1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/IntrinsicsHexagon.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 38 #include "HexagonSubtarget.h" 39 #include "HexagonTargetMachine.h" 40 41 #include <algorithm> 42 #include <deque> 43 #include <map> 44 #include <set> 45 #include <utility> 46 #include <vector> 47 48 #define DEBUG_TYPE "hexagon-vc" 49 50 using namespace llvm; 51 52 namespace { 53 class HexagonVectorCombine { 54 public: 55 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 56 DominatorTree &DT_, TargetLibraryInfo &TLI_, 57 const TargetMachine &TM_) 58 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 59 TLI(TLI_), 60 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 61 62 bool run(); 63 64 // Common integer type. 65 IntegerType *getIntTy() const; 66 // Byte type: either scalar (when Length = 0), or vector with given 67 // element count. 68 Type *getByteTy(int ElemCount = 0) const; 69 // Boolean type: either scalar (when Length = 0), or vector with given 70 // element count. 71 Type *getBoolTy(int ElemCount = 0) const; 72 // Create a ConstantInt of type returned by getIntTy with the value Val. 73 ConstantInt *getConstInt(int Val) const; 74 // Get the integer value of V, if it exists. 75 Optional<APInt> getIntValue(const Value *Val) const; 76 // Is V a constant 0, or a vector of 0s? 77 bool isZero(const Value *Val) const; 78 // Is V an undef value? 79 bool isUndef(const Value *Val) const; 80 81 int getSizeOf(const Value *Val) const; 82 int getSizeOf(const Type *Ty) const; 83 int getTypeAlignment(Type *Ty) const; 84 85 VectorType *getByteVectorTy(int ScLen) const; 86 Constant *getNullValue(Type *Ty) const; 87 Constant *getFullValue(Type *Ty) const; 88 89 Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start, 90 int Length, int Where) const; 91 Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 92 Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 93 Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const; 94 Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize, 95 Value *Pad) const; 96 Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy, 97 Type *ToTy) const; 98 Value *vlsb(IRBuilder<> &Builder, Value *Val) const; 99 Value *vbytes(IRBuilder<> &Builder, Value *Val) const; 100 101 Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID, 102 Type *RetTy, ArrayRef<Value *> Args) const; 103 104 Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 105 106 template <typename T = std::vector<Instruction *>> 107 bool isSafeToMoveBeforeInBB(const Instruction &In, 108 BasicBlock::const_iterator To, 109 const T &Ignore = {}) const; 110 111 Function &F; 112 const DataLayout &DL; 113 AliasAnalysis &AA; 114 AssumptionCache &AC; 115 DominatorTree &DT; 116 TargetLibraryInfo &TLI; 117 const HexagonSubtarget &HST; 118 119 private: 120 bool isByteVecTy(Type *Ty) const; 121 bool isSectorTy(Type *Ty) const LLVM_ATTRIBUTE_UNUSED; 122 Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start, 123 int Length) const; 124 }; 125 126 class AlignVectors { 127 public: 128 AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {} 129 130 bool run(); 131 132 private: 133 using InstList = std::vector<Instruction *>; 134 135 struct Segment { 136 void *Data; 137 int Start; 138 int Size; 139 }; 140 141 struct AddrInfo { 142 AddrInfo(const AddrInfo &) = default; 143 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 144 Align H) 145 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 146 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 147 148 // XXX: add Size member? 149 Instruction *Inst; 150 Value *Addr; 151 Type *ValTy; 152 Align HaveAlign; 153 Align NeedAlign; 154 int Offset = 0; // Offset (in bytes) from the first member of the 155 // containing AddrList. 156 }; 157 using AddrList = std::vector<AddrInfo>; 158 159 struct InstrLess { 160 bool operator()(const Instruction *A, const Instruction *B) const { 161 return A->comesBefore(B); 162 } 163 }; 164 using DepList = std::set<Instruction *, InstrLess>; 165 166 struct MoveGroup { 167 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 168 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 169 Instruction *Base; // Base instruction of the parent address group. 170 InstList Main; // Main group of instructions. 171 InstList Deps; // List of dependencies. 172 bool IsHvx; // Is this group of HVX instructions? 173 bool IsLoad; // Is this a load group? 174 }; 175 using MoveList = std::vector<MoveGroup>; 176 177 struct ByteSpan { 178 struct Segment { 179 Segment(Value *Val, int Begin, int Len) 180 : Val(Val), Start(Begin), Size(Len) {} 181 Segment(const Segment &Seg) = default; 182 Value *Val; 183 int Start; 184 int Size; 185 }; 186 187 struct Block { 188 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 189 Block(Value *Val, int Off, int Len, int Pos) 190 : Seg(Val, Off, Len), Pos(Pos) {} 191 Block(const Block &Blk) = default; 192 Segment Seg; 193 int Pos; 194 }; 195 196 int extent() const; 197 ByteSpan section(int Start, int Length) const; 198 ByteSpan &normalize(); 199 200 int size() const { return Blocks.size(); } 201 Block &operator[](int i) { return Blocks[i]; } 202 203 std::vector<Block> Blocks; 204 205 using iterator = decltype(Blocks)::iterator; 206 iterator begin() { return Blocks.begin(); } 207 iterator end() { return Blocks.end(); } 208 using const_iterator = decltype(Blocks)::const_iterator; 209 const_iterator begin() const { return Blocks.begin(); } 210 const_iterator end() const { return Blocks.end(); } 211 }; 212 213 Align getAlignFromValue(const Value *V) const; 214 Optional<MemoryLocation> getLocation(const Instruction &In) const; 215 Optional<AddrInfo> getAddrInfo(Instruction &In) const; 216 bool isHvx(const AddrInfo &AI) const; 217 218 Value *getPayload(Value *Val) const; 219 Value *getMask(Value *Val) const; 220 Value *getPassThrough(Value *Val) const; 221 222 Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 223 int Adjust) const; 224 Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 225 int Alignment) const; 226 Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr, 227 int Alignment, Value *Mask, Value *PassThru) const; 228 Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr, 229 int Alignment, Value *Mask) const; 230 231 bool createAddressGroups(); 232 MoveList createLoadGroups(const AddrList &Group) const; 233 MoveList createStoreGroups(const AddrList &Group) const; 234 bool move(const MoveGroup &Move) const; 235 bool realignGroup(const MoveGroup &Move) const; 236 237 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 238 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 239 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 240 241 std::map<Instruction *, AddrList> AddrGroups; 242 HexagonVectorCombine &HVC; 243 }; 244 245 LLVM_ATTRIBUTE_UNUSED 246 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 247 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 248 OS << "Addr: " << *AI.Addr << '\n'; 249 OS << "Type: " << *AI.ValTy << '\n'; 250 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 251 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 252 OS << "Offset: " << AI.Offset; 253 return OS; 254 } 255 256 LLVM_ATTRIBUTE_UNUSED 257 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 258 OS << "Main\n"; 259 for (Instruction *I : MG.Main) 260 OS << " " << *I << '\n'; 261 OS << "Deps\n"; 262 for (Instruction *I : MG.Deps) 263 OS << " " << *I << '\n'; 264 return OS; 265 } 266 267 LLVM_ATTRIBUTE_UNUSED 268 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 269 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 270 for (const AlignVectors::ByteSpan::Block &B : BS) { 271 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 272 << *B.Seg.Val << '\n'; 273 } 274 OS << ']'; 275 return OS; 276 } 277 278 } // namespace 279 280 namespace { 281 282 template <typename T> T *getIfUnordered(T *MaybeT) { 283 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 284 } 285 template <typename T> T *isCandidate(Instruction *In) { 286 return dyn_cast<T>(In); 287 } 288 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 289 return getIfUnordered(dyn_cast<LoadInst>(In)); 290 } 291 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 292 return getIfUnordered(dyn_cast<StoreInst>(In)); 293 } 294 295 #if !defined(_MSC_VER) || _MSC_VER >= 1924 296 // VS2017 has trouble compiling this: 297 // error C2976: 'std::map': too few template arguments 298 template <typename Pred, typename... Ts> 299 void erase_if(std::map<Ts...> &map, Pred p) 300 #else 301 template <typename Pred, typename T, typename U> 302 void erase_if(std::map<T, U> &map, Pred p) 303 #endif 304 { 305 for (auto i = map.begin(), e = map.end(); i != e;) { 306 if (p(*i)) 307 i = map.erase(i); 308 else 309 i = std::next(i); 310 } 311 } 312 313 // Forward other erase_ifs to the LLVM implementations. 314 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 315 llvm::erase_if(std::forward<T>(container), p); 316 } 317 318 } // namespace 319 320 // --- Begin AlignVectors 321 322 auto AlignVectors::ByteSpan::extent() const -> int { 323 if (size() == 0) 324 return 0; 325 int Min = Blocks[0].Pos; 326 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 327 for (int i = 1, e = size(); i != e; ++i) { 328 Min = std::min(Min, Blocks[i].Pos); 329 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 330 } 331 return Max - Min; 332 } 333 334 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 335 ByteSpan Section; 336 for (const ByteSpan::Block &B : Blocks) { 337 int L = std::max(B.Pos, Start); // Left end. 338 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 339 if (L < R) { 340 // How much to chop off the beginning of the segment: 341 int Off = L > B.Pos ? L - B.Pos : 0; 342 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 343 } 344 } 345 return Section; 346 } 347 348 auto AlignVectors::ByteSpan::normalize() -> ByteSpan & { 349 if (size() == 0) 350 return *this; 351 int Min = Blocks[0].Pos; 352 for (int i = 1, e = size(); i != e; ++i) 353 Min = std::min(Min, Blocks[i].Pos); 354 if (Min != 0) { 355 for (Block &B : Blocks) 356 B.Pos -= Min; 357 } 358 return *this; 359 } 360 361 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 362 const auto *C = dyn_cast<ConstantInt>(V); 363 assert(C && "Alignment must be a compile-time constant integer"); 364 return C->getAlignValue(); 365 } 366 367 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> { 368 if (auto *L = isCandidate<LoadInst>(&In)) 369 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 370 L->getAlign()); 371 if (auto *S = isCandidate<StoreInst>(&In)) 372 return AddrInfo(HVC, S, S->getPointerOperand(), 373 S->getValueOperand()->getType(), S->getAlign()); 374 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 375 Intrinsic::ID ID = II->getIntrinsicID(); 376 switch (ID) { 377 case Intrinsic::masked_load: 378 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 379 getAlignFromValue(II->getArgOperand(1))); 380 case Intrinsic::masked_store: 381 return AddrInfo(HVC, II, II->getArgOperand(1), 382 II->getArgOperand(0)->getType(), 383 getAlignFromValue(II->getArgOperand(2))); 384 } 385 } 386 return Optional<AddrInfo>(); 387 } 388 389 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 390 return HVC.HST.isTypeForHVX(AI.ValTy); 391 } 392 393 auto AlignVectors::getPayload(Value *Val) const -> Value * { 394 if (auto *In = dyn_cast<Instruction>(Val)) { 395 Intrinsic::ID ID = 0; 396 if (auto *II = dyn_cast<IntrinsicInst>(In)) 397 ID = II->getIntrinsicID(); 398 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 399 return In->getOperand(0); 400 } 401 return Val; 402 } 403 404 auto AlignVectors::getMask(Value *Val) const -> Value * { 405 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 406 switch (II->getIntrinsicID()) { 407 case Intrinsic::masked_load: 408 return II->getArgOperand(2); 409 case Intrinsic::masked_store: 410 return II->getArgOperand(3); 411 } 412 } 413 414 Type *ValTy = getPayload(Val)->getType(); 415 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) { 416 int ElemCount = VecTy->getElementCount().getFixedValue(); 417 return HVC.getFullValue(HVC.getBoolTy(ElemCount)); 418 } 419 return HVC.getFullValue(HVC.getBoolTy()); 420 } 421 422 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 423 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 424 if (II->getIntrinsicID() == Intrinsic::masked_load) 425 return II->getArgOperand(3); 426 } 427 return UndefValue::get(getPayload(Val)->getType()); 428 } 429 430 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, 431 Type *ValTy, int Adjust) const 432 -> Value * { 433 // The adjustment is in bytes, but if it's a multiple of the type size, 434 // we don't need to do pointer casts. 435 Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType(); 436 int ElemSize = HVC.getSizeOf(ElemTy); 437 if (Adjust % ElemSize == 0) { 438 Value *Tmp0 = Builder.CreateGEP(Ptr, HVC.getConstInt(Adjust / ElemSize)); 439 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 440 } 441 442 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 443 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 444 Value *Tmp1 = Builder.CreateGEP(Tmp0, HVC.getConstInt(Adjust)); 445 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 446 } 447 448 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, 449 Type *ValTy, int Alignment) const 450 -> Value * { 451 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 452 Value *Mask = HVC.getConstInt(-Alignment); 453 Value *And = Builder.CreateAnd(AsInt, Mask); 454 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 455 } 456 457 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, 458 Value *Ptr, int Alignment, Value *Mask, 459 Value *PassThru) const -> Value * { 460 assert(!HVC.isUndef(Mask)); // Should this be allowed? 461 if (HVC.isZero(Mask)) 462 return PassThru; 463 if (Mask == ConstantInt::getTrue(Mask->getType())) 464 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 465 return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru); 466 } 467 468 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val, 469 Value *Ptr, int Alignment, 470 Value *Mask) const -> Value * { 471 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 472 return UndefValue::get(Val->getType()); 473 if (Mask == ConstantInt::getTrue(Mask->getType())) 474 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 475 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 476 } 477 478 auto AlignVectors::createAddressGroups() -> bool { 479 // An address group created here may contain instructions spanning 480 // multiple basic blocks. 481 AddrList WorkStack; 482 483 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 484 for (AddrInfo &W : WorkStack) { 485 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 486 return std::make_pair(W.Inst, *D); 487 } 488 return std::make_pair(nullptr, 0); 489 }; 490 491 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 492 BasicBlock &Block = *DomN->getBlock(); 493 for (Instruction &I : Block) { 494 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 495 if (!AI) 496 continue; 497 auto F = findBaseAndOffset(*AI); 498 Instruction *GroupInst; 499 if (Instruction *BI = F.first) { 500 AI->Offset = F.second; 501 GroupInst = BI; 502 } else { 503 WorkStack.push_back(*AI); 504 GroupInst = AI->Inst; 505 } 506 AddrGroups[GroupInst].push_back(*AI); 507 } 508 509 for (DomTreeNode *C : DomN->children()) 510 Visit(C, Visit); 511 512 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 513 WorkStack.pop_back(); 514 }; 515 516 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 517 assert(WorkStack.empty()); 518 519 // AddrGroups are formed. 520 521 // Remove groups of size 1. 522 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 523 // Remove groups that don't use HVX types. 524 erase_if(AddrGroups, [&](auto &G) { 525 return !llvm::any_of( 526 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 527 }); 528 // Remove groups where everything is properly aligned. 529 erase_if(AddrGroups, [&](auto &G) { 530 return llvm::all_of(G.second, 531 [&](auto &I) { return I.HaveAlign >= I.NeedAlign; }); 532 }); 533 534 return !AddrGroups.empty(); 535 } 536 537 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 538 // Form load groups. 539 // To avoid complications with moving code across basic blocks, only form 540 // groups that are contained within a single basic block. 541 542 auto getUpwardDeps = [](Instruction *In, Instruction *Base) { 543 BasicBlock *Parent = Base->getParent(); 544 assert(In->getParent() == Parent && 545 "Base and In should be in the same block"); 546 assert(Base->comesBefore(In) && "Base should come before In"); 547 548 DepList Deps; 549 std::deque<Instruction *> WorkQ = {In}; 550 while (!WorkQ.empty()) { 551 Instruction *D = WorkQ.front(); 552 WorkQ.pop_front(); 553 Deps.insert(D); 554 for (Value *Op : D->operands()) { 555 if (auto *I = dyn_cast<Instruction>(Op)) { 556 if (I->getParent() == Parent && Base->comesBefore(I)) 557 WorkQ.push_back(I); 558 } 559 } 560 } 561 return Deps; 562 }; 563 564 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 565 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 566 // Don't mix HVX and non-HVX instructions. 567 if (Move.IsHvx != isHvx(Info)) 568 return false; 569 // Leading instruction in the load group. 570 Instruction *Base = Move.Main.front(); 571 if (Base->getParent() != Info.Inst->getParent()) 572 return false; 573 574 auto isSafeToMoveToBase = [&](const Instruction *I) { 575 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 576 }; 577 DepList Deps = getUpwardDeps(Info.Inst, Base); 578 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 579 return false; 580 581 // The dependencies will be moved together with the load, so make sure 582 // that none of them could be moved independently in another group. 583 Deps.erase(Info.Inst); 584 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 585 if (llvm::any_of(Deps, inAddrMap)) 586 return false; 587 Move.Main.push_back(Info.Inst); 588 llvm::append_range(Move.Deps, Deps); 589 return true; 590 }; 591 592 MoveList LoadGroups; 593 594 for (const AddrInfo &Info : Group) { 595 if (!Info.Inst->mayReadFromMemory()) 596 continue; 597 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 598 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 599 } 600 601 // Erase singleton groups. 602 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 603 return LoadGroups; 604 } 605 606 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 607 // Form store groups. 608 // To avoid complications with moving code across basic blocks, only form 609 // groups that are contained within a single basic block. 610 611 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 612 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 613 // For stores with return values we'd have to collect downward depenencies. 614 // There are no such stores that we handle at the moment, so omit that. 615 assert(Info.Inst->getType()->isVoidTy() && 616 "Not handling stores with return values"); 617 // Don't mix HVX and non-HVX instructions. 618 if (Move.IsHvx != isHvx(Info)) 619 return false; 620 // For stores we need to be careful whether it's safe to move them. 621 // Stores that are otherwise safe to move together may not appear safe 622 // to move over one another (i.e. isSafeToMoveBefore may return false). 623 Instruction *Base = Move.Main.front(); 624 if (Base->getParent() != Info.Inst->getParent()) 625 return false; 626 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 627 return false; 628 Move.Main.push_back(Info.Inst); 629 return true; 630 }; 631 632 MoveList StoreGroups; 633 634 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 635 const AddrInfo &Info = *I; 636 if (!Info.Inst->mayWriteToMemory()) 637 continue; 638 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 639 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 640 } 641 642 // Erase singleton groups. 643 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 644 return StoreGroups; 645 } 646 647 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 648 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 649 Instruction *Where = Move.Main.front(); 650 651 if (Move.IsLoad) { 652 // Move all deps to before Where, keeping order. 653 for (Instruction *D : Move.Deps) 654 D->moveBefore(Where); 655 // Move all main instructions to after Where, keeping order. 656 ArrayRef<Instruction *> Main(Move.Main); 657 for (Instruction *M : Main.drop_front(1)) { 658 M->moveAfter(Where); 659 Where = M; 660 } 661 } else { 662 // NOTE: Deps are empty for "store" groups. If they need to be 663 // non-empty, decide on the order. 664 assert(Move.Deps.empty()); 665 // Move all main instructions to before Where, inverting order. 666 ArrayRef<Instruction *> Main(Move.Main); 667 for (Instruction *M : Main.drop_front(1)) { 668 M->moveBefore(Where); 669 Where = M; 670 } 671 } 672 673 return Move.Main.size() + Move.Deps.size() > 1; 674 } 675 676 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 677 // TODO: Needs support for masked loads/stores of "scalar" vectors. 678 if (!Move.IsHvx) 679 return false; 680 681 // Return the element with the maximum alignment from Range, 682 // where GetValue obtains the value to compare from an element. 683 auto getMaxOf = [](auto Range, auto GetValue) { 684 return *std::max_element( 685 Range.begin(), Range.end(), 686 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 687 }; 688 689 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 690 691 // Conceptually, there is a vector of N bytes covering the addresses 692 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 693 // represents a contiguous memory region that spans all accessed memory 694 // locations. 695 // The correspondence between loaded or stored values will be expressed 696 // in terms of this vector. For example, the 0th element of the vector 697 // from the Base address info will start at byte Start from the beginning 698 // of this conceptual vector. 699 // 700 // This vector will be loaded/stored starting at the nearest down-aligned 701 // address and the amount od the down-alignment will be AlignVal: 702 // valign(load_vector(align_down(Base+Start)), AlignVal) 703 704 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 705 AddrList MoveInfos; 706 llvm::copy_if( 707 BaseInfos, std::back_inserter(MoveInfos), 708 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 709 710 // Maximum alignment present in the whole address group. 711 const AddrInfo &WithMaxAlign = 712 getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 713 Align MaxGiven = WithMaxAlign.HaveAlign; 714 715 // Minimum alignment present in the move address group. 716 const AddrInfo &WithMinOffset = 717 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 718 719 const AddrInfo &WithMaxNeeded = 720 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 721 Align MinNeeded = WithMaxNeeded.NeedAlign; 722 723 // Set the builder at the top instruction in the move group. 724 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back(); 725 IRBuilder<> Builder(TopIn); 726 Value *AlignAddr = nullptr; // Actual aligned address. 727 Value *AlignVal = nullptr; // Right-shift amount (for valign). 728 729 if (MinNeeded <= MaxGiven) { 730 int Start = WithMinOffset.Offset; 731 int OffAtMax = WithMaxAlign.Offset; 732 // Shift the offset of the maximally aligned instruction (OffAtMax) 733 // back by just enough multiples of the required alignment to cover the 734 // distance from Start to OffAtMax. 735 // Calculate the address adjustment amount based on the address with the 736 // maximum alignment. This is to allow a simple gep instruction instead 737 // of potential bitcasts to i8*. 738 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 739 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 740 WithMaxAlign.ValTy, Adjust); 741 int Diff = Start - (OffAtMax + Adjust); 742 AlignVal = HVC.getConstInt(Diff); 743 // Sanity. 744 assert(Diff >= 0); 745 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 746 } else { 747 // WithMinOffset is the lowest address in the group, 748 // WithMinOffset.Addr = Base+Start. 749 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 750 // mask off unnecessary bits, so it's ok to just the original pointer as 751 // the alignment amount. 752 // Do an explicit down-alignment of the address to avoid creating an 753 // aligned instruction with an address that is not really aligned. 754 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 755 WithMinOffset.ValTy, MinNeeded.value()); 756 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 757 } 758 759 ByteSpan VSpan; 760 for (const AddrInfo &AI : MoveInfos) { 761 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 762 AI.Offset - WithMinOffset.Offset); 763 } 764 765 // The aligned loads/stores will use blocks that are either scalars, 766 // or HVX vectors. Let "sector" be the unified term for such a block. 767 // blend(scalar, vector) -> sector... 768 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 769 : std::max<int>(MinNeeded.value(), 4); 770 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 771 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 772 773 Type *SecTy = HVC.getByteTy(ScLen); 774 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 775 776 if (Move.IsLoad) { 777 ByteSpan ASpan; 778 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 779 auto *Undef = UndefValue::get(SecTy); 780 781 for (int i = 0; i != NumSectors + 1; ++i) { 782 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 783 // FIXME: generate a predicated load? 784 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 785 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen); 786 } 787 788 for (int j = 0; j != NumSectors; ++j) { 789 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val, 790 ASpan[j + 1].Seg.Val, AlignVal); 791 } 792 793 for (ByteSpan::Block &B : VSpan) { 794 ByteSpan Section = ASpan.section(B.Pos, B.Seg.Size).normalize(); 795 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 796 for (ByteSpan::Block &S : Section) { 797 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 798 Accum = 799 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 800 } 801 // Instead of casting everything to bytes for the vselect, cast to the 802 // original value type. This will avoid complications with casting masks. 803 // For example, in cases when the original mask applied to i32, it could 804 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 805 // but if the mask is not exactly of HVX length, extra handling would be 806 // needed to make it work. 807 Type *ValTy = getPayload(B.Seg.Val)->getType(); 808 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 809 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 810 getPassThrough(B.Seg.Val)); 811 B.Seg.Val->replaceAllUsesWith(Sel); 812 } 813 } else { 814 // Stores. 815 ByteSpan ASpanV, ASpanM; 816 817 // Return a vector value corresponding to the input value Val: 818 // either <1 x Val> for scalar Val, or Val itself for vector Val. 819 auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * { 820 Type *Ty = Val->getType(); 821 if (Ty->isVectorTy()) 822 return Val; 823 auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false); 824 return Builder.CreateBitCast(Val, VecTy); 825 }; 826 827 // Create an extra "undef" sector at the beginning and at the end. 828 // They will be used as the left/right filler in the vlalign step. 829 for (int i = -1; i != NumSectors + 1; ++i) { 830 ByteSpan Section = VSpan.section(i * ScLen, ScLen).normalize(); 831 Value *AccumV = UndefValue::get(SecTy); 832 Value *AccumM = HVC.getNullValue(SecTy); 833 for (ByteSpan::Block &S : Section) { 834 Value *Pay = getPayload(S.Seg.Val); 835 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 836 Pay->getType(), HVC.getByteTy()); 837 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 838 S.Seg.Start, S.Seg.Size, S.Pos); 839 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 840 S.Seg.Start, S.Seg.Size, S.Pos); 841 } 842 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 843 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 844 } 845 846 // vlalign 847 for (int j = 1; j != NumSectors + 2; ++j) { 848 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val, 849 ASpanV[j].Seg.Val, AlignVal); 850 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val, 851 ASpanM[j].Seg.Val, AlignVal); 852 } 853 854 for (int i = 0; i != NumSectors + 1; ++i) { 855 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 856 Value *Val = ASpanV[i].Seg.Val; 857 Value *Mask = ASpanM[i].Seg.Val; // bytes 858 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) 859 createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask)); 860 } 861 } 862 863 for (auto *Inst : Move.Main) 864 Inst->eraseFromParent(); 865 866 return true; 867 } 868 869 auto AlignVectors::run() -> bool { 870 if (!createAddressGroups()) 871 return false; 872 873 bool Changed = false; 874 MoveList LoadGroups, StoreGroups; 875 876 for (auto &G : AddrGroups) { 877 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 878 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 879 } 880 881 for (auto &M : LoadGroups) 882 Changed |= move(M); 883 for (auto &M : StoreGroups) 884 Changed |= move(M); 885 886 for (auto &M : LoadGroups) 887 Changed |= realignGroup(M); 888 for (auto &M : StoreGroups) 889 Changed |= realignGroup(M); 890 891 return Changed; 892 } 893 894 // --- End AlignVectors 895 896 auto HexagonVectorCombine::run() -> bool { 897 if (!HST.useHVXOps()) 898 return false; 899 900 bool Changed = AlignVectors(*this).run(); 901 return Changed; 902 } 903 904 auto HexagonVectorCombine::getIntTy() const -> IntegerType * { 905 return Type::getInt32Ty(F.getContext()); 906 } 907 908 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 909 assert(ElemCount >= 0); 910 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 911 if (ElemCount == 0) 912 return ByteTy; 913 return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false); 914 } 915 916 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 917 assert(ElemCount >= 0); 918 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 919 if (ElemCount == 0) 920 return BoolTy; 921 return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false); 922 } 923 924 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * { 925 return ConstantInt::getSigned(getIntTy(), Val); 926 } 927 928 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 929 if (auto *C = dyn_cast<Constant>(Val)) 930 return C->isZeroValue(); 931 return false; 932 } 933 934 auto HexagonVectorCombine::getIntValue(const Value *Val) const 935 -> Optional<APInt> { 936 if (auto *CI = dyn_cast<ConstantInt>(Val)) 937 return CI->getValue(); 938 return None; 939 } 940 941 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 942 return isa<UndefValue>(Val); 943 } 944 945 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int { 946 return getSizeOf(Val->getType()); 947 } 948 949 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int { 950 return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue(); 951 } 952 953 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 954 // The actual type may be shorter than the HVX vector, so determine 955 // the alignment based on subtarget info. 956 if (HST.isTypeForHVX(Ty)) 957 return HST.getVectorLength(); 958 return DL.getABITypeAlign(Ty).value(); 959 } 960 961 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 962 assert(Ty->isIntOrIntVectorTy()); 963 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 964 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 965 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 966 return Zero; 967 } 968 969 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 970 assert(Ty->isIntOrIntVectorTy()); 971 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 972 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 973 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 974 return Minus1; 975 } 976 977 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 978 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src, 979 int Start, int Length, int Where) const 980 -> Value * { 981 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 982 int SrcLen = getSizeOf(Src); 983 int DstLen = getSizeOf(Dst); 984 assert(0 <= Start && Start + Length <= SrcLen); 985 assert(0 <= Where && Where + Length <= DstLen); 986 987 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 988 auto *Undef = UndefValue::get(getByteTy()); 989 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 990 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 991 992 SmallVector<int, 256> SMask(P2Len); 993 for (int i = 0; i != P2Len; ++i) { 994 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 995 // Otherwise, pick Dst[i]; 996 SMask[i] = 997 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 998 } 999 1000 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1001 return vresize(Builder, P2Insert, DstLen, Undef); 1002 } 1003 1004 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1005 Value *Amt) const -> Value * { 1006 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1007 assert(isSectorTy(Hi->getType())); 1008 if (isZero(Amt)) 1009 return Hi; 1010 int VecLen = getSizeOf(Hi); 1011 if (auto IntAmt = getIntValue(Amt)) 1012 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1013 VecLen); 1014 1015 if (HST.isTypeForHVX(Hi->getType())) { 1016 int HwLen = HST.getVectorLength(); 1017 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1018 Intrinsic::ID V6_vlalignb = HwLen == 64 1019 ? Intrinsic::hexagon_V6_vlalignb 1020 : Intrinsic::hexagon_V6_vlalignb_128B; 1021 return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(), 1022 {Hi, Lo, Amt}); 1023 } 1024 1025 if (VecLen == 4) { 1026 Value *Pair = concat(Builder, {Lo, Hi}); 1027 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1028 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1029 return Builder.CreateBitCast(Trunc, Hi->getType()); 1030 } 1031 if (VecLen == 8) { 1032 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1033 return vralignb(Builder, Lo, Hi, Sub); 1034 } 1035 llvm_unreachable("Unexpected vector length"); 1036 } 1037 1038 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1039 Value *Amt) const -> Value * { 1040 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1041 assert(isSectorTy(Lo->getType())); 1042 if (isZero(Amt)) 1043 return Lo; 1044 int VecLen = getSizeOf(Lo); 1045 if (auto IntAmt = getIntValue(Amt)) 1046 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1047 1048 if (HST.isTypeForHVX(Lo->getType())) { 1049 int HwLen = HST.getVectorLength(); 1050 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1051 Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb 1052 : Intrinsic::hexagon_V6_valignb_128B; 1053 return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(), 1054 {Hi, Lo, Amt}); 1055 } 1056 1057 if (VecLen == 4) { 1058 Value *Pair = concat(Builder, {Lo, Hi}); 1059 Value *Shift = Builder.CreateLShr(Pair, Amt); 1060 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1061 return Builder.CreateBitCast(Trunc, Lo->getType()); 1062 } 1063 if (VecLen == 8) { 1064 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1065 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1066 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1067 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1068 Intrinsic::hexagon_S2_valignrb); 1069 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1070 return Builder.CreateBitCast(Call, Lo->getType()); 1071 } 1072 llvm_unreachable("Unexpected vector length"); 1073 } 1074 1075 // Concatenates a sequence of vectors of the same type. 1076 auto HexagonVectorCombine::concat(IRBuilder<> &Builder, 1077 ArrayRef<Value *> Vecs) const -> Value * { 1078 assert(!Vecs.empty()); 1079 SmallVector<int, 256> SMask; 1080 std::vector<Value *> Work[2]; 1081 int ThisW = 0, OtherW = 1; 1082 1083 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1084 while (Work[ThisW].size() > 1) { 1085 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1086 int ElemCount = Ty->getElementCount().getFixedValue(); 1087 SMask.resize(ElemCount * 2); 1088 std::iota(SMask.begin(), SMask.end(), 0); 1089 1090 Work[OtherW].clear(); 1091 if (Work[ThisW].size() % 2 != 0) 1092 Work[ThisW].push_back(UndefValue::get(Ty)); 1093 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1094 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1095 Work[ThisW][i + 1], SMask); 1096 Work[OtherW].push_back(Joined); 1097 } 1098 std::swap(ThisW, OtherW); 1099 } 1100 1101 // Since there may have been some undefs appended to make shuffle operands 1102 // have the same type, perform the last shuffle to only pick the original 1103 // elements. 1104 SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType())); 1105 std::iota(SMask.begin(), SMask.end(), 0); 1106 Value *Total = Work[OtherW].front(); 1107 return Builder.CreateShuffleVector(Total, SMask); 1108 } 1109 1110 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val, 1111 int NewSize, Value *Pad) const -> Value * { 1112 assert(isa<VectorType>(Val->getType())); 1113 auto *ValTy = cast<VectorType>(Val->getType()); 1114 assert(ValTy->getElementType() == Pad->getType()); 1115 1116 int CurSize = ValTy->getElementCount().getFixedValue(); 1117 if (CurSize == NewSize) 1118 return Val; 1119 // Truncate? 1120 if (CurSize > NewSize) 1121 return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize); 1122 // Extend. 1123 SmallVector<int, 128> SMask(NewSize); 1124 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 1125 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 1126 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 1127 return Builder.CreateShuffleVector(Val, PadVec, SMask); 1128 } 1129 1130 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask, 1131 Type *FromTy, Type *ToTy) const -> Value * { 1132 // Mask is a vector <N x i1>, where each element corresponds to an 1133 // element of FromTy. Remap it so that each element will correspond 1134 // to an element of ToTy. 1135 assert(isa<VectorType>(Mask->getType())); 1136 1137 Type *FromSTy = FromTy->getScalarType(); 1138 Type *ToSTy = ToTy->getScalarType(); 1139 if (FromSTy == ToSTy) 1140 return Mask; 1141 1142 int FromSize = getSizeOf(FromSTy); 1143 int ToSize = getSizeOf(ToSTy); 1144 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 1145 1146 auto *MaskTy = cast<VectorType>(Mask->getType()); 1147 int FromCount = MaskTy->getElementCount().getFixedValue(); 1148 int ToCount = (FromCount * FromSize) / ToSize; 1149 assert((FromCount * FromSize) % ToSize == 0); 1150 1151 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 1152 // -> trunc to <M x i1>. 1153 Value *Ext = Builder.CreateSExt( 1154 Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false)); 1155 Value *Cast = Builder.CreateBitCast( 1156 Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false)); 1157 return Builder.CreateTrunc( 1158 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false)); 1159 } 1160 1161 // Bitcast to bytes, and return least significant bits. 1162 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const 1163 -> Value * { 1164 Type *ScalarTy = Val->getType()->getScalarType(); 1165 if (ScalarTy == getBoolTy()) 1166 return Val; 1167 1168 Value *Bytes = vbytes(Builder, Val); 1169 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 1170 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 1171 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 1172 // <1 x i1>. 1173 return Builder.CreateTrunc(Bytes, getBoolTy()); 1174 } 1175 1176 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 1177 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const 1178 -> Value * { 1179 Type *ScalarTy = Val->getType()->getScalarType(); 1180 if (ScalarTy == getByteTy()) 1181 return Val; 1182 1183 if (ScalarTy != getBoolTy()) 1184 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 1185 // For bool, return a sext from i1 to i8. 1186 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 1187 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 1188 return Builder.CreateSExt(Val, getByteTy()); 1189 } 1190 1191 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder, 1192 Intrinsic::ID IntID, Type *RetTy, 1193 ArrayRef<Value *> Args) const 1194 -> Value * { 1195 int HwLen = HST.getVectorLength(); 1196 Type *BoolTy = Type::getInt1Ty(F.getContext()); 1197 Type *Int32Ty = Type::getInt32Ty(F.getContext()); 1198 // HVX vector -> v16i32/v32i32 1199 // HVX vector predicate -> v512i1/v1024i1 1200 auto getTypeForIntrin = [&](Type *Ty) -> Type * { 1201 if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) { 1202 Type *ElemTy = cast<VectorType>(Ty)->getElementType(); 1203 if (ElemTy == Int32Ty) 1204 return Ty; 1205 if (ElemTy == BoolTy) 1206 return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false); 1207 return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false); 1208 } 1209 // Non-HVX type. It should be a scalar. 1210 assert(Ty == Int32Ty || Ty->isIntegerTy(64)); 1211 return Ty; 1212 }; 1213 1214 auto getCast = [&](IRBuilder<> &Builder, Value *Val, 1215 Type *DestTy) -> Value * { 1216 Type *SrcTy = Val->getType(); 1217 if (SrcTy == DestTy) 1218 return Val; 1219 if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) { 1220 if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) { 1221 // This should take care of casts the other way too, for example 1222 // v1024i1 -> v32i1. 1223 Intrinsic::ID TC = HwLen == 64 1224 ? Intrinsic::hexagon_V6_pred_typecast 1225 : Intrinsic::hexagon_V6_pred_typecast_128B; 1226 Function *FI = Intrinsic::getDeclaration(F.getParent(), TC, 1227 {DestTy, Val->getType()}); 1228 return Builder.CreateCall(FI, {Val}); 1229 } 1230 // Non-predicate HVX vector. 1231 return Builder.CreateBitCast(Val, DestTy); 1232 } 1233 // Non-HVX type. It should be a scalar, and it should already have 1234 // a valid type. 1235 llvm_unreachable("Unexpected type"); 1236 }; 1237 1238 SmallVector<Value *, 4> IntOps; 1239 for (Value *A : Args) 1240 IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType()))); 1241 Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID); 1242 Value *Call = Builder.CreateCall(FI, IntOps); 1243 1244 Type *CallTy = Call->getType(); 1245 if (CallTy == RetTy) 1246 return Call; 1247 // Scalar types should have RetTy matching the call return type. 1248 assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true)); 1249 if (cast<VectorType>(CallTy)->getElementType() == BoolTy) 1250 return getCast(Builder, Call, RetTy); 1251 return Builder.CreateBitCast(Call, RetTy); 1252 } 1253 1254 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 1255 Value *Ptr1) const 1256 -> Optional<int> { 1257 struct Builder : IRBuilder<> { 1258 Builder(BasicBlock *B) : IRBuilder<>(B) {} 1259 ~Builder() { 1260 for (Instruction *I : llvm::reverse(ToErase)) 1261 I->eraseFromParent(); 1262 } 1263 SmallVector<Instruction *, 8> ToErase; 1264 }; 1265 1266 #define CallBuilder(B, F) \ 1267 [&](auto &B_) { \ 1268 Value *V = B_.F; \ 1269 if (auto *I = dyn_cast<Instruction>(V)) \ 1270 B_.ToErase.push_back(I); \ 1271 return V; \ 1272 }(B) 1273 1274 auto Simplify = [&](Value *V) { 1275 if (auto *I = dyn_cast<Instruction>(V)) { 1276 SimplifyQuery Q(DL, &TLI, &DT, &AC, I); 1277 if (Value *S = SimplifyInstruction(I, Q)) 1278 return S; 1279 } 1280 return V; 1281 }; 1282 1283 auto StripBitCast = [](Value *V) { 1284 while (auto *C = dyn_cast<BitCastInst>(V)) 1285 V = C->getOperand(0); 1286 return V; 1287 }; 1288 1289 Ptr0 = StripBitCast(Ptr0); 1290 Ptr1 = StripBitCast(Ptr1); 1291 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 1292 return None; 1293 1294 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 1295 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 1296 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 1297 return None; 1298 1299 Builder B(Gep0->getParent()); 1300 Value *BasePtr = Gep0->getPointerOperand(); 1301 int Scale = DL.getTypeStoreSize(BasePtr->getType()->getPointerElementType()); 1302 1303 // FIXME: for now only check GEPs with a single index. 1304 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 1305 return None; 1306 1307 Value *Idx0 = Gep0->getOperand(1); 1308 Value *Idx1 = Gep1->getOperand(1); 1309 1310 // First, try to simplify the subtraction directly. 1311 if (auto *Diff = dyn_cast<ConstantInt>( 1312 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 1313 return Diff->getSExtValue() * Scale; 1314 1315 KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT); 1316 KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT); 1317 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 1318 if (Unknown.isAllOnesValue()) 1319 return None; 1320 1321 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 1322 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 1323 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 1324 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 1325 int Diff0 = 0; 1326 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 1327 Diff0 = C->getSExtValue(); 1328 } else { 1329 return None; 1330 } 1331 1332 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 1333 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 1334 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 1335 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 1336 int Diff1 = 0; 1337 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 1338 Diff1 = C->getSExtValue(); 1339 } else { 1340 return None; 1341 } 1342 1343 return (Diff0 + Diff1) * Scale; 1344 1345 #undef CallBuilder 1346 } 1347 1348 template <typename T> 1349 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 1350 BasicBlock::const_iterator To, 1351 const T &Ignore) const 1352 -> bool { 1353 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> { 1354 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 1355 switch (II->getIntrinsicID()) { 1356 case Intrinsic::masked_load: 1357 return MemoryLocation::getForArgument(II, 0, TLI); 1358 case Intrinsic::masked_store: 1359 return MemoryLocation::getForArgument(II, 1, TLI); 1360 } 1361 } 1362 return MemoryLocation::getOrNone(&I); 1363 }; 1364 1365 // The source and the destination must be in the same basic block. 1366 const BasicBlock &Block = *In.getParent(); 1367 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 1368 // No PHIs. 1369 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 1370 return false; 1371 1372 if (!mayBeMemoryDependent(In)) 1373 return true; 1374 bool MayWrite = In.mayWriteToMemory(); 1375 auto MaybeLoc = getLocOrNone(In); 1376 1377 auto From = In.getIterator(); 1378 if (From == To) 1379 return true; 1380 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 1381 auto Range = 1382 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 1383 for (auto It = Range.first; It != Range.second; ++It) { 1384 const Instruction &I = *It; 1385 if (llvm::is_contained(Ignore, &I)) 1386 continue; 1387 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 1388 if (I.mayThrow()) 1389 return false; 1390 if (auto *CB = dyn_cast<CallBase>(&I)) { 1391 if (!CB->hasFnAttr(Attribute::WillReturn)) 1392 return false; 1393 if (!CB->hasFnAttr(Attribute::NoSync)) 1394 return false; 1395 } 1396 if (I.mayReadOrWriteMemory()) { 1397 auto MaybeLocI = getLocOrNone(I); 1398 if (MayWrite || I.mayWriteToMemory()) { 1399 if (!MaybeLoc || !MaybeLocI) 1400 return false; 1401 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 1402 return false; 1403 } 1404 } 1405 } 1406 return true; 1407 } 1408 1409 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 1410 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1411 return VecTy->getElementType() == getByteTy(); 1412 return false; 1413 } 1414 1415 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool { 1416 if (!isByteVecTy(Ty)) 1417 return false; 1418 int Size = getSizeOf(Ty); 1419 if (HST.isTypeForHVX(Ty)) 1420 return Size == static_cast<int>(HST.getVectorLength()); 1421 return Size == 4 || Size == 8; 1422 } 1423 1424 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo, 1425 Value *Hi, int Start, 1426 int Length) const -> Value * { 1427 assert(0 <= Start && Start < Length); 1428 SmallVector<int, 128> SMask(Length); 1429 std::iota(SMask.begin(), SMask.end(), Start); 1430 return Builder.CreateShuffleVector(Lo, Hi, SMask); 1431 } 1432 1433 // Pass management. 1434 1435 namespace llvm { 1436 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 1437 FunctionPass *createHexagonVectorCombineLegacyPass(); 1438 } // namespace llvm 1439 1440 namespace { 1441 class HexagonVectorCombineLegacy : public FunctionPass { 1442 public: 1443 static char ID; 1444 1445 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 1446 1447 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 1448 1449 void getAnalysisUsage(AnalysisUsage &AU) const override { 1450 AU.setPreservesCFG(); 1451 AU.addRequired<AAResultsWrapperPass>(); 1452 AU.addRequired<AssumptionCacheTracker>(); 1453 AU.addRequired<DominatorTreeWrapperPass>(); 1454 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1455 AU.addRequired<TargetPassConfig>(); 1456 FunctionPass::getAnalysisUsage(AU); 1457 } 1458 1459 bool runOnFunction(Function &F) override { 1460 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1461 AssumptionCache &AC = 1462 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1463 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1464 TargetLibraryInfo &TLI = 1465 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1466 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 1467 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 1468 return HVC.run(); 1469 } 1470 }; 1471 } // namespace 1472 1473 char HexagonVectorCombineLegacy::ID = 0; 1474 1475 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 1476 "Hexagon Vector Combine", false, false) 1477 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1478 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1479 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1480 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1481 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 1482 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 1483 "Hexagon Vector Combine", false, false) 1484 1485 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 1486 return new HexagonVectorCombineLegacy(); 1487 } 1488