1 //===- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Simple pass to fill delay slots with useful instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MCTargetDesc/MipsMCNaCl.h" 14 #include "Mips.h" 15 #include "MipsInstrInfo.h" 16 #include "MipsRegisterInfo.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/PointerUnion.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/PseudoSourceValue.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <iterator> 48 #include <memory> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "mips-delay-slot-filler" 54 55 STATISTIC(FilledSlots, "Number of delay slots filled"); 56 STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that" 57 " are not NOP."); 58 59 static cl::opt<bool> DisableDelaySlotFiller( 60 "disable-mips-delay-filler", 61 cl::init(false), 62 cl::desc("Fill all delay slots with NOPs."), 63 cl::Hidden); 64 65 static cl::opt<bool> DisableForwardSearch( 66 "disable-mips-df-forward-search", 67 cl::init(true), 68 cl::desc("Disallow MIPS delay filler to search forward."), 69 cl::Hidden); 70 71 static cl::opt<bool> DisableSuccBBSearch( 72 "disable-mips-df-succbb-search", 73 cl::init(true), 74 cl::desc("Disallow MIPS delay filler to search successor basic blocks."), 75 cl::Hidden); 76 77 static cl::opt<bool> DisableBackwardSearch( 78 "disable-mips-df-backward-search", 79 cl::init(false), 80 cl::desc("Disallow MIPS delay filler to search backward."), 81 cl::Hidden); 82 83 enum CompactBranchPolicy { 84 CB_Never, ///< The policy 'never' may in some circumstances or for some 85 ///< ISAs not be absolutely adhered to. 86 CB_Optimal, ///< Optimal is the default and will produce compact branches 87 ///< when delay slots cannot be filled. 88 CB_Always ///< 'always' may in some circumstances may not be 89 ///< absolutely adhered to there may not be a corresponding 90 ///< compact form of a branch. 91 }; 92 93 static cl::opt<CompactBranchPolicy> MipsCompactBranchPolicy( 94 "mips-compact-branches", cl::Optional, cl::init(CB_Optimal), 95 cl::desc("MIPS Specific: Compact branch policy."), 96 cl::values(clEnumValN(CB_Never, "never", 97 "Do not use compact branches if possible."), 98 clEnumValN(CB_Optimal, "optimal", 99 "Use compact branches where appropiate (default)."), 100 clEnumValN(CB_Always, "always", 101 "Always use compact branches if possible."))); 102 103 namespace { 104 105 using Iter = MachineBasicBlock::iterator; 106 using ReverseIter = MachineBasicBlock::reverse_iterator; 107 using BB2BrMap = SmallDenseMap<MachineBasicBlock *, MachineInstr *, 2>; 108 109 class RegDefsUses { 110 public: 111 RegDefsUses(const TargetRegisterInfo &TRI); 112 113 void init(const MachineInstr &MI); 114 115 /// This function sets all caller-saved registers in Defs. 116 void setCallerSaved(const MachineInstr &MI); 117 118 /// This function sets all unallocatable registers in Defs. 119 void setUnallocatableRegs(const MachineFunction &MF); 120 121 /// Set bits in Uses corresponding to MBB's live-out registers except for 122 /// the registers that are live-in to SuccBB. 123 void addLiveOut(const MachineBasicBlock &MBB, 124 const MachineBasicBlock &SuccBB); 125 126 bool update(const MachineInstr &MI, unsigned Begin, unsigned End); 127 128 private: 129 bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg, 130 bool IsDef) const; 131 132 /// Returns true if Reg or its alias is in RegSet. 133 bool isRegInSet(const BitVector &RegSet, unsigned Reg) const; 134 135 const TargetRegisterInfo &TRI; 136 BitVector Defs, Uses; 137 }; 138 139 /// Base class for inspecting loads and stores. 140 class InspectMemInstr { 141 public: 142 InspectMemInstr(bool ForbidMemInstr_) : ForbidMemInstr(ForbidMemInstr_) {} 143 virtual ~InspectMemInstr() = default; 144 145 /// Return true if MI cannot be moved to delay slot. 146 bool hasHazard(const MachineInstr &MI); 147 148 protected: 149 /// Flags indicating whether loads or stores have been seen. 150 bool OrigSeenLoad = false; 151 bool OrigSeenStore = false; 152 bool SeenLoad = false; 153 bool SeenStore = false; 154 155 /// Memory instructions are not allowed to move to delay slot if this flag 156 /// is true. 157 bool ForbidMemInstr; 158 159 private: 160 virtual bool hasHazard_(const MachineInstr &MI) = 0; 161 }; 162 163 /// This subclass rejects any memory instructions. 164 class NoMemInstr : public InspectMemInstr { 165 public: 166 NoMemInstr() : InspectMemInstr(true) {} 167 168 private: 169 bool hasHazard_(const MachineInstr &MI) override { return true; } 170 }; 171 172 /// This subclass accepts loads from stacks and constant loads. 173 class LoadFromStackOrConst : public InspectMemInstr { 174 public: 175 LoadFromStackOrConst() : InspectMemInstr(false) {} 176 177 private: 178 bool hasHazard_(const MachineInstr &MI) override; 179 }; 180 181 /// This subclass uses memory dependence information to determine whether a 182 /// memory instruction can be moved to a delay slot. 183 class MemDefsUses : public InspectMemInstr { 184 public: 185 MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI); 186 187 private: 188 using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>; 189 190 bool hasHazard_(const MachineInstr &MI) override; 191 192 /// Update Defs and Uses. Return true if there exist dependences that 193 /// disqualify the delay slot candidate between V and values in Uses and 194 /// Defs. 195 bool updateDefsUses(ValueType V, bool MayStore); 196 197 /// Get the list of underlying objects of MI's memory operand. 198 bool getUnderlyingObjects(const MachineInstr &MI, 199 SmallVectorImpl<ValueType> &Objects) const; 200 201 const MachineFrameInfo *MFI; 202 SmallPtrSet<ValueType, 4> Uses, Defs; 203 const DataLayout &DL; 204 205 /// Flags indicating whether loads or stores with no underlying objects have 206 /// been seen. 207 bool SeenNoObjLoad = false; 208 bool SeenNoObjStore = false; 209 }; 210 211 class MipsDelaySlotFiller : public MachineFunctionPass { 212 public: 213 MipsDelaySlotFiller() : MachineFunctionPass(ID) { 214 initializeMipsDelaySlotFillerPass(*PassRegistry::getPassRegistry()); 215 } 216 217 StringRef getPassName() const override { return "Mips Delay Slot Filler"; } 218 219 bool runOnMachineFunction(MachineFunction &F) override { 220 TM = &F.getTarget(); 221 bool Changed = false; 222 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 223 FI != FE; ++FI) 224 Changed |= runOnMachineBasicBlock(*FI); 225 226 // This pass invalidates liveness information when it reorders 227 // instructions to fill delay slot. Without this, -verify-machineinstrs 228 // will fail. 229 if (Changed) 230 F.getRegInfo().invalidateLiveness(); 231 232 return Changed; 233 } 234 235 MachineFunctionProperties getRequiredProperties() const override { 236 return MachineFunctionProperties().set( 237 MachineFunctionProperties::Property::NoVRegs); 238 } 239 240 void getAnalysisUsage(AnalysisUsage &AU) const override { 241 AU.addRequired<MachineBranchProbabilityInfo>(); 242 MachineFunctionPass::getAnalysisUsage(AU); 243 } 244 245 static char ID; 246 247 private: 248 bool runOnMachineBasicBlock(MachineBasicBlock &MBB); 249 250 Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch, 251 const DebugLoc &DL); 252 253 /// This function checks if it is valid to move Candidate to the delay slot 254 /// and returns true if it isn't. It also updates memory and register 255 /// dependence information. 256 bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU, 257 InspectMemInstr &IM) const; 258 259 /// This function searches range [Begin, End) for an instruction that can be 260 /// moved to the delay slot. Returns true on success. 261 template<typename IterTy> 262 bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End, 263 RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot, 264 IterTy &Filler) const; 265 266 /// This function searches in the backward direction for an instruction that 267 /// can be moved to the delay slot. Returns true on success. 268 bool searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const; 269 270 /// This function searches MBB in the forward direction for an instruction 271 /// that can be moved to the delay slot. Returns true on success. 272 bool searchForward(MachineBasicBlock &MBB, Iter Slot) const; 273 274 /// This function searches one of MBB's successor blocks for an instruction 275 /// that can be moved to the delay slot and inserts clones of the 276 /// instruction into the successor's predecessor blocks. 277 bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const; 278 279 /// Pick a successor block of MBB. Return NULL if MBB doesn't have a 280 /// successor block that is not a landing pad. 281 MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const; 282 283 /// This function analyzes MBB and returns an instruction with an unoccupied 284 /// slot that branches to Dst. 285 std::pair<MipsInstrInfo::BranchType, MachineInstr *> 286 getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const; 287 288 /// Examine Pred and see if it is possible to insert an instruction into 289 /// one of its branches delay slot or its end. 290 bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ, 291 RegDefsUses &RegDU, bool &HasMultipleSuccs, 292 BB2BrMap &BrMap) const; 293 294 bool terminateSearch(const MachineInstr &Candidate) const; 295 296 const TargetMachine *TM = nullptr; 297 }; 298 299 } // end anonymous namespace 300 301 char MipsDelaySlotFiller::ID = 0; 302 303 static bool hasUnoccupiedSlot(const MachineInstr *MI) { 304 return MI->hasDelaySlot() && !MI->isBundledWithSucc(); 305 } 306 307 INITIALIZE_PASS(MipsDelaySlotFiller, DEBUG_TYPE, 308 "Fill delay slot for MIPS", false, false) 309 310 /// This function inserts clones of Filler into predecessor blocks. 311 static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) { 312 MachineFunction *MF = Filler->getParent()->getParent(); 313 314 for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) { 315 if (I->second) { 316 MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler)); 317 ++UsefulSlots; 318 } else { 319 I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler)); 320 } 321 } 322 } 323 324 /// This function adds registers Filler defines to MBB's live-in register list. 325 static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) { 326 for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) { 327 const MachineOperand &MO = Filler->getOperand(I); 328 unsigned R; 329 330 if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg())) 331 continue; 332 333 #ifndef NDEBUG 334 const MachineFunction &MF = *MBB.getParent(); 335 assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) && 336 "Shouldn't move an instruction with unallocatable registers across " 337 "basic block boundaries."); 338 #endif 339 340 if (!MBB.isLiveIn(R)) 341 MBB.addLiveIn(R); 342 } 343 } 344 345 RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI) 346 : TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {} 347 348 void RegDefsUses::init(const MachineInstr &MI) { 349 // Add all register operands which are explicit and non-variadic. 350 update(MI, 0, MI.getDesc().getNumOperands()); 351 352 // If MI is a call, add RA to Defs to prevent users of RA from going into 353 // delay slot. 354 if (MI.isCall()) 355 Defs.set(Mips::RA); 356 357 // Add all implicit register operands of branch instructions except 358 // register AT. 359 if (MI.isBranch()) { 360 update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands()); 361 Defs.reset(Mips::AT); 362 } 363 } 364 365 void RegDefsUses::setCallerSaved(const MachineInstr &MI) { 366 assert(MI.isCall()); 367 368 // Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into 369 // the delay slot. The reason is that RA/RA_64 must not be changed 370 // in the delay slot so that the callee can return to the caller. 371 if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) { 372 Defs.set(Mips::RA); 373 Defs.set(Mips::RA_64); 374 } 375 376 // If MI is a call, add all caller-saved registers to Defs. 377 BitVector CallerSavedRegs(TRI.getNumRegs(), true); 378 379 CallerSavedRegs.reset(Mips::ZERO); 380 CallerSavedRegs.reset(Mips::ZERO_64); 381 382 for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent()); 383 *R; ++R) 384 for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI) 385 CallerSavedRegs.reset(*AI); 386 387 Defs |= CallerSavedRegs; 388 } 389 390 void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) { 391 BitVector AllocSet = TRI.getAllocatableSet(MF); 392 393 for (unsigned R : AllocSet.set_bits()) 394 for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI) 395 AllocSet.set(*AI); 396 397 AllocSet.set(Mips::ZERO); 398 AllocSet.set(Mips::ZERO_64); 399 400 Defs |= AllocSet.flip(); 401 } 402 403 void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB, 404 const MachineBasicBlock &SuccBB) { 405 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 406 SE = MBB.succ_end(); SI != SE; ++SI) 407 if (*SI != &SuccBB) 408 for (const auto &LI : (*SI)->liveins()) 409 Uses.set(LI.PhysReg); 410 } 411 412 bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) { 413 BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs()); 414 bool HasHazard = false; 415 416 for (unsigned I = Begin; I != End; ++I) { 417 const MachineOperand &MO = MI.getOperand(I); 418 419 if (MO.isReg() && MO.getReg()) 420 HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef()); 421 } 422 423 Defs |= NewDefs; 424 Uses |= NewUses; 425 426 return HasHazard; 427 } 428 429 bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, 430 unsigned Reg, bool IsDef) const { 431 if (IsDef) { 432 NewDefs.set(Reg); 433 // check whether Reg has already been defined or used. 434 return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg)); 435 } 436 437 NewUses.set(Reg); 438 // check whether Reg has already been defined. 439 return isRegInSet(Defs, Reg); 440 } 441 442 bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const { 443 // Check Reg and all aliased Registers. 444 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) 445 if (RegSet.test(*AI)) 446 return true; 447 return false; 448 } 449 450 bool InspectMemInstr::hasHazard(const MachineInstr &MI) { 451 if (!MI.mayStore() && !MI.mayLoad()) 452 return false; 453 454 if (ForbidMemInstr) 455 return true; 456 457 OrigSeenLoad = SeenLoad; 458 OrigSeenStore = SeenStore; 459 SeenLoad |= MI.mayLoad(); 460 SeenStore |= MI.mayStore(); 461 462 // If MI is an ordered or volatile memory reference, disallow moving 463 // subsequent loads and stores to delay slot. 464 if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) { 465 ForbidMemInstr = true; 466 return true; 467 } 468 469 return hasHazard_(MI); 470 } 471 472 bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) { 473 if (MI.mayStore()) 474 return true; 475 476 if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue()) 477 return true; 478 479 if (const PseudoSourceValue *PSV = 480 (*MI.memoperands_begin())->getPseudoValue()) { 481 if (isa<FixedStackPseudoSourceValue>(PSV)) 482 return false; 483 return !PSV->isConstant(nullptr) && !PSV->isStack(); 484 } 485 486 return true; 487 } 488 489 MemDefsUses::MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI_) 490 : InspectMemInstr(false), MFI(MFI_), DL(DL) {} 491 492 bool MemDefsUses::hasHazard_(const MachineInstr &MI) { 493 bool HasHazard = false; 494 495 // Check underlying object list. 496 SmallVector<ValueType, 4> Objs; 497 if (getUnderlyingObjects(MI, Objs)) { 498 for (ValueType VT : Objs) 499 HasHazard |= updateDefsUses(VT, MI.mayStore()); 500 return HasHazard; 501 } 502 503 // No underlying objects found. 504 HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore); 505 HasHazard |= MI.mayLoad() || OrigSeenStore; 506 507 SeenNoObjLoad |= MI.mayLoad(); 508 SeenNoObjStore |= MI.mayStore(); 509 510 return HasHazard; 511 } 512 513 bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) { 514 if (MayStore) 515 return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore || 516 SeenNoObjLoad; 517 518 Uses.insert(V); 519 return Defs.count(V) || SeenNoObjStore; 520 } 521 522 bool MemDefsUses:: 523 getUnderlyingObjects(const MachineInstr &MI, 524 SmallVectorImpl<ValueType> &Objects) const { 525 if (!MI.hasOneMemOperand()) 526 return false; 527 528 auto & MMO = **MI.memoperands_begin(); 529 530 if (const PseudoSourceValue *PSV = MMO.getPseudoValue()) { 531 if (!PSV->isAliased(MFI)) 532 return false; 533 Objects.push_back(PSV); 534 return true; 535 } 536 537 if (const Value *V = MMO.getValue()) { 538 SmallVector<const Value *, 4> Objs; 539 GetUnderlyingObjects(V, Objs, DL); 540 541 for (const Value *UValue : Objs) { 542 if (!isIdentifiedObject(V)) 543 return false; 544 545 Objects.push_back(UValue); 546 } 547 return true; 548 } 549 550 return false; 551 } 552 553 // Replace Branch with the compact branch instruction. 554 Iter MipsDelaySlotFiller::replaceWithCompactBranch(MachineBasicBlock &MBB, 555 Iter Branch, 556 const DebugLoc &DL) { 557 const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>(); 558 const MipsInstrInfo *TII = STI.getInstrInfo(); 559 560 unsigned NewOpcode = TII->getEquivalentCompactForm(Branch); 561 Branch = TII->genInstrWithNewOpc(NewOpcode, Branch); 562 563 std::next(Branch)->eraseFromParent(); 564 return Branch; 565 } 566 567 // For given opcode returns opcode of corresponding instruction with short 568 // delay slot. 569 // For the pseudo TAILCALL*_MM instructions return the short delay slot 570 // form. Unfortunately, TAILCALL<->b16 is denied as b16 has a limited range 571 // that is too short to make use of for tail calls. 572 static int getEquivalentCallShort(int Opcode) { 573 switch (Opcode) { 574 case Mips::BGEZAL: 575 return Mips::BGEZALS_MM; 576 case Mips::BLTZAL: 577 return Mips::BLTZALS_MM; 578 case Mips::JAL: 579 case Mips::JAL_MM: 580 return Mips::JALS_MM; 581 case Mips::JALR: 582 return Mips::JALRS_MM; 583 case Mips::JALR16_MM: 584 return Mips::JALRS16_MM; 585 case Mips::TAILCALL_MM: 586 llvm_unreachable("Attempting to shorten the TAILCALL_MM pseudo!"); 587 case Mips::TAILCALLREG: 588 return Mips::JR16_MM; 589 default: 590 llvm_unreachable("Unexpected call instruction for microMIPS."); 591 } 592 } 593 594 /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. 595 /// We assume there is only one delay slot per delayed instruction. 596 bool MipsDelaySlotFiller::runOnMachineBasicBlock(MachineBasicBlock &MBB) { 597 bool Changed = false; 598 const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>(); 599 bool InMicroMipsMode = STI.inMicroMipsMode(); 600 const MipsInstrInfo *TII = STI.getInstrInfo(); 601 602 for (Iter I = MBB.begin(); I != MBB.end(); ++I) { 603 if (!hasUnoccupiedSlot(&*I)) 604 continue; 605 606 // Delay slot filling is disabled at -O0, or in microMIPS32R6. 607 if (!DisableDelaySlotFiller && (TM->getOptLevel() != CodeGenOpt::None) && 608 !(InMicroMipsMode && STI.hasMips32r6())) { 609 610 bool Filled = false; 611 612 if (MipsCompactBranchPolicy.getValue() != CB_Always || 613 !TII->getEquivalentCompactForm(I)) { 614 if (searchBackward(MBB, *I)) { 615 Filled = true; 616 } else if (I->isTerminator()) { 617 if (searchSuccBBs(MBB, I)) { 618 Filled = true; 619 } 620 } else if (searchForward(MBB, I)) { 621 Filled = true; 622 } 623 } 624 625 if (Filled) { 626 // Get instruction with delay slot. 627 MachineBasicBlock::instr_iterator DSI = I.getInstrIterator(); 628 629 if (InMicroMipsMode && TII->getInstSizeInBytes(*std::next(DSI)) == 2 && 630 DSI->isCall()) { 631 // If instruction in delay slot is 16b change opcode to 632 // corresponding instruction with short delay slot. 633 634 // TODO: Implement an instruction mapping table of 16bit opcodes to 635 // 32bit opcodes so that an instruction can be expanded. This would 636 // save 16 bits as a TAILCALL_MM pseudo requires a fullsized nop. 637 // TODO: Permit b16 when branching backwards to the same function 638 // if it is in range. 639 DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode()))); 640 } 641 ++FilledSlots; 642 Changed = true; 643 continue; 644 } 645 } 646 647 // For microMIPS if instruction is BEQ or BNE with one ZERO register, then 648 // instead of adding NOP replace this instruction with the corresponding 649 // compact branch instruction, i.e. BEQZC or BNEZC. Additionally 650 // PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can 651 // be replaced with JRC16_MM. 652 653 // For MIPSR6 attempt to produce the corresponding compact (no delay slot) 654 // form of the CTI. For indirect jumps this will not require inserting a 655 // NOP and for branches will hopefully avoid requiring a NOP. 656 if ((InMicroMipsMode || 657 (STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) && 658 TII->getEquivalentCompactForm(I)) { 659 I = replaceWithCompactBranch(MBB, I, I->getDebugLoc()); 660 Changed = true; 661 continue; 662 } 663 664 // Bundle the NOP to the instruction with the delay slot. 665 BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP)); 666 MIBundleBuilder(MBB, I, std::next(I, 2)); 667 ++FilledSlots; 668 Changed = true; 669 } 670 671 return Changed; 672 } 673 674 template <typename IterTy> 675 bool MipsDelaySlotFiller::searchRange(MachineBasicBlock &MBB, IterTy Begin, 676 IterTy End, RegDefsUses &RegDU, 677 InspectMemInstr &IM, Iter Slot, 678 IterTy &Filler) const { 679 for (IterTy I = Begin; I != End;) { 680 IterTy CurrI = I; 681 ++I; 682 683 // skip debug value 684 if (CurrI->isDebugInstr()) 685 continue; 686 687 if (terminateSearch(*CurrI)) 688 break; 689 690 assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) && 691 "Cannot put calls, returns or branches in delay slot."); 692 693 if (CurrI->isKill()) { 694 CurrI->eraseFromParent(); 695 continue; 696 } 697 698 if (delayHasHazard(*CurrI, RegDU, IM)) 699 continue; 700 701 const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>(); 702 if (STI.isTargetNaCl()) { 703 // In NaCl, instructions that must be masked are forbidden in delay slots. 704 // We only check for loads, stores and SP changes. Calls, returns and 705 // branches are not checked because non-NaCl targets never put them in 706 // delay slots. 707 unsigned AddrIdx; 708 if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) && 709 baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) || 710 CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo())) 711 continue; 712 } 713 714 bool InMicroMipsMode = STI.inMicroMipsMode(); 715 const MipsInstrInfo *TII = STI.getInstrInfo(); 716 unsigned Opcode = (*Slot).getOpcode(); 717 // This is complicated by the tail call optimization. For non-PIC code 718 // there is only a 32bit sized unconditional branch which can be assumed 719 // to be able to reach the target. b16 only has a range of +/- 1 KB. 720 // It's entirely possible that the target function is reachable with b16 721 // but we don't have enough information to make that decision. 722 if (InMicroMipsMode && TII->getInstSizeInBytes(*CurrI) == 2 && 723 (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch || 724 Opcode == Mips::PseudoIndirectBranch_MM || 725 Opcode == Mips::PseudoReturn || Opcode == Mips::TAILCALL)) 726 continue; 727 // Instructions LWP/SWP and MOVEP should not be in a delay slot as that 728 // results in unpredictable behaviour 729 if (InMicroMipsMode && (Opcode == Mips::LWP_MM || Opcode == Mips::SWP_MM || 730 Opcode == Mips::MOVEP_MM)) 731 continue; 732 733 Filler = CurrI; 734 return true; 735 } 736 737 return false; 738 } 739 740 bool MipsDelaySlotFiller::searchBackward(MachineBasicBlock &MBB, 741 MachineInstr &Slot) const { 742 if (DisableBackwardSearch) 743 return false; 744 745 auto *Fn = MBB.getParent(); 746 RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo()); 747 MemDefsUses MemDU(Fn->getDataLayout(), &Fn->getFrameInfo()); 748 ReverseIter Filler; 749 750 RegDU.init(Slot); 751 752 MachineBasicBlock::iterator SlotI = Slot; 753 if (!searchRange(MBB, ++SlotI.getReverse(), MBB.rend(), RegDU, MemDU, Slot, 754 Filler)) 755 return false; 756 757 MBB.splice(std::next(SlotI), &MBB, Filler.getReverse()); 758 MIBundleBuilder(MBB, SlotI, std::next(SlotI, 2)); 759 ++UsefulSlots; 760 return true; 761 } 762 763 bool MipsDelaySlotFiller::searchForward(MachineBasicBlock &MBB, 764 Iter Slot) const { 765 // Can handle only calls. 766 if (DisableForwardSearch || !Slot->isCall()) 767 return false; 768 769 RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo()); 770 NoMemInstr NM; 771 Iter Filler; 772 773 RegDU.setCallerSaved(*Slot); 774 775 if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler)) 776 return false; 777 778 MBB.splice(std::next(Slot), &MBB, Filler); 779 MIBundleBuilder(MBB, Slot, std::next(Slot, 2)); 780 ++UsefulSlots; 781 return true; 782 } 783 784 bool MipsDelaySlotFiller::searchSuccBBs(MachineBasicBlock &MBB, 785 Iter Slot) const { 786 if (DisableSuccBBSearch) 787 return false; 788 789 MachineBasicBlock *SuccBB = selectSuccBB(MBB); 790 791 if (!SuccBB) 792 return false; 793 794 RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo()); 795 bool HasMultipleSuccs = false; 796 BB2BrMap BrMap; 797 std::unique_ptr<InspectMemInstr> IM; 798 Iter Filler; 799 auto *Fn = MBB.getParent(); 800 801 // Iterate over SuccBB's predecessor list. 802 for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(), 803 PE = SuccBB->pred_end(); PI != PE; ++PI) 804 if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap)) 805 return false; 806 807 // Do not allow moving instructions which have unallocatable register operands 808 // across basic block boundaries. 809 RegDU.setUnallocatableRegs(*Fn); 810 811 // Only allow moving loads from stack or constants if any of the SuccBB's 812 // predecessors have multiple successors. 813 if (HasMultipleSuccs) { 814 IM.reset(new LoadFromStackOrConst()); 815 } else { 816 const MachineFrameInfo &MFI = Fn->getFrameInfo(); 817 IM.reset(new MemDefsUses(Fn->getDataLayout(), &MFI)); 818 } 819 820 if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot, 821 Filler)) 822 return false; 823 824 insertDelayFiller(Filler, BrMap); 825 addLiveInRegs(Filler, *SuccBB); 826 Filler->eraseFromParent(); 827 828 return true; 829 } 830 831 MachineBasicBlock * 832 MipsDelaySlotFiller::selectSuccBB(MachineBasicBlock &B) const { 833 if (B.succ_empty()) 834 return nullptr; 835 836 // Select the successor with the larget edge weight. 837 auto &Prob = getAnalysis<MachineBranchProbabilityInfo>(); 838 MachineBasicBlock *S = *std::max_element( 839 B.succ_begin(), B.succ_end(), 840 [&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) { 841 return Prob.getEdgeProbability(&B, Dst0) < 842 Prob.getEdgeProbability(&B, Dst1); 843 }); 844 return S->isEHPad() ? nullptr : S; 845 } 846 847 std::pair<MipsInstrInfo::BranchType, MachineInstr *> 848 MipsDelaySlotFiller::getBranch(MachineBasicBlock &MBB, 849 const MachineBasicBlock &Dst) const { 850 const MipsInstrInfo *TII = 851 MBB.getParent()->getSubtarget<MipsSubtarget>().getInstrInfo(); 852 MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr; 853 SmallVector<MachineInstr*, 2> BranchInstrs; 854 SmallVector<MachineOperand, 2> Cond; 855 856 MipsInstrInfo::BranchType R = 857 TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs); 858 859 if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch)) 860 return std::make_pair(R, nullptr); 861 862 if (R != MipsInstrInfo::BT_CondUncond) { 863 if (!hasUnoccupiedSlot(BranchInstrs[0])) 864 return std::make_pair(MipsInstrInfo::BT_None, nullptr); 865 866 assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst))); 867 868 return std::make_pair(R, BranchInstrs[0]); 869 } 870 871 assert((TrueBB == &Dst) || (FalseBB == &Dst)); 872 873 // Examine the conditional branch. See if its slot is occupied. 874 if (hasUnoccupiedSlot(BranchInstrs[0])) 875 return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]); 876 877 // If that fails, try the unconditional branch. 878 if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst)) 879 return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]); 880 881 return std::make_pair(MipsInstrInfo::BT_None, nullptr); 882 } 883 884 bool MipsDelaySlotFiller::examinePred(MachineBasicBlock &Pred, 885 const MachineBasicBlock &Succ, 886 RegDefsUses &RegDU, 887 bool &HasMultipleSuccs, 888 BB2BrMap &BrMap) const { 889 std::pair<MipsInstrInfo::BranchType, MachineInstr *> P = 890 getBranch(Pred, Succ); 891 892 // Return if either getBranch wasn't able to analyze the branches or there 893 // were no branches with unoccupied slots. 894 if (P.first == MipsInstrInfo::BT_None) 895 return false; 896 897 if ((P.first != MipsInstrInfo::BT_Uncond) && 898 (P.first != MipsInstrInfo::BT_NoBranch)) { 899 HasMultipleSuccs = true; 900 RegDU.addLiveOut(Pred, Succ); 901 } 902 903 BrMap[&Pred] = P.second; 904 return true; 905 } 906 907 bool MipsDelaySlotFiller::delayHasHazard(const MachineInstr &Candidate, 908 RegDefsUses &RegDU, 909 InspectMemInstr &IM) const { 910 assert(!Candidate.isKill() && 911 "KILL instructions should have been eliminated at this point."); 912 913 bool HasHazard = Candidate.isImplicitDef(); 914 915 HasHazard |= IM.hasHazard(Candidate); 916 HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands()); 917 918 return HasHazard; 919 } 920 921 bool MipsDelaySlotFiller::terminateSearch(const MachineInstr &Candidate) const { 922 return (Candidate.isTerminator() || Candidate.isCall() || 923 Candidate.isPosition() || Candidate.isInlineAsm() || 924 Candidate.hasUnmodeledSideEffects()); 925 } 926 927 /// createMipsDelaySlotFillerPass - Returns a pass that fills in delay 928 /// slots in Mips MachineFunctions 929 FunctionPass *llvm::createMipsDelaySlotFillerPass() { 930 return new MipsDelaySlotFiller(); 931 } 932