1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/IntrinsicsHexagon.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 38 #include "HexagonSubtarget.h" 39 #include "HexagonTargetMachine.h" 40 41 #include <algorithm> 42 #include <deque> 43 #include <map> 44 #include <set> 45 #include <utility> 46 #include <vector> 47 48 #define DEBUG_TYPE "hexagon-vc" 49 50 using namespace llvm; 51 52 namespace { 53 class HexagonVectorCombine { 54 public: 55 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 56 DominatorTree &DT_, TargetLibraryInfo &TLI_, 57 const TargetMachine &TM_) 58 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 59 TLI(TLI_), 60 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 61 62 bool run(); 63 64 // Common integer type. 65 IntegerType *getIntTy() const; 66 // Byte type: either scalar (when Length = 0), or vector with given 67 // element count. 68 Type *getByteTy(int ElemCount = 0) const; 69 // Boolean type: either scalar (when Length = 0), or vector with given 70 // element count. 71 Type *getBoolTy(int ElemCount = 0) const; 72 // Create a ConstantInt of type returned by getIntTy with the value Val. 73 ConstantInt *getConstInt(int Val) const; 74 // Create a 'true' or 'false' value of type getBoolTy. 75 ConstantInt *getConstBool(bool Val) const; 76 // Get the integer value of V, if it exists. 77 Optional<APInt> getIntValue(const Value *Val) const; 78 // Is V a constant 0, or a vector of 0s? 79 bool isZero(const Value *Val) const; 80 // Is V an undef value? 81 bool isUndef(const Value *Val) const; 82 83 int getSizeOf(const Value *Val) const; 84 int getSizeOf(const Type *Ty) const; 85 int getTypeAlignment(Type *Ty) const; 86 87 VectorType *getByteVectorTy(int ScLen) const; 88 Constant *getNullValue(Type *Ty) const; 89 Constant *getFullValue(Type *Ty) const; 90 91 Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start, 92 int Length, int Where) const; 93 Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 94 Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 95 Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const; 96 Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize, 97 Value *Pad) const; 98 Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy, 99 Type *ToTy) const; 100 Value *vlsb(IRBuilder<> &Builder, Value *Val) const; 101 Value *vbytes(IRBuilder<> &Builder, Value *Val) const; 102 103 Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID, 104 Type *RetTy, ArrayRef<Value *> Args) const; 105 106 Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 107 108 template <typename T = std::vector<Instruction *>> 109 bool isSafeToMoveBeforeInBB(const Instruction &In, 110 BasicBlock::const_iterator To, 111 const T &Ignore = {}) const; 112 113 Function &F; 114 const DataLayout &DL; 115 AliasAnalysis &AA; 116 AssumptionCache &AC; 117 DominatorTree &DT; 118 TargetLibraryInfo &TLI; 119 const HexagonSubtarget &HST; 120 121 private: 122 bool isByteVecTy(Type *Ty) const; 123 bool isSectorTy(Type *Ty) const; 124 Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start, 125 int Length) const; 126 }; 127 128 class AlignVectors { 129 public: 130 AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {} 131 132 bool run(); 133 134 private: 135 using InstList = std::vector<Instruction *>; 136 137 struct Segment { 138 void *Data; 139 int Start; 140 int Size; 141 }; 142 143 struct AddrInfo { 144 AddrInfo(const AddrInfo &) = default; 145 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 146 Align H) 147 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 148 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 149 150 // XXX: add Size member? 151 Instruction *Inst; 152 Value *Addr; 153 Type *ValTy; 154 Align HaveAlign; 155 Align NeedAlign; 156 int Offset = 0; // Offset (in bytes) from the first member of the 157 // containing AddrList. 158 }; 159 using AddrList = std::vector<AddrInfo>; 160 161 struct InstrLess { 162 bool operator()(const Instruction *A, const Instruction *B) const { 163 return A->comesBefore(B); 164 } 165 }; 166 using DepList = std::set<Instruction *, InstrLess>; 167 168 struct MoveGroup { 169 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 170 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 171 Instruction *Base; // Base instruction of the parent address group. 172 InstList Main; // Main group of instructions. 173 InstList Deps; // List of dependencies. 174 bool IsHvx; // Is this group of HVX instructions? 175 bool IsLoad; // Is this a load group? 176 }; 177 using MoveList = std::vector<MoveGroup>; 178 179 struct ByteSpan { 180 struct Segment { 181 Segment(Value *Val, int Begin, int Len) 182 : Val(Val), Start(Begin), Size(Len) {} 183 Segment(const Segment &Seg) = default; 184 Value *Val; 185 int Start; 186 int Size; 187 }; 188 189 struct Block { 190 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 191 Block(Value *Val, int Off, int Len, int Pos) 192 : Seg(Val, Off, Len), Pos(Pos) {} 193 Block(const Block &Blk) = default; 194 Segment Seg; 195 int Pos; 196 }; 197 198 int extent() const; 199 ByteSpan section(int Start, int Length) const; 200 ByteSpan &normalize(); 201 202 int size() const { return Blocks.size(); } 203 Block &operator[](int i) { return Blocks[i]; } 204 205 std::vector<Block> Blocks; 206 207 using iterator = decltype(Blocks)::iterator; 208 iterator begin() { return Blocks.begin(); } 209 iterator end() { return Blocks.end(); } 210 using const_iterator = decltype(Blocks)::const_iterator; 211 const_iterator begin() const { return Blocks.begin(); } 212 const_iterator end() const { return Blocks.end(); } 213 }; 214 215 template <typename T> static T *getIfUnordered(T *MaybeT) { 216 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 217 } 218 template <typename T> static T *isCandidate(Instruction *In) { 219 return dyn_cast<T>(In); 220 } 221 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 222 return getIfUnordered(dyn_cast<LoadInst>(In)); 223 } 224 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 225 return getIfUnordered(dyn_cast<StoreInst>(In)); 226 } 227 228 Align getAlignFromValue(const Value *V) const; 229 Optional<MemoryLocation> getLocation(const Instruction &In) const; 230 Optional<AddrInfo> getAddrInfo(Instruction &In) const; 231 bool isHvx(const AddrInfo &AI) const; 232 233 Value *getPayload(Value *Val) const; 234 Value *getMask(Value *Val) const; 235 Value *getPassThrough(Value *Val) const; 236 237 Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 238 int Adjust) const; 239 Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 240 int Alignment) const; 241 Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr, 242 int Alignment, Value *Mask, Value *PassThru) const; 243 Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr, 244 int Alignment, Value *Mask) const; 245 246 bool createAddressGroups(); 247 MoveList createLoadGroups(const AddrList &Group) const; 248 MoveList createStoreGroups(const AddrList &Group) const; 249 bool move(const MoveGroup &Move) const; 250 bool realignGroup(const MoveGroup &Move) const; 251 252 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 253 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 254 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 255 256 std::map<Instruction *, AddrList> AddrGroups; 257 HexagonVectorCombine &HVC; 258 }; 259 260 LLVM_ATTRIBUTE_UNUSED 261 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 262 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 263 OS << "Addr: " << *AI.Addr << '\n'; 264 OS << "Type: " << *AI.ValTy << '\n'; 265 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 266 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 267 OS << "Offset: " << AI.Offset; 268 return OS; 269 } 270 271 LLVM_ATTRIBUTE_UNUSED 272 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 273 OS << "Main\n"; 274 for (Instruction *I : MG.Main) 275 OS << " " << *I << '\n'; 276 OS << "Deps\n"; 277 for (Instruction *I : MG.Deps) 278 OS << " " << *I << '\n'; 279 return OS; 280 } 281 282 LLVM_ATTRIBUTE_UNUSED 283 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 284 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 285 for (const AlignVectors::ByteSpan::Block &B : BS) { 286 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 287 << *B.Seg.Val << '\n'; 288 } 289 OS << ']'; 290 return OS; 291 } 292 293 } // namespace 294 295 namespace { 296 297 template <typename Pred, typename... Ts> 298 void erase_if(std::map<Ts...> &map, Pred p) { 299 for (auto i = map.begin(), e = map.end(); i != e;) { 300 if (p(*i)) 301 i = map.erase(i); 302 else 303 i = std::next(i); 304 } 305 } 306 307 // Forward other erase_ifs to the LLVM implementations. 308 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 309 llvm::erase_if(std::forward<T>(container), p); 310 } 311 312 } // namespace 313 314 // --- Begin AlignVectors 315 316 auto AlignVectors::ByteSpan::extent() const -> int { 317 if (size() == 0) 318 return 0; 319 int Min = Blocks[0].Pos; 320 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 321 for (int i = 1, e = size(); i != e; ++i) { 322 Min = std::min(Min, Blocks[i].Pos); 323 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 324 } 325 return Max - Min; 326 } 327 328 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 329 ByteSpan Section; 330 for (const ByteSpan::Block &B : Blocks) { 331 int L = std::max(B.Pos, Start); // Left end. 332 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 333 if (L < R) { 334 // How much to chop off the beginning of the segment: 335 int Off = L > B.Pos ? L - B.Pos : 0; 336 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 337 } 338 } 339 return Section; 340 } 341 342 auto AlignVectors::ByteSpan::normalize() -> ByteSpan & { 343 if (size() == 0) 344 return *this; 345 int Min = Blocks[0].Pos; 346 for (int i = 1, e = size(); i != e; ++i) 347 Min = std::min(Min, Blocks[i].Pos); 348 if (Min != 0) { 349 for (Block &B : Blocks) 350 B.Pos -= Min; 351 } 352 return *this; 353 } 354 355 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 356 const auto *C = dyn_cast<ConstantInt>(V); 357 assert(C && "Alignment must be a compile-time constant integer"); 358 return C->getAlignValue(); 359 } 360 361 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> { 362 if (auto *L = isCandidate<LoadInst>(&In)) 363 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 364 L->getAlign()); 365 if (auto *S = isCandidate<StoreInst>(&In)) 366 return AddrInfo(HVC, S, S->getPointerOperand(), 367 S->getValueOperand()->getType(), S->getAlign()); 368 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 369 Intrinsic::ID ID = II->getIntrinsicID(); 370 switch (ID) { 371 case Intrinsic::masked_load: 372 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 373 getAlignFromValue(II->getArgOperand(1))); 374 case Intrinsic::masked_store: 375 return AddrInfo(HVC, II, II->getArgOperand(1), 376 II->getArgOperand(0)->getType(), 377 getAlignFromValue(II->getArgOperand(2))); 378 } 379 } 380 return Optional<AddrInfo>(); 381 } 382 383 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 384 return HVC.HST.isTypeForHVX(AI.ValTy); 385 } 386 387 auto AlignVectors::getPayload(Value *Val) const -> Value * { 388 if (auto *In = dyn_cast<Instruction>(Val)) { 389 Intrinsic::ID ID = 0; 390 if (auto *II = dyn_cast<IntrinsicInst>(In)) 391 ID = II->getIntrinsicID(); 392 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 393 return In->getOperand(0); 394 } 395 return Val; 396 } 397 398 auto AlignVectors::getMask(Value *Val) const -> Value * { 399 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 400 switch (II->getIntrinsicID()) { 401 case Intrinsic::masked_load: 402 return II->getArgOperand(2); 403 case Intrinsic::masked_store: 404 return II->getArgOperand(3); 405 } 406 } 407 408 Type *ValTy = getPayload(Val)->getType(); 409 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) { 410 int ElemCount = VecTy->getElementCount().getFixedValue(); 411 return HVC.getFullValue(HVC.getBoolTy(ElemCount)); 412 } 413 return HVC.getFullValue(HVC.getBoolTy()); 414 } 415 416 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 417 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 418 if (II->getIntrinsicID() == Intrinsic::masked_load) 419 return II->getArgOperand(3); 420 } 421 return UndefValue::get(getPayload(Val)->getType()); 422 } 423 424 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, 425 Type *ValTy, int Adjust) const 426 -> Value * { 427 // The adjustment is in bytes, but if it's a multiple of the type size, 428 // we don't need to do pointer casts. 429 Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType(); 430 int ElemSize = HVC.getSizeOf(ElemTy); 431 if (Adjust % ElemSize == 0) { 432 Value *Tmp0 = Builder.CreateGEP(Ptr, HVC.getConstInt(Adjust / ElemSize)); 433 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 434 } 435 436 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 437 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 438 Value *Tmp1 = Builder.CreateGEP(Tmp0, HVC.getConstInt(Adjust)); 439 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 440 } 441 442 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, 443 Type *ValTy, int Alignment) const 444 -> Value * { 445 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 446 Value *Mask = HVC.getConstInt(-Alignment); 447 Value *And = Builder.CreateAnd(AsInt, Mask); 448 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 449 } 450 451 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, 452 Value *Ptr, int Alignment, Value *Mask, 453 Value *PassThru) const -> Value * { 454 assert(!HVC.isUndef(Mask)); // Should this be allowed? 455 if (HVC.isZero(Mask)) 456 return PassThru; 457 if (Mask == ConstantInt::getTrue(Mask->getType())) 458 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 459 return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru); 460 } 461 462 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val, 463 Value *Ptr, int Alignment, 464 Value *Mask) const -> Value * { 465 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 466 return UndefValue::get(Val->getType()); 467 if (Mask == ConstantInt::getTrue(Mask->getType())) 468 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 469 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 470 } 471 472 auto AlignVectors::createAddressGroups() -> bool { 473 // An address group created here may contain instructions spanning 474 // multiple basic blocks. 475 AddrList WorkStack; 476 477 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 478 for (AddrInfo &W : WorkStack) { 479 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 480 return std::make_pair(W.Inst, *D); 481 } 482 return std::make_pair(nullptr, 0); 483 }; 484 485 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 486 BasicBlock &Block = *DomN->getBlock(); 487 for (Instruction &I : Block) { 488 auto AI = getAddrInfo(I); 489 if (!AI) 490 continue; 491 auto F = findBaseAndOffset(*AI); 492 Instruction *GroupInst; 493 if (Instruction *BI = F.first) { 494 AI->Offset = F.second; 495 GroupInst = BI; 496 } else { 497 WorkStack.push_back(*AI); 498 GroupInst = AI->Inst; 499 } 500 AddrGroups[GroupInst].push_back(*AI); 501 } 502 503 for (DomTreeNode *C : DomN->children()) 504 Visit(C, Visit); 505 506 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 507 WorkStack.pop_back(); 508 }; 509 510 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 511 assert(WorkStack.empty()); 512 513 // AddrGroups are formed. 514 515 // Remove groups of size 1. 516 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 517 // Remove groups that don't use HVX types. 518 erase_if(AddrGroups, [&](auto &G) { 519 return !llvm::any_of( 520 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 521 }); 522 // Remove groups where everything is properly aligned. 523 erase_if(AddrGroups, [&](auto &G) { 524 return llvm::all_of(G.second, 525 [&](auto &I) { return I.HaveAlign >= I.NeedAlign; }); 526 }); 527 528 return !AddrGroups.empty(); 529 } 530 531 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 532 // Form load groups. 533 // To avoid complications with moving code across basic blocks, only form 534 // groups that are contained within a single basic block. 535 536 auto getUpwardDeps = [](Instruction *In, Instruction *Base) { 537 BasicBlock *Parent = Base->getParent(); 538 assert(In->getParent() == Parent && 539 "Base and In should be in the same block"); 540 assert(Base->comesBefore(In) && "Base should come before In"); 541 542 DepList Deps; 543 std::deque<Instruction *> WorkQ = {In}; 544 while (!WorkQ.empty()) { 545 Instruction *D = WorkQ.front(); 546 WorkQ.pop_front(); 547 Deps.insert(D); 548 for (Value *Op : D->operands()) { 549 if (auto *I = dyn_cast<Instruction>(Op)) { 550 if (I->getParent() == Parent && Base->comesBefore(I)) 551 WorkQ.push_back(I); 552 } 553 } 554 } 555 return Deps; 556 }; 557 558 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 559 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 560 // Don't mix HVX and non-HVX instructions. 561 if (Move.IsHvx != isHvx(Info)) 562 return false; 563 // Leading instruction in the load group. 564 Instruction *Base = Move.Main.front(); 565 if (Base->getParent() != Info.Inst->getParent()) 566 return false; 567 568 auto isSafeToMoveToBase = [&](const Instruction *I) { 569 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 570 }; 571 DepList Deps = getUpwardDeps(Info.Inst, Base); 572 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 573 return false; 574 575 // The dependencies will be moved together with the load, so make sure 576 // that none of them could be moved independently in another group. 577 Deps.erase(Info.Inst); 578 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 579 if (llvm::any_of(Deps, inAddrMap)) 580 return false; 581 Move.Main.push_back(Info.Inst); 582 Move.Deps.insert(Move.Deps.end(), Deps.begin(), Deps.end()); 583 return true; 584 }; 585 586 MoveList LoadGroups; 587 588 for (const AddrInfo &Info : Group) { 589 if (!Info.Inst->mayReadFromMemory()) 590 continue; 591 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 592 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 593 } 594 595 // Erase singleton groups. 596 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 597 return LoadGroups; 598 } 599 600 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 601 // Form store groups. 602 // To avoid complications with moving code across basic blocks, only form 603 // groups that are contained within a single basic block. 604 605 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 606 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 607 // For stores with return values we'd have to collect downward depenencies. 608 // There are no such stores that we handle at the moment, so omit that. 609 assert(Info.Inst->getType()->isVoidTy() && 610 "Not handling stores with return values"); 611 // Don't mix HVX and non-HVX instructions. 612 if (Move.IsHvx != isHvx(Info)) 613 return false; 614 // For stores we need to be careful whether it's safe to move them. 615 // Stores that are otherwise safe to move together may not appear safe 616 // to move over one another (i.e. isSafeToMoveBefore may return false). 617 Instruction *Base = Move.Main.front(); 618 if (Base->getParent() != Info.Inst->getParent()) 619 return false; 620 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 621 return false; 622 Move.Main.push_back(Info.Inst); 623 return true; 624 }; 625 626 MoveList StoreGroups; 627 628 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 629 const AddrInfo &Info = *I; 630 if (!Info.Inst->mayWriteToMemory()) 631 continue; 632 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 633 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 634 } 635 636 // Erase singleton groups. 637 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 638 return StoreGroups; 639 } 640 641 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 642 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 643 Instruction *Where = Move.Main.front(); 644 645 if (Move.IsLoad) { 646 // Move all deps to before Where, keeping order. 647 for (Instruction *D : Move.Deps) 648 D->moveBefore(Where); 649 // Move all main instructions to after Where, keeping order. 650 ArrayRef<Instruction *> Main(Move.Main); 651 for (Instruction *M : Main.drop_front(1)) { 652 M->moveAfter(Where); 653 Where = M; 654 } 655 } else { 656 // NOTE: Deps are empty for "store" groups. If they need to be 657 // non-empty, decide on the order. 658 assert(Move.Deps.empty()); 659 // Move all main instructions to before Where, inverting order. 660 ArrayRef<Instruction *> Main(Move.Main); 661 for (Instruction *M : Main.drop_front(1)) { 662 M->moveBefore(Where); 663 Where = M; 664 } 665 } 666 667 return Move.Main.size() + Move.Deps.size() > 1; 668 } 669 670 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 671 // Return the element with the maximum alignment from Range, 672 // where GetValue obtains the value to compare from an element. 673 auto getMaxOf = [](auto Range, auto GetValue) { 674 return *std::max_element( 675 Range.begin(), Range.end(), 676 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 677 }; 678 679 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 680 681 // Conceptually, there is a vector of N bytes covering the addresses 682 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 683 // represents a contiguous memory region that spans all accessed memory 684 // locations. 685 // The correspondence between loaded or stored values will be expressed 686 // in terms of this vector. For example, the 0th element of the vector 687 // from the Base address info will start at byte Start from the beginning 688 // of this conceptual vector. 689 // 690 // This vector will be loaded/stored starting at the nearest down-aligned 691 // address and the amount od the down-alignment will be AlignVal: 692 // valign(load_vector(align_down(Base+Start)), AlignVal) 693 694 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 695 AddrList MoveInfos; 696 llvm::copy_if( 697 BaseInfos, std::back_inserter(MoveInfos), 698 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 699 700 // Maximum alignment present in the whole address group. 701 const AddrInfo &WithMaxAlign = 702 getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 703 Align MaxGiven = WithMaxAlign.HaveAlign; 704 705 // Minimum alignment present in the move address group. 706 const AddrInfo &WithMinOffset = 707 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 708 709 const AddrInfo &WithMaxNeeded = 710 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 711 Align MinNeeded = WithMaxNeeded.NeedAlign; 712 713 // Set the builder at the top instruction in the move group. 714 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back(); 715 IRBuilder<> Builder(TopIn); 716 Value *AlignAddr = nullptr; // Actual aligned address. 717 Value *AlignVal = nullptr; // Right-shift amount (for valign). 718 719 if (MinNeeded <= MaxGiven) { 720 int Start = WithMinOffset.Offset; 721 int OffAtMax = WithMaxAlign.Offset; 722 // Shift the offset of the maximally aligned instruction (OffAtMax) 723 // back by just enough multiples of the required alignment to cover the 724 // distance from Start to OffAtMax. 725 // Calculate the address adjustment amount based on the address with the 726 // maximum alignment. This is to allow a simple gep instruction instead 727 // of potential bitcasts to i8*. 728 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 729 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 730 WithMaxAlign.ValTy, Adjust); 731 int Diff = Start - (OffAtMax + Adjust); 732 AlignVal = HVC.getConstInt(Diff); 733 // Sanity. 734 assert(Diff >= 0); 735 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 736 } else { 737 // WithMinOffset is the lowest address in the group, 738 // WithMinOffset.Addr = Base+Start. 739 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 740 // mask off unnecessary bits, so it's ok to just the original pointer as 741 // the alignment amount. 742 // Do an explicit down-alignment of the address to avoid creating an 743 // aligned instruction with an address that is not really aligned. 744 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 745 WithMinOffset.ValTy, MinNeeded.value()); 746 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 747 } 748 749 ByteSpan VSpan; 750 for (const AddrInfo &AI : MoveInfos) { 751 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 752 AI.Offset - WithMinOffset.Offset); 753 } 754 755 // The aligned loads/stores will use blocks that are either scalars, 756 // or HVX vectors. Let "sector" be the unified term for such a block. 757 // blend(scalar, vector) -> sector... 758 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 759 : std::max<int>(MinNeeded.value(), 4); 760 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 761 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 762 763 Type *SecTy = HVC.getByteTy(ScLen); 764 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 765 766 if (Move.IsLoad) { 767 ByteSpan ASpan; 768 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 769 auto *Undef = UndefValue::get(SecTy); 770 771 for (int i = 0; i != NumSectors + 1; ++i) { 772 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 773 // FIXME: generate a predicated load? 774 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 775 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen); 776 } 777 778 for (int j = 0; j != NumSectors; ++j) { 779 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val, 780 ASpan[j + 1].Seg.Val, AlignVal); 781 } 782 783 for (ByteSpan::Block &B : VSpan) { 784 ByteSpan Section = ASpan.section(B.Pos, B.Seg.Size).normalize(); 785 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 786 for (ByteSpan::Block &S : Section) { 787 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 788 Accum = 789 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 790 } 791 // Instead of casting everything to bytes for the vselect, cast to the 792 // original value type. This will avoid complications with casting masks. 793 // For example, in cases when the original mask applied to i32, it could 794 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 795 // but if the mask is not exactly of HVX length, extra handling would be 796 // needed to make it work. 797 Type *ValTy = getPayload(B.Seg.Val)->getType(); 798 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 799 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 800 getPassThrough(B.Seg.Val)); 801 B.Seg.Val->replaceAllUsesWith(Sel); 802 } 803 } else { 804 // Stores. 805 ByteSpan ASpanV, ASpanM; 806 807 for (int i = -1; i != NumSectors; ++i) { 808 ByteSpan Section = VSpan.section(i * ScLen, ScLen).normalize(); 809 Value *AccumV = UndefValue::get(SecTy); 810 Value *AccumM = HVC.getNullValue(SecTy); 811 for (ByteSpan::Block &S : Section) { 812 Value *Pay = getPayload(S.Seg.Val); 813 Value *Mask = HVC.rescale(Builder, getMask(S.Seg.Val), Pay->getType(), 814 HVC.getByteTy()); 815 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 816 S.Seg.Start, S.Seg.Size, S.Pos); 817 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 818 S.Seg.Start, S.Seg.Size, S.Pos); 819 } 820 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 821 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 822 } 823 824 // vlalign 825 for (int j = 1; j != NumSectors + 1; ++j) { 826 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val, 827 ASpanV[j].Seg.Val, AlignVal); 828 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val, 829 ASpanM[j].Seg.Val, AlignVal); 830 } 831 832 for (int i = 0; i != NumSectors; ++i) { 833 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 834 Value *Val = ASpanV[i].Seg.Val; 835 Value *Mask = ASpanM[i].Seg.Val; // bytes 836 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) 837 createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask)); 838 } 839 } 840 841 for (auto *Inst : Move.Main) 842 Inst->eraseFromParent(); 843 844 return true; 845 } 846 847 auto AlignVectors::run() -> bool { 848 if (!createAddressGroups()) 849 return false; 850 851 bool Changed = false; 852 MoveList LoadGroups, StoreGroups; 853 854 for (auto &G : AddrGroups) { 855 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 856 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 857 } 858 859 for (auto &M : LoadGroups) 860 Changed |= move(M); 861 for (auto &M : StoreGroups) 862 Changed |= move(M); 863 864 for (auto &M : LoadGroups) 865 Changed |= realignGroup(M); 866 for (auto &M : StoreGroups) 867 Changed |= realignGroup(M); 868 869 return Changed; 870 } 871 872 // --- End AlignVectors 873 874 auto HexagonVectorCombine::run() -> bool { 875 if (!HST.useHVXOps()) 876 return false; 877 878 bool Changed = AlignVectors(*this).run(); 879 return Changed; 880 } 881 882 auto HexagonVectorCombine::getIntTy() const -> IntegerType * { 883 return Type::getInt32Ty(F.getContext()); 884 } 885 886 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 887 assert(ElemCount >= 0); 888 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 889 if (ElemCount == 0) 890 return ByteTy; 891 return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false); 892 } 893 894 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 895 assert(ElemCount >= 0); 896 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 897 if (ElemCount == 0) 898 return BoolTy; 899 return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false); 900 } 901 902 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * { 903 return ConstantInt::getSigned(getIntTy(), Val); 904 } 905 906 auto HexagonVectorCombine::getConstBool(bool Val) const -> ConstantInt * { 907 Constant *C = Val ? ConstantInt::getTrue(getBoolTy()) 908 : ConstantInt::getFalse(getBoolTy()); 909 return cast<ConstantInt>(C); 910 } 911 912 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 913 if (auto *C = dyn_cast<Constant>(Val)) 914 return C->isZeroValue(); 915 return false; 916 } 917 918 auto HexagonVectorCombine::getIntValue(const Value *Val) const 919 -> Optional<APInt> { 920 if (auto *CI = dyn_cast<ConstantInt>(Val)) 921 return CI->getValue(); 922 return None; 923 } 924 925 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 926 return isa<UndefValue>(Val); 927 } 928 929 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int { 930 return getSizeOf(Val->getType()); 931 } 932 933 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int { 934 return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue(); 935 } 936 937 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 938 // The actual type may be shorter than the HVX vector, so determine 939 // the alignment based on subtarget info. 940 if (HST.isTypeForHVX(Ty)) 941 return HST.getVectorLength(); 942 return DL.getABITypeAlign(Ty).value(); 943 } 944 945 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 946 assert(Ty->isIntOrIntVectorTy()); 947 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 948 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 949 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 950 return Zero; 951 } 952 953 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 954 assert(Ty->isIntOrIntVectorTy()); 955 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 956 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 957 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 958 return Minus1; 959 } 960 961 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 962 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src, 963 int Start, int Length, int Where) const 964 -> Value * { 965 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 966 int SrcLen = getSizeOf(Src); 967 int DstLen = getSizeOf(Dst); 968 assert(0 <= Start && Start + Length <= SrcLen); 969 assert(0 <= Where && Where + Length <= DstLen); 970 971 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 972 auto *Undef = UndefValue::get(getByteTy()); 973 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 974 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 975 976 SmallVector<int, 256> SMask(P2Len); 977 for (int i = 0; i != P2Len; ++i) { 978 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 979 // Otherwise, pick Dst[i]; 980 SMask[i] = 981 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 982 } 983 984 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 985 return vresize(Builder, P2Insert, DstLen, Undef); 986 } 987 988 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 989 Value *Amt) const -> Value * { 990 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 991 assert(isSectorTy(Hi->getType())); 992 if (isZero(Amt)) 993 return Hi; 994 int VecLen = getSizeOf(Hi); 995 if (auto IntAmt = getIntValue(Amt)) 996 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 997 VecLen); 998 999 if (HST.isTypeForHVX(Hi->getType())) { 1000 int HwLen = HST.getVectorLength(); 1001 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1002 Intrinsic::ID V6_vlalignb = HwLen == 64 1003 ? Intrinsic::hexagon_V6_vlalignb 1004 : Intrinsic::hexagon_V6_vlalignb_128B; 1005 return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(), 1006 {Hi, Lo, Amt}); 1007 } 1008 1009 if (VecLen == 4) { 1010 Value *Pair = concat(Builder, {Lo, Hi}); 1011 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1012 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1013 return Builder.CreateBitCast(Trunc, Hi->getType()); 1014 } 1015 if (VecLen == 8) { 1016 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1017 return vralignb(Builder, Lo, Hi, Sub); 1018 } 1019 llvm_unreachable("Unexpected vector length"); 1020 } 1021 1022 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1023 Value *Amt) const -> Value * { 1024 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1025 assert(isSectorTy(Lo->getType())); 1026 if (isZero(Amt)) 1027 return Lo; 1028 int VecLen = getSizeOf(Lo); 1029 if (auto IntAmt = getIntValue(Amt)) 1030 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1031 1032 if (HST.isTypeForHVX(Lo->getType())) { 1033 int HwLen = HST.getVectorLength(); 1034 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1035 Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb 1036 : Intrinsic::hexagon_V6_valignb_128B; 1037 return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(), 1038 {Hi, Lo, Amt}); 1039 } 1040 1041 if (VecLen == 4) { 1042 Value *Pair = concat(Builder, {Lo, Hi}); 1043 Value *Shift = Builder.CreateLShr(Pair, Amt); 1044 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1045 return Builder.CreateBitCast(Trunc, Lo->getType()); 1046 } 1047 if (VecLen == 8) { 1048 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1049 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1050 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1051 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1052 Intrinsic::hexagon_S2_valignrb); 1053 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1054 return Builder.CreateBitCast(Call, Lo->getType()); 1055 } 1056 llvm_unreachable("Unexpected vector length"); 1057 } 1058 1059 // Concatenates a sequence of vectors of the same type. 1060 auto HexagonVectorCombine::concat(IRBuilder<> &Builder, 1061 ArrayRef<Value *> Vecs) const -> Value * { 1062 assert(!Vecs.empty()); 1063 SmallVector<int, 256> SMask; 1064 std::vector<Value *> Work[2]; 1065 int ThisW = 0, OtherW = 1; 1066 1067 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1068 while (Work[ThisW].size() > 1) { 1069 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1070 int ElemCount = Ty->getElementCount().getFixedValue(); 1071 SMask.resize(ElemCount * 2); 1072 std::iota(SMask.begin(), SMask.end(), 0); 1073 1074 Work[OtherW].clear(); 1075 if (Work[ThisW].size() % 2 != 0) 1076 Work[ThisW].push_back(UndefValue::get(Ty)); 1077 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1078 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1079 Work[ThisW][i + 1], SMask); 1080 Work[OtherW].push_back(Joined); 1081 } 1082 std::swap(ThisW, OtherW); 1083 } 1084 1085 // Since there may have been some undefs appended to make shuffle operands 1086 // have the same type, perform the last shuffle to only pick the original 1087 // elements. 1088 SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType())); 1089 std::iota(SMask.begin(), SMask.end(), 0); 1090 Value *Total = Work[OtherW].front(); 1091 return Builder.CreateShuffleVector(Total, UndefValue::get(Total->getType()), 1092 SMask); 1093 } 1094 1095 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val, 1096 int NewSize, Value *Pad) const -> Value * { 1097 assert(isa<VectorType>(Val->getType())); 1098 auto *ValTy = cast<VectorType>(Val->getType()); 1099 auto *PadTy = Pad->getType(); 1100 assert(ValTy->getElementType() == PadTy); 1101 1102 int CurSize = ValTy->getElementCount().getFixedValue(); 1103 if (CurSize == NewSize) 1104 return Val; 1105 // Truncate? 1106 if (CurSize > NewSize) 1107 return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize); 1108 // Extend. 1109 SmallVector<int, 128> SMask(NewSize); 1110 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 1111 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 1112 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 1113 return Builder.CreateShuffleVector(Val, PadVec, SMask); 1114 } 1115 1116 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask, 1117 Type *FromTy, Type *ToTy) const -> Value * { 1118 // Mask is a vector <N x i1>, where each element corresponds to an 1119 // element of FromTy. Remap it so that each element will correspond 1120 // to an element of ToTy. 1121 assert(isa<VectorType>(Mask->getType())); 1122 1123 Type *FromSTy = FromTy->getScalarType(); 1124 Type *ToSTy = ToTy->getScalarType(); 1125 if (FromSTy == ToSTy) 1126 return Mask; 1127 1128 int FromSize = getSizeOf(FromSTy); 1129 int ToSize = getSizeOf(ToSTy); 1130 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 1131 1132 auto *MaskTy = cast<VectorType>(Mask->getType()); 1133 int FromCount = MaskTy->getElementCount().getFixedValue(); 1134 int ToCount = (FromCount * FromSize) / ToSize; 1135 assert((FromCount * FromSize) % ToSize == 0); 1136 1137 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 1138 // -> trunc to <M x i1>. 1139 Value *Ext = Builder.CreateSExt( 1140 Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false)); 1141 Value *Cast = Builder.CreateBitCast( 1142 Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false)); 1143 return Builder.CreateTrunc( 1144 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false)); 1145 } 1146 1147 // Bitcast to bytes, and return least significant bits. 1148 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const 1149 -> Value * { 1150 Type *ScalarTy = Val->getType()->getScalarType(); 1151 if (ScalarTy == getBoolTy()) 1152 return Val; 1153 1154 Value *Bytes = vbytes(Builder, Val); 1155 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 1156 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(Bytes))); 1157 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 1158 // <1 x i1>. 1159 return Builder.CreateTrunc(Bytes, getBoolTy()); 1160 } 1161 1162 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 1163 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const 1164 -> Value * { 1165 Type *ScalarTy = Val->getType()->getScalarType(); 1166 if (ScalarTy == getByteTy()) 1167 return Val; 1168 1169 if (ScalarTy != getBoolTy()) 1170 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 1171 // For bool, return a sext from i1 to i8. 1172 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 1173 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 1174 return Builder.CreateSExt(Val, getByteTy()); 1175 } 1176 1177 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder, 1178 Intrinsic::ID IntID, Type *RetTy, 1179 ArrayRef<Value *> Args) const 1180 -> Value * { 1181 int HwLen = HST.getVectorLength(); 1182 Type *BoolTy = Type::getInt1Ty(F.getContext()); 1183 Type *Int32Ty = Type::getInt32Ty(F.getContext()); 1184 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1185 // HVX vector -> v16i32/v32i32 1186 // HVX vector predicate -> v512i1/v1024i1 1187 auto getTypeForIntrin = [&](Type *Ty) -> Type * { 1188 if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) { 1189 Type *ElemTy = cast<VectorType>(Ty)->getElementType(); 1190 if (ElemTy == Int32Ty) 1191 return Ty; 1192 if (ElemTy == BoolTy) 1193 return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false); 1194 return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false); 1195 } 1196 // Non-HVX type. It should be a scalar. 1197 assert(Ty == Int32Ty || Ty == Int64Ty); 1198 return Ty; 1199 }; 1200 1201 auto getCast = [&](IRBuilder<> &Builder, Value *Val, 1202 Type *DestTy) -> Value * { 1203 Type *SrcTy = Val->getType(); 1204 if (SrcTy == DestTy) 1205 return Val; 1206 if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) { 1207 if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) { 1208 // This should take care of casts the other way too, for example 1209 // v1024i1 -> v32i1. 1210 Intrinsic::ID TC = HwLen == 64 1211 ? Intrinsic::hexagon_V6_pred_typecast 1212 : Intrinsic::hexagon_V6_pred_typecast_128B; 1213 Function *FI = Intrinsic::getDeclaration(F.getParent(), TC, 1214 {DestTy, Val->getType()}); 1215 return Builder.CreateCall(FI, {Val}); 1216 } 1217 // Non-predicate HVX vector. 1218 return Builder.CreateBitCast(Val, DestTy); 1219 } 1220 // Non-HVX type. It should be a scalar, and it should already have 1221 // a valid type. 1222 llvm_unreachable("Unexpected type"); 1223 }; 1224 1225 SmallVector<Value *, 4> IntOps; 1226 for (Value *A : Args) 1227 IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType()))); 1228 Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID); 1229 Value *Call = Builder.CreateCall(FI, IntOps); 1230 1231 Type *CallTy = Call->getType(); 1232 if (CallTy == RetTy) 1233 return Call; 1234 // Scalar types should have RetTy matching the call return type. 1235 assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true)); 1236 if (cast<VectorType>(CallTy)->getElementType() == BoolTy) 1237 return getCast(Builder, Call, RetTy); 1238 return Builder.CreateBitCast(Call, RetTy); 1239 } 1240 1241 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 1242 Value *Ptr1) const 1243 -> Optional<int> { 1244 struct Builder : IRBuilder<> { 1245 Builder(BasicBlock *B) : IRBuilder<>(B) {} 1246 ~Builder() { 1247 for (Instruction *I : llvm::reverse(ToErase)) 1248 I->eraseFromParent(); 1249 } 1250 SmallVector<Instruction *, 8> ToErase; 1251 }; 1252 1253 #define CallBuilder(B, F) \ 1254 [&](auto &B_) { \ 1255 Value *V = B_.F; \ 1256 if (auto *I = dyn_cast<Instruction>(V)) \ 1257 B_.ToErase.push_back(I); \ 1258 return V; \ 1259 }(B) 1260 1261 auto Simplify = [&](Value *V) { 1262 if (auto *I = dyn_cast<Instruction>(V)) { 1263 SimplifyQuery Q(DL, &TLI, &DT, &AC, I); 1264 if (Value *S = SimplifyInstruction(I, Q)) 1265 return S; 1266 } 1267 return V; 1268 }; 1269 1270 auto StripBitCast = [](Value *V) { 1271 while (auto *C = dyn_cast<BitCastInst>(V)) 1272 V = C->getOperand(0); 1273 return V; 1274 }; 1275 1276 Ptr0 = StripBitCast(Ptr0); 1277 Ptr1 = StripBitCast(Ptr1); 1278 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 1279 return None; 1280 1281 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 1282 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 1283 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 1284 return None; 1285 1286 Builder B(Gep0->getParent()); 1287 Value *BasePtr = Gep0->getPointerOperand(); 1288 int Scale = DL.getTypeStoreSize(BasePtr->getType()->getPointerElementType()); 1289 1290 // FIXME: for now only check GEPs with a single index. 1291 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 1292 return None; 1293 1294 Value *Idx0 = Gep0->getOperand(1); 1295 Value *Idx1 = Gep1->getOperand(1); 1296 1297 // First, try to simplify the subtraction directly. 1298 if (auto *Diff = dyn_cast<ConstantInt>( 1299 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 1300 return Diff->getSExtValue() * Scale; 1301 1302 KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT); 1303 KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT); 1304 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 1305 if (Unknown.isAllOnesValue()) 1306 return None; 1307 1308 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 1309 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 1310 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 1311 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 1312 int Diff0 = 0; 1313 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 1314 Diff0 = C->getSExtValue(); 1315 } else { 1316 return None; 1317 } 1318 1319 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 1320 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 1321 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 1322 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 1323 int Diff1 = 0; 1324 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 1325 Diff1 = C->getSExtValue(); 1326 } else { 1327 return None; 1328 } 1329 1330 return (Diff0 + Diff1) * Scale; 1331 1332 #undef CallBuilder 1333 } 1334 1335 template <typename T> 1336 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 1337 BasicBlock::const_iterator To, 1338 const T &Ignore) const 1339 -> bool { 1340 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> { 1341 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 1342 switch (II->getIntrinsicID()) { 1343 case Intrinsic::masked_load: 1344 return MemoryLocation::getForArgument(II, 0, TLI); 1345 case Intrinsic::masked_store: 1346 return MemoryLocation::getForArgument(II, 1, TLI); 1347 } 1348 } 1349 return MemoryLocation::getOrNone(&I); 1350 }; 1351 1352 // The source and the destination must be in the same basic block. 1353 const BasicBlock &Block = *In.getParent(); 1354 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 1355 // No PHIs. 1356 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 1357 return false; 1358 1359 if (!mayBeMemoryDependent(In)) 1360 return true; 1361 bool MayWrite = In.mayWriteToMemory(); 1362 auto MaybeLoc = getLocOrNone(In); 1363 1364 auto From = In.getIterator(); 1365 if (From == To) 1366 return true; 1367 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 1368 auto Range = 1369 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 1370 for (auto It = Range.first; It != Range.second; ++It) { 1371 const Instruction &I = *It; 1372 if (llvm::is_contained(Ignore, &I)) 1373 continue; 1374 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 1375 if (I.mayThrow()) 1376 return false; 1377 if (auto *CB = dyn_cast<CallBase>(&I)) { 1378 if (!CB->hasFnAttr(Attribute::WillReturn)) 1379 return false; 1380 if (!CB->hasFnAttr(Attribute::NoSync)) 1381 return false; 1382 } 1383 if (I.mayReadOrWriteMemory()) { 1384 auto MaybeLocI = getLocOrNone(I); 1385 if (MayWrite || I.mayWriteToMemory()) { 1386 if (!MaybeLoc || !MaybeLocI) 1387 return false; 1388 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 1389 return false; 1390 } 1391 } 1392 } 1393 return true; 1394 } 1395 1396 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 1397 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1398 return VecTy->getElementType() == getByteTy(); 1399 return false; 1400 } 1401 1402 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool { 1403 if (!isByteVecTy(Ty)) 1404 return false; 1405 int Size = getSizeOf(Ty); 1406 if (HST.isTypeForHVX(Ty)) 1407 return Size == static_cast<int>(HST.getVectorLength()); 1408 return Size == 4 || Size == 8; 1409 } 1410 1411 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo, 1412 Value *Hi, int Start, 1413 int Length) const -> Value * { 1414 assert(0 <= Start && Start < Length); 1415 SmallVector<int, 128> SMask(Length); 1416 std::iota(SMask.begin(), SMask.end(), Start); 1417 return Builder.CreateShuffleVector(Lo, Hi, SMask); 1418 } 1419 1420 // Pass management. 1421 1422 namespace llvm { 1423 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 1424 FunctionPass *createHexagonVectorCombineLegacyPass(); 1425 } // namespace llvm 1426 1427 namespace { 1428 class HexagonVectorCombineLegacy : public FunctionPass { 1429 public: 1430 static char ID; 1431 1432 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 1433 1434 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 1435 1436 void getAnalysisUsage(AnalysisUsage &AU) const override { 1437 AU.setPreservesCFG(); 1438 AU.addRequired<AAResultsWrapperPass>(); 1439 AU.addRequired<AssumptionCacheTracker>(); 1440 AU.addRequired<DominatorTreeWrapperPass>(); 1441 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1442 AU.addRequired<TargetPassConfig>(); 1443 FunctionPass::getAnalysisUsage(AU); 1444 } 1445 1446 bool runOnFunction(Function &F) override { 1447 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1448 AssumptionCache &AC = 1449 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1450 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1451 TargetLibraryInfo &TLI = 1452 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1453 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 1454 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 1455 return HVC.run(); 1456 } 1457 }; 1458 } // namespace 1459 1460 char HexagonVectorCombineLegacy::ID = 0; 1461 1462 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 1463 "Hexagon Vector Combine", false, false) 1464 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1465 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1466 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1467 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1468 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 1469 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 1470 "Hexagon Vector Combine", false, false) 1471 1472 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 1473 return new HexagonVectorCombineLegacy(); 1474 } 1475