1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 // HvxIdioms: recognize various opportunities to generate HVX intrinsic code. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstSimplifyFolder.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/CodeGen/TargetPassConfig.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsHexagon.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetMachine.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 46 #include "HexagonSubtarget.h" 47 #include "HexagonTargetMachine.h" 48 49 #include <algorithm> 50 #include <deque> 51 #include <map> 52 #include <optional> 53 #include <set> 54 #include <utility> 55 #include <vector> 56 57 #define DEBUG_TYPE "hexagon-vc" 58 59 using namespace llvm; 60 61 namespace { 62 cl::opt<bool> DumpModule("hvc-dump-module", cl::Hidden); 63 cl::opt<bool> VAEnabled("hvc-va", cl::Hidden, cl::init(true)); // Align 64 cl::opt<bool> VIEnabled("hvc-vi", cl::Hidden, cl::init(true)); // Idioms 65 cl::opt<bool> VADoFullStores("hvc-va-full-stores", cl::Hidden); 66 67 cl::opt<unsigned> VAGroupCountLimit("hvc-va-group-count-limit", cl::Hidden, 68 cl::init(~0)); 69 cl::opt<unsigned> VAGroupSizeLimit("hvc-va-group-size-limit", cl::Hidden, 70 cl::init(~0)); 71 72 class HexagonVectorCombine { 73 public: 74 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 75 DominatorTree &DT_, ScalarEvolution &SE_, 76 TargetLibraryInfo &TLI_, const TargetMachine &TM_) 77 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 78 SE(SE_), TLI(TLI_), 79 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 80 81 bool run(); 82 83 // Common integer type. 84 IntegerType *getIntTy(unsigned Width = 32) const; 85 // Byte type: either scalar (when Length = 0), or vector with given 86 // element count. 87 Type *getByteTy(int ElemCount = 0) const; 88 // Boolean type: either scalar (when Length = 0), or vector with given 89 // element count. 90 Type *getBoolTy(int ElemCount = 0) const; 91 // Create a ConstantInt of type returned by getIntTy with the value Val. 92 ConstantInt *getConstInt(int Val, unsigned Width = 32) const; 93 // Get the integer value of V, if it exists. 94 std::optional<APInt> getIntValue(const Value *Val) const; 95 // Is Val a constant 0, or a vector of 0s? 96 bool isZero(const Value *Val) const; 97 // Is Val an undef value? 98 bool isUndef(const Value *Val) const; 99 // Is Val a scalar (i1 true) or a vector of (i1 true)? 100 bool isTrue(const Value *Val) const; 101 // Is Val a scalar (i1 false) or a vector of (i1 false)? 102 bool isFalse(const Value *Val) const; 103 104 // Get HVX vector type with the given element type. 105 VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const; 106 107 enum SizeKind { 108 Store, // Store size 109 Alloc, // Alloc size 110 }; 111 int getSizeOf(const Value *Val, SizeKind Kind = Store) const; 112 int getSizeOf(const Type *Ty, SizeKind Kind = Store) const; 113 int getTypeAlignment(Type *Ty) const; 114 size_t length(Value *Val) const; 115 size_t length(Type *Ty) const; 116 117 Constant *getNullValue(Type *Ty) const; 118 Constant *getFullValue(Type *Ty) const; 119 Constant *getConstSplat(Type *Ty, int Val) const; 120 121 Value *simplify(Value *Val) const; 122 123 Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start, 124 int Length, int Where) const; 125 Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 126 Value *Amt) const; 127 Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 128 Value *Amt) const; 129 Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const; 130 Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize, 131 Value *Pad) const; 132 Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy, 133 Type *ToTy) const; 134 Value *vlsb(IRBuilderBase &Builder, Value *Val) const; 135 Value *vbytes(IRBuilderBase &Builder, Value *Val) const; 136 Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start, 137 unsigned Length) const; 138 Value *sublo(IRBuilderBase &Builder, Value *Val) const; 139 Value *subhi(IRBuilderBase &Builder, Value *Val) const; 140 Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 141 Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 142 143 Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID, 144 Type *RetTy, ArrayRef<Value *> Args, 145 ArrayRef<Type *> ArgTys = std::nullopt, 146 ArrayRef<Value *> MDSources = std::nullopt) const; 147 SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec, 148 unsigned ToWidth) const; 149 Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values, 150 VectorType *ToType) const; 151 152 std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 153 154 unsigned getNumSignificantBits(const Value *V, 155 const Instruction *CtxI = nullptr) const; 156 KnownBits getKnownBits(const Value *V, 157 const Instruction *CtxI = nullptr) const; 158 159 bool isSafeToClone(const Instruction &In) const; 160 161 template <typename T = std::vector<Instruction *>> 162 bool isSafeToMoveBeforeInBB(const Instruction &In, 163 BasicBlock::const_iterator To, 164 const T &IgnoreInsts = {}) const; 165 166 // This function is only used for assertions at the moment. 167 [[maybe_unused]] bool isByteVecTy(Type *Ty) const; 168 169 Function &F; 170 const DataLayout &DL; 171 AliasAnalysis &AA; 172 AssumptionCache &AC; 173 DominatorTree &DT; 174 ScalarEvolution &SE; 175 TargetLibraryInfo &TLI; 176 const HexagonSubtarget &HST; 177 178 private: 179 Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi, 180 int Start, int Length) const; 181 }; 182 183 class AlignVectors { 184 // This code tries to replace unaligned vector loads/stores with aligned 185 // ones. 186 // Consider unaligned load: 187 // %v = original_load %some_addr, align <bad> 188 // %user = %v 189 // It will generate 190 // = load ..., align <good> 191 // = load ..., align <good> 192 // = valign 193 // etc. 194 // %synthesize = combine/shuffle the loaded data so that it looks 195 // exactly like what "original_load" has loaded. 196 // %user = %synthesize 197 // Similarly for stores. 198 public: 199 AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {} 200 201 bool run(); 202 203 private: 204 using InstList = std::vector<Instruction *>; 205 using InstMap = DenseMap<Instruction *, Instruction *>; 206 207 struct AddrInfo { 208 AddrInfo(const AddrInfo &) = default; 209 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 210 Align H) 211 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 212 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 213 AddrInfo &operator=(const AddrInfo &) = default; 214 215 // XXX: add Size member? 216 Instruction *Inst; 217 Value *Addr; 218 Type *ValTy; 219 Align HaveAlign; 220 Align NeedAlign; 221 int Offset = 0; // Offset (in bytes) from the first member of the 222 // containing AddrList. 223 }; 224 using AddrList = std::vector<AddrInfo>; 225 226 struct InstrLess { 227 bool operator()(const Instruction *A, const Instruction *B) const { 228 return A->comesBefore(B); 229 } 230 }; 231 using DepList = std::set<Instruction *, InstrLess>; 232 233 struct MoveGroup { 234 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 235 : Base(B), Main{AI.Inst}, Clones{}, IsHvx(Hvx), IsLoad(Load) {} 236 MoveGroup() = default; 237 Instruction *Base; // Base instruction of the parent address group. 238 InstList Main; // Main group of instructions. 239 InstList Deps; // List of dependencies. 240 InstMap Clones; // Map from original Deps to cloned ones. 241 bool IsHvx; // Is this group of HVX instructions? 242 bool IsLoad; // Is this a load group? 243 }; 244 using MoveList = std::vector<MoveGroup>; 245 246 struct ByteSpan { 247 // A representation of "interesting" bytes within a given span of memory. 248 // These bytes are those that are loaded or stored, and they don't have 249 // to cover the entire span of memory. 250 // 251 // The representation works by picking a contiguous sequence of bytes 252 // from somewhere within a llvm::Value, and placing it at a given offset 253 // within the span. 254 // 255 // The sequence of bytes from llvm:Value is represented by Segment. 256 // Block is Segment, plus where it goes in the span. 257 // 258 // An important feature of ByteSpan is being able to make a "section", 259 // i.e. creating another ByteSpan corresponding to a range of offsets 260 // relative to the source span. 261 262 struct Segment { 263 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 264 Segment(Value *Val, int Begin, int Len) 265 : Val(Val), Start(Begin), Size(Len) {} 266 Segment(const Segment &Seg) = default; 267 Segment &operator=(const Segment &Seg) = default; 268 Value *Val; // Value representable as a sequence of bytes. 269 int Start; // First byte of the value that belongs to the segment. 270 int Size; // Number of bytes in the segment. 271 }; 272 273 struct Block { 274 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 275 Block(Value *Val, int Off, int Len, int Pos) 276 : Seg(Val, Off, Len), Pos(Pos) {} 277 Block(const Block &Blk) = default; 278 Block &operator=(const Block &Blk) = default; 279 Segment Seg; // Value segment. 280 int Pos; // Position (offset) of the block in the span. 281 }; 282 283 int extent() const; 284 ByteSpan section(int Start, int Length) const; 285 ByteSpan &shift(int Offset); 286 SmallVector<Value *, 8> values() const; 287 288 int size() const { return Blocks.size(); } 289 Block &operator[](int i) { return Blocks[i]; } 290 const Block &operator[](int i) const { return Blocks[i]; } 291 292 std::vector<Block> Blocks; 293 294 using iterator = decltype(Blocks)::iterator; 295 iterator begin() { return Blocks.begin(); } 296 iterator end() { return Blocks.end(); } 297 using const_iterator = decltype(Blocks)::const_iterator; 298 const_iterator begin() const { return Blocks.begin(); } 299 const_iterator end() const { return Blocks.end(); } 300 }; 301 302 Align getAlignFromValue(const Value *V) const; 303 std::optional<AddrInfo> getAddrInfo(Instruction &In) const; 304 bool isHvx(const AddrInfo &AI) const; 305 // This function is only used for assertions at the moment. 306 [[maybe_unused]] bool isSectorTy(Type *Ty) const; 307 308 Value *getPayload(Value *Val) const; 309 Value *getMask(Value *Val) const; 310 Value *getPassThrough(Value *Val) const; 311 312 Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 313 int Adjust, 314 const InstMap &CloneMap = InstMap()) const; 315 Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 316 int Alignment, 317 const InstMap &CloneMap = InstMap()) const; 318 319 Value *createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 320 Value *Predicate, int Alignment, Value *Mask, 321 Value *PassThru, 322 ArrayRef<Value *> MDSources = std::nullopt) const; 323 Value *createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 324 int Alignment, 325 ArrayRef<Value *> MDSources = std::nullopt) const; 326 327 Value *createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 328 Value *Predicate, int Alignment, Value *Mask, 329 ArrayRef<Value *> MDSources = std ::nullopt) const; 330 Value *createSimpleStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 331 int Alignment, 332 ArrayRef<Value *> MDSources = std ::nullopt) const; 333 334 Value *createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 335 Value *Predicate, int Alignment, 336 ArrayRef<Value *> MDSources = std::nullopt) const; 337 Value * 338 createPredicatedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 339 Value *Predicate, int Alignment, 340 ArrayRef<Value *> MDSources = std::nullopt) const; 341 342 DepList getUpwardDeps(Instruction *In, Instruction *Base) const; 343 bool createAddressGroups(); 344 MoveList createLoadGroups(const AddrList &Group) const; 345 MoveList createStoreGroups(const AddrList &Group) const; 346 bool moveTogether(MoveGroup &Move) const; 347 template <typename T> InstMap cloneBefore(Instruction *To, T &&Insts) const; 348 349 void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 350 int ScLen, Value *AlignVal, Value *AlignAddr) const; 351 void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 352 int ScLen, Value *AlignVal, Value *AlignAddr) const; 353 bool realignGroup(const MoveGroup &Move) const; 354 355 Value *makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal, 356 int Alignment) const; 357 358 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 359 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 360 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B); 361 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 362 363 std::map<Instruction *, AddrList> AddrGroups; 364 const HexagonVectorCombine &HVC; 365 }; 366 367 LLVM_ATTRIBUTE_UNUSED 368 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 369 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 370 OS << "Addr: " << *AI.Addr << '\n'; 371 OS << "Type: " << *AI.ValTy << '\n'; 372 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 373 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 374 OS << "Offset: " << AI.Offset; 375 return OS; 376 } 377 378 LLVM_ATTRIBUTE_UNUSED 379 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 380 OS << "IsLoad:" << (MG.IsLoad ? "yes" : "no"); 381 OS << ", IsHvx:" << (MG.IsHvx ? "yes" : "no") << '\n'; 382 OS << "Main\n"; 383 for (Instruction *I : MG.Main) 384 OS << " " << *I << '\n'; 385 OS << "Deps\n"; 386 for (Instruction *I : MG.Deps) 387 OS << " " << *I << '\n'; 388 OS << "Clones\n"; 389 for (auto [K, V] : MG.Clones) { 390 OS << " "; 391 K->printAsOperand(OS, false); 392 OS << "\t-> " << *V << '\n'; 393 } 394 return OS; 395 } 396 397 LLVM_ATTRIBUTE_UNUSED 398 raw_ostream &operator<<(raw_ostream &OS, 399 const AlignVectors::ByteSpan::Block &B) { 400 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "; 401 if (B.Seg.Val == reinterpret_cast<const Value *>(&B)) { 402 OS << "(self:" << B.Seg.Val << ')'; 403 } else if (B.Seg.Val != nullptr) { 404 OS << *B.Seg.Val; 405 } else { 406 OS << "(null)"; 407 } 408 return OS; 409 } 410 411 LLVM_ATTRIBUTE_UNUSED 412 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 413 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 414 for (const AlignVectors::ByteSpan::Block &B : BS) 415 OS << B << '\n'; 416 OS << ']'; 417 return OS; 418 } 419 420 class HvxIdioms { 421 public: 422 HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) { 423 auto *Int32Ty = HVC.getIntTy(32); 424 HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false); 425 HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true); 426 } 427 428 bool run(); 429 430 private: 431 enum Signedness { Positive, Signed, Unsigned }; 432 433 // Value + sign 434 // This is to keep track of whether the value should be treated as signed 435 // or unsigned, or is known to be positive. 436 struct SValue { 437 Value *Val; 438 Signedness Sgn; 439 }; 440 441 struct FxpOp { 442 unsigned Opcode; 443 unsigned Frac; // Number of fraction bits 444 SValue X, Y; 445 // If present, add 1 << RoundAt before shift: 446 std::optional<unsigned> RoundAt; 447 VectorType *ResTy; 448 }; 449 450 auto getNumSignificantBits(Value *V, Instruction *In) const 451 -> std::pair<unsigned, Signedness>; 452 auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>; 453 454 auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>; 455 auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *; 456 457 auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 458 const FxpOp &Op) const -> Value *; 459 auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 460 bool Rounding) const -> Value *; 461 auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 462 bool Rounding) const -> Value *; 463 // Return {Result, Carry}, where Carry is a vector predicate. 464 auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 465 Value *CarryIn = nullptr) const 466 -> std::pair<Value *, Value *>; 467 auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *; 468 auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 469 -> Value *; 470 auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 471 -> std::pair<Value *, Value *>; 472 auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 473 ArrayRef<Value *> WordY) const -> SmallVector<Value *>; 474 auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 475 Signedness SgnX, ArrayRef<Value *> WordY, 476 Signedness SgnY) const -> SmallVector<Value *>; 477 478 VectorType *HvxI32Ty; 479 VectorType *HvxP32Ty; 480 const HexagonVectorCombine &HVC; 481 482 friend raw_ostream &operator<<(raw_ostream &, const FxpOp &); 483 }; 484 485 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS, 486 const HvxIdioms::FxpOp &Op) { 487 static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"}; 488 OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac; 489 if (Op.RoundAt.has_value()) { 490 if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) { 491 OS << ":rnd"; 492 } else { 493 OS << " + 1<<" << *Op.RoundAt; 494 } 495 } 496 OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n" 497 << " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val; 498 return OS; 499 } 500 501 } // namespace 502 503 namespace { 504 505 template <typename T> T *getIfUnordered(T *MaybeT) { 506 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 507 } 508 template <typename T> T *isCandidate(Instruction *In) { 509 return dyn_cast<T>(In); 510 } 511 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 512 return getIfUnordered(dyn_cast<LoadInst>(In)); 513 } 514 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 515 return getIfUnordered(dyn_cast<StoreInst>(In)); 516 } 517 518 #if !defined(_MSC_VER) || _MSC_VER >= 1926 519 // VS2017 and some versions of VS2019 have trouble compiling this: 520 // error C2976: 'std::map': too few template arguments 521 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 522 template <typename Pred, typename... Ts> 523 void erase_if(std::map<Ts...> &map, Pred p) 524 #else 525 template <typename Pred, typename T, typename U> 526 void erase_if(std::map<T, U> &map, Pred p) 527 #endif 528 { 529 for (auto i = map.begin(), e = map.end(); i != e;) { 530 if (p(*i)) 531 i = map.erase(i); 532 else 533 i = std::next(i); 534 } 535 } 536 537 // Forward other erase_ifs to the LLVM implementations. 538 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 539 llvm::erase_if(std::forward<T>(container), p); 540 } 541 542 } // namespace 543 544 // --- Begin AlignVectors 545 546 // For brevity, only consider loads. We identify a group of loads where we 547 // know the relative differences between their addresses, so we know how they 548 // are laid out in memory (relative to one another). These loads can overlap, 549 // can be shorter or longer than the desired vector length. 550 // Ultimately we want to generate a sequence of aligned loads that will load 551 // every byte that the original loads loaded, and have the program use these 552 // loaded values instead of the original loads. 553 // We consider the contiguous memory area spanned by all these loads. 554 // 555 // Let's say that a single aligned vector load can load 16 bytes at a time. 556 // If the program wanted to use a byte at offset 13 from the beginning of the 557 // original span, it will be a byte at offset 13+x in the aligned data for 558 // some x>=0. This may happen to be in the first aligned load, or in the load 559 // following it. Since we generally don't know what the that alignment value 560 // is at compile time, we proactively do valigns on the aligned loads, so that 561 // byte that was at offset 13 is still at offset 13 after the valigns. 562 // 563 // This will be the starting point for making the rest of the program use the 564 // data loaded by the new loads. 565 // For each original load, and its users: 566 // %v = load ... 567 // ... = %v 568 // ... = %v 569 // we create 570 // %new_v = extract/combine/shuffle data from loaded/valigned vectors so 571 // it contains the same value as %v did before 572 // then replace all users of %v with %new_v. 573 // ... = %new_v 574 // ... = %new_v 575 576 auto AlignVectors::ByteSpan::extent() const -> int { 577 if (size() == 0) 578 return 0; 579 int Min = Blocks[0].Pos; 580 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 581 for (int i = 1, e = size(); i != e; ++i) { 582 Min = std::min(Min, Blocks[i].Pos); 583 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 584 } 585 return Max - Min; 586 } 587 588 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 589 ByteSpan Section; 590 for (const ByteSpan::Block &B : Blocks) { 591 int L = std::max(B.Pos, Start); // Left end. 592 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 593 if (L < R) { 594 // How much to chop off the beginning of the segment: 595 int Off = L > B.Pos ? L - B.Pos : 0; 596 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 597 } 598 } 599 return Section; 600 } 601 602 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 603 for (Block &B : Blocks) 604 B.Pos += Offset; 605 return *this; 606 } 607 608 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 609 SmallVector<Value *, 8> Values(Blocks.size()); 610 for (int i = 0, e = Blocks.size(); i != e; ++i) 611 Values[i] = Blocks[i].Seg.Val; 612 return Values; 613 } 614 615 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 616 const auto *C = dyn_cast<ConstantInt>(V); 617 assert(C && "Alignment must be a compile-time constant integer"); 618 return C->getAlignValue(); 619 } 620 621 auto AlignVectors::getAddrInfo(Instruction &In) const 622 -> std::optional<AddrInfo> { 623 if (auto *L = isCandidate<LoadInst>(&In)) 624 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 625 L->getAlign()); 626 if (auto *S = isCandidate<StoreInst>(&In)) 627 return AddrInfo(HVC, S, S->getPointerOperand(), 628 S->getValueOperand()->getType(), S->getAlign()); 629 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 630 Intrinsic::ID ID = II->getIntrinsicID(); 631 switch (ID) { 632 case Intrinsic::masked_load: 633 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 634 getAlignFromValue(II->getArgOperand(1))); 635 case Intrinsic::masked_store: 636 return AddrInfo(HVC, II, II->getArgOperand(1), 637 II->getArgOperand(0)->getType(), 638 getAlignFromValue(II->getArgOperand(2))); 639 } 640 } 641 return std::nullopt; 642 } 643 644 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 645 return HVC.HST.isTypeForHVX(AI.ValTy); 646 } 647 648 auto AlignVectors::getPayload(Value *Val) const -> Value * { 649 if (auto *In = dyn_cast<Instruction>(Val)) { 650 Intrinsic::ID ID = 0; 651 if (auto *II = dyn_cast<IntrinsicInst>(In)) 652 ID = II->getIntrinsicID(); 653 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 654 return In->getOperand(0); 655 } 656 return Val; 657 } 658 659 auto AlignVectors::getMask(Value *Val) const -> Value * { 660 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 661 switch (II->getIntrinsicID()) { 662 case Intrinsic::masked_load: 663 return II->getArgOperand(2); 664 case Intrinsic::masked_store: 665 return II->getArgOperand(3); 666 } 667 } 668 669 Type *ValTy = getPayload(Val)->getType(); 670 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) 671 return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy))); 672 return HVC.getFullValue(HVC.getBoolTy()); 673 } 674 675 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 676 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 677 if (II->getIntrinsicID() == Intrinsic::masked_load) 678 return II->getArgOperand(3); 679 } 680 return UndefValue::get(getPayload(Val)->getType()); 681 } 682 683 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, 684 Type *ValTy, int Adjust, 685 const InstMap &CloneMap) const 686 -> Value * { 687 if (auto *I = dyn_cast<Instruction>(Ptr)) 688 if (Instruction *New = CloneMap.lookup(I)) 689 Ptr = New; 690 return Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Ptr, 691 HVC.getConstInt(Adjust), "gep"); 692 } 693 694 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, 695 Type *ValTy, int Alignment, 696 const InstMap &CloneMap) const 697 -> Value * { 698 auto remap = [&](Value *V) -> Value * { 699 if (auto *I = dyn_cast<Instruction>(V)) { 700 for (auto [Old, New] : CloneMap) 701 I->replaceUsesOfWith(Old, New); 702 return I; 703 } 704 return V; 705 }; 706 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy(), "pti"); 707 Value *Mask = HVC.getConstInt(-Alignment); 708 Value *And = Builder.CreateAnd(remap(AsInt), Mask, "and"); 709 return Builder.CreateIntToPtr( 710 And, PointerType::getUnqual(ValTy->getContext()), "itp"); 711 } 712 713 auto AlignVectors::createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 714 Value *Predicate, int Alignment, Value *Mask, 715 Value *PassThru, 716 ArrayRef<Value *> MDSources) const -> Value * { 717 bool HvxHasPredLoad = HVC.HST.useHVXV62Ops(); 718 // Predicate is nullptr if not creating predicated load 719 if (Predicate) { 720 assert(!Predicate->getType()->isVectorTy() && 721 "Expectning scalar predicate"); 722 if (HVC.isFalse(Predicate)) 723 return UndefValue::get(ValTy); 724 if (!HVC.isTrue(Predicate) && HvxHasPredLoad) { 725 Value *Load = createPredicatedLoad(Builder, ValTy, Ptr, Predicate, 726 Alignment, MDSources); 727 return Builder.CreateSelect(Mask, Load, PassThru); 728 } 729 // Predicate == true here. 730 } 731 assert(!HVC.isUndef(Mask)); // Should this be allowed? 732 if (HVC.isZero(Mask)) 733 return PassThru; 734 if (HVC.isTrue(Mask)) 735 return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources); 736 737 Instruction *Load = Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), 738 Mask, PassThru, "mld"); 739 propagateMetadata(Load, MDSources); 740 return Load; 741 } 742 743 auto AlignVectors::createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, 744 Value *Ptr, int Alignment, 745 ArrayRef<Value *> MDSources) const 746 -> Value * { 747 Instruction *Load = 748 Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment), "ald"); 749 propagateMetadata(Load, MDSources); 750 return Load; 751 } 752 753 auto AlignVectors::createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, 754 Value *Ptr, Value *Predicate, 755 int Alignment, 756 ArrayRef<Value *> MDSources) const 757 -> Value * { 758 assert(HVC.HST.isTypeForHVX(ValTy) && 759 "Predicates 'scalar' vector loads not yet supported"); 760 assert(Predicate); 761 assert(!Predicate->getType()->isVectorTy() && "Expectning scalar predicate"); 762 assert(HVC.getSizeOf(ValTy, HVC.Alloc) % Alignment == 0); 763 if (HVC.isFalse(Predicate)) 764 return UndefValue::get(ValTy); 765 if (HVC.isTrue(Predicate)) 766 return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources); 767 768 auto V6_vL32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vL32b_pred_ai); 769 // FIXME: This may not put the offset from Ptr into the vmem offset. 770 return HVC.createHvxIntrinsic(Builder, V6_vL32b_pred_ai, ValTy, 771 {Predicate, Ptr, HVC.getConstInt(0)}, 772 std::nullopt, MDSources); 773 } 774 775 auto AlignVectors::createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 776 Value *Predicate, int Alignment, Value *Mask, 777 ArrayRef<Value *> MDSources) const -> Value * { 778 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 779 return UndefValue::get(Val->getType()); 780 assert(!Predicate || (!Predicate->getType()->isVectorTy() && 781 "Expectning scalar predicate")); 782 if (Predicate) { 783 if (HVC.isFalse(Predicate)) 784 return UndefValue::get(Val->getType()); 785 if (HVC.isTrue(Predicate)) 786 Predicate = nullptr; 787 } 788 // Here both Predicate and Mask are true or unknown. 789 790 if (HVC.isTrue(Mask)) { 791 if (Predicate) { // Predicate unknown 792 return createPredicatedStore(Builder, Val, Ptr, Predicate, Alignment, 793 MDSources); 794 } 795 // Predicate is true: 796 return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources); 797 } 798 799 // Mask is unknown 800 if (!Predicate) { 801 Instruction *Store = 802 Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 803 propagateMetadata(Store, MDSources); 804 return Store; 805 } 806 807 // Both Predicate and Mask are unknown. 808 // Emulate masked store with predicated-load + mux + predicated-store. 809 Value *PredLoad = createPredicatedLoad(Builder, Val->getType(), Ptr, 810 Predicate, Alignment, MDSources); 811 Value *Mux = Builder.CreateSelect(Mask, Val, PredLoad); 812 return createPredicatedStore(Builder, Mux, Ptr, Predicate, Alignment, 813 MDSources); 814 } 815 816 auto AlignVectors::createSimpleStore(IRBuilderBase &Builder, Value *Val, 817 Value *Ptr, int Alignment, 818 ArrayRef<Value *> MDSources) const 819 -> Value * { 820 Instruction *Store = Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 821 propagateMetadata(Store, MDSources); 822 return Store; 823 } 824 825 auto AlignVectors::createPredicatedStore(IRBuilderBase &Builder, Value *Val, 826 Value *Ptr, Value *Predicate, 827 int Alignment, 828 ArrayRef<Value *> MDSources) const 829 -> Value * { 830 assert(HVC.HST.isTypeForHVX(Val->getType()) && 831 "Predicates 'scalar' vector stores not yet supported"); 832 assert(Predicate); 833 if (HVC.isFalse(Predicate)) 834 return UndefValue::get(Val->getType()); 835 if (HVC.isTrue(Predicate)) 836 return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources); 837 838 assert(HVC.getSizeOf(Val, HVC.Alloc) % Alignment == 0); 839 auto V6_vS32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vS32b_pred_ai); 840 // FIXME: This may not put the offset from Ptr into the vmem offset. 841 return HVC.createHvxIntrinsic(Builder, V6_vS32b_pred_ai, nullptr, 842 {Predicate, Ptr, HVC.getConstInt(0), Val}, 843 std::nullopt, MDSources); 844 } 845 846 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const 847 -> DepList { 848 BasicBlock *Parent = Base->getParent(); 849 assert(In->getParent() == Parent && 850 "Base and In should be in the same block"); 851 assert(Base->comesBefore(In) && "Base should come before In"); 852 853 DepList Deps; 854 std::deque<Instruction *> WorkQ = {In}; 855 while (!WorkQ.empty()) { 856 Instruction *D = WorkQ.front(); 857 WorkQ.pop_front(); 858 if (D != In) 859 Deps.insert(D); 860 for (Value *Op : D->operands()) { 861 if (auto *I = dyn_cast<Instruction>(Op)) { 862 if (I->getParent() == Parent && Base->comesBefore(I)) 863 WorkQ.push_back(I); 864 } 865 } 866 } 867 return Deps; 868 } 869 870 auto AlignVectors::createAddressGroups() -> bool { 871 // An address group created here may contain instructions spanning 872 // multiple basic blocks. 873 AddrList WorkStack; 874 875 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 876 for (AddrInfo &W : WorkStack) { 877 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 878 return std::make_pair(W.Inst, *D); 879 } 880 return std::make_pair(nullptr, 0); 881 }; 882 883 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 884 BasicBlock &Block = *DomN->getBlock(); 885 for (Instruction &I : Block) { 886 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 887 if (!AI) 888 continue; 889 auto F = findBaseAndOffset(*AI); 890 Instruction *GroupInst; 891 if (Instruction *BI = F.first) { 892 AI->Offset = F.second; 893 GroupInst = BI; 894 } else { 895 WorkStack.push_back(*AI); 896 GroupInst = AI->Inst; 897 } 898 AddrGroups[GroupInst].push_back(*AI); 899 } 900 901 for (DomTreeNode *C : DomN->children()) 902 Visit(C, Visit); 903 904 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 905 WorkStack.pop_back(); 906 }; 907 908 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 909 assert(WorkStack.empty()); 910 911 // AddrGroups are formed. 912 913 // Remove groups of size 1. 914 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 915 // Remove groups that don't use HVX types. 916 erase_if(AddrGroups, [&](auto &G) { 917 return llvm::none_of( 918 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 919 }); 920 921 return !AddrGroups.empty(); 922 } 923 924 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 925 // Form load groups. 926 // To avoid complications with moving code across basic blocks, only form 927 // groups that are contained within a single basic block. 928 unsigned SizeLimit = VAGroupSizeLimit; 929 if (SizeLimit == 0) 930 return {}; 931 932 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 933 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 934 if (Move.Main.size() >= SizeLimit) 935 return false; 936 // Don't mix HVX and non-HVX instructions. 937 if (Move.IsHvx != isHvx(Info)) 938 return false; 939 // Leading instruction in the load group. 940 Instruction *Base = Move.Main.front(); 941 if (Base->getParent() != Info.Inst->getParent()) 942 return false; 943 // Check if it's safe to move the load. 944 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator())) 945 return false; 946 // And if it's safe to clone the dependencies. 947 auto isSafeToCopyAtBase = [&](const Instruction *I) { 948 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()) && 949 HVC.isSafeToClone(*I); 950 }; 951 DepList Deps = getUpwardDeps(Info.Inst, Base); 952 if (!llvm::all_of(Deps, isSafeToCopyAtBase)) 953 return false; 954 955 Move.Main.push_back(Info.Inst); 956 llvm::append_range(Move.Deps, Deps); 957 return true; 958 }; 959 960 MoveList LoadGroups; 961 962 for (const AddrInfo &Info : Group) { 963 if (!Info.Inst->mayReadFromMemory()) 964 continue; 965 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 966 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 967 } 968 969 // Erase singleton groups. 970 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 971 972 // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads). 973 if (!HVC.HST.useHVXV62Ops()) 974 erase_if(LoadGroups, [](const MoveGroup &G) { return G.IsHvx; }); 975 976 return LoadGroups; 977 } 978 979 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 980 // Form store groups. 981 // To avoid complications with moving code across basic blocks, only form 982 // groups that are contained within a single basic block. 983 unsigned SizeLimit = VAGroupSizeLimit; 984 if (SizeLimit == 0) 985 return {}; 986 987 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 988 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 989 if (Move.Main.size() >= SizeLimit) 990 return false; 991 // For stores with return values we'd have to collect downward depenencies. 992 // There are no such stores that we handle at the moment, so omit that. 993 assert(Info.Inst->getType()->isVoidTy() && 994 "Not handling stores with return values"); 995 // Don't mix HVX and non-HVX instructions. 996 if (Move.IsHvx != isHvx(Info)) 997 return false; 998 // For stores we need to be careful whether it's safe to move them. 999 // Stores that are otherwise safe to move together may not appear safe 1000 // to move over one another (i.e. isSafeToMoveBefore may return false). 1001 Instruction *Base = Move.Main.front(); 1002 if (Base->getParent() != Info.Inst->getParent()) 1003 return false; 1004 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 1005 return false; 1006 Move.Main.push_back(Info.Inst); 1007 return true; 1008 }; 1009 1010 MoveList StoreGroups; 1011 1012 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 1013 const AddrInfo &Info = *I; 1014 if (!Info.Inst->mayWriteToMemory()) 1015 continue; 1016 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 1017 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 1018 } 1019 1020 // Erase singleton groups. 1021 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 1022 1023 // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads). 1024 if (!HVC.HST.useHVXV62Ops()) 1025 erase_if(StoreGroups, [](const MoveGroup &G) { return G.IsHvx; }); 1026 1027 // Erase groups where every store is a full HVX vector. The reason is that 1028 // aligning predicated stores generates complex code that may be less 1029 // efficient than a sequence of unaligned vector stores. 1030 if (!VADoFullStores) { 1031 erase_if(StoreGroups, [this](const MoveGroup &G) { 1032 return G.IsHvx && llvm::all_of(G.Main, [this](Instruction *S) { 1033 auto MaybeInfo = this->getAddrInfo(*S); 1034 assert(MaybeInfo.has_value()); 1035 return HVC.HST.isHVXVectorType( 1036 EVT::getEVT(MaybeInfo->ValTy, false)); 1037 }); 1038 }); 1039 } 1040 1041 return StoreGroups; 1042 } 1043 1044 auto AlignVectors::moveTogether(MoveGroup &Move) const -> bool { 1045 // Move all instructions to be adjacent. 1046 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 1047 Instruction *Where = Move.Main.front(); 1048 1049 if (Move.IsLoad) { 1050 // Move all the loads (and dependencies) to where the first load is. 1051 // Clone all deps to before Where, keeping order. 1052 Move.Clones = cloneBefore(Where, Move.Deps); 1053 // Move all main instructions to after Where, keeping order. 1054 ArrayRef<Instruction *> Main(Move.Main); 1055 for (Instruction *M : Main) { 1056 if (M != Where) 1057 M->moveAfter(Where); 1058 for (auto [Old, New] : Move.Clones) 1059 M->replaceUsesOfWith(Old, New); 1060 Where = M; 1061 } 1062 // Replace Deps with the clones. 1063 for (int i = 0, e = Move.Deps.size(); i != e; ++i) 1064 Move.Deps[i] = Move.Clones[Move.Deps[i]]; 1065 } else { 1066 // Move all the stores to where the last store is. 1067 // NOTE: Deps are empty for "store" groups. If they need to be 1068 // non-empty, decide on the order. 1069 assert(Move.Deps.empty()); 1070 // Move all main instructions to before Where, inverting order. 1071 ArrayRef<Instruction *> Main(Move.Main); 1072 for (Instruction *M : Main.drop_front(1)) { 1073 M->moveBefore(Where); 1074 Where = M; 1075 } 1076 } 1077 1078 return Move.Main.size() + Move.Deps.size() > 1; 1079 } 1080 1081 template <typename T> 1082 auto AlignVectors::cloneBefore(Instruction *To, T &&Insts) const -> InstMap { 1083 InstMap Map; 1084 1085 for (Instruction *I : Insts) { 1086 assert(HVC.isSafeToClone(*I)); 1087 Instruction *C = I->clone(); 1088 C->setName(Twine("c.") + I->getName() + "."); 1089 C->insertBefore(To); 1090 1091 for (auto [Old, New] : Map) 1092 C->replaceUsesOfWith(Old, New); 1093 Map.insert(std::make_pair(I, C)); 1094 } 1095 return Map; 1096 } 1097 1098 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder, 1099 const ByteSpan &VSpan, int ScLen, 1100 Value *AlignVal, Value *AlignAddr) const 1101 -> void { 1102 LLVM_DEBUG(dbgs() << __func__ << "\n"); 1103 1104 Type *SecTy = HVC.getByteTy(ScLen); 1105 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 1106 bool DoAlign = !HVC.isZero(AlignVal); 1107 BasicBlock::iterator BasePos = Builder.GetInsertPoint(); 1108 BasicBlock *BaseBlock = Builder.GetInsertBlock(); 1109 1110 ByteSpan ASpan; 1111 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 1112 auto *Undef = UndefValue::get(SecTy); 1113 1114 // Created load does not have to be "Instruction" (e.g. "undef"). 1115 SmallVector<Value *> Loads(NumSectors + DoAlign, nullptr); 1116 1117 // We could create all of the aligned loads, and generate the valigns 1118 // at the location of the first load, but for large load groups, this 1119 // could create highly suboptimal code (there have been groups of 140+ 1120 // loads in real code). 1121 // Instead, place the loads/valigns as close to the users as possible. 1122 // In any case we need to have a mapping from the blocks of VSpan (the 1123 // span covered by the pre-existing loads) to ASpan (the span covered 1124 // by the aligned loads). There is a small problem, though: ASpan needs 1125 // to have pointers to the loads/valigns, but we don't have these loads 1126 // because we don't know where to put them yet. We find out by creating 1127 // a section of ASpan that corresponds to values (blocks) from VSpan, 1128 // and checking where the new load should be placed. We need to attach 1129 // this location information to each block in ASpan somehow, so we put 1130 // distincts values for Seg.Val in each ASpan.Blocks[i], and use a map 1131 // to store the location for each Seg.Val. 1132 // The distinct values happen to be Blocks[i].Seg.Val = &Blocks[i], 1133 // which helps with printing ByteSpans without crashing when printing 1134 // Segments with these temporary identifiers in place of Val. 1135 1136 // Populate the blocks first, to avoid reallocations of the vector 1137 // interfering with generating the placeholder addresses. 1138 for (int Index = 0; Index != NumSectors; ++Index) 1139 ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen); 1140 for (int Index = 0; Index != NumSectors; ++Index) { 1141 ASpan.Blocks[Index].Seg.Val = 1142 reinterpret_cast<Value *>(&ASpan.Blocks[Index]); 1143 } 1144 1145 // Multiple values from VSpan can map to the same value in ASpan. Since we 1146 // try to create loads lazily, we need to find the earliest use for each 1147 // value from ASpan. 1148 DenseMap<void *, Instruction *> EarliestUser; 1149 auto isEarlier = [](Instruction *A, Instruction *B) { 1150 if (B == nullptr) 1151 return true; 1152 if (A == nullptr) 1153 return false; 1154 assert(A->getParent() == B->getParent()); 1155 return A->comesBefore(B); 1156 }; 1157 auto earliestUser = [&](const auto &Uses) { 1158 Instruction *User = nullptr; 1159 for (const Use &U : Uses) { 1160 auto *I = dyn_cast<Instruction>(U.getUser()); 1161 assert(I != nullptr && "Load used in a non-instruction?"); 1162 // Make sure we only consider users in this block, but we need 1163 // to remember if there were users outside the block too. This is 1164 // because if no users are found, aligned loads will not be created. 1165 if (I->getParent() == BaseBlock) { 1166 if (!isa<PHINode>(I)) 1167 User = std::min(User, I, isEarlier); 1168 } else { 1169 User = std::min(User, BaseBlock->getTerminator(), isEarlier); 1170 } 1171 } 1172 return User; 1173 }; 1174 1175 for (const ByteSpan::Block &B : VSpan) { 1176 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size); 1177 for (const ByteSpan::Block &S : ASection) { 1178 EarliestUser[S.Seg.Val] = std::min( 1179 EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier); 1180 } 1181 } 1182 1183 LLVM_DEBUG({ 1184 dbgs() << "ASpan:\n" << ASpan << '\n'; 1185 dbgs() << "Earliest users of ASpan:\n"; 1186 for (auto &[Val, User] : EarliestUser) { 1187 dbgs() << Val << "\n ->" << *User << '\n'; 1188 } 1189 }); 1190 1191 auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan, 1192 int Index, bool MakePred) { 1193 Value *Ptr = 1194 createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 1195 Value *Predicate = 1196 MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr; 1197 1198 // If vector shifting is potentially needed, accumulate metadata 1199 // from source sections of twice the load width. 1200 int Start = (Index - DoAlign) * ScLen; 1201 int Width = (1 + DoAlign) * ScLen; 1202 return this->createLoad(Builder, SecTy, Ptr, Predicate, ScLen, True, Undef, 1203 VSpan.section(Start, Width).values()); 1204 }; 1205 1206 auto moveBefore = [this](Instruction *In, Instruction *To) { 1207 // Move In and its upward dependencies to before To. 1208 assert(In->getParent() == To->getParent()); 1209 DepList Deps = getUpwardDeps(In, To); 1210 In->moveBefore(To); 1211 // DepList is sorted with respect to positions in the basic block. 1212 InstMap Map = cloneBefore(In, Deps); 1213 for (auto [Old, New] : Map) 1214 In->replaceUsesOfWith(Old, New); 1215 }; 1216 1217 // Generate necessary loads at appropriate locations. 1218 LLVM_DEBUG(dbgs() << "Creating loads for ASpan sectors\n"); 1219 for (int Index = 0; Index != NumSectors + 1; ++Index) { 1220 // In ASpan, each block will be either a single aligned load, or a 1221 // valign of a pair of loads. In the latter case, an aligned load j 1222 // will belong to the current valign, and the one in the previous 1223 // block (for j > 0). 1224 // Place the load at a location which will dominate the valign, assuming 1225 // the valign will be placed right before the earliest user. 1226 Instruction *PrevAt = 1227 DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr; 1228 Instruction *ThisAt = 1229 Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr; 1230 if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) { 1231 Builder.SetInsertPoint(Where); 1232 Loads[Index] = 1233 createLoad(Builder, VSpan, Index, DoAlign && Index == NumSectors); 1234 // We know it's safe to put the load at BasePos, but we'd prefer to put 1235 // it at "Where". To see if the load is safe to be placed at Where, put 1236 // it there first and then check if it's safe to move it to BasePos. 1237 // If not, then the load needs to be placed at BasePos. 1238 // We can't do this check proactively because we need the load to exist 1239 // in order to check legality. 1240 if (auto *Load = dyn_cast<Instruction>(Loads[Index])) { 1241 if (!HVC.isSafeToMoveBeforeInBB(*Load, BasePos)) 1242 moveBefore(Load, &*BasePos); 1243 } 1244 LLVM_DEBUG(dbgs() << "Loads[" << Index << "]:" << *Loads[Index] << '\n'); 1245 } 1246 } 1247 1248 // Generate valigns if needed, and fill in proper values in ASpan 1249 LLVM_DEBUG(dbgs() << "Creating values for ASpan sectors\n"); 1250 for (int Index = 0; Index != NumSectors; ++Index) { 1251 ASpan[Index].Seg.Val = nullptr; 1252 if (auto *Where = EarliestUser[&ASpan[Index]]) { 1253 Builder.SetInsertPoint(Where); 1254 Value *Val = Loads[Index]; 1255 assert(Val != nullptr); 1256 if (DoAlign) { 1257 Value *NextLoad = Loads[Index + 1]; 1258 assert(NextLoad != nullptr); 1259 Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal); 1260 } 1261 ASpan[Index].Seg.Val = Val; 1262 LLVM_DEBUG(dbgs() << "ASpan[" << Index << "]:" << *Val << '\n'); 1263 } 1264 } 1265 1266 for (const ByteSpan::Block &B : VSpan) { 1267 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 1268 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 1269 Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val)); 1270 1271 // We're generating a reduction, where each instruction depends on 1272 // the previous one, so we need to order them according to the position 1273 // of their inputs in the code. 1274 std::vector<ByteSpan::Block *> ABlocks; 1275 for (ByteSpan::Block &S : ASection) { 1276 if (S.Seg.Val != nullptr) 1277 ABlocks.push_back(&S); 1278 } 1279 llvm::sort(ABlocks, 1280 [&](const ByteSpan::Block *A, const ByteSpan::Block *B) { 1281 return isEarlier(cast<Instruction>(A->Seg.Val), 1282 cast<Instruction>(B->Seg.Val)); 1283 }); 1284 for (ByteSpan::Block *S : ABlocks) { 1285 // The processing of the data loaded by the aligned loads 1286 // needs to be inserted after the data is available. 1287 Instruction *SegI = cast<Instruction>(S->Seg.Val); 1288 Builder.SetInsertPoint(&*std::next(SegI->getIterator())); 1289 Value *Pay = HVC.vbytes(Builder, getPayload(S->Seg.Val)); 1290 Accum = 1291 HVC.insertb(Builder, Accum, Pay, S->Seg.Start, S->Seg.Size, S->Pos); 1292 } 1293 // Instead of casting everything to bytes for the vselect, cast to the 1294 // original value type. This will avoid complications with casting masks. 1295 // For example, in cases when the original mask applied to i32, it could 1296 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 1297 // but if the mask is not exactly of HVX length, extra handling would be 1298 // needed to make it work. 1299 Type *ValTy = getPayload(B.Seg.Val)->getType(); 1300 Value *Cast = Builder.CreateBitCast(Accum, ValTy, "cst"); 1301 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 1302 getPassThrough(B.Seg.Val), "sel"); 1303 B.Seg.Val->replaceAllUsesWith(Sel); 1304 } 1305 } 1306 1307 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder, 1308 const ByteSpan &VSpan, int ScLen, 1309 Value *AlignVal, Value *AlignAddr) const 1310 -> void { 1311 LLVM_DEBUG(dbgs() << __func__ << "\n"); 1312 1313 Type *SecTy = HVC.getByteTy(ScLen); 1314 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 1315 bool DoAlign = !HVC.isZero(AlignVal); 1316 1317 // Stores. 1318 ByteSpan ASpanV, ASpanM; 1319 1320 // Return a vector value corresponding to the input value Val: 1321 // either <1 x Val> for scalar Val, or Val itself for vector Val. 1322 auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * { 1323 Type *Ty = Val->getType(); 1324 if (Ty->isVectorTy()) 1325 return Val; 1326 auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false); 1327 return Builder.CreateBitCast(Val, VecTy, "cst"); 1328 }; 1329 1330 // Create an extra "undef" sector at the beginning and at the end. 1331 // They will be used as the left/right filler in the vlalign step. 1332 for (int Index = (DoAlign ? -1 : 0); Index != NumSectors + DoAlign; ++Index) { 1333 // For stores, the size of each section is an aligned vector length. 1334 // Adjust the store offsets relative to the section start offset. 1335 ByteSpan VSection = 1336 VSpan.section(Index * ScLen, ScLen).shift(-Index * ScLen); 1337 Value *Undef = UndefValue::get(SecTy); 1338 Value *Zero = HVC.getNullValue(SecTy); 1339 Value *AccumV = Undef; 1340 Value *AccumM = Zero; 1341 for (ByteSpan::Block &S : VSection) { 1342 Value *Pay = getPayload(S.Seg.Val); 1343 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 1344 Pay->getType(), HVC.getByteTy()); 1345 Value *PartM = HVC.insertb(Builder, Zero, HVC.vbytes(Builder, Mask), 1346 S.Seg.Start, S.Seg.Size, S.Pos); 1347 AccumM = Builder.CreateOr(AccumM, PartM); 1348 1349 Value *PartV = HVC.insertb(Builder, Undef, HVC.vbytes(Builder, Pay), 1350 S.Seg.Start, S.Seg.Size, S.Pos); 1351 1352 AccumV = Builder.CreateSelect( 1353 Builder.CreateICmp(CmpInst::ICMP_NE, PartM, Zero), PartV, AccumV); 1354 } 1355 ASpanV.Blocks.emplace_back(AccumV, ScLen, Index * ScLen); 1356 ASpanM.Blocks.emplace_back(AccumM, ScLen, Index * ScLen); 1357 } 1358 1359 LLVM_DEBUG({ 1360 dbgs() << "ASpanV before vlalign:\n" << ASpanV << '\n'; 1361 dbgs() << "ASpanM before vlalign:\n" << ASpanM << '\n'; 1362 }); 1363 1364 // vlalign 1365 if (DoAlign) { 1366 for (int Index = 1; Index != NumSectors + 2; ++Index) { 1367 Value *PrevV = ASpanV[Index - 1].Seg.Val, *ThisV = ASpanV[Index].Seg.Val; 1368 Value *PrevM = ASpanM[Index - 1].Seg.Val, *ThisM = ASpanM[Index].Seg.Val; 1369 assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType())); 1370 ASpanV[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal); 1371 ASpanM[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal); 1372 } 1373 } 1374 1375 LLVM_DEBUG({ 1376 dbgs() << "ASpanV after vlalign:\n" << ASpanV << '\n'; 1377 dbgs() << "ASpanM after vlalign:\n" << ASpanM << '\n'; 1378 }); 1379 1380 auto createStore = [&](IRBuilderBase &Builder, const ByteSpan &ASpanV, 1381 const ByteSpan &ASpanM, int Index, bool MakePred) { 1382 Value *Val = ASpanV[Index].Seg.Val; 1383 Value *Mask = ASpanM[Index].Seg.Val; // bytes 1384 if (HVC.isUndef(Val) || HVC.isZero(Mask)) 1385 return; 1386 Value *Ptr = 1387 createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 1388 Value *Predicate = 1389 MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr; 1390 1391 // If vector shifting is potentially needed, accumulate metadata 1392 // from source sections of twice the store width. 1393 int Start = (Index - DoAlign) * ScLen; 1394 int Width = (1 + DoAlign) * ScLen; 1395 this->createStore(Builder, Val, Ptr, Predicate, ScLen, 1396 HVC.vlsb(Builder, Mask), 1397 VSpan.section(Start, Width).values()); 1398 }; 1399 1400 for (int Index = 0; Index != NumSectors + DoAlign; ++Index) { 1401 createStore(Builder, ASpanV, ASpanM, Index, DoAlign && Index == NumSectors); 1402 } 1403 } 1404 1405 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 1406 LLVM_DEBUG(dbgs() << "Realigning group:\n" << Move << '\n'); 1407 1408 // TODO: Needs support for masked loads/stores of "scalar" vectors. 1409 if (!Move.IsHvx) 1410 return false; 1411 1412 // Return the element with the maximum alignment from Range, 1413 // where GetValue obtains the value to compare from an element. 1414 auto getMaxOf = [](auto Range, auto GetValue) { 1415 return *std::max_element( 1416 Range.begin(), Range.end(), 1417 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 1418 }; 1419 1420 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 1421 1422 // Conceptually, there is a vector of N bytes covering the addresses 1423 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 1424 // represents a contiguous memory region that spans all accessed memory 1425 // locations. 1426 // The correspondence between loaded or stored values will be expressed 1427 // in terms of this vector. For example, the 0th element of the vector 1428 // from the Base address info will start at byte Start from the beginning 1429 // of this conceptual vector. 1430 // 1431 // This vector will be loaded/stored starting at the nearest down-aligned 1432 // address and the amount od the down-alignment will be AlignVal: 1433 // valign(load_vector(align_down(Base+Start)), AlignVal) 1434 1435 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 1436 AddrList MoveInfos; 1437 llvm::copy_if( 1438 BaseInfos, std::back_inserter(MoveInfos), 1439 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 1440 1441 // Maximum alignment present in the whole address group. 1442 const AddrInfo &WithMaxAlign = 1443 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 1444 Align MaxGiven = WithMaxAlign.HaveAlign; 1445 1446 // Minimum alignment present in the move address group. 1447 const AddrInfo &WithMinOffset = 1448 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 1449 1450 const AddrInfo &WithMaxNeeded = 1451 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 1452 Align MinNeeded = WithMaxNeeded.NeedAlign; 1453 1454 // Set the builder's insertion point right before the load group, or 1455 // immediately after the store group. (Instructions in a store group are 1456 // listed in reverse order.) 1457 Instruction *InsertAt = Move.Main.front(); 1458 if (!Move.IsLoad) { 1459 // There should be a terminator (which store isn't, but check anyways). 1460 assert(InsertAt->getIterator() != InsertAt->getParent()->end()); 1461 InsertAt = &*std::next(InsertAt->getIterator()); 1462 } 1463 1464 IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(), 1465 InstSimplifyFolder(HVC.DL)); 1466 Value *AlignAddr = nullptr; // Actual aligned address. 1467 Value *AlignVal = nullptr; // Right-shift amount (for valign). 1468 1469 if (MinNeeded <= MaxGiven) { 1470 int Start = WithMinOffset.Offset; 1471 int OffAtMax = WithMaxAlign.Offset; 1472 // Shift the offset of the maximally aligned instruction (OffAtMax) 1473 // back by just enough multiples of the required alignment to cover the 1474 // distance from Start to OffAtMax. 1475 // Calculate the address adjustment amount based on the address with the 1476 // maximum alignment. This is to allow a simple gep instruction instead 1477 // of potential bitcasts to i8*. 1478 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 1479 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 1480 WithMaxAlign.ValTy, Adjust, Move.Clones); 1481 int Diff = Start - (OffAtMax + Adjust); 1482 AlignVal = HVC.getConstInt(Diff); 1483 assert(Diff >= 0); 1484 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 1485 } else { 1486 // WithMinOffset is the lowest address in the group, 1487 // WithMinOffset.Addr = Base+Start. 1488 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 1489 // mask off unnecessary bits, so it's ok to just the original pointer as 1490 // the alignment amount. 1491 // Do an explicit down-alignment of the address to avoid creating an 1492 // aligned instruction with an address that is not really aligned. 1493 AlignAddr = 1494 createAlignedPointer(Builder, WithMinOffset.Addr, WithMinOffset.ValTy, 1495 MinNeeded.value(), Move.Clones); 1496 AlignVal = 1497 Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy(), "pti"); 1498 if (auto *I = dyn_cast<Instruction>(AlignVal)) { 1499 for (auto [Old, New] : Move.Clones) 1500 I->replaceUsesOfWith(Old, New); 1501 } 1502 } 1503 1504 ByteSpan VSpan; 1505 for (const AddrInfo &AI : MoveInfos) { 1506 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 1507 AI.Offset - WithMinOffset.Offset); 1508 } 1509 1510 // The aligned loads/stores will use blocks that are either scalars, 1511 // or HVX vectors. Let "sector" be the unified term for such a block. 1512 // blend(scalar, vector) -> sector... 1513 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 1514 : std::max<int>(MinNeeded.value(), 4); 1515 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 1516 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 1517 1518 LLVM_DEBUG({ 1519 dbgs() << "ScLen: " << ScLen << "\n"; 1520 dbgs() << "AlignVal:" << *AlignVal << "\n"; 1521 dbgs() << "AlignAddr:" << *AlignAddr << "\n"; 1522 dbgs() << "VSpan:\n" << VSpan << '\n'; 1523 }); 1524 1525 if (Move.IsLoad) 1526 realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1527 else 1528 realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1529 1530 for (auto *Inst : Move.Main) 1531 Inst->eraseFromParent(); 1532 1533 return true; 1534 } 1535 1536 auto AlignVectors::makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal, 1537 int Alignment) const -> Value * { 1538 auto *AlignTy = AlignVal->getType(); 1539 Value *And = Builder.CreateAnd( 1540 AlignVal, ConstantInt::get(AlignTy, Alignment - 1), "and"); 1541 Value *Zero = ConstantInt::get(AlignTy, 0); 1542 return Builder.CreateICmpNE(And, Zero, "isz"); 1543 } 1544 1545 auto AlignVectors::isSectorTy(Type *Ty) const -> bool { 1546 if (!HVC.isByteVecTy(Ty)) 1547 return false; 1548 int Size = HVC.getSizeOf(Ty); 1549 if (HVC.HST.isTypeForHVX(Ty)) 1550 return Size == static_cast<int>(HVC.HST.getVectorLength()); 1551 return Size == 4 || Size == 8; 1552 } 1553 1554 auto AlignVectors::run() -> bool { 1555 LLVM_DEBUG(dbgs() << "Running HVC::AlignVectors on " << HVC.F.getName() 1556 << '\n'); 1557 if (!createAddressGroups()) 1558 return false; 1559 1560 LLVM_DEBUG({ 1561 dbgs() << "Address groups(" << AddrGroups.size() << "):\n"; 1562 for (auto &[In, AL] : AddrGroups) { 1563 for (const AddrInfo &AI : AL) 1564 dbgs() << "---\n" << AI << '\n'; 1565 } 1566 }); 1567 1568 bool Changed = false; 1569 MoveList LoadGroups, StoreGroups; 1570 1571 for (auto &G : AddrGroups) { 1572 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 1573 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 1574 } 1575 1576 LLVM_DEBUG({ 1577 dbgs() << "\nLoad groups(" << LoadGroups.size() << "):\n"; 1578 for (const MoveGroup &G : LoadGroups) 1579 dbgs() << G << "\n"; 1580 dbgs() << "Store groups(" << StoreGroups.size() << "):\n"; 1581 for (const MoveGroup &G : StoreGroups) 1582 dbgs() << G << "\n"; 1583 }); 1584 1585 // Cumulative limit on the number of groups. 1586 unsigned CountLimit = VAGroupCountLimit; 1587 if (CountLimit == 0) 1588 return false; 1589 1590 if (LoadGroups.size() > CountLimit) { 1591 LoadGroups.resize(CountLimit); 1592 StoreGroups.clear(); 1593 } else { 1594 unsigned StoreLimit = CountLimit - LoadGroups.size(); 1595 if (StoreGroups.size() > StoreLimit) 1596 StoreGroups.resize(StoreLimit); 1597 } 1598 1599 for (auto &M : LoadGroups) 1600 Changed |= moveTogether(M); 1601 for (auto &M : StoreGroups) 1602 Changed |= moveTogether(M); 1603 1604 LLVM_DEBUG(dbgs() << "After moveTogether:\n" << HVC.F); 1605 1606 for (auto &M : LoadGroups) 1607 Changed |= realignGroup(M); 1608 for (auto &M : StoreGroups) 1609 Changed |= realignGroup(M); 1610 1611 return Changed; 1612 } 1613 1614 // --- End AlignVectors 1615 1616 // --- Begin HvxIdioms 1617 1618 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const 1619 -> std::pair<unsigned, Signedness> { 1620 unsigned Bits = HVC.getNumSignificantBits(V, In); 1621 // The significant bits are calculated including the sign bit. This may 1622 // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may 1623 // result in 33 significant bits. To avoid extra words, skip the extra 1624 // sign bit, but keep information that the value is to be treated as 1625 // unsigned. 1626 KnownBits Known = HVC.getKnownBits(V, In); 1627 Signedness Sign = Signed; 1628 unsigned NumToTest = 0; // Number of bits used in test for unsignedness. 1629 if (isPowerOf2_32(Bits)) 1630 NumToTest = Bits; 1631 else if (Bits > 1 && isPowerOf2_32(Bits - 1)) 1632 NumToTest = Bits - 1; 1633 1634 if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) { 1635 Sign = Unsigned; 1636 Bits = NumToTest; 1637 } 1638 1639 // If the top bit of the nearest power-of-2 is zero, this value is 1640 // positive. It could be treated as either signed or unsigned. 1641 if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) { 1642 if (Known.Zero.ashr(Pow2 - 1).isAllOnes()) 1643 Sign = Positive; 1644 } 1645 return {Bits, Sign}; 1646 } 1647 1648 auto HvxIdioms::canonSgn(SValue X, SValue Y) const 1649 -> std::pair<SValue, SValue> { 1650 // Canonicalize the signedness of X and Y, so that the result is one of: 1651 // S, S 1652 // U/P, S 1653 // U/P, U/P 1654 if (X.Sgn == Signed && Y.Sgn != Signed) 1655 std::swap(X, Y); 1656 return {X, Y}; 1657 } 1658 1659 // Match 1660 // (X * Y) [>> N], or 1661 // ((X * Y) + (1 << M)) >> N 1662 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> { 1663 using namespace PatternMatch; 1664 auto *Ty = In.getType(); 1665 1666 if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy()) 1667 return std::nullopt; 1668 1669 unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth(); 1670 1671 FxpOp Op; 1672 Value *Exp = &In; 1673 1674 // Fixed-point multiplication is always shifted right (except when the 1675 // fraction is 0 bits). 1676 auto m_Shr = [](auto &&V, auto &&S) { 1677 return m_CombineOr(m_LShr(V, S), m_AShr(V, S)); 1678 }; 1679 1680 const APInt *Qn = nullptr; 1681 if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) { 1682 Op.Frac = Qn->getZExtValue(); 1683 Exp = T; 1684 } else { 1685 Op.Frac = 0; 1686 } 1687 1688 if (Op.Frac > Width) 1689 return std::nullopt; 1690 1691 // Check if there is rounding added. 1692 const APInt *C = nullptr; 1693 if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) { 1694 uint64_t CV = C->getZExtValue(); 1695 if (CV != 0 && !isPowerOf2_64(CV)) 1696 return std::nullopt; 1697 if (CV != 0) 1698 Op.RoundAt = Log2_64(CV); 1699 Exp = T; 1700 } 1701 1702 // Check if the rest is a multiplication. 1703 if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) { 1704 Op.Opcode = Instruction::Mul; 1705 // FIXME: The information below is recomputed. 1706 Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second; 1707 Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second; 1708 Op.ResTy = cast<VectorType>(Ty); 1709 return Op; 1710 } 1711 1712 return std::nullopt; 1713 } 1714 1715 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const 1716 -> Value * { 1717 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1718 1719 auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType()); 1720 if (VecTy == nullptr) 1721 return nullptr; 1722 auto *ElemTy = cast<IntegerType>(VecTy->getElementType()); 1723 unsigned ElemWidth = ElemTy->getBitWidth(); 1724 1725 // TODO: This can be relaxed after legalization is done pre-isel. 1726 if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0) 1727 return nullptr; 1728 1729 // There are no special intrinsics that should be used for multiplying 1730 // signed 8-bit values, so just skip them. Normal codegen should handle 1731 // this just fine. 1732 if (ElemWidth <= 8) 1733 return nullptr; 1734 // Similarly, if this is just a multiplication that can be handled without 1735 // intervention, then leave it alone. 1736 if (ElemWidth <= 32 && Op.Frac == 0) 1737 return nullptr; 1738 1739 auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In); 1740 auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In); 1741 1742 // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes). 1743 1744 Value *X = Op.X.Val, *Y = Op.Y.Val; 1745 IRBuilder Builder(In.getParent(), In.getIterator(), 1746 InstSimplifyFolder(HVC.DL)); 1747 1748 auto roundUpWidth = [](unsigned Width) -> unsigned { 1749 if (Width <= 32 && !isPowerOf2_32(Width)) { 1750 // If the element width is not a power of 2, round it up 1751 // to the next one. Do this for widths not exceeding 32. 1752 return PowerOf2Ceil(Width); 1753 } 1754 if (Width > 32 && Width % 32 != 0) { 1755 // For wider elements, round it up to the multiple of 32. 1756 return alignTo(Width, 32u); 1757 } 1758 return Width; 1759 }; 1760 1761 BitsX = roundUpWidth(BitsX); 1762 BitsY = roundUpWidth(BitsY); 1763 1764 // For elementwise multiplication vectors must have the same lengths, so 1765 // resize the elements of both inputs to the same width, the max of the 1766 // calculated significant bits. 1767 unsigned Width = std::max(BitsX, BitsY); 1768 1769 auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy); 1770 if (Width < ElemWidth) { 1771 X = Builder.CreateTrunc(X, ResizeTy, "trn"); 1772 Y = Builder.CreateTrunc(Y, ResizeTy, "trn"); 1773 } else if (Width > ElemWidth) { 1774 X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy, "sxt") 1775 : Builder.CreateZExt(X, ResizeTy, "zxt"); 1776 Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy, "sxt") 1777 : Builder.CreateZExt(Y, ResizeTy, "zxt"); 1778 }; 1779 1780 assert(X->getType() == Y->getType() && X->getType() == ResizeTy); 1781 1782 unsigned VecLen = HVC.length(ResizeTy); 1783 unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u); 1784 1785 SmallVector<Value *> Results; 1786 FxpOp ChopOp = Op; 1787 ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false); 1788 1789 for (unsigned V = 0; V != VecLen / ChopLen; ++V) { 1790 ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen); 1791 ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen); 1792 Results.push_back(processFxpMulChopped(Builder, In, ChopOp)); 1793 if (Results.back() == nullptr) 1794 break; 1795 } 1796 1797 if (Results.empty() || Results.back() == nullptr) 1798 return nullptr; 1799 1800 Value *Cat = HVC.concat(Builder, Results); 1801 Value *Ext = SignX == Signed || SignY == Signed 1802 ? Builder.CreateSExt(Cat, VecTy, "sxt") 1803 : Builder.CreateZExt(Cat, VecTy, "zxt"); 1804 return Ext; 1805 } 1806 1807 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 1808 const FxpOp &Op) const -> Value * { 1809 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1810 auto *InpTy = cast<VectorType>(Op.X.Val->getType()); 1811 unsigned Width = InpTy->getScalarSizeInBits(); 1812 bool Rounding = Op.RoundAt.has_value(); 1813 1814 if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) { 1815 // The fixed-point intrinsics do signed multiplication. 1816 if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) { 1817 Value *QMul = nullptr; 1818 if (Width == 16) { 1819 QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding); 1820 } else if (Width == 32) { 1821 QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding); 1822 } 1823 if (QMul != nullptr) 1824 return QMul; 1825 } 1826 } 1827 1828 assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n 1829 assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k 1830 1831 // If Width < 32, then it should really be 16. 1832 if (Width < 32) { 1833 if (Width < 16) 1834 return nullptr; 1835 // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we 1836 // generate a full precision products, which is unnecessary if there is 1837 // no shift. 1838 assert(Width == 16); 1839 assert(Op.Frac != 0 && "Unshifted mul should have been skipped"); 1840 if (Op.Frac == 16) { 1841 // Multiply high 1842 if (Value *MulH = createMulH16(Builder, Op.X, Op.Y)) 1843 return MulH; 1844 } 1845 // Do full-precision multiply and shift. 1846 Value *Prod32 = createMul16(Builder, Op.X, Op.Y); 1847 if (Rounding) { 1848 Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt); 1849 Prod32 = Builder.CreateAdd(Prod32, RoundVal, "add"); 1850 } 1851 1852 Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac); 1853 Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed 1854 ? Builder.CreateAShr(Prod32, ShiftAmt, "asr") 1855 : Builder.CreateLShr(Prod32, ShiftAmt, "lsr"); 1856 return Builder.CreateTrunc(Shifted, InpTy, "trn"); 1857 } 1858 1859 // Width >= 32 1860 1861 // Break up the arguments Op.X and Op.Y into vectors of smaller widths 1862 // in preparation of doing the multiplication by 32-bit parts. 1863 auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32); 1864 auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32); 1865 auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn); 1866 1867 auto *HvxWordTy = cast<VectorType>(WordP.front()->getType()); 1868 1869 // Add the optional rounding to the proper word. 1870 if (Op.RoundAt.has_value()) { 1871 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1872 SmallVector<Value *> RoundV(WordP.size(), Zero); 1873 RoundV[*Op.RoundAt / 32] = 1874 HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32)); 1875 WordP = createAddLong(Builder, WordP, RoundV); 1876 } 1877 1878 // createRightShiftLong? 1879 1880 // Shift all products right by Op.Frac. 1881 unsigned SkipWords = Op.Frac / 32; 1882 Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32); 1883 1884 for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) { 1885 int Src = Dst + SkipWords; 1886 Value *Lo = WordP[Src]; 1887 if (Src + 1 < End) { 1888 Value *Hi = WordP[Src + 1]; 1889 WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr, 1890 {Hi, Lo, ShiftAmt}, 1891 /*FMFSource*/ nullptr, "int"); 1892 } else { 1893 // The shift of the most significant word. 1894 WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt, "asr"); 1895 } 1896 } 1897 if (SkipWords != 0) 1898 WordP.resize(WordP.size() - SkipWords); 1899 1900 return HVC.joinVectorElements(Builder, WordP, Op.ResTy); 1901 } 1902 1903 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 1904 bool Rounding) const -> Value * { 1905 assert(X.Val->getType() == Y.Val->getType()); 1906 assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16)); 1907 assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false))); 1908 1909 // There is no non-rounding intrinsic for i16. 1910 if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned) 1911 return nullptr; 1912 1913 auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs); 1914 return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(), 1915 {X.Val, Y.Val}); 1916 } 1917 1918 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 1919 bool Rounding) const -> Value * { 1920 Type *InpTy = X.Val->getType(); 1921 assert(InpTy == Y.Val->getType()); 1922 assert(InpTy->getScalarType() == HVC.getIntTy(32)); 1923 assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false))); 1924 1925 if (X.Sgn == Unsigned || Y.Sgn == Unsigned) 1926 return nullptr; 1927 1928 auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh); 1929 auto V6_vmpyo_acc = Rounding 1930 ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc) 1931 : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc); 1932 Value *V1 = 1933 HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val}); 1934 return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy, 1935 {V1, X.Val, Y.Val}); 1936 } 1937 1938 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 1939 Value *CarryIn) const 1940 -> std::pair<Value *, Value *> { 1941 assert(X->getType() == Y->getType()); 1942 auto VecTy = cast<VectorType>(X->getType()); 1943 if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) { 1944 SmallVector<Value *> Args = {X, Y}; 1945 Intrinsic::ID AddCarry; 1946 if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) { 1947 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo); 1948 } else { 1949 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry); 1950 if (CarryIn == nullptr) 1951 CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy))); 1952 Args.push_back(CarryIn); 1953 } 1954 Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry, 1955 /*RetTy=*/nullptr, Args); 1956 Value *Result = Builder.CreateExtractValue(Ret, {0}, "ext"); 1957 Value *CarryOut = Builder.CreateExtractValue(Ret, {1}, "ext"); 1958 return {Result, CarryOut}; 1959 } 1960 1961 // In other cases, do a regular add, and unsigned compare-less-than. 1962 // The carry-out can originate in two places: adding the carry-in or adding 1963 // the two input values. 1964 Value *Result1 = X; // Result1 = X + CarryIn 1965 if (CarryIn != nullptr) { 1966 unsigned Width = VecTy->getScalarSizeInBits(); 1967 uint32_t Mask = 1; 1968 if (Width < 32) { 1969 for (unsigned i = 0, e = 32 / Width; i != e; ++i) 1970 Mask = (Mask << Width) | 1; 1971 } 1972 auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt); 1973 Value *ValueIn = 1974 HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr, 1975 {CarryIn, HVC.getConstInt(Mask)}); 1976 Result1 = Builder.CreateAdd(X, ValueIn, "add"); 1977 } 1978 1979 Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X, "cmp"); 1980 Value *Result2 = Builder.CreateAdd(Result1, Y, "add"); 1981 Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y, "cmp"); 1982 return {Result2, Builder.CreateOr(CarryOut1, CarryOut2, "orb")}; 1983 } 1984 1985 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const 1986 -> Value * { 1987 Intrinsic::ID V6_vmpyh = 0; 1988 std::tie(X, Y) = canonSgn(X, Y); 1989 1990 if (X.Sgn == Signed) { 1991 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv); 1992 } else if (Y.Sgn == Signed) { 1993 // In vmpyhus the second operand is unsigned 1994 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus); 1995 } else { 1996 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv); 1997 } 1998 1999 // i16*i16 -> i32 / interleaved 2000 Value *P = 2001 HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val}); 2002 // Deinterleave 2003 return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P)); 2004 } 2005 2006 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 2007 -> Value * { 2008 Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false); 2009 2010 if (HVC.HST.useHVXV69Ops()) { 2011 if (X.Sgn != Signed && Y.Sgn != Signed) { 2012 auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs); 2013 return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty, 2014 {X.Val, Y.Val}); 2015 } 2016 } 2017 2018 Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true); 2019 Value *Pair16 = 2020 Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty, "cst"); 2021 unsigned Len = HVC.length(HvxP16Ty) / 2; 2022 2023 SmallVector<int, 128> PickOdd(Len); 2024 for (int i = 0; i != static_cast<int>(Len); ++i) 2025 PickOdd[i] = 2 * i + 1; 2026 2027 return Builder.CreateShuffleVector( 2028 HVC.sublo(Builder, Pair16), HVC.subhi(Builder, Pair16), PickOdd, "shf"); 2029 } 2030 2031 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 2032 -> std::pair<Value *, Value *> { 2033 assert(X.Val->getType() == Y.Val->getType()); 2034 assert(X.Val->getType() == HvxI32Ty); 2035 2036 Intrinsic::ID V6_vmpy_parts; 2037 std::tie(X, Y) = canonSgn(X, Y); 2038 2039 if (X.Sgn == Signed) { 2040 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts; 2041 } else if (Y.Sgn == Signed) { 2042 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts; 2043 } else { 2044 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts; 2045 } 2046 2047 Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr, 2048 {X.Val, Y.Val}, {HvxI32Ty}); 2049 Value *Hi = Builder.CreateExtractValue(Parts, {0}, "ext"); 2050 Value *Lo = Builder.CreateExtractValue(Parts, {1}, "ext"); 2051 return {Lo, Hi}; 2052 } 2053 2054 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 2055 ArrayRef<Value *> WordY) const 2056 -> SmallVector<Value *> { 2057 assert(WordX.size() == WordY.size()); 2058 unsigned Idx = 0, Length = WordX.size(); 2059 SmallVector<Value *> Sum(Length); 2060 2061 while (Idx != Length) { 2062 if (HVC.isZero(WordX[Idx])) 2063 Sum[Idx] = WordY[Idx]; 2064 else if (HVC.isZero(WordY[Idx])) 2065 Sum[Idx] = WordX[Idx]; 2066 else 2067 break; 2068 ++Idx; 2069 } 2070 2071 Value *Carry = nullptr; 2072 for (; Idx != Length; ++Idx) { 2073 std::tie(Sum[Idx], Carry) = 2074 createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry); 2075 } 2076 2077 // This drops the final carry beyond the highest word. 2078 return Sum; 2079 } 2080 2081 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 2082 Signedness SgnX, ArrayRef<Value *> WordY, 2083 Signedness SgnY) const -> SmallVector<Value *> { 2084 SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size()); 2085 2086 // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results, 2087 // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3. 2088 for (int i = 0, e = WordX.size(); i != e; ++i) { 2089 for (int j = 0, f = WordY.size(); j != f; ++j) { 2090 // Check the 4 halves that this multiplication can generate. 2091 Signedness SX = (i + 1 == e) ? SgnX : Unsigned; 2092 Signedness SY = (j + 1 == f) ? SgnY : Unsigned; 2093 auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY}); 2094 Products[i + j + 0].push_back(Lo); 2095 Products[i + j + 1].push_back(Hi); 2096 } 2097 } 2098 2099 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 2100 2101 auto pop_back_or_zero = [Zero](auto &Vector) -> Value * { 2102 if (Vector.empty()) 2103 return Zero; 2104 auto Last = Vector.back(); 2105 Vector.pop_back(); 2106 return Last; 2107 }; 2108 2109 for (int i = 0, e = Products.size(); i != e; ++i) { 2110 while (Products[i].size() > 1) { 2111 Value *Carry = nullptr; // no carry-in 2112 for (int j = i; j != e; ++j) { 2113 auto &ProdJ = Products[j]; 2114 auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ), 2115 pop_back_or_zero(ProdJ), Carry); 2116 ProdJ.insert(ProdJ.begin(), Sum); 2117 Carry = CarryOut; 2118 } 2119 } 2120 } 2121 2122 SmallVector<Value *> WordP; 2123 for (auto &P : Products) { 2124 assert(P.size() == 1 && "Should have been added together"); 2125 WordP.push_back(P.front()); 2126 } 2127 2128 return WordP; 2129 } 2130 2131 auto HvxIdioms::run() -> bool { 2132 bool Changed = false; 2133 2134 for (BasicBlock &B : HVC.F) { 2135 for (auto It = B.rbegin(); It != B.rend(); ++It) { 2136 if (auto Fxm = matchFxpMul(*It)) { 2137 Value *New = processFxpMul(*It, *Fxm); 2138 // Always report "changed" for now. 2139 Changed = true; 2140 if (!New) 2141 continue; 2142 bool StartOver = !isa<Instruction>(New); 2143 It->replaceAllUsesWith(New); 2144 RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI); 2145 It = StartOver ? B.rbegin() 2146 : cast<Instruction>(New)->getReverseIterator(); 2147 Changed = true; 2148 } 2149 } 2150 } 2151 2152 return Changed; 2153 } 2154 2155 // --- End HvxIdioms 2156 2157 auto HexagonVectorCombine::run() -> bool { 2158 if (DumpModule) 2159 dbgs() << "Module before HexagonVectorCombine\n" << *F.getParent(); 2160 2161 bool Changed = false; 2162 if (HST.useHVXOps()) { 2163 if (VAEnabled) 2164 Changed |= AlignVectors(*this).run(); 2165 if (VIEnabled) 2166 Changed |= HvxIdioms(*this).run(); 2167 } 2168 2169 if (DumpModule) { 2170 dbgs() << "Module " << (Changed ? "(modified)" : "(unchanged)") 2171 << " after HexagonVectorCombine\n" 2172 << *F.getParent(); 2173 } 2174 return Changed; 2175 } 2176 2177 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * { 2178 return IntegerType::get(F.getContext(), Width); 2179 } 2180 2181 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 2182 assert(ElemCount >= 0); 2183 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 2184 if (ElemCount == 0) 2185 return ByteTy; 2186 return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false); 2187 } 2188 2189 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 2190 assert(ElemCount >= 0); 2191 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 2192 if (ElemCount == 0) 2193 return BoolTy; 2194 return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false); 2195 } 2196 2197 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const 2198 -> ConstantInt * { 2199 return ConstantInt::getSigned(getIntTy(Width), Val); 2200 } 2201 2202 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 2203 if (auto *C = dyn_cast<Constant>(Val)) 2204 return C->isZeroValue(); 2205 return false; 2206 } 2207 2208 auto HexagonVectorCombine::getIntValue(const Value *Val) const 2209 -> std::optional<APInt> { 2210 if (auto *CI = dyn_cast<ConstantInt>(Val)) 2211 return CI->getValue(); 2212 return std::nullopt; 2213 } 2214 2215 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 2216 return isa<UndefValue>(Val); 2217 } 2218 2219 auto HexagonVectorCombine::isTrue(const Value *Val) const -> bool { 2220 return Val == ConstantInt::getTrue(Val->getType()); 2221 } 2222 2223 auto HexagonVectorCombine::isFalse(const Value *Val) const -> bool { 2224 return isZero(Val); 2225 } 2226 2227 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const 2228 -> VectorType * { 2229 EVT ETy = EVT::getEVT(ElemTy, false); 2230 assert(ETy.isSimple() && "Invalid HVX element type"); 2231 // Do not allow boolean types here: they don't have a fixed length. 2232 assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) && 2233 "Invalid HVX element type"); 2234 unsigned HwLen = HST.getVectorLength(); 2235 unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits(); 2236 return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems, 2237 /*Scalable=*/false); 2238 } 2239 2240 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const 2241 -> int { 2242 return getSizeOf(Val->getType(), Kind); 2243 } 2244 2245 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const 2246 -> int { 2247 auto *NcTy = const_cast<Type *>(Ty); 2248 switch (Kind) { 2249 case Store: 2250 return DL.getTypeStoreSize(NcTy).getFixedValue(); 2251 case Alloc: 2252 return DL.getTypeAllocSize(NcTy).getFixedValue(); 2253 } 2254 llvm_unreachable("Unhandled SizeKind enum"); 2255 } 2256 2257 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 2258 // The actual type may be shorter than the HVX vector, so determine 2259 // the alignment based on subtarget info. 2260 if (HST.isTypeForHVX(Ty)) 2261 return HST.getVectorLength(); 2262 return DL.getABITypeAlign(Ty).value(); 2263 } 2264 2265 auto HexagonVectorCombine::length(Value *Val) const -> size_t { 2266 return length(Val->getType()); 2267 } 2268 2269 auto HexagonVectorCombine::length(Type *Ty) const -> size_t { 2270 auto *VecTy = dyn_cast<VectorType>(Ty); 2271 assert(VecTy && "Must be a vector type"); 2272 return VecTy->getElementCount().getFixedValue(); 2273 } 2274 2275 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 2276 assert(Ty->isIntOrIntVectorTy()); 2277 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 2278 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2279 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 2280 return Zero; 2281 } 2282 2283 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 2284 assert(Ty->isIntOrIntVectorTy()); 2285 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 2286 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2287 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 2288 return Minus1; 2289 } 2290 2291 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const 2292 -> Constant * { 2293 assert(Ty->isVectorTy()); 2294 auto VecTy = cast<VectorType>(Ty); 2295 Type *ElemTy = VecTy->getElementType(); 2296 // Add support for floats if needed. 2297 auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(), 2298 ConstantInt::get(ElemTy, Val)); 2299 return Splat; 2300 } 2301 2302 auto HexagonVectorCombine::simplify(Value *V) const -> Value * { 2303 if (auto *In = dyn_cast<Instruction>(V)) { 2304 SimplifyQuery Q(DL, &TLI, &DT, &AC, In); 2305 return simplifyInstruction(In, Q); 2306 } 2307 return nullptr; 2308 } 2309 2310 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 2311 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst, 2312 Value *Src, int Start, int Length, 2313 int Where) const -> Value * { 2314 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 2315 int SrcLen = getSizeOf(Src); 2316 int DstLen = getSizeOf(Dst); 2317 assert(0 <= Start && Start + Length <= SrcLen); 2318 assert(0 <= Where && Where + Length <= DstLen); 2319 2320 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 2321 auto *Undef = UndefValue::get(getByteTy()); 2322 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 2323 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 2324 2325 SmallVector<int, 256> SMask(P2Len); 2326 for (int i = 0; i != P2Len; ++i) { 2327 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 2328 // Otherwise, pick Dst[i]; 2329 SMask[i] = 2330 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 2331 } 2332 2333 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask, "shf"); 2334 return vresize(Builder, P2Insert, DstLen, Undef); 2335 } 2336 2337 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo, 2338 Value *Hi, Value *Amt) const -> Value * { 2339 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 2340 if (isZero(Amt)) 2341 return Hi; 2342 int VecLen = getSizeOf(Hi); 2343 if (auto IntAmt = getIntValue(Amt)) 2344 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 2345 VecLen); 2346 2347 if (HST.isTypeForHVX(Hi->getType())) { 2348 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 2349 "Expecting an exact HVX type"); 2350 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb), 2351 Hi->getType(), {Hi, Lo, Amt}); 2352 } 2353 2354 if (VecLen == 4) { 2355 Value *Pair = concat(Builder, {Lo, Hi}); 2356 Value *Shift = 2357 Builder.CreateLShr(Builder.CreateShl(Pair, Amt, "shl"), 32, "lsr"); 2358 Value *Trunc = 2359 Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn"); 2360 return Builder.CreateBitCast(Trunc, Hi->getType(), "cst"); 2361 } 2362 if (VecLen == 8) { 2363 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt, "sub"); 2364 return vralignb(Builder, Lo, Hi, Sub); 2365 } 2366 llvm_unreachable("Unexpected vector length"); 2367 } 2368 2369 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo, 2370 Value *Hi, Value *Amt) const -> Value * { 2371 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 2372 if (isZero(Amt)) 2373 return Lo; 2374 int VecLen = getSizeOf(Lo); 2375 if (auto IntAmt = getIntValue(Amt)) 2376 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 2377 2378 if (HST.isTypeForHVX(Lo->getType())) { 2379 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 2380 "Expecting an exact HVX type"); 2381 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb), 2382 Lo->getType(), {Hi, Lo, Amt}); 2383 } 2384 2385 if (VecLen == 4) { 2386 Value *Pair = concat(Builder, {Lo, Hi}); 2387 Value *Shift = Builder.CreateLShr(Pair, Amt, "lsr"); 2388 Value *Trunc = 2389 Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn"); 2390 return Builder.CreateBitCast(Trunc, Lo->getType(), "cst"); 2391 } 2392 if (VecLen == 8) { 2393 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 2394 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty, "cst"); 2395 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty, "cst"); 2396 Function *FI = Intrinsic::getDeclaration(F.getParent(), 2397 Intrinsic::hexagon_S2_valignrb); 2398 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}, "cup"); 2399 return Builder.CreateBitCast(Call, Lo->getType(), "cst"); 2400 } 2401 llvm_unreachable("Unexpected vector length"); 2402 } 2403 2404 // Concatenates a sequence of vectors of the same type. 2405 auto HexagonVectorCombine::concat(IRBuilderBase &Builder, 2406 ArrayRef<Value *> Vecs) const -> Value * { 2407 assert(!Vecs.empty()); 2408 SmallVector<int, 256> SMask; 2409 std::vector<Value *> Work[2]; 2410 int ThisW = 0, OtherW = 1; 2411 2412 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 2413 while (Work[ThisW].size() > 1) { 2414 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 2415 SMask.resize(length(Ty) * 2); 2416 std::iota(SMask.begin(), SMask.end(), 0); 2417 2418 Work[OtherW].clear(); 2419 if (Work[ThisW].size() % 2 != 0) 2420 Work[ThisW].push_back(UndefValue::get(Ty)); 2421 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 2422 Value *Joined = Builder.CreateShuffleVector( 2423 Work[ThisW][i], Work[ThisW][i + 1], SMask, "shf"); 2424 Work[OtherW].push_back(Joined); 2425 } 2426 std::swap(ThisW, OtherW); 2427 } 2428 2429 // Since there may have been some undefs appended to make shuffle operands 2430 // have the same type, perform the last shuffle to only pick the original 2431 // elements. 2432 SMask.resize(Vecs.size() * length(Vecs.front()->getType())); 2433 std::iota(SMask.begin(), SMask.end(), 0); 2434 Value *Total = Work[ThisW].front(); 2435 return Builder.CreateShuffleVector(Total, SMask, "shf"); 2436 } 2437 2438 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val, 2439 int NewSize, Value *Pad) const -> Value * { 2440 assert(isa<VectorType>(Val->getType())); 2441 auto *ValTy = cast<VectorType>(Val->getType()); 2442 assert(ValTy->getElementType() == Pad->getType()); 2443 2444 int CurSize = length(ValTy); 2445 if (CurSize == NewSize) 2446 return Val; 2447 // Truncate? 2448 if (CurSize > NewSize) 2449 return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize); 2450 // Extend. 2451 SmallVector<int, 128> SMask(NewSize); 2452 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 2453 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 2454 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad, "spt"); 2455 return Builder.CreateShuffleVector(Val, PadVec, SMask, "shf"); 2456 } 2457 2458 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask, 2459 Type *FromTy, Type *ToTy) const -> Value * { 2460 // Mask is a vector <N x i1>, where each element corresponds to an 2461 // element of FromTy. Remap it so that each element will correspond 2462 // to an element of ToTy. 2463 assert(isa<VectorType>(Mask->getType())); 2464 2465 Type *FromSTy = FromTy->getScalarType(); 2466 Type *ToSTy = ToTy->getScalarType(); 2467 if (FromSTy == ToSTy) 2468 return Mask; 2469 2470 int FromSize = getSizeOf(FromSTy); 2471 int ToSize = getSizeOf(ToSTy); 2472 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 2473 2474 auto *MaskTy = cast<VectorType>(Mask->getType()); 2475 int FromCount = length(MaskTy); 2476 int ToCount = (FromCount * FromSize) / ToSize; 2477 assert((FromCount * FromSize) % ToSize == 0); 2478 2479 auto *FromITy = getIntTy(FromSize * 8); 2480 auto *ToITy = getIntTy(ToSize * 8); 2481 2482 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 2483 // -> trunc to <M x i1>. 2484 Value *Ext = Builder.CreateSExt( 2485 Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false), "sxt"); 2486 Value *Cast = Builder.CreateBitCast( 2487 Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false), "cst"); 2488 return Builder.CreateTrunc( 2489 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false), "trn"); 2490 } 2491 2492 // Bitcast to bytes, and return least significant bits. 2493 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const 2494 -> Value * { 2495 Type *ScalarTy = Val->getType()->getScalarType(); 2496 if (ScalarTy == getBoolTy()) 2497 return Val; 2498 2499 Value *Bytes = vbytes(Builder, Val); 2500 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 2501 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)), "trn"); 2502 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 2503 // <1 x i1>. 2504 return Builder.CreateTrunc(Bytes, getBoolTy(), "trn"); 2505 } 2506 2507 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 2508 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const 2509 -> Value * { 2510 Type *ScalarTy = Val->getType()->getScalarType(); 2511 if (ScalarTy == getByteTy()) 2512 return Val; 2513 2514 if (ScalarTy != getBoolTy()) 2515 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)), "cst"); 2516 // For bool, return a sext from i1 to i8. 2517 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 2518 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy), "sxt"); 2519 return Builder.CreateSExt(Val, getByteTy(), "sxt"); 2520 } 2521 2522 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val, 2523 unsigned Start, unsigned Length) const 2524 -> Value * { 2525 assert(Start + Length <= length(Val)); 2526 return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length); 2527 } 2528 2529 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const 2530 -> Value * { 2531 size_t Len = length(Val); 2532 assert(Len % 2 == 0 && "Length should be even"); 2533 return subvector(Builder, Val, 0, Len / 2); 2534 } 2535 2536 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const 2537 -> Value * { 2538 size_t Len = length(Val); 2539 assert(Len % 2 == 0 && "Length should be even"); 2540 return subvector(Builder, Val, Len / 2, Len / 2); 2541 } 2542 2543 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0, 2544 Value *Val1) const -> Value * { 2545 assert(Val0->getType() == Val1->getType()); 2546 int Len = length(Val0); 2547 SmallVector<int, 128> Mask(2 * Len); 2548 2549 for (int i = 0; i != Len; ++i) { 2550 Mask[i] = 2 * i; // Even 2551 Mask[i + Len] = 2 * i + 1; // Odd 2552 } 2553 return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf"); 2554 } 2555 2556 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0, 2557 Value *Val1) const -> Value * { // 2558 assert(Val0->getType() == Val1->getType()); 2559 int Len = length(Val0); 2560 SmallVector<int, 128> Mask(2 * Len); 2561 2562 for (int i = 0; i != Len; ++i) { 2563 Mask[2 * i + 0] = i; // Val0 2564 Mask[2 * i + 1] = i + Len; // Val1 2565 } 2566 return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf"); 2567 } 2568 2569 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder, 2570 Intrinsic::ID IntID, Type *RetTy, 2571 ArrayRef<Value *> Args, 2572 ArrayRef<Type *> ArgTys, 2573 ArrayRef<Value *> MDSources) const 2574 -> Value * { 2575 auto getCast = [&](IRBuilderBase &Builder, Value *Val, 2576 Type *DestTy) -> Value * { 2577 Type *SrcTy = Val->getType(); 2578 if (SrcTy == DestTy) 2579 return Val; 2580 2581 // Non-HVX type. It should be a scalar, and it should already have 2582 // a valid type. 2583 assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true)); 2584 2585 Type *BoolTy = Type::getInt1Ty(F.getContext()); 2586 if (cast<VectorType>(SrcTy)->getElementType() != BoolTy) 2587 return Builder.CreateBitCast(Val, DestTy, "cst"); 2588 2589 // Predicate HVX vector. 2590 unsigned HwLen = HST.getVectorLength(); 2591 Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast 2592 : Intrinsic::hexagon_V6_pred_typecast_128B; 2593 Function *FI = 2594 Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); 2595 return Builder.CreateCall(FI, {Val}, "cup"); 2596 }; 2597 2598 Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys); 2599 FunctionType *IntrTy = IntrFn->getFunctionType(); 2600 2601 SmallVector<Value *, 4> IntrArgs; 2602 for (int i = 0, e = Args.size(); i != e; ++i) { 2603 Value *A = Args[i]; 2604 Type *T = IntrTy->getParamType(i); 2605 if (A->getType() != T) { 2606 IntrArgs.push_back(getCast(Builder, A, T)); 2607 } else { 2608 IntrArgs.push_back(A); 2609 } 2610 } 2611 StringRef MaybeName = !IntrTy->getReturnType()->isVoidTy() ? "cup" : ""; 2612 CallInst *Call = Builder.CreateCall(IntrFn, IntrArgs, MaybeName); 2613 2614 MemoryEffects ME = Call->getAttributes().getMemoryEffects(); 2615 if (!ME.doesNotAccessMemory() && !ME.onlyAccessesInaccessibleMem()) 2616 propagateMetadata(Call, MDSources); 2617 2618 Type *CallTy = Call->getType(); 2619 if (RetTy == nullptr || CallTy == RetTy) 2620 return Call; 2621 // Scalar types should have RetTy matching the call return type. 2622 assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true)); 2623 return getCast(Builder, Call, RetTy); 2624 } 2625 2626 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder, 2627 Value *Vec, 2628 unsigned ToWidth) const 2629 -> SmallVector<Value *> { 2630 // Break a vector of wide elements into a series of vectors with narrow 2631 // elements: 2632 // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...) 2633 // --> 2634 // (a0, a1, a2, ...) // lowest "ToWidth" bits 2635 // (b0, b1, b2, ...) // the next lowest... 2636 // (c0, c1, c2, ...) // ... 2637 // ... 2638 // 2639 // The number of elements in each resulting vector is the same as 2640 // in the original vector. 2641 2642 auto *VecTy = cast<VectorType>(Vec->getType()); 2643 assert(VecTy->getElementType()->isIntegerTy()); 2644 unsigned FromWidth = VecTy->getScalarSizeInBits(); 2645 assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth)); 2646 assert(ToWidth <= FromWidth && "Breaking up into wider elements?"); 2647 unsigned NumResults = FromWidth / ToWidth; 2648 2649 SmallVector<Value *> Results(NumResults); 2650 Results[0] = Vec; 2651 unsigned Length = length(VecTy); 2652 2653 // Do it by splitting in half, since those operations correspond to deal 2654 // instructions. 2655 auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void { 2656 // Take V = Results[Begin], split it in L, H. 2657 // Store Results[Begin] = L, Results[(Begin+End)/2] = H 2658 // Call itself recursively split(Begin, Half), split(Half+1, End) 2659 if (Begin + 1 == End) 2660 return; 2661 2662 Value *Val = Results[Begin]; 2663 unsigned Width = Val->getType()->getScalarSizeInBits(); 2664 2665 auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false); 2666 Value *VVal = Builder.CreateBitCast(Val, VTy, "cst"); 2667 2668 Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal)); 2669 2670 unsigned Half = (Begin + End) / 2; 2671 Results[Begin] = sublo(Builder, Res); 2672 Results[Half] = subhi(Builder, Res); 2673 2674 splitFunc(Begin, Half, splitFunc); 2675 splitFunc(Half, End, splitFunc); 2676 }; 2677 2678 splitInHalf(0, NumResults, splitInHalf); 2679 return Results; 2680 } 2681 2682 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder, 2683 ArrayRef<Value *> Values, 2684 VectorType *ToType) const 2685 -> Value * { 2686 assert(ToType->getElementType()->isIntegerTy()); 2687 2688 // If the list of values does not have power-of-2 elements, append copies 2689 // of the sign bit to it, to make the size be 2^n. 2690 // The reason for this is that the values will be joined in pairs, because 2691 // otherwise the shuffles will result in convoluted code. With pairwise 2692 // joins, the shuffles will hopefully be folded into a perfect shuffle. 2693 // The output will need to be sign-extended to a type with element width 2694 // being a power-of-2 anyways. 2695 SmallVector<Value *> Inputs(Values.begin(), Values.end()); 2696 2697 unsigned ToWidth = ToType->getScalarSizeInBits(); 2698 unsigned Width = Inputs.front()->getType()->getScalarSizeInBits(); 2699 assert(Width <= ToWidth); 2700 assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth)); 2701 unsigned Length = length(Inputs.front()->getType()); 2702 2703 unsigned NeedInputs = ToWidth / Width; 2704 if (Inputs.size() != NeedInputs) { 2705 // Having too many inputs is ok: drop the high bits (usual wrap-around). 2706 // If there are too few, fill them with the sign bit. 2707 Value *Last = Inputs.back(); 2708 Value *Sign = Builder.CreateAShr( 2709 Last, getConstSplat(Last->getType(), Width - 1), "asr"); 2710 Inputs.resize(NeedInputs, Sign); 2711 } 2712 2713 while (Inputs.size() > 1) { 2714 Width *= 2; 2715 auto *VTy = VectorType::get(getIntTy(Width), Length, false); 2716 for (int i = 0, e = Inputs.size(); i < e; i += 2) { 2717 Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]); 2718 Inputs[i / 2] = Builder.CreateBitCast(Res, VTy, "cst"); 2719 } 2720 Inputs.resize(Inputs.size() / 2); 2721 } 2722 2723 assert(Inputs.front()->getType() == ToType); 2724 return Inputs.front(); 2725 } 2726 2727 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 2728 Value *Ptr1) const 2729 -> std::optional<int> { 2730 // Try SCEV first. 2731 const SCEV *Scev0 = SE.getSCEV(Ptr0); 2732 const SCEV *Scev1 = SE.getSCEV(Ptr1); 2733 const SCEV *ScevDiff = SE.getMinusSCEV(Scev0, Scev1); 2734 if (auto *Const = dyn_cast<SCEVConstant>(ScevDiff)) { 2735 APInt V = Const->getAPInt(); 2736 if (V.isSignedIntN(8 * sizeof(int))) 2737 return static_cast<int>(V.getSExtValue()); 2738 } 2739 2740 struct Builder : IRBuilder<> { 2741 Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {} 2742 ~Builder() { 2743 for (Instruction *I : llvm::reverse(ToErase)) 2744 I->eraseFromParent(); 2745 } 2746 SmallVector<Instruction *, 8> ToErase; 2747 }; 2748 2749 #define CallBuilder(B, F) \ 2750 [&](auto &B_) { \ 2751 Value *V = B_.F; \ 2752 if (auto *I = dyn_cast<Instruction>(V)) \ 2753 B_.ToErase.push_back(I); \ 2754 return V; \ 2755 }(B) 2756 2757 auto Simplify = [this](Value *V) { 2758 if (Value *S = simplify(V)) 2759 return S; 2760 return V; 2761 }; 2762 2763 auto StripBitCast = [](Value *V) { 2764 while (auto *C = dyn_cast<BitCastInst>(V)) 2765 V = C->getOperand(0); 2766 return V; 2767 }; 2768 2769 Ptr0 = StripBitCast(Ptr0); 2770 Ptr1 = StripBitCast(Ptr1); 2771 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 2772 return std::nullopt; 2773 2774 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 2775 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 2776 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 2777 return std::nullopt; 2778 if (Gep0->getSourceElementType() != Gep1->getSourceElementType()) 2779 return std::nullopt; 2780 2781 Builder B(Gep0->getParent()); 2782 int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc); 2783 2784 // FIXME: for now only check GEPs with a single index. 2785 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 2786 return std::nullopt; 2787 2788 Value *Idx0 = Gep0->getOperand(1); 2789 Value *Idx1 = Gep1->getOperand(1); 2790 2791 // First, try to simplify the subtraction directly. 2792 if (auto *Diff = dyn_cast<ConstantInt>( 2793 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 2794 return Diff->getSExtValue() * Scale; 2795 2796 KnownBits Known0 = getKnownBits(Idx0, Gep0); 2797 KnownBits Known1 = getKnownBits(Idx1, Gep1); 2798 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 2799 if (Unknown.isAllOnes()) 2800 return std::nullopt; 2801 2802 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 2803 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 2804 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 2805 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 2806 int Diff0 = 0; 2807 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 2808 Diff0 = C->getSExtValue(); 2809 } else { 2810 return std::nullopt; 2811 } 2812 2813 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 2814 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 2815 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 2816 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 2817 int Diff1 = 0; 2818 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 2819 Diff1 = C->getSExtValue(); 2820 } else { 2821 return std::nullopt; 2822 } 2823 2824 return (Diff0 + Diff1) * Scale; 2825 2826 #undef CallBuilder 2827 } 2828 2829 auto HexagonVectorCombine::getNumSignificantBits(const Value *V, 2830 const Instruction *CtxI) const 2831 -> unsigned { 2832 return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2833 } 2834 2835 auto HexagonVectorCombine::getKnownBits(const Value *V, 2836 const Instruction *CtxI) const 2837 -> KnownBits { 2838 return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2839 } 2840 2841 auto HexagonVectorCombine::isSafeToClone(const Instruction &In) const -> bool { 2842 if (In.mayHaveSideEffects() || In.isAtomic() || In.isVolatile() || 2843 In.isFenceLike() || In.mayReadOrWriteMemory()) { 2844 return false; 2845 } 2846 if (isa<CallBase>(In) || isa<AllocaInst>(In)) 2847 return false; 2848 return true; 2849 } 2850 2851 template <typename T> 2852 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 2853 BasicBlock::const_iterator To, 2854 const T &IgnoreInsts) const 2855 -> bool { 2856 auto getLocOrNone = 2857 [this](const Instruction &I) -> std::optional<MemoryLocation> { 2858 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 2859 switch (II->getIntrinsicID()) { 2860 case Intrinsic::masked_load: 2861 return MemoryLocation::getForArgument(II, 0, TLI); 2862 case Intrinsic::masked_store: 2863 return MemoryLocation::getForArgument(II, 1, TLI); 2864 } 2865 } 2866 return MemoryLocation::getOrNone(&I); 2867 }; 2868 2869 // The source and the destination must be in the same basic block. 2870 const BasicBlock &Block = *In.getParent(); 2871 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 2872 // No PHIs. 2873 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 2874 return false; 2875 2876 if (!mayHaveNonDefUseDependency(In)) 2877 return true; 2878 bool MayWrite = In.mayWriteToMemory(); 2879 auto MaybeLoc = getLocOrNone(In); 2880 2881 auto From = In.getIterator(); 2882 if (From == To) 2883 return true; 2884 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 2885 auto Range = 2886 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 2887 for (auto It = Range.first; It != Range.second; ++It) { 2888 const Instruction &I = *It; 2889 if (llvm::is_contained(IgnoreInsts, &I)) 2890 continue; 2891 // assume intrinsic can be ignored 2892 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2893 if (II->getIntrinsicID() == Intrinsic::assume) 2894 continue; 2895 } 2896 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 2897 if (I.mayThrow()) 2898 return false; 2899 if (auto *CB = dyn_cast<CallBase>(&I)) { 2900 if (!CB->hasFnAttr(Attribute::WillReturn)) 2901 return false; 2902 if (!CB->hasFnAttr(Attribute::NoSync)) 2903 return false; 2904 } 2905 if (I.mayReadOrWriteMemory()) { 2906 auto MaybeLocI = getLocOrNone(I); 2907 if (MayWrite || I.mayWriteToMemory()) { 2908 if (!MaybeLoc || !MaybeLocI) 2909 return false; 2910 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 2911 return false; 2912 } 2913 } 2914 } 2915 return true; 2916 } 2917 2918 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 2919 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2920 return VecTy->getElementType() == getByteTy(); 2921 return false; 2922 } 2923 2924 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo, 2925 Value *Hi, int Start, 2926 int Length) const -> Value * { 2927 assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi)); 2928 SmallVector<int, 128> SMask(Length); 2929 std::iota(SMask.begin(), SMask.end(), Start); 2930 return Builder.CreateShuffleVector(Lo, Hi, SMask, "shf"); 2931 } 2932 2933 // Pass management. 2934 2935 namespace llvm { 2936 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 2937 FunctionPass *createHexagonVectorCombineLegacyPass(); 2938 } // namespace llvm 2939 2940 namespace { 2941 class HexagonVectorCombineLegacy : public FunctionPass { 2942 public: 2943 static char ID; 2944 2945 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 2946 2947 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 2948 2949 void getAnalysisUsage(AnalysisUsage &AU) const override { 2950 AU.setPreservesCFG(); 2951 AU.addRequired<AAResultsWrapperPass>(); 2952 AU.addRequired<AssumptionCacheTracker>(); 2953 AU.addRequired<DominatorTreeWrapperPass>(); 2954 AU.addRequired<ScalarEvolutionWrapperPass>(); 2955 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2956 AU.addRequired<TargetPassConfig>(); 2957 FunctionPass::getAnalysisUsage(AU); 2958 } 2959 2960 bool runOnFunction(Function &F) override { 2961 if (skipFunction(F)) 2962 return false; 2963 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2964 AssumptionCache &AC = 2965 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2966 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2967 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2968 TargetLibraryInfo &TLI = 2969 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2970 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 2971 HexagonVectorCombine HVC(F, AA, AC, DT, SE, TLI, TM); 2972 return HVC.run(); 2973 } 2974 }; 2975 } // namespace 2976 2977 char HexagonVectorCombineLegacy::ID = 0; 2978 2979 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 2980 "Hexagon Vector Combine", false, false) 2981 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2982 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2983 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2984 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2985 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2986 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 2987 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 2988 "Hexagon Vector Combine", false, false) 2989 2990 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 2991 return new HexagonVectorCombineLegacy(); 2992 } 2993