xref: /llvm-project/llvm/lib/Target/Hexagon/RDFDeadCode.cpp (revision 6f4000e763b2848a46fe39b3d19249af388ac936)
1 //===--- RDFDeadCode.cpp --------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // RDF-based generic dead code elimination.
11 
12 #include "RDFGraph.h"
13 #include "RDFLiveness.h"
14 #include "RDFDeadCode.h"
15 
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 
21 using namespace llvm;
22 using namespace rdf;
23 
24 // Check if the given instruction has observable side-effects, i.e. if
25 // it should be considered "live". It is safe for this function to be
26 // overly conservative (i.e. return "true" for all instructions), but it
27 // is not safe to return "false" for an instruction that should not be
28 // considered removable.
29 bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
30   if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
31     return true;
32   if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects())
33     return true;
34   if (MI->isPHI())
35     return false;
36   for (auto &Op : MI->operands())
37     if (Op.isReg() && MRI.isReserved(Op.getReg()))
38       return true;
39   return false;
40 }
41 
42 void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
43       SetVector<NodeId> &WorkQ) {
44   if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
45     return;
46   if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
47     return;
48   for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
49     if (!LiveNodes.count(RA.Id))
50       WorkQ.insert(RA.Id);
51   }
52 }
53 
54 void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
55       SetVector<NodeId> &WorkQ) {
56   NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
57   for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
58     if (!LiveNodes.count(UA.Id))
59       WorkQ.insert(UA.Id);
60   }
61   for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
62     LiveNodes.insert(TA.Id);
63 }
64 
65 void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
66       SetVector<NodeId> &WorkQ) {
67   for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
68     if (!LiveNodes.count(DA.Id))
69       WorkQ.insert(DA.Id);
70   }
71 }
72 
73 // Traverse the DFG and collect the set dead RefNodes and the set of
74 // dead instructions. Return "true" if any of these sets is non-empty,
75 // "false" otherwise.
76 bool DeadCodeElimination::collect() {
77   // This function works by first finding all live nodes. The dead nodes
78   // are then the complement of the set of live nodes.
79   //
80   // Assume that all nodes are dead. Identify instructions which must be
81   // considered live, i.e. instructions with observable side-effects, such
82   // as calls and stores. All arguments of such instructions are considered
83   // live. For each live def, all operands used in the corresponding
84   // instruction are considered live. For each live use, all its reaching
85   // defs are considered live.
86   LiveNodes.clear();
87   SetVector<NodeId> WorkQ;
88   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
89     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
90       scanInstr(IA, WorkQ);
91 
92   while (!WorkQ.empty()) {
93     NodeId N = *WorkQ.begin();
94     WorkQ.remove(N);
95     LiveNodes.insert(N);
96     auto RA = DFG.addr<RefNode*>(N);
97     if (DFG.IsDef(RA))
98       processDef(RA, WorkQ);
99     else
100       processUse(RA, WorkQ);
101   }
102 
103   if (trace()) {
104     dbgs() << "Live nodes:\n";
105     for (NodeId N : LiveNodes) {
106       auto RA = DFG.addr<RefNode*>(N);
107       dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
108     }
109   }
110 
111   auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
112     for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
113       if (LiveNodes.count(DA.Id))
114         return false;
115     return true;
116   };
117 
118   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
119     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
120       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
121         if (!LiveNodes.count(RA.Id))
122           DeadNodes.insert(RA.Id);
123       if (DFG.IsCode<NodeAttrs::Stmt>(IA))
124         if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
125           continue;
126       if (IsDead(IA)) {
127         DeadInstrs.insert(IA.Id);
128         if (trace())
129           dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
130       }
131     }
132   }
133 
134   return !DeadNodes.empty();
135 }
136 
137 // Erase the nodes given in the Nodes set from DFG. In addition to removing
138 // them from the DFG, if a node corresponds to a statement, the corresponding
139 // machine instruction is erased from the function.
140 bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
141   if (Nodes.empty())
142     return false;
143 
144   // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
145   // are included directly, for each InstrNode in Nodes, include the set
146   // of all RefNodes from it.
147   NodeList DRNs, DINs;
148   for (auto I : Nodes) {
149     auto BA = DFG.addr<NodeBase*>(I);
150     uint16_t Type = BA.Addr->getType();
151     if (Type == NodeAttrs::Ref) {
152       DRNs.push_back(DFG.addr<RefNode*>(I));
153       continue;
154     }
155 
156     // If it's a code node, add all ref nodes from it.
157     uint16_t Kind = BA.Addr->getKind();
158     if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
159       for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
160         DRNs.push_back(N);
161       DINs.push_back(DFG.addr<InstrNode*>(I));
162     } else {
163       llvm_unreachable("Unexpected code node");
164       return false;
165     }
166   }
167 
168   // Sort the list so that use nodes are removed first. This makes the
169   // "unlink" functions a bit faster.
170   auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
171     uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
172     if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
173       return true;
174     if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
175       return false;
176     return A.Id < B.Id;
177   };
178   std::sort(DRNs.begin(), DRNs.end(), UsesFirst);
179 
180   if (trace())
181     dbgs() << "Removing dead ref nodes:\n";
182   for (NodeAddr<RefNode*> RA : DRNs) {
183     if (trace())
184       dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
185     if (DFG.IsUse(RA))
186       DFG.unlinkUse(RA);
187     else if (DFG.IsDef(RA))
188       DFG.unlinkDef(RA);
189   }
190 
191   // Now, remove all dead instruction nodes.
192   for (NodeAddr<InstrNode*> IA : DINs) {
193     NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
194     BA.Addr->removeMember(IA, DFG);
195     if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
196       continue;
197 
198     MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
199     if (trace())
200       dbgs() << "erasing: " << *MI;
201     MI->eraseFromParent();
202   }
203   return true;
204 }
205