if (searchSuccBBs(MBB, I)) { 622 Filled = true; 623 } 624 } else if (searchForward(MBB, I)) { 625 Filled = true; 626 } 627 } 628 629 if (Filled) { 630 // Get instruction with delay slot. 631 MachineBasicBlock::instr_iterator DSI = I.getInstrIterator(); 632 633 if (InMicroMipsMode && TII->getInstSizeInBytes(*std::next(DSI)) == 2 && 634 DSI->isCall()) { 635 // If instruction in delay slot is 16b change opcode to 636 // corresponding instruction with short delay slot. 637 638 // TODO: Implement an instruction mapping table of 16bit opcodes to 639 // 32bit opcodes so that an instruction can be expanded. This would 640 // save 16 bits as a TAILCALL_MM pseudo requires a fullsized nop. 641 // TODO: Permit b16 when branching backwards to the same function 642 // if it is in range. 643 DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode()))); 644 } 645 ++FilledSlots; 646 Changed = true; 647 continue; 648 } 649 } 650 651 // For microMIPS if instruction is BEQ or BNE with one ZERO register, then 652 // instead of adding NOP replace this instruction with the corresponding 653 // compact branch instruction, i.e. BEQZC or BNEZC. Additionally 654 // PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can 655 // be replaced with JRC16_MM. 656 657 // For MIPSR6 attempt to produce the corresponding compact (no delay slot) 658 // form of the CTI. For indirect jumps this will not require inserting a 659 // NOP and for branches will hopefully avoid requiring a NOP. 660 if ((InMicroMipsMode || 661 (STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) && 662 TII->getEquivalentCompactForm(I)) { 663 I = replaceWithCompactBranch(MBB, I, I->getDebugLoc()); 664 Changed = true; 665 continue; 666 } 667 668 // Bundle the NOP to the instruction with the delay slot. 669 BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP)); 670 MIBundleBuilder(MBB, I, std::next(I, 2)); 671 ++FilledSlots; 672 Changed = true; 673 } 674 675 return Changed; 676 } 677 678 template <typename IterTy> 679 bool MipsDelaySlotFiller::searchRange(MachineBasicBlock &MBB, IterTy Begin, 680 IterTy End, RegDefsUses &RegDU, 681 InspectMemInstr &IM, Iter Slot, 682 IterTy &Filler) const { 683 for (IterTy I = Begin; I != End;) { 684 IterTy CurrI = I; 685 ++I; 686 687 // skip debug value 688 if (CurrI->isDebugInstr()) 689 continue; 690 691 if (terminateSearch(*CurrI)) 692 break; 693 694 assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) && 695 "Cannot put calls, returns or branches in delay slot."); 696 697 if (CurrI->isKill()) { 698 CurrI->eraseFromParent(); 699 continue; 700 } 701 702 if (delayHasHazard(*CurrI, RegDU, IM)) 703 continue; 704 705 const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>(); 706 if (STI.isTargetNaCl()) { 707 // In NaCl, instructions that must be masked are forbidden in delay slots. 708 // We only check for loads, stores and SP changes. Calls, returns and 709 // branches are not checked because non-NaCl targets never put them in 710 // delay slots. 711 unsigned AddrIdx; 712 if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) && 713 baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) || 714 CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo())) 715 continue; 716 } 717 718 bool InMicroMipsMode = STI.inMicroMipsMode(); 719 const MipsInstrInfo *TII = STI.getInstrInfo(); 720 unsigned Opcode = (*Slot).getOpcode(); 721 // This is complicated by the tail call optimization. For non-PIC code 722 // there is only a 32bit sized unconditional branch which can be assumed 723 // to be able to reach the target. b16 only has a range of +/- 1 KB. 724 // It's entirely possible that the target function is reachable with b16 725 // but we don't have enough information to make that decision. 726 if (InMicroMipsMode && TII->getInstSizeInBytes(*CurrI) == 2 && 727 (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch || 728 Opcode == Mips::PseudoReturn || Opcode == Mips::TAILCALL)) 729 continue; 730 // Instructions LWP/SWP and MOVEP should not be in a delay slot as that 731 // results in unpredictable behaviour 732 if (InMicroMipsMode && (Opcode == Mips::LWP_MM || Opcode == Mips::SWP_MM || 733 Opcode == Mips::MOVEP_MM)) 734 continue; 735 736 Filler = CurrI; 737 return true; 738 } 739 740 return false; 741 } 742 743 bool MipsDelaySlotFiller::searchBackward(MachineBasicBlock &MBB, 744 MachineInstr &Slot) const { 745 if (DisableBackwardSearch) 746 return false; 747 748 auto *Fn = MBB.getParent(); 749 RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo()); 750 MemDefsUses MemDU(Fn->getDataLayout(), &Fn->getFrameInfo()); 751 ReverseIter Filler; 752 753 RegDU.init(Slot); 754 755 MachineBasicBlock::iterator SlotI = Slot; 756 if (!searchRange(MBB, ++SlotI.getReverse(), MBB.rend(), RegDU, MemDU, Slot, 757 Filler)) 758 return false; 759 760 MBB.splice(std::next(SlotI), &MBB, Filler.getReverse()); 761 MIBundleBuilder(MBB, SlotI, std::next(SlotI, 2)); 762 ++UsefulSlots; 763 return true; 764 } 765 766 bool MipsDelaySlotFiller::searchForward(MachineBasicBlock &MBB, 767 Iter Slot) const { 768 // Can handle only calls. 769 if (DisableForwardSearch || !Slot->isCall()) 770 return false; 771 772 RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo()); 773 NoMemInstr NM; 774 Iter Filler; 775 776 RegDU.setCallerSaved(*Slot); 777 778 if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler)) 779 return false; 780 781 MBB.splice(std::next(Slot), &MBB, Filler); 782 MIBundleBuilder(MBB, Slot, std::next(Slot, 2)); 783 ++UsefulSlots; 784 return true; 785 } 786 787 bool MipsDelaySlotFiller::searchSuccBBs(MachineBasicBlock &MBB, 788 Iter Slot) const { 789 if (DisableSuccBBSearch) 790 return false; 791 792 MachineBasicBlock *SuccBB = selectSuccBB(MBB); 793 794 if (!SuccBB) 795 return false; 796 797 RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo()); 798 bool HasMultipleSuccs = false; 799 BB2BrMap BrMap; 800 std::unique_ptr<InspectMemInstr> IM; 801 Iter Filler; 802 auto *Fn = MBB.getParent(); 803 804 // Iterate over SuccBB's predecessor list. 805 for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(), 806 PE = SuccBB->pred_end(); PI != PE; ++PI) 807 if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap)) 808 return false; 809 810 // Do not allow moving instructions which have unallocatable register operands 811 // across basic block boundaries. 812 RegDU.setUnallocatableRegs(*Fn); 813 814 // Only allow moving loads from stack or constants if any of the SuccBB's 815 // predecessors have multiple successors. 816 if (HasMultipleSuccs) { 817 IM.reset(new LoadFromStackOrConst()); 818 } else { 819 const MachineFrameInfo &MFI = Fn->getFrameInfo(); 820 IM.reset(new MemDefsUses(Fn->getDataLayout(), &MFI)); 821 } 822 823 if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot, 824 Filler)) 825 return false; 826 827 insertDelayFiller(Filler, BrMap); 828 addLiveInRegs(Filler, *SuccBB); 829 Filler->eraseFromParent(); 830 831 return true; 832 } 833 834 MachineBasicBlock * 835 MipsDelaySlotFiller::selectSuccBB(MachineBasicBlock &B) const { 836 if (B.succ_empty()) 837 return nullptr; 838 839 // Select the successor with the larget edge weight. 840 auto &Prob = getAnalysis<MachineBranchProbabilityInfo>(); 841 MachineBasicBlock *S = *std::max_element( 842 B.succ_begin(), B.succ_end(), 843 [&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) { 844 return Prob.getEdgeProbability(&B, Dst0) < 845 Prob.getEdgeProbability(&B, Dst1); 846 }); 847 return S->isEHPad() ? nullptr : S; 848 } 849 850 std::pair<MipsInstrInfo::BranchType, MachineInstr *> 851 MipsDelaySlotFiller::getBranch(MachineBasicBlock &MBB, 852 const MachineBasicBlock &Dst) const { 853 const MipsInstrInfo *TII = 854 MBB.getParent()->getSubtarget<MipsSubtarget>().getInstrInfo(); 855 MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr; 856 SmallVector<MachineInstr*, 2> BranchInstrs; 857 SmallVector<MachineOperand, 2> Cond; 858 859 MipsInstrInfo::BranchType R = 860 TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs); 861 862 if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch)) 863 return std::make_pair(R, nullptr); 864 865 if (R != MipsInstrInfo::BT_CondUncond) { 866 if (!hasUnoccupiedSlot(BranchInstrs[0])) 867 return std::make_pair(MipsInstrInfo::BT_None, nullptr); 868 869 assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst))); 870 871 return std::make_pair(R, BranchInstrs[0]); 872 } 873 874 assert((TrueBB == &Dst) || (FalseBB == &Dst)); 875 876 // Examine the conditional branch. See if its slot is occupied. 877 if (hasUnoccupiedSlot(BranchInstrs[0])) 878 return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]); 879 880 // If that fails, try the unconditional branch. 881 if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst)) 882 return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]); 883 884 return std::make_pair(MipsInstrInfo::BT_None, nullptr); 885 } 886 887 bool MipsDelaySlotFiller::examinePred(MachineBasicBlock &Pred, 888 const MachineBasicBlock &Succ, 889 RegDefsUses &RegDU, 890 bool &HasMultipleSuccs, 891 BB2BrMap &BrMap) const { 892 std::pair<MipsInstrInfo::BranchType, MachineInstr *> P = 893 getBranch(Pred, Succ); 894 895 // Return if either getBranch wasn't able to analyze the branches or there 896 // were no branches with unoccupied slots. 897 if (P.first == MipsInstrInfo::BT_None) 898 return false; 899 900 if ((P.first != MipsInstrInfo::BT_Uncond) && 901 (P.first != MipsInstrInfo::BT_NoBranch)) { 902 HasMultipleSuccs = true; 903 RegDU.addLiveOut(Pred, Succ); 904 } 905 906 BrMap[&Pred] = P.second; 907 return true; 908 } 909 910 bool MipsDelaySlotFiller::delayHasHazard(const MachineInstr &Candidate, 911 RegDefsUses &RegDU, 912 InspectMemInstr &IM) const { 913 assert(!Candidate.isKill() && 914 "KILL instructions should have been eliminated at this point."); 915 916 bool HasHazard = Candidate.isImplicitDef(); 917 918 HasHazard |= IM.hasHazard(Candidate); 919 HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands()); 920 921 return HasHazard; 922 } 923 924 bool MipsDelaySlotFiller::terminateSearch(const MachineInstr &Candidate) const { 925 return (Candidate.isTerminator() || Candidate.isCall() || 926 Candidate.isPosition() || Candidate.isInlineAsm() || 927 Candidate.hasUnmodeledSideEffects()); 928 } 929 930 /// createMipsDelaySlotFillerPass - Returns a pass that fills in delay 931 /// slots in Mips MachineFunctions 932 FunctionPass *llvm::createMipsDelaySlotFillerPass() { return new MipsDelaySlotFiller(); } 933