1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstSimplifyFolder.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/CodeGen/TargetPassConfig.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsHexagon.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 45 #include "HexagonSubtarget.h" 46 #include "HexagonTargetMachine.h" 47 48 #include <algorithm> 49 #include <deque> 50 #include <map> 51 #include <optional> 52 #include <set> 53 #include <utility> 54 #include <vector> 55 56 #define DEBUG_TYPE "hexagon-vc" 57 58 using namespace llvm; 59 60 namespace { 61 class HexagonVectorCombine { 62 public: 63 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 64 DominatorTree &DT_, TargetLibraryInfo &TLI_, 65 const TargetMachine &TM_) 66 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 67 TLI(TLI_), 68 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 69 70 bool run(); 71 72 // Common integer type. 73 IntegerType *getIntTy(unsigned Width = 32) const; 74 // Byte type: either scalar (when Length = 0), or vector with given 75 // element count. 76 Type *getByteTy(int ElemCount = 0) const; 77 // Boolean type: either scalar (when Length = 0), or vector with given 78 // element count. 79 Type *getBoolTy(int ElemCount = 0) const; 80 // Create a ConstantInt of type returned by getIntTy with the value Val. 81 ConstantInt *getConstInt(int Val, unsigned Width = 32) const; 82 // Get the integer value of V, if it exists. 83 std::optional<APInt> getIntValue(const Value *Val) const; 84 // Is V a constant 0, or a vector of 0s? 85 bool isZero(const Value *Val) const; 86 // Is V an undef value? 87 bool isUndef(const Value *Val) const; 88 89 // Get HVX vector type with the given element type. 90 VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const; 91 92 enum SizeKind { 93 Store, // Store size 94 Alloc, // Alloc size 95 }; 96 int getSizeOf(const Value *Val, SizeKind Kind = Store) const; 97 int getSizeOf(const Type *Ty, SizeKind Kind = Store) const; 98 int getTypeAlignment(Type *Ty) const; 99 size_t length(Value *Val) const; 100 size_t length(Type *Ty) const; 101 102 Constant *getNullValue(Type *Ty) const; 103 Constant *getFullValue(Type *Ty) const; 104 Constant *getConstSplat(Type *Ty, int Val) const; 105 106 Value *simplify(Value *Val) const; 107 108 Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start, 109 int Length, int Where) const; 110 Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 111 Value *Amt) const; 112 Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 113 Value *Amt) const; 114 Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const; 115 Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize, 116 Value *Pad) const; 117 Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy, 118 Type *ToTy) const; 119 Value *vlsb(IRBuilderBase &Builder, Value *Val) const; 120 Value *vbytes(IRBuilderBase &Builder, Value *Val) const; 121 Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start, 122 unsigned Length) const; 123 Value *sublo(IRBuilderBase &Builder, Value *Val) const; 124 Value *subhi(IRBuilderBase &Builder, Value *Val) const; 125 Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 126 Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 127 128 Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID, 129 Type *RetTy, ArrayRef<Value *> Args, 130 ArrayRef<Type *> ArgTys = None) const; 131 SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec, 132 unsigned ToWidth) const; 133 Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values, 134 VectorType *ToType) const; 135 136 std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 137 138 unsigned getNumSignificantBits(const Value *V, 139 const Instruction *CtxI = nullptr) const; 140 KnownBits getKnownBits(const Value *V, 141 const Instruction *CtxI = nullptr) const; 142 143 template <typename T = std::vector<Instruction *>> 144 bool isSafeToMoveBeforeInBB(const Instruction &In, 145 BasicBlock::const_iterator To, 146 const T &IgnoreInsts = {}) const; 147 148 // This function is only used for assertions at the moment. 149 [[maybe_unused]] bool isByteVecTy(Type *Ty) const; 150 151 Function &F; 152 const DataLayout &DL; 153 AliasAnalysis &AA; 154 AssumptionCache &AC; 155 DominatorTree &DT; 156 TargetLibraryInfo &TLI; 157 const HexagonSubtarget &HST; 158 159 private: 160 Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi, 161 int Start, int Length) const; 162 }; 163 164 class AlignVectors { 165 public: 166 AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {} 167 168 bool run(); 169 170 private: 171 using InstList = std::vector<Instruction *>; 172 173 struct Segment { 174 void *Data; 175 int Start; 176 int Size; 177 }; 178 179 struct AddrInfo { 180 AddrInfo(const AddrInfo &) = default; 181 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 182 Align H) 183 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 184 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 185 AddrInfo &operator=(const AddrInfo &) = default; 186 187 // XXX: add Size member? 188 Instruction *Inst; 189 Value *Addr; 190 Type *ValTy; 191 Align HaveAlign; 192 Align NeedAlign; 193 int Offset = 0; // Offset (in bytes) from the first member of the 194 // containing AddrList. 195 }; 196 using AddrList = std::vector<AddrInfo>; 197 198 struct InstrLess { 199 bool operator()(const Instruction *A, const Instruction *B) const { 200 return A->comesBefore(B); 201 } 202 }; 203 using DepList = std::set<Instruction *, InstrLess>; 204 205 struct MoveGroup { 206 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 207 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 208 Instruction *Base; // Base instruction of the parent address group. 209 InstList Main; // Main group of instructions. 210 InstList Deps; // List of dependencies. 211 bool IsHvx; // Is this group of HVX instructions? 212 bool IsLoad; // Is this a load group? 213 }; 214 using MoveList = std::vector<MoveGroup>; 215 216 struct ByteSpan { 217 struct Segment { 218 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 219 Segment(Value *Val, int Begin, int Len) 220 : Val(Val), Start(Begin), Size(Len) {} 221 Segment(const Segment &Seg) = default; 222 Segment &operator=(const Segment &Seg) = default; 223 Value *Val; // Value representable as a sequence of bytes. 224 int Start; // First byte of the value that belongs to the segment. 225 int Size; // Number of bytes in the segment. 226 }; 227 228 struct Block { 229 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 230 Block(Value *Val, int Off, int Len, int Pos) 231 : Seg(Val, Off, Len), Pos(Pos) {} 232 Block(const Block &Blk) = default; 233 Block &operator=(const Block &Blk) = default; 234 Segment Seg; // Value segment. 235 int Pos; // Position (offset) of the segment in the Block. 236 }; 237 238 int extent() const; 239 ByteSpan section(int Start, int Length) const; 240 ByteSpan &shift(int Offset); 241 SmallVector<Value *, 8> values() const; 242 243 int size() const { return Blocks.size(); } 244 Block &operator[](int i) { return Blocks[i]; } 245 246 std::vector<Block> Blocks; 247 248 using iterator = decltype(Blocks)::iterator; 249 iterator begin() { return Blocks.begin(); } 250 iterator end() { return Blocks.end(); } 251 using const_iterator = decltype(Blocks)::const_iterator; 252 const_iterator begin() const { return Blocks.begin(); } 253 const_iterator end() const { return Blocks.end(); } 254 }; 255 256 Align getAlignFromValue(const Value *V) const; 257 std::optional<MemoryLocation> getLocation(const Instruction &In) const; 258 std::optional<AddrInfo> getAddrInfo(Instruction &In) const; 259 bool isHvx(const AddrInfo &AI) const; 260 // This function is only used for assertions at the moment. 261 [[maybe_unused]] bool isSectorTy(Type *Ty) const; 262 263 Value *getPayload(Value *Val) const; 264 Value *getMask(Value *Val) const; 265 Value *getPassThrough(Value *Val) const; 266 267 Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 268 int Adjust) const; 269 Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 270 int Alignment) const; 271 Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 272 int Alignment, Value *Mask, Value *PassThru) const; 273 Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 274 int Alignment, Value *Mask) const; 275 276 DepList getUpwardDeps(Instruction *In, Instruction *Base) const; 277 bool createAddressGroups(); 278 MoveList createLoadGroups(const AddrList &Group) const; 279 MoveList createStoreGroups(const AddrList &Group) const; 280 bool move(const MoveGroup &Move) const; 281 void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 282 int ScLen, Value *AlignVal, Value *AlignAddr) const; 283 void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 284 int ScLen, Value *AlignVal, Value *AlignAddr) const; 285 bool realignGroup(const MoveGroup &Move) const; 286 287 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 288 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 289 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B); 290 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 291 292 std::map<Instruction *, AddrList> AddrGroups; 293 const HexagonVectorCombine &HVC; 294 }; 295 296 LLVM_ATTRIBUTE_UNUSED 297 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 298 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 299 OS << "Addr: " << *AI.Addr << '\n'; 300 OS << "Type: " << *AI.ValTy << '\n'; 301 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 302 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 303 OS << "Offset: " << AI.Offset; 304 return OS; 305 } 306 307 LLVM_ATTRIBUTE_UNUSED 308 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 309 OS << "Main\n"; 310 for (Instruction *I : MG.Main) 311 OS << " " << *I << '\n'; 312 OS << "Deps\n"; 313 for (Instruction *I : MG.Deps) 314 OS << " " << *I << '\n'; 315 return OS; 316 } 317 318 LLVM_ATTRIBUTE_UNUSED 319 raw_ostream &operator<<(raw_ostream &OS, 320 const AlignVectors::ByteSpan::Block &B) { 321 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 322 << *B.Seg.Val; 323 return OS; 324 } 325 326 LLVM_ATTRIBUTE_UNUSED 327 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 328 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 329 for (const AlignVectors::ByteSpan::Block &B : BS) 330 OS << B << '\n'; 331 OS << ']'; 332 return OS; 333 } 334 335 class HvxIdioms { 336 public: 337 HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) { 338 auto *Int32Ty = HVC.getIntTy(32); 339 HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false); 340 HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true); 341 } 342 343 bool run(); 344 345 private: 346 enum Signedness { Positive, Signed, Unsigned }; 347 348 // Value + sign 349 // This is to keep track of whether the value should be treated as signed 350 // or unsigned, or is known to be positive. 351 struct SValue { 352 Value *Val; 353 Signedness Sgn; 354 }; 355 356 struct FxpOp { 357 unsigned Opcode; 358 unsigned Frac; // Number of fraction bits 359 SValue X, Y; 360 // If present, add 1 << RoundAt before shift: 361 std::optional<unsigned> RoundAt; 362 }; 363 364 auto getNumSignificantBits(Value *V, Instruction *In) const 365 -> std::pair<unsigned, Signedness>; 366 auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>; 367 368 auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>; 369 auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *; 370 371 auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 372 const FxpOp &Op) const -> Value *; 373 auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 374 bool Rounding) const -> Value *; 375 auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 376 bool Rounding) const -> Value *; 377 // Return {Result, Carry}, where Carry is a vector predicate. 378 auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 379 Value *CarryIn = nullptr) const 380 -> std::pair<Value *, Value *>; 381 auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *; 382 auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 383 -> Value *; 384 auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 385 -> std::pair<Value *, Value *>; 386 auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 387 ArrayRef<Value *> WordY) const -> SmallVector<Value *>; 388 auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 389 Signedness SgnX, ArrayRef<Value *> WordY, 390 Signedness SgnY) const -> SmallVector<Value *>; 391 392 VectorType *HvxI32Ty; 393 VectorType *HvxP32Ty; 394 const HexagonVectorCombine &HVC; 395 396 friend raw_ostream &operator<<(raw_ostream &, const FxpOp &); 397 }; 398 399 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS, 400 const HvxIdioms::FxpOp &Op) { 401 static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"}; 402 OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac; 403 if (Op.RoundAt.has_value()) { 404 if (Op.Frac != 0 && Op.RoundAt.value() == Op.Frac - 1) { 405 OS << ":rnd"; 406 } else { 407 OS << " + 1<<" << Op.RoundAt.value(); 408 } 409 } 410 OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n" 411 << " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val; 412 return OS; 413 } 414 415 } // namespace 416 417 namespace { 418 419 template <typename T> T *getIfUnordered(T *MaybeT) { 420 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 421 } 422 template <typename T> T *isCandidate(Instruction *In) { 423 return dyn_cast<T>(In); 424 } 425 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 426 return getIfUnordered(dyn_cast<LoadInst>(In)); 427 } 428 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 429 return getIfUnordered(dyn_cast<StoreInst>(In)); 430 } 431 432 #if !defined(_MSC_VER) || _MSC_VER >= 1926 433 // VS2017 and some versions of VS2019 have trouble compiling this: 434 // error C2976: 'std::map': too few template arguments 435 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 436 template <typename Pred, typename... Ts> 437 void erase_if(std::map<Ts...> &map, Pred p) 438 #else 439 template <typename Pred, typename T, typename U> 440 void erase_if(std::map<T, U> &map, Pred p) 441 #endif 442 { 443 for (auto i = map.begin(), e = map.end(); i != e;) { 444 if (p(*i)) 445 i = map.erase(i); 446 else 447 i = std::next(i); 448 } 449 } 450 451 // Forward other erase_ifs to the LLVM implementations. 452 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 453 llvm::erase_if(std::forward<T>(container), p); 454 } 455 456 } // namespace 457 458 // --- Begin AlignVectors 459 460 auto AlignVectors::ByteSpan::extent() const -> int { 461 if (size() == 0) 462 return 0; 463 int Min = Blocks[0].Pos; 464 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 465 for (int i = 1, e = size(); i != e; ++i) { 466 Min = std::min(Min, Blocks[i].Pos); 467 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 468 } 469 return Max - Min; 470 } 471 472 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 473 ByteSpan Section; 474 for (const ByteSpan::Block &B : Blocks) { 475 int L = std::max(B.Pos, Start); // Left end. 476 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 477 if (L < R) { 478 // How much to chop off the beginning of the segment: 479 int Off = L > B.Pos ? L - B.Pos : 0; 480 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 481 } 482 } 483 return Section; 484 } 485 486 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 487 for (Block &B : Blocks) 488 B.Pos += Offset; 489 return *this; 490 } 491 492 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 493 SmallVector<Value *, 8> Values(Blocks.size()); 494 for (int i = 0, e = Blocks.size(); i != e; ++i) 495 Values[i] = Blocks[i].Seg.Val; 496 return Values; 497 } 498 499 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 500 const auto *C = dyn_cast<ConstantInt>(V); 501 assert(C && "Alignment must be a compile-time constant integer"); 502 return C->getAlignValue(); 503 } 504 505 auto AlignVectors::getAddrInfo(Instruction &In) const 506 -> std::optional<AddrInfo> { 507 if (auto *L = isCandidate<LoadInst>(&In)) 508 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 509 L->getAlign()); 510 if (auto *S = isCandidate<StoreInst>(&In)) 511 return AddrInfo(HVC, S, S->getPointerOperand(), 512 S->getValueOperand()->getType(), S->getAlign()); 513 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 514 Intrinsic::ID ID = II->getIntrinsicID(); 515 switch (ID) { 516 case Intrinsic::masked_load: 517 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 518 getAlignFromValue(II->getArgOperand(1))); 519 case Intrinsic::masked_store: 520 return AddrInfo(HVC, II, II->getArgOperand(1), 521 II->getArgOperand(0)->getType(), 522 getAlignFromValue(II->getArgOperand(2))); 523 } 524 } 525 return std::nullopt; 526 } 527 528 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 529 return HVC.HST.isTypeForHVX(AI.ValTy); 530 } 531 532 auto AlignVectors::getPayload(Value *Val) const -> Value * { 533 if (auto *In = dyn_cast<Instruction>(Val)) { 534 Intrinsic::ID ID = 0; 535 if (auto *II = dyn_cast<IntrinsicInst>(In)) 536 ID = II->getIntrinsicID(); 537 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 538 return In->getOperand(0); 539 } 540 return Val; 541 } 542 543 auto AlignVectors::getMask(Value *Val) const -> Value * { 544 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 545 switch (II->getIntrinsicID()) { 546 case Intrinsic::masked_load: 547 return II->getArgOperand(2); 548 case Intrinsic::masked_store: 549 return II->getArgOperand(3); 550 } 551 } 552 553 Type *ValTy = getPayload(Val)->getType(); 554 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) 555 return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy))); 556 return HVC.getFullValue(HVC.getBoolTy()); 557 } 558 559 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 560 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 561 if (II->getIntrinsicID() == Intrinsic::masked_load) 562 return II->getArgOperand(3); 563 } 564 return UndefValue::get(getPayload(Val)->getType()); 565 } 566 567 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, 568 Type *ValTy, int Adjust) const 569 -> Value * { 570 // The adjustment is in bytes, but if it's a multiple of the type size, 571 // we don't need to do pointer casts. 572 auto *PtrTy = cast<PointerType>(Ptr->getType()); 573 if (!PtrTy->isOpaque()) { 574 Type *ElemTy = PtrTy->getNonOpaquePointerElementType(); 575 int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc); 576 if (Adjust % ElemSize == 0 && Adjust != 0) { 577 Value *Tmp0 = 578 Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); 579 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 580 } 581 } 582 583 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 584 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 585 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 586 HVC.getConstInt(Adjust)); 587 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 588 } 589 590 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, 591 Type *ValTy, int Alignment) const 592 -> Value * { 593 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 594 Value *Mask = HVC.getConstInt(-Alignment); 595 Value *And = Builder.CreateAnd(AsInt, Mask); 596 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 597 } 598 599 auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, 600 Value *Ptr, int Alignment, Value *Mask, 601 Value *PassThru) const -> Value * { 602 assert(!HVC.isUndef(Mask)); // Should this be allowed? 603 if (HVC.isZero(Mask)) 604 return PassThru; 605 if (Mask == ConstantInt::getTrue(Mask->getType())) 606 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 607 return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru); 608 } 609 610 auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val, 611 Value *Ptr, int Alignment, 612 Value *Mask) const -> Value * { 613 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 614 return UndefValue::get(Val->getType()); 615 if (Mask == ConstantInt::getTrue(Mask->getType())) 616 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 617 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 618 } 619 620 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const 621 -> DepList { 622 BasicBlock *Parent = Base->getParent(); 623 assert(In->getParent() == Parent && 624 "Base and In should be in the same block"); 625 assert(Base->comesBefore(In) && "Base should come before In"); 626 627 DepList Deps; 628 std::deque<Instruction *> WorkQ = {In}; 629 while (!WorkQ.empty()) { 630 Instruction *D = WorkQ.front(); 631 WorkQ.pop_front(); 632 Deps.insert(D); 633 for (Value *Op : D->operands()) { 634 if (auto *I = dyn_cast<Instruction>(Op)) { 635 if (I->getParent() == Parent && Base->comesBefore(I)) 636 WorkQ.push_back(I); 637 } 638 } 639 } 640 return Deps; 641 } 642 643 auto AlignVectors::createAddressGroups() -> bool { 644 // An address group created here may contain instructions spanning 645 // multiple basic blocks. 646 AddrList WorkStack; 647 648 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 649 for (AddrInfo &W : WorkStack) { 650 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 651 return std::make_pair(W.Inst, *D); 652 } 653 return std::make_pair(nullptr, 0); 654 }; 655 656 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 657 BasicBlock &Block = *DomN->getBlock(); 658 for (Instruction &I : Block) { 659 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 660 if (!AI) 661 continue; 662 auto F = findBaseAndOffset(*AI); 663 Instruction *GroupInst; 664 if (Instruction *BI = F.first) { 665 AI->Offset = F.second; 666 GroupInst = BI; 667 } else { 668 WorkStack.push_back(*AI); 669 GroupInst = AI->Inst; 670 } 671 AddrGroups[GroupInst].push_back(*AI); 672 } 673 674 for (DomTreeNode *C : DomN->children()) 675 Visit(C, Visit); 676 677 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 678 WorkStack.pop_back(); 679 }; 680 681 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 682 assert(WorkStack.empty()); 683 684 // AddrGroups are formed. 685 686 // Remove groups of size 1. 687 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 688 // Remove groups that don't use HVX types. 689 erase_if(AddrGroups, [&](auto &G) { 690 return llvm::none_of( 691 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 692 }); 693 694 return !AddrGroups.empty(); 695 } 696 697 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 698 // Form load groups. 699 // To avoid complications with moving code across basic blocks, only form 700 // groups that are contained within a single basic block. 701 702 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 703 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 704 // Don't mix HVX and non-HVX instructions. 705 if (Move.IsHvx != isHvx(Info)) 706 return false; 707 // Leading instruction in the load group. 708 Instruction *Base = Move.Main.front(); 709 if (Base->getParent() != Info.Inst->getParent()) 710 return false; 711 712 auto isSafeToMoveToBase = [&](const Instruction *I) { 713 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 714 }; 715 DepList Deps = getUpwardDeps(Info.Inst, Base); 716 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 717 return false; 718 719 // The dependencies will be moved together with the load, so make sure 720 // that none of them could be moved independently in another group. 721 Deps.erase(Info.Inst); 722 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 723 if (llvm::any_of(Deps, inAddrMap)) 724 return false; 725 Move.Main.push_back(Info.Inst); 726 llvm::append_range(Move.Deps, Deps); 727 return true; 728 }; 729 730 MoveList LoadGroups; 731 732 for (const AddrInfo &Info : Group) { 733 if (!Info.Inst->mayReadFromMemory()) 734 continue; 735 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 736 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 737 } 738 739 // Erase singleton groups. 740 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 741 return LoadGroups; 742 } 743 744 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 745 // Form store groups. 746 // To avoid complications with moving code across basic blocks, only form 747 // groups that are contained within a single basic block. 748 749 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 750 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 751 // For stores with return values we'd have to collect downward depenencies. 752 // There are no such stores that we handle at the moment, so omit that. 753 assert(Info.Inst->getType()->isVoidTy() && 754 "Not handling stores with return values"); 755 // Don't mix HVX and non-HVX instructions. 756 if (Move.IsHvx != isHvx(Info)) 757 return false; 758 // For stores we need to be careful whether it's safe to move them. 759 // Stores that are otherwise safe to move together may not appear safe 760 // to move over one another (i.e. isSafeToMoveBefore may return false). 761 Instruction *Base = Move.Main.front(); 762 if (Base->getParent() != Info.Inst->getParent()) 763 return false; 764 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 765 return false; 766 Move.Main.push_back(Info.Inst); 767 return true; 768 }; 769 770 MoveList StoreGroups; 771 772 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 773 const AddrInfo &Info = *I; 774 if (!Info.Inst->mayWriteToMemory()) 775 continue; 776 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 777 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 778 } 779 780 // Erase singleton groups. 781 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 782 return StoreGroups; 783 } 784 785 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 786 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 787 Instruction *Where = Move.Main.front(); 788 789 if (Move.IsLoad) { 790 // Move all deps to before Where, keeping order. 791 for (Instruction *D : Move.Deps) 792 D->moveBefore(Where); 793 // Move all main instructions to after Where, keeping order. 794 ArrayRef<Instruction *> Main(Move.Main); 795 for (Instruction *M : Main.drop_front(1)) { 796 M->moveAfter(Where); 797 Where = M; 798 } 799 } else { 800 // NOTE: Deps are empty for "store" groups. If they need to be 801 // non-empty, decide on the order. 802 assert(Move.Deps.empty()); 803 // Move all main instructions to before Where, inverting order. 804 ArrayRef<Instruction *> Main(Move.Main); 805 for (Instruction *M : Main.drop_front(1)) { 806 M->moveBefore(Where); 807 Where = M; 808 } 809 } 810 811 return Move.Main.size() + Move.Deps.size() > 1; 812 } 813 814 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder, 815 const ByteSpan &VSpan, int ScLen, 816 Value *AlignVal, Value *AlignAddr) const 817 -> void { 818 Type *SecTy = HVC.getByteTy(ScLen); 819 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 820 bool DoAlign = !HVC.isZero(AlignVal); 821 BasicBlock::iterator BasePos = Builder.GetInsertPoint(); 822 BasicBlock *BaseBlock = Builder.GetInsertBlock(); 823 824 ByteSpan ASpan; 825 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 826 auto *Undef = UndefValue::get(SecTy); 827 828 SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr); 829 830 // We could create all of the aligned loads, and generate the valigns 831 // at the location of the first load, but for large load groups, this 832 // could create highly suboptimal code (there have been groups of 140+ 833 // loads in real code). 834 // Instead, place the loads/valigns as close to the users as possible. 835 // In any case we need to have a mapping from the blocks of VSpan (the 836 // span covered by the pre-existing loads) to ASpan (the span covered 837 // by the aligned loads). There is a small problem, though: ASpan needs 838 // to have pointers to the loads/valigns, but we don't know where to put 839 // them yet. We can't use nullptr, because when we create sections of 840 // ASpan (corresponding to blocks from VSpan), for each block in the 841 // section we need to know which blocks of ASpan they are a part of. 842 // To have 1-1 mapping between blocks of ASpan and the temporary value 843 // pointers, use the addresses of the blocks themselves. 844 845 // Populate the blocks first, to avoid reallocations of the vector 846 // interfering with generating the placeholder addresses. 847 for (int Index = 0; Index != NumSectors; ++Index) 848 ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen); 849 for (int Index = 0; Index != NumSectors; ++Index) { 850 ASpan.Blocks[Index].Seg.Val = 851 reinterpret_cast<Value *>(&ASpan.Blocks[Index]); 852 } 853 854 // Multiple values from VSpan can map to the same value in ASpan. Since we 855 // try to create loads lazily, we need to find the earliest use for each 856 // value from ASpan. 857 DenseMap<void *, Instruction *> EarliestUser; 858 auto isEarlier = [](Instruction *A, Instruction *B) { 859 if (B == nullptr) 860 return true; 861 if (A == nullptr) 862 return false; 863 assert(A->getParent() == B->getParent()); 864 return A->comesBefore(B); 865 }; 866 auto earliestUser = [&](const auto &Uses) { 867 Instruction *User = nullptr; 868 for (const Use &U : Uses) { 869 auto *I = dyn_cast<Instruction>(U.getUser()); 870 assert(I != nullptr && "Load used in a non-instruction?"); 871 // Make sure we only consider at users in this block, but we need 872 // to remember if there were users outside the block too. This is 873 // because if there are no users, aligned loads will not be created. 874 if (I->getParent() == BaseBlock) { 875 if (!isa<PHINode>(I)) 876 User = std::min(User, I, isEarlier); 877 } else { 878 User = std::min(User, BaseBlock->getTerminator(), isEarlier); 879 } 880 } 881 return User; 882 }; 883 884 for (const ByteSpan::Block &B : VSpan) { 885 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size); 886 for (const ByteSpan::Block &S : ASection) { 887 EarliestUser[S.Seg.Val] = std::min( 888 EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier); 889 } 890 } 891 892 auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan, 893 int Index) { 894 Value *Ptr = 895 createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 896 // FIXME: generate a predicated load? 897 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 898 // If vector shifting is potentially needed, accumulate metadata 899 // from source sections of twice the load width. 900 int Start = (Index - DoAlign) * ScLen; 901 int Width = (1 + DoAlign) * ScLen; 902 propagateMetadata(cast<Instruction>(Load), 903 VSpan.section(Start, Width).values()); 904 return cast<Instruction>(Load); 905 }; 906 907 auto moveBefore = [this](Instruction *In, Instruction *To) { 908 // Move In and its upward dependencies to before To. 909 assert(In->getParent() == To->getParent()); 910 DepList Deps = getUpwardDeps(In, To); 911 // DepList is sorted with respect to positions in the basic block. 912 for (Instruction *I : Deps) 913 I->moveBefore(To); 914 }; 915 916 // Generate necessary loads at appropriate locations. 917 for (int Index = 0; Index != NumSectors + 1; ++Index) { 918 // In ASpan, each block will be either a single aligned load, or a 919 // valign of a pair of loads. In the latter case, an aligned load j 920 // will belong to the current valign, and the one in the previous 921 // block (for j > 0). 922 Instruction *PrevAt = 923 DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr; 924 Instruction *ThisAt = 925 Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr; 926 if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) { 927 Builder.SetInsertPoint(Where); 928 Loads[Index] = createLoad(Builder, VSpan, Index); 929 // We know it's safe to put the load at BasePos, so if it's not safe 930 // to move it from this location to BasePos, then the current location 931 // is not valid. 932 // We can't do this check proactively because we need the load to exist 933 // in order to check legality. 934 if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos)) 935 moveBefore(Loads[Index], &*BasePos); 936 } 937 } 938 // Generate valigns if needed, and fill in proper values in ASpan 939 for (int Index = 0; Index != NumSectors; ++Index) { 940 ASpan[Index].Seg.Val = nullptr; 941 if (auto *Where = EarliestUser[&ASpan[Index]]) { 942 Builder.SetInsertPoint(Where); 943 Value *Val = Loads[Index]; 944 assert(Val != nullptr); 945 if (DoAlign) { 946 Value *NextLoad = Loads[Index + 1]; 947 assert(NextLoad != nullptr); 948 Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal); 949 } 950 ASpan[Index].Seg.Val = Val; 951 } 952 } 953 954 for (const ByteSpan::Block &B : VSpan) { 955 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 956 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 957 Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val)); 958 959 for (ByteSpan::Block &S : ASection) { 960 if (S.Seg.Val == nullptr) 961 continue; 962 // The processing of the data loaded by the aligned loads 963 // needs to be inserted after the data is available. 964 Instruction *SegI = cast<Instruction>(S.Seg.Val); 965 Builder.SetInsertPoint(&*std::next(SegI->getIterator())); 966 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 967 Accum = HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 968 } 969 // Instead of casting everything to bytes for the vselect, cast to the 970 // original value type. This will avoid complications with casting masks. 971 // For example, in cases when the original mask applied to i32, it could 972 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 973 // but if the mask is not exactly of HVX length, extra handling would be 974 // needed to make it work. 975 Type *ValTy = getPayload(B.Seg.Val)->getType(); 976 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 977 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 978 getPassThrough(B.Seg.Val)); 979 B.Seg.Val->replaceAllUsesWith(Sel); 980 } 981 } 982 983 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder, 984 const ByteSpan &VSpan, int ScLen, 985 Value *AlignVal, Value *AlignAddr) const 986 -> void { 987 Type *SecTy = HVC.getByteTy(ScLen); 988 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 989 bool DoAlign = !HVC.isZero(AlignVal); 990 991 // Stores. 992 ByteSpan ASpanV, ASpanM; 993 994 // Return a vector value corresponding to the input value Val: 995 // either <1 x Val> for scalar Val, or Val itself for vector Val. 996 auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * { 997 Type *Ty = Val->getType(); 998 if (Ty->isVectorTy()) 999 return Val; 1000 auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false); 1001 return Builder.CreateBitCast(Val, VecTy); 1002 }; 1003 1004 // Create an extra "undef" sector at the beginning and at the end. 1005 // They will be used as the left/right filler in the vlalign step. 1006 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { 1007 // For stores, the size of each section is an aligned vector length. 1008 // Adjust the store offsets relative to the section start offset. 1009 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); 1010 Value *AccumV = UndefValue::get(SecTy); 1011 Value *AccumM = HVC.getNullValue(SecTy); 1012 for (ByteSpan::Block &S : VSection) { 1013 Value *Pay = getPayload(S.Seg.Val); 1014 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 1015 Pay->getType(), HVC.getByteTy()); 1016 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 1017 S.Seg.Start, S.Seg.Size, S.Pos); 1018 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 1019 S.Seg.Start, S.Seg.Size, S.Pos); 1020 } 1021 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 1022 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 1023 } 1024 1025 // vlalign 1026 if (DoAlign) { 1027 for (int j = 1; j != NumSectors + 2; ++j) { 1028 Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val; 1029 Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val; 1030 assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType())); 1031 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal); 1032 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal); 1033 } 1034 } 1035 1036 for (int i = 0; i != NumSectors + DoAlign; ++i) { 1037 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 1038 Value *Val = ASpanV[i].Seg.Val; 1039 Value *Mask = ASpanM[i].Seg.Val; // bytes 1040 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { 1041 Value *Store = 1042 createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask)); 1043 // If vector shifting is potentially needed, accumulate metadata 1044 // from source sections of twice the store width. 1045 int Start = (i - DoAlign) * ScLen; 1046 int Width = (1 + DoAlign) * ScLen; 1047 propagateMetadata(cast<Instruction>(Store), 1048 VSpan.section(Start, Width).values()); 1049 } 1050 } 1051 } 1052 1053 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 1054 // TODO: Needs support for masked loads/stores of "scalar" vectors. 1055 if (!Move.IsHvx) 1056 return false; 1057 1058 // Return the element with the maximum alignment from Range, 1059 // where GetValue obtains the value to compare from an element. 1060 auto getMaxOf = [](auto Range, auto GetValue) { 1061 return *std::max_element( 1062 Range.begin(), Range.end(), 1063 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 1064 }; 1065 1066 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 1067 1068 // Conceptually, there is a vector of N bytes covering the addresses 1069 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 1070 // represents a contiguous memory region that spans all accessed memory 1071 // locations. 1072 // The correspondence between loaded or stored values will be expressed 1073 // in terms of this vector. For example, the 0th element of the vector 1074 // from the Base address info will start at byte Start from the beginning 1075 // of this conceptual vector. 1076 // 1077 // This vector will be loaded/stored starting at the nearest down-aligned 1078 // address and the amount od the down-alignment will be AlignVal: 1079 // valign(load_vector(align_down(Base+Start)), AlignVal) 1080 1081 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 1082 AddrList MoveInfos; 1083 llvm::copy_if( 1084 BaseInfos, std::back_inserter(MoveInfos), 1085 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 1086 1087 // Maximum alignment present in the whole address group. 1088 const AddrInfo &WithMaxAlign = 1089 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 1090 Align MaxGiven = WithMaxAlign.HaveAlign; 1091 1092 // Minimum alignment present in the move address group. 1093 const AddrInfo &WithMinOffset = 1094 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 1095 1096 const AddrInfo &WithMaxNeeded = 1097 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 1098 Align MinNeeded = WithMaxNeeded.NeedAlign; 1099 1100 // Set the builder's insertion point right before the load group, or 1101 // immediately after the store group. (Instructions in a store group are 1102 // listed in reverse order.) 1103 Instruction *InsertAt = Move.Main.front(); 1104 if (!Move.IsLoad) { 1105 // There should be a terminator (which store isn't, but check anyways). 1106 assert(InsertAt->getIterator() != InsertAt->getParent()->end()); 1107 InsertAt = &*std::next(InsertAt->getIterator()); 1108 } 1109 1110 IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(), 1111 InstSimplifyFolder(HVC.DL)); 1112 Value *AlignAddr = nullptr; // Actual aligned address. 1113 Value *AlignVal = nullptr; // Right-shift amount (for valign). 1114 1115 if (MinNeeded <= MaxGiven) { 1116 int Start = WithMinOffset.Offset; 1117 int OffAtMax = WithMaxAlign.Offset; 1118 // Shift the offset of the maximally aligned instruction (OffAtMax) 1119 // back by just enough multiples of the required alignment to cover the 1120 // distance from Start to OffAtMax. 1121 // Calculate the address adjustment amount based on the address with the 1122 // maximum alignment. This is to allow a simple gep instruction instead 1123 // of potential bitcasts to i8*. 1124 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 1125 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 1126 WithMaxAlign.ValTy, Adjust); 1127 int Diff = Start - (OffAtMax + Adjust); 1128 AlignVal = HVC.getConstInt(Diff); 1129 assert(Diff >= 0); 1130 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 1131 } else { 1132 // WithMinOffset is the lowest address in the group, 1133 // WithMinOffset.Addr = Base+Start. 1134 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 1135 // mask off unnecessary bits, so it's ok to just the original pointer as 1136 // the alignment amount. 1137 // Do an explicit down-alignment of the address to avoid creating an 1138 // aligned instruction with an address that is not really aligned. 1139 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 1140 WithMinOffset.ValTy, MinNeeded.value()); 1141 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 1142 } 1143 1144 ByteSpan VSpan; 1145 for (const AddrInfo &AI : MoveInfos) { 1146 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 1147 AI.Offset - WithMinOffset.Offset); 1148 } 1149 1150 // The aligned loads/stores will use blocks that are either scalars, 1151 // or HVX vectors. Let "sector" be the unified term for such a block. 1152 // blend(scalar, vector) -> sector... 1153 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 1154 : std::max<int>(MinNeeded.value(), 4); 1155 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 1156 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 1157 1158 if (Move.IsLoad) 1159 realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1160 else 1161 realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1162 1163 for (auto *Inst : Move.Main) 1164 Inst->eraseFromParent(); 1165 1166 return true; 1167 } 1168 1169 auto AlignVectors::isSectorTy(Type *Ty) const -> bool { 1170 if (!HVC.isByteVecTy(Ty)) 1171 return false; 1172 int Size = HVC.getSizeOf(Ty); 1173 if (HVC.HST.isTypeForHVX(Ty)) 1174 return Size == static_cast<int>(HVC.HST.getVectorLength()); 1175 return Size == 4 || Size == 8; 1176 } 1177 1178 auto AlignVectors::run() -> bool { 1179 if (!createAddressGroups()) 1180 return false; 1181 1182 bool Changed = false; 1183 MoveList LoadGroups, StoreGroups; 1184 1185 for (auto &G : AddrGroups) { 1186 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 1187 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 1188 } 1189 1190 for (auto &M : LoadGroups) 1191 Changed |= move(M); 1192 for (auto &M : StoreGroups) 1193 Changed |= move(M); 1194 1195 for (auto &M : LoadGroups) 1196 Changed |= realignGroup(M); 1197 for (auto &M : StoreGroups) 1198 Changed |= realignGroup(M); 1199 1200 return Changed; 1201 } 1202 1203 // --- End AlignVectors 1204 1205 // --- Begin HvxIdioms 1206 1207 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const 1208 -> std::pair<unsigned, Signedness> { 1209 unsigned Bits = HVC.getNumSignificantBits(V, In); 1210 // The significant bits are calculated including the sign bit. This may 1211 // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may 1212 // result in 33 significant bits. To avoid extra words, skip the extra 1213 // sign bit, but keep information that the value is to be treated as 1214 // unsigned. 1215 KnownBits Known = HVC.getKnownBits(V, In); 1216 Signedness Sign = Signed; 1217 unsigned NumToTest = 0; // Number of bits used in test for unsignedness. 1218 if (isPowerOf2_32(Bits)) 1219 NumToTest = Bits; 1220 else if (Bits > 1 && isPowerOf2_32(Bits - 1)) 1221 NumToTest = Bits - 1; 1222 1223 if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) { 1224 Sign = Unsigned; 1225 Bits = NumToTest; 1226 } 1227 1228 // If the top bit of the nearest power-of-2 is zero, this value is 1229 // positive. It could be treated as either signed or unsigned. 1230 if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) { 1231 if (Known.Zero.ashr(Pow2 - 1).isAllOnes()) 1232 Sign = Positive; 1233 } 1234 return {Bits, Sign}; 1235 } 1236 1237 auto HvxIdioms::canonSgn(SValue X, SValue Y) const 1238 -> std::pair<SValue, SValue> { 1239 // Canonicalize the signedness of X and Y, so that the result is one of: 1240 // S, S 1241 // U/P, S 1242 // U/P, U/P 1243 if (X.Sgn == Signed && Y.Sgn != Signed) 1244 std::swap(X, Y); 1245 return {X, Y}; 1246 } 1247 1248 // Match 1249 // (X * Y) [>> N], or 1250 // ((X * Y) + (1 << N-1)) >> N 1251 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> { 1252 using namespace PatternMatch; 1253 auto *Ty = In.getType(); 1254 1255 if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy()) 1256 return std::nullopt; 1257 1258 unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth(); 1259 1260 FxpOp Op; 1261 Value *Exp = &In; 1262 1263 // Fixed-point multiplication is always shifted right (except when the 1264 // fraction is 0 bits). 1265 auto m_Shr = [](auto &&V, auto &&S) { 1266 return m_CombineOr(m_LShr(V, S), m_AShr(V, S)); 1267 }; 1268 1269 const APInt *Qn = nullptr; 1270 if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) { 1271 Op.Frac = Qn->getZExtValue(); 1272 Exp = T; 1273 } else { 1274 Op.Frac = 0; 1275 } 1276 1277 if (Op.Frac > Width) 1278 return std::nullopt; 1279 1280 // Check if there is rounding added. 1281 const APInt *C = nullptr; 1282 if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) { 1283 unsigned CV = C->getZExtValue(); 1284 if (CV != 0 && !isPowerOf2_32(CV)) 1285 return std::nullopt; 1286 if (CV != 0) 1287 Op.RoundAt = Log2_32(CV); 1288 Exp = T; 1289 } 1290 1291 // Check if the rest is a multiplication. 1292 if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) { 1293 Op.Opcode = Instruction::Mul; 1294 // FIXME: The information below is recomputed. 1295 Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second; 1296 Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second; 1297 return Op; 1298 } 1299 1300 return std::nullopt; 1301 } 1302 1303 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const 1304 -> Value * { 1305 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1306 1307 auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType()); 1308 if (VecTy == nullptr) 1309 return nullptr; 1310 auto *ElemTy = cast<IntegerType>(VecTy->getElementType()); 1311 unsigned ElemWidth = ElemTy->getBitWidth(); 1312 1313 // TODO: This can be relaxed after legalization is done pre-isel. 1314 if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0) 1315 return nullptr; 1316 1317 // There are no special intrinsics that should be used for multiplying 1318 // signed 8-bit values, so just skip them. Normal codegen should handle 1319 // this just fine. 1320 if (ElemWidth <= 8) 1321 return nullptr; 1322 // Similarly, if this is just a multiplication that can be handled without 1323 // intervention, then leave it alone. 1324 if (ElemWidth <= 32 && Op.Frac == 0) 1325 return nullptr; 1326 1327 auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In); 1328 auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In); 1329 1330 // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes). 1331 1332 Value *X = Op.X.Val, *Y = Op.Y.Val; 1333 IRBuilder Builder(In.getParent(), In.getIterator(), 1334 InstSimplifyFolder(HVC.DL)); 1335 1336 auto roundUpWidth = [](unsigned Width) -> unsigned { 1337 if (Width <= 32 && !isPowerOf2_32(Width)) { 1338 // If the element width is not a power of 2, round it up 1339 // to the next one. Do this for widths not exceeding 32. 1340 return PowerOf2Ceil(Width); 1341 } 1342 if (Width > 32 && Width % 32 != 0) { 1343 // For wider elements, round it up to the multiple of 32. 1344 return alignTo(Width, 32u); 1345 } 1346 return Width; 1347 }; 1348 1349 BitsX = roundUpWidth(BitsX); 1350 BitsY = roundUpWidth(BitsY); 1351 1352 // For elementwise multiplication vectors must have the same lengths, so 1353 // resize the elements of both inputs to the same width, the max of the 1354 // calculated significant bits. 1355 unsigned Width = std::max(BitsX, BitsY); 1356 1357 auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy); 1358 if (Width < ElemWidth) { 1359 X = Builder.CreateTrunc(X, ResizeTy); 1360 Y = Builder.CreateTrunc(Y, ResizeTy); 1361 } else if (Width > ElemWidth) { 1362 X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy) 1363 : Builder.CreateZExt(X, ResizeTy); 1364 Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy) 1365 : Builder.CreateZExt(Y, ResizeTy); 1366 }; 1367 1368 assert(X->getType() == Y->getType() && X->getType() == ResizeTy); 1369 1370 unsigned VecLen = HVC.length(ResizeTy); 1371 unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u); 1372 1373 SmallVector<Value *> Results; 1374 FxpOp ChopOp = Op; 1375 1376 for (unsigned V = 0; V != VecLen / ChopLen; ++V) { 1377 ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen); 1378 ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen); 1379 Results.push_back(processFxpMulChopped(Builder, In, ChopOp)); 1380 if (Results.back() == nullptr) 1381 break; 1382 } 1383 1384 if (Results.back() == nullptr) 1385 return nullptr; 1386 1387 Value *Cat = HVC.concat(Builder, Results); 1388 Value *Ext = SignX == Signed || SignY == Signed 1389 ? Builder.CreateSExt(Cat, VecTy) 1390 : Builder.CreateZExt(Cat, VecTy); 1391 return Ext; 1392 } 1393 1394 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 1395 const FxpOp &Op) const -> Value * { 1396 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1397 auto *InpTy = cast<VectorType>(Op.X.Val->getType()); 1398 unsigned Width = InpTy->getScalarSizeInBits(); 1399 bool Rounding = Op.RoundAt.has_value(); 1400 1401 if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) { 1402 // The fixed-point intrinsics do signed multiplication. 1403 if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) { 1404 Value *QMul = nullptr; 1405 if (Width == 16) { 1406 QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding); 1407 } else if (Width == 32) { 1408 QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding); 1409 } 1410 if (QMul != nullptr) 1411 return QMul; 1412 } 1413 } 1414 1415 assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n 1416 assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k 1417 1418 // If Width < 32, then it should really be 16. 1419 if (Width < 32) { 1420 if (Width < 16) 1421 return nullptr; 1422 // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we 1423 // generate a full precision products, which is unnecessary if there is 1424 // no shift. 1425 assert(Width == 16); 1426 assert(Op.Frac != 0 && "Unshifted mul should have been skipped"); 1427 if (Op.Frac == 16) { 1428 // Multiply high 1429 if (Value *MulH = createMulH16(Builder, Op.X, Op.Y)) 1430 return MulH; 1431 } 1432 // Do full-precision multiply and shift. 1433 Value *Prod32 = createMul16(Builder, Op.X, Op.Y); 1434 if (Rounding) { 1435 Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt); 1436 Prod32 = Builder.CreateAdd(Prod32, RoundVal); 1437 } 1438 1439 Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac); 1440 Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed 1441 ? Builder.CreateAShr(Prod32, ShiftAmt) 1442 : Builder.CreateLShr(Prod32, ShiftAmt); 1443 return Builder.CreateTrunc(Shifted, InpTy); 1444 } 1445 1446 // Width >= 32 1447 1448 // Break up the arguments Op.X and Op.Y into vectors of smaller widths 1449 // in preparation of doing the multiplication by 32-bit parts. 1450 auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32); 1451 auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32); 1452 auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn); 1453 1454 auto *HvxWordTy = cast<VectorType>(WordP.front()->getType()); 1455 1456 // Add the optional rounding to the proper word. 1457 if (Op.RoundAt.has_value()) { 1458 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1459 SmallVector<Value *> RoundV(WordP.size(), Zero); 1460 RoundV[*Op.RoundAt / 32] = 1461 HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32)); 1462 WordP = createAddLong(Builder, WordP, RoundV); 1463 } 1464 1465 // createRightShiftLong? 1466 1467 // Shift all products right by Op.Frac. 1468 unsigned SkipWords = Op.Frac / 32; 1469 Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32); 1470 1471 for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) { 1472 int Src = Dst + SkipWords; 1473 Value *Lo = WordP[Src]; 1474 if (Src + 1 < End) { 1475 Value *Hi = WordP[Src + 1]; 1476 WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr, 1477 {Hi, Lo, ShiftAmt}); 1478 } else { 1479 // The shift of the most significant word. 1480 WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt); 1481 } 1482 } 1483 if (SkipWords != 0) 1484 WordP.resize(WordP.size() - SkipWords); 1485 1486 return HVC.joinVectorElements(Builder, WordP, InpTy); 1487 } 1488 1489 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 1490 bool Rounding) const -> Value * { 1491 assert(X.Val->getType() == Y.Val->getType()); 1492 assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16)); 1493 assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false))); 1494 1495 // There is no non-rounding intrinsic for i16. 1496 if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned) 1497 return nullptr; 1498 1499 auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs); 1500 return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(), 1501 {X.Val, Y.Val}); 1502 } 1503 1504 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 1505 bool Rounding) const -> Value * { 1506 Type *InpTy = X.Val->getType(); 1507 assert(InpTy == Y.Val->getType()); 1508 assert(InpTy->getScalarType() == HVC.getIntTy(32)); 1509 assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false))); 1510 1511 if (X.Sgn == Unsigned || Y.Sgn == Unsigned) 1512 return nullptr; 1513 1514 auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh); 1515 auto V6_vmpyo_acc = Rounding 1516 ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc) 1517 : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc); 1518 Value *V1 = 1519 HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val}); 1520 return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy, 1521 {V1, X.Val, Y.Val}); 1522 } 1523 1524 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 1525 Value *CarryIn) const 1526 -> std::pair<Value *, Value *> { 1527 assert(X->getType() == Y->getType()); 1528 auto VecTy = cast<VectorType>(X->getType()); 1529 if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) { 1530 SmallVector<Value *> Args = {X, Y}; 1531 Intrinsic::ID AddCarry; 1532 if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) { 1533 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo); 1534 } else { 1535 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry); 1536 if (CarryIn == nullptr) 1537 CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy))); 1538 Args.push_back(CarryIn); 1539 } 1540 Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry, 1541 /*RetTy=*/nullptr, Args); 1542 Value *Result = Builder.CreateExtractValue(Ret, {0}); 1543 Value *CarryOut = Builder.CreateExtractValue(Ret, {1}); 1544 return {Result, CarryOut}; 1545 } 1546 1547 // In other cases, do a regular add, and unsigned compare-less-than. 1548 // The carry-out can originate in two places: adding the carry-in or adding 1549 // the two input values. 1550 Value *Result1 = X; // Result1 = X + CarryIn 1551 if (CarryIn != nullptr) { 1552 unsigned Width = VecTy->getScalarSizeInBits(); 1553 uint32_t Mask = 1; 1554 if (Width < 32) { 1555 for (unsigned i = 0, e = 32 / Width; i != e; ++i) 1556 Mask = (Mask << Width) | 1; 1557 } 1558 auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt); 1559 Value *ValueIn = 1560 HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr, 1561 {CarryIn, HVC.getConstInt(Mask)}); 1562 Result1 = Builder.CreateAdd(X, ValueIn); 1563 } 1564 1565 Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X); 1566 Value *Result2 = Builder.CreateAdd(Result1, Y); 1567 Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y); 1568 return {Result2, Builder.CreateOr(CarryOut1, CarryOut2)}; 1569 } 1570 1571 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const 1572 -> Value * { 1573 Intrinsic::ID V6_vmpyh = 0; 1574 std::tie(X, Y) = canonSgn(X, Y); 1575 1576 if (X.Sgn == Signed) { 1577 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv); 1578 } else if (Y.Sgn == Signed) { 1579 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus); 1580 } else { 1581 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv); 1582 } 1583 1584 // i16*i16 -> i32 / interleaved 1585 Value *P = 1586 HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {X.Val, Y.Val}); 1587 // Deinterleave 1588 return HVC.vdeal(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P)); 1589 } 1590 1591 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 1592 -> Value * { 1593 Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false); 1594 1595 if (HVC.HST.useHVXV69Ops()) { 1596 if (X.Sgn != Signed && Y.Sgn != Signed) { 1597 auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs); 1598 return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty, 1599 {X.Val, Y.Val}); 1600 } 1601 } 1602 1603 Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true); 1604 Value *Pair16 = Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty); 1605 unsigned Len = HVC.length(HvxP16Ty) / 2; 1606 1607 SmallVector<int, 128> PickOdd(Len); 1608 for (int i = 0; i != static_cast<int>(Len); ++i) 1609 PickOdd[i] = 2 * i + 1; 1610 1611 return Builder.CreateShuffleVector(HVC.sublo(Builder, Pair16), 1612 HVC.subhi(Builder, Pair16), PickOdd); 1613 } 1614 1615 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 1616 -> std::pair<Value *, Value *> { 1617 assert(X.Val->getType() == Y.Val->getType()); 1618 assert(X.Val->getType() == HvxI32Ty); 1619 1620 Intrinsic::ID V6_vmpy_parts; 1621 std::tie(X, Y) = canonSgn(X, Y); 1622 1623 if (X.Sgn == Signed) { 1624 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts; 1625 } else if (Y.Sgn == Signed) { 1626 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts; 1627 } else { 1628 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts; 1629 } 1630 1631 Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr, 1632 {X.Val, Y.Val}, {HvxI32Ty}); 1633 Value *Hi = Builder.CreateExtractValue(Parts, {0}); 1634 Value *Lo = Builder.CreateExtractValue(Parts, {1}); 1635 return {Lo, Hi}; 1636 } 1637 1638 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1639 ArrayRef<Value *> WordY) const 1640 -> SmallVector<Value *> { 1641 assert(WordX.size() == WordY.size()); 1642 unsigned Idx = 0, Length = WordX.size(); 1643 SmallVector<Value *> Sum(Length); 1644 1645 while (Idx != Length) { 1646 if (HVC.isZero(WordX[Idx])) 1647 Sum[Idx] = WordY[Idx]; 1648 else if (HVC.isZero(WordY[Idx])) 1649 Sum[Idx] = WordX[Idx]; 1650 else 1651 break; 1652 ++Idx; 1653 } 1654 1655 Value *Carry = nullptr; 1656 for (; Idx != Length; ++Idx) { 1657 std::tie(Sum[Idx], Carry) = 1658 createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry); 1659 } 1660 1661 // This drops the final carry beyond the highest word. 1662 return Sum; 1663 } 1664 1665 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1666 Signedness SgnX, ArrayRef<Value *> WordY, 1667 Signedness SgnY) const -> SmallVector<Value *> { 1668 SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size()); 1669 1670 // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results, 1671 // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3. 1672 for (int i = 0, e = WordX.size(); i != e; ++i) { 1673 for (int j = 0, f = WordY.size(); j != f; ++j) { 1674 // Check the 4 halves that this multiplication can generate. 1675 Signedness SX = (i + 1 == e) ? SgnX : Unsigned; 1676 Signedness SY = (j + 1 == f) ? SgnY : Unsigned; 1677 auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY}); 1678 Products[i + j + 0].push_back(Lo); 1679 Products[i + j + 1].push_back(Hi); 1680 } 1681 } 1682 1683 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1684 1685 auto pop_back_or_zero = [Zero](auto &Vector) -> Value * { 1686 if (Vector.empty()) 1687 return Zero; 1688 auto Last = Vector.back(); 1689 Vector.pop_back(); 1690 return Last; 1691 }; 1692 1693 for (int i = 0, e = Products.size(); i != e; ++i) { 1694 while (Products[i].size() > 1) { 1695 Value *Carry = nullptr; // no carry-in 1696 for (int j = i; j != e; ++j) { 1697 auto &ProdJ = Products[j]; 1698 auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ), 1699 pop_back_or_zero(ProdJ), Carry); 1700 ProdJ.insert(ProdJ.begin(), Sum); 1701 Carry = CarryOut; 1702 } 1703 } 1704 } 1705 1706 SmallVector<Value *> WordP; 1707 for (auto &P : Products) { 1708 assert(P.size() == 1 && "Should have been added together"); 1709 WordP.push_back(P.front()); 1710 } 1711 1712 return WordP; 1713 } 1714 1715 auto HvxIdioms::run() -> bool { 1716 bool Changed = false; 1717 1718 for (BasicBlock &B : HVC.F) { 1719 for (auto It = B.rbegin(); It != B.rend(); ++It) { 1720 if (auto Fxm = matchFxpMul(*It)) { 1721 Value *New = processFxpMul(*It, *Fxm); 1722 // Always report "changed" for now. 1723 Changed = true; 1724 if (!New) 1725 continue; 1726 bool StartOver = !isa<Instruction>(New); 1727 It->replaceAllUsesWith(New); 1728 RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI); 1729 It = StartOver ? B.rbegin() 1730 : cast<Instruction>(New)->getReverseIterator(); 1731 Changed = true; 1732 } 1733 } 1734 } 1735 1736 return Changed; 1737 } 1738 1739 // --- End HvxIdioms 1740 1741 auto HexagonVectorCombine::run() -> bool { 1742 if (!HST.useHVXOps()) 1743 return false; 1744 1745 bool Changed = false; 1746 Changed |= AlignVectors(*this).run(); 1747 Changed |= HvxIdioms(*this).run(); 1748 1749 return Changed; 1750 } 1751 1752 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * { 1753 return IntegerType::get(F.getContext(), Width); 1754 } 1755 1756 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 1757 assert(ElemCount >= 0); 1758 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 1759 if (ElemCount == 0) 1760 return ByteTy; 1761 return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false); 1762 } 1763 1764 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 1765 assert(ElemCount >= 0); 1766 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 1767 if (ElemCount == 0) 1768 return BoolTy; 1769 return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false); 1770 } 1771 1772 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const 1773 -> ConstantInt * { 1774 return ConstantInt::getSigned(getIntTy(Width), Val); 1775 } 1776 1777 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 1778 if (auto *C = dyn_cast<Constant>(Val)) 1779 return C->isZeroValue(); 1780 return false; 1781 } 1782 1783 auto HexagonVectorCombine::getIntValue(const Value *Val) const 1784 -> std::optional<APInt> { 1785 if (auto *CI = dyn_cast<ConstantInt>(Val)) 1786 return CI->getValue(); 1787 return std::nullopt; 1788 } 1789 1790 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 1791 return isa<UndefValue>(Val); 1792 } 1793 1794 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const 1795 -> VectorType * { 1796 EVT ETy = EVT::getEVT(ElemTy, false); 1797 assert(ETy.isSimple() && "Invalid HVX element type"); 1798 // Do not allow boolean types here: they don't have a fixed length. 1799 assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) && 1800 "Invalid HVX element type"); 1801 unsigned HwLen = HST.getVectorLength(); 1802 unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits(); 1803 return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems, 1804 /*Scalable=*/false); 1805 } 1806 1807 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const 1808 -> int { 1809 return getSizeOf(Val->getType(), Kind); 1810 } 1811 1812 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const 1813 -> int { 1814 auto *NcTy = const_cast<Type *>(Ty); 1815 switch (Kind) { 1816 case Store: 1817 return DL.getTypeStoreSize(NcTy).getFixedValue(); 1818 case Alloc: 1819 return DL.getTypeAllocSize(NcTy).getFixedValue(); 1820 } 1821 llvm_unreachable("Unhandled SizeKind enum"); 1822 } 1823 1824 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 1825 // The actual type may be shorter than the HVX vector, so determine 1826 // the alignment based on subtarget info. 1827 if (HST.isTypeForHVX(Ty)) 1828 return HST.getVectorLength(); 1829 return DL.getABITypeAlign(Ty).value(); 1830 } 1831 1832 auto HexagonVectorCombine::length(Value *Val) const -> size_t { 1833 return length(Val->getType()); 1834 } 1835 1836 auto HexagonVectorCombine::length(Type *Ty) const -> size_t { 1837 auto *VecTy = dyn_cast<VectorType>(Ty); 1838 assert(VecTy && "Must be a vector type"); 1839 return VecTy->getElementCount().getFixedValue(); 1840 } 1841 1842 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 1843 assert(Ty->isIntOrIntVectorTy()); 1844 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 1845 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1846 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 1847 return Zero; 1848 } 1849 1850 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 1851 assert(Ty->isIntOrIntVectorTy()); 1852 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 1853 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1854 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 1855 return Minus1; 1856 } 1857 1858 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const 1859 -> Constant * { 1860 assert(Ty->isVectorTy()); 1861 auto VecTy = cast<VectorType>(Ty); 1862 Type *ElemTy = VecTy->getElementType(); 1863 // Add support for floats if needed. 1864 auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(), 1865 ConstantInt::get(ElemTy, Val)); 1866 return Splat; 1867 } 1868 1869 auto HexagonVectorCombine::simplify(Value *V) const -> Value * { 1870 if (auto *In = dyn_cast<Instruction>(V)) { 1871 SimplifyQuery Q(DL, &TLI, &DT, &AC, In); 1872 return simplifyInstruction(In, Q); 1873 } 1874 return nullptr; 1875 } 1876 1877 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 1878 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst, 1879 Value *Src, int Start, int Length, 1880 int Where) const -> Value * { 1881 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 1882 int SrcLen = getSizeOf(Src); 1883 int DstLen = getSizeOf(Dst); 1884 assert(0 <= Start && Start + Length <= SrcLen); 1885 assert(0 <= Where && Where + Length <= DstLen); 1886 1887 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 1888 auto *Undef = UndefValue::get(getByteTy()); 1889 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 1890 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 1891 1892 SmallVector<int, 256> SMask(P2Len); 1893 for (int i = 0; i != P2Len; ++i) { 1894 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 1895 // Otherwise, pick Dst[i]; 1896 SMask[i] = 1897 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 1898 } 1899 1900 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1901 return vresize(Builder, P2Insert, DstLen, Undef); 1902 } 1903 1904 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo, 1905 Value *Hi, Value *Amt) const -> Value * { 1906 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1907 if (isZero(Amt)) 1908 return Hi; 1909 int VecLen = getSizeOf(Hi); 1910 if (auto IntAmt = getIntValue(Amt)) 1911 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1912 VecLen); 1913 1914 if (HST.isTypeForHVX(Hi->getType())) { 1915 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1916 "Expecting an exact HVX type"); 1917 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb), 1918 Hi->getType(), {Hi, Lo, Amt}); 1919 } 1920 1921 if (VecLen == 4) { 1922 Value *Pair = concat(Builder, {Lo, Hi}); 1923 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1924 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1925 return Builder.CreateBitCast(Trunc, Hi->getType()); 1926 } 1927 if (VecLen == 8) { 1928 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1929 return vralignb(Builder, Lo, Hi, Sub); 1930 } 1931 llvm_unreachable("Unexpected vector length"); 1932 } 1933 1934 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo, 1935 Value *Hi, Value *Amt) const -> Value * { 1936 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1937 if (isZero(Amt)) 1938 return Lo; 1939 int VecLen = getSizeOf(Lo); 1940 if (auto IntAmt = getIntValue(Amt)) 1941 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1942 1943 if (HST.isTypeForHVX(Lo->getType())) { 1944 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1945 "Expecting an exact HVX type"); 1946 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb), 1947 Lo->getType(), {Hi, Lo, Amt}); 1948 } 1949 1950 if (VecLen == 4) { 1951 Value *Pair = concat(Builder, {Lo, Hi}); 1952 Value *Shift = Builder.CreateLShr(Pair, Amt); 1953 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1954 return Builder.CreateBitCast(Trunc, Lo->getType()); 1955 } 1956 if (VecLen == 8) { 1957 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1958 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1959 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1960 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1961 Intrinsic::hexagon_S2_valignrb); 1962 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1963 return Builder.CreateBitCast(Call, Lo->getType()); 1964 } 1965 llvm_unreachable("Unexpected vector length"); 1966 } 1967 1968 // Concatenates a sequence of vectors of the same type. 1969 auto HexagonVectorCombine::concat(IRBuilderBase &Builder, 1970 ArrayRef<Value *> Vecs) const -> Value * { 1971 assert(!Vecs.empty()); 1972 SmallVector<int, 256> SMask; 1973 std::vector<Value *> Work[2]; 1974 int ThisW = 0, OtherW = 1; 1975 1976 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1977 while (Work[ThisW].size() > 1) { 1978 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1979 SMask.resize(length(Ty) * 2); 1980 std::iota(SMask.begin(), SMask.end(), 0); 1981 1982 Work[OtherW].clear(); 1983 if (Work[ThisW].size() % 2 != 0) 1984 Work[ThisW].push_back(UndefValue::get(Ty)); 1985 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1986 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1987 Work[ThisW][i + 1], SMask); 1988 Work[OtherW].push_back(Joined); 1989 } 1990 std::swap(ThisW, OtherW); 1991 } 1992 1993 // Since there may have been some undefs appended to make shuffle operands 1994 // have the same type, perform the last shuffle to only pick the original 1995 // elements. 1996 SMask.resize(Vecs.size() * length(Vecs.front()->getType())); 1997 std::iota(SMask.begin(), SMask.end(), 0); 1998 Value *Total = Work[ThisW].front(); 1999 return Builder.CreateShuffleVector(Total, SMask); 2000 } 2001 2002 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val, 2003 int NewSize, Value *Pad) const -> Value * { 2004 assert(isa<VectorType>(Val->getType())); 2005 auto *ValTy = cast<VectorType>(Val->getType()); 2006 assert(ValTy->getElementType() == Pad->getType()); 2007 2008 int CurSize = length(ValTy); 2009 if (CurSize == NewSize) 2010 return Val; 2011 // Truncate? 2012 if (CurSize > NewSize) 2013 return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize); 2014 // Extend. 2015 SmallVector<int, 128> SMask(NewSize); 2016 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 2017 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 2018 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 2019 return Builder.CreateShuffleVector(Val, PadVec, SMask); 2020 } 2021 2022 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask, 2023 Type *FromTy, Type *ToTy) const -> Value * { 2024 // Mask is a vector <N x i1>, where each element corresponds to an 2025 // element of FromTy. Remap it so that each element will correspond 2026 // to an element of ToTy. 2027 assert(isa<VectorType>(Mask->getType())); 2028 2029 Type *FromSTy = FromTy->getScalarType(); 2030 Type *ToSTy = ToTy->getScalarType(); 2031 if (FromSTy == ToSTy) 2032 return Mask; 2033 2034 int FromSize = getSizeOf(FromSTy); 2035 int ToSize = getSizeOf(ToSTy); 2036 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 2037 2038 auto *MaskTy = cast<VectorType>(Mask->getType()); 2039 int FromCount = length(MaskTy); 2040 int ToCount = (FromCount * FromSize) / ToSize; 2041 assert((FromCount * FromSize) % ToSize == 0); 2042 2043 auto *FromITy = getIntTy(FromSize * 8); 2044 auto *ToITy = getIntTy(ToSize * 8); 2045 2046 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 2047 // -> trunc to <M x i1>. 2048 Value *Ext = Builder.CreateSExt( 2049 Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false)); 2050 Value *Cast = Builder.CreateBitCast( 2051 Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false)); 2052 return Builder.CreateTrunc( 2053 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false)); 2054 } 2055 2056 // Bitcast to bytes, and return least significant bits. 2057 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const 2058 -> Value * { 2059 Type *ScalarTy = Val->getType()->getScalarType(); 2060 if (ScalarTy == getBoolTy()) 2061 return Val; 2062 2063 Value *Bytes = vbytes(Builder, Val); 2064 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 2065 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 2066 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 2067 // <1 x i1>. 2068 return Builder.CreateTrunc(Bytes, getBoolTy()); 2069 } 2070 2071 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 2072 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const 2073 -> Value * { 2074 Type *ScalarTy = Val->getType()->getScalarType(); 2075 if (ScalarTy == getByteTy()) 2076 return Val; 2077 2078 if (ScalarTy != getBoolTy()) 2079 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 2080 // For bool, return a sext from i1 to i8. 2081 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 2082 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 2083 return Builder.CreateSExt(Val, getByteTy()); 2084 } 2085 2086 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val, 2087 unsigned Start, unsigned Length) const 2088 -> Value * { 2089 assert(Start + Length <= length(Val)); 2090 return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length); 2091 } 2092 2093 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const 2094 -> Value * { 2095 size_t Len = length(Val); 2096 assert(Len % 2 == 0 && "Length should be even"); 2097 return subvector(Builder, Val, 0, Len / 2); 2098 } 2099 2100 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const 2101 -> Value * { 2102 size_t Len = length(Val); 2103 assert(Len % 2 == 0 && "Length should be even"); 2104 return subvector(Builder, Val, Len / 2, Len / 2); 2105 } 2106 2107 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0, 2108 Value *Val1) const -> Value * { 2109 assert(Val0->getType() == Val1->getType()); 2110 int Len = length(Val0); 2111 SmallVector<int, 128> Mask(2 * Len); 2112 2113 for (int i = 0; i != Len; ++i) { 2114 Mask[i] = 2 * i; // Even 2115 Mask[i + Len] = 2 * i + 1; // Odd 2116 } 2117 return Builder.CreateShuffleVector(Val0, Val1, Mask); 2118 } 2119 2120 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0, 2121 Value *Val1) const -> Value * { // 2122 assert(Val0->getType() == Val1->getType()); 2123 int Len = length(Val0); 2124 SmallVector<int, 128> Mask(2 * Len); 2125 2126 for (int i = 0; i != Len; ++i) { 2127 Mask[2 * i + 0] = i; // Val0 2128 Mask[2 * i + 1] = i + Len; // Val1 2129 } 2130 return Builder.CreateShuffleVector(Val0, Val1, Mask); 2131 } 2132 2133 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder, 2134 Intrinsic::ID IntID, Type *RetTy, 2135 ArrayRef<Value *> Args, 2136 ArrayRef<Type *> ArgTys) const 2137 -> Value * { 2138 auto getCast = [&](IRBuilderBase &Builder, Value *Val, 2139 Type *DestTy) -> Value * { 2140 Type *SrcTy = Val->getType(); 2141 if (SrcTy == DestTy) 2142 return Val; 2143 2144 // Non-HVX type. It should be a scalar, and it should already have 2145 // a valid type. 2146 assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true)); 2147 2148 Type *BoolTy = Type::getInt1Ty(F.getContext()); 2149 if (cast<VectorType>(SrcTy)->getElementType() != BoolTy) 2150 return Builder.CreateBitCast(Val, DestTy); 2151 2152 // Predicate HVX vector. 2153 unsigned HwLen = HST.getVectorLength(); 2154 Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast 2155 : Intrinsic::hexagon_V6_pred_typecast_128B; 2156 Function *FI = 2157 Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); 2158 return Builder.CreateCall(FI, {Val}); 2159 }; 2160 2161 Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys); 2162 FunctionType *IntrTy = IntrFn->getFunctionType(); 2163 2164 SmallVector<Value *, 4> IntrArgs; 2165 for (int i = 0, e = Args.size(); i != e; ++i) { 2166 Value *A = Args[i]; 2167 Type *T = IntrTy->getParamType(i); 2168 if (A->getType() != T) { 2169 IntrArgs.push_back(getCast(Builder, A, T)); 2170 } else { 2171 IntrArgs.push_back(A); 2172 } 2173 } 2174 Value *Call = Builder.CreateCall(IntrFn, IntrArgs); 2175 2176 Type *CallTy = Call->getType(); 2177 if (RetTy == nullptr || CallTy == RetTy) 2178 return Call; 2179 // Scalar types should have RetTy matching the call return type. 2180 assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true)); 2181 return getCast(Builder, Call, RetTy); 2182 } 2183 2184 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder, 2185 Value *Vec, 2186 unsigned ToWidth) const 2187 -> SmallVector<Value *> { 2188 // Break a vector of wide elements into a series of vectors with narrow 2189 // elements: 2190 // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...) 2191 // --> 2192 // (a0, a1, a2, ...) // lowest "ToWidth" bits 2193 // (b0, b1, b2, ...) // the next lowest... 2194 // (c0, c1, c2, ...) // ... 2195 // ... 2196 // 2197 // The number of elements in each resulting vector is the same as 2198 // in the original vector. 2199 2200 auto *VecTy = cast<VectorType>(Vec->getType()); 2201 assert(VecTy->getElementType()->isIntegerTy()); 2202 unsigned FromWidth = VecTy->getScalarSizeInBits(); 2203 assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth)); 2204 assert(ToWidth <= FromWidth && "Breaking up into wider elements?"); 2205 unsigned NumResults = FromWidth / ToWidth; 2206 2207 SmallVector<Value *> Results(NumResults); 2208 Results[0] = Vec; 2209 unsigned Length = length(VecTy); 2210 2211 // Do it by splitting in half, since those operations correspond to deal 2212 // instructions. 2213 auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void { 2214 // Take V = Results[Begin], split it in L, H. 2215 // Store Results[Begin] = L, Results[(Begin+End)/2] = H 2216 // Call itself recursively split(Begin, Half), split(Half+1, End) 2217 if (Begin + 1 == End) 2218 return; 2219 2220 Value *Val = Results[Begin]; 2221 unsigned Width = Val->getType()->getScalarSizeInBits(); 2222 2223 auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false); 2224 Value *VVal = Builder.CreateBitCast(Val, VTy); 2225 2226 Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal)); 2227 2228 unsigned Half = (Begin + End) / 2; 2229 Results[Begin] = sublo(Builder, Res); 2230 Results[Half] = subhi(Builder, Res); 2231 2232 splitFunc(Begin, Half, splitFunc); 2233 splitFunc(Half, End, splitFunc); 2234 }; 2235 2236 splitInHalf(0, NumResults, splitInHalf); 2237 return Results; 2238 } 2239 2240 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder, 2241 ArrayRef<Value *> Values, 2242 VectorType *ToType) const 2243 -> Value * { 2244 assert(ToType->getElementType()->isIntegerTy()); 2245 2246 // If the list of values does not have power-of-2 elements, append copies 2247 // of the sign bit to it, to make the size be 2^n. 2248 // The reason for this is that the values will be joined in pairs, because 2249 // otherwise the shuffles will result in convoluted code. With pairwise 2250 // joins, the shuffles will hopefully be folded into a perfect shuffle. 2251 // The output will need to be sign-extended to a type with element width 2252 // being a power-of-2 anyways. 2253 SmallVector<Value *> Inputs(Values.begin(), Values.end()); 2254 2255 unsigned ToWidth = ToType->getScalarSizeInBits(); 2256 unsigned Width = Inputs.front()->getType()->getScalarSizeInBits(); 2257 assert(Width <= ToWidth); 2258 assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth)); 2259 unsigned Length = length(Inputs.front()->getType()); 2260 2261 unsigned NeedInputs = ToWidth / Width; 2262 if (Inputs.size() != NeedInputs) { 2263 Value *Last = Inputs.back(); 2264 Value *Sign = 2265 Builder.CreateAShr(Last, getConstSplat(Last->getType(), Width - 1)); 2266 Inputs.resize(NeedInputs, Sign); 2267 } 2268 2269 while (Inputs.size() > 1) { 2270 Width *= 2; 2271 auto *VTy = VectorType::get(getIntTy(Width), Length, false); 2272 for (int i = 0, e = Inputs.size(); i < e; i += 2) { 2273 Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]); 2274 Inputs[i / 2] = Builder.CreateBitCast(Res, VTy); 2275 } 2276 Inputs.resize(Inputs.size() / 2); 2277 } 2278 2279 assert(Inputs.front()->getType() == ToType); 2280 return Inputs.front(); 2281 } 2282 2283 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 2284 Value *Ptr1) const 2285 -> std::optional<int> { 2286 struct Builder : IRBuilder<> { 2287 Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {} 2288 ~Builder() { 2289 for (Instruction *I : llvm::reverse(ToErase)) 2290 I->eraseFromParent(); 2291 } 2292 SmallVector<Instruction *, 8> ToErase; 2293 }; 2294 2295 #define CallBuilder(B, F) \ 2296 [&](auto &B_) { \ 2297 Value *V = B_.F; \ 2298 if (auto *I = dyn_cast<Instruction>(V)) \ 2299 B_.ToErase.push_back(I); \ 2300 return V; \ 2301 }(B) 2302 2303 auto Simplify = [this](Value *V) { 2304 if (Value *S = simplify(V)) 2305 return S; 2306 return V; 2307 }; 2308 2309 auto StripBitCast = [](Value *V) { 2310 while (auto *C = dyn_cast<BitCastInst>(V)) 2311 V = C->getOperand(0); 2312 return V; 2313 }; 2314 2315 Ptr0 = StripBitCast(Ptr0); 2316 Ptr1 = StripBitCast(Ptr1); 2317 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 2318 return std::nullopt; 2319 2320 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 2321 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 2322 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 2323 return std::nullopt; 2324 2325 Builder B(Gep0->getParent()); 2326 int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc); 2327 2328 // FIXME: for now only check GEPs with a single index. 2329 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 2330 return std::nullopt; 2331 2332 Value *Idx0 = Gep0->getOperand(1); 2333 Value *Idx1 = Gep1->getOperand(1); 2334 2335 // First, try to simplify the subtraction directly. 2336 if (auto *Diff = dyn_cast<ConstantInt>( 2337 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 2338 return Diff->getSExtValue() * Scale; 2339 2340 KnownBits Known0 = getKnownBits(Idx0, Gep0); 2341 KnownBits Known1 = getKnownBits(Idx1, Gep1); 2342 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 2343 if (Unknown.isAllOnes()) 2344 return std::nullopt; 2345 2346 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 2347 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 2348 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 2349 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 2350 int Diff0 = 0; 2351 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 2352 Diff0 = C->getSExtValue(); 2353 } else { 2354 return std::nullopt; 2355 } 2356 2357 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 2358 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 2359 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 2360 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 2361 int Diff1 = 0; 2362 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 2363 Diff1 = C->getSExtValue(); 2364 } else { 2365 return std::nullopt; 2366 } 2367 2368 return (Diff0 + Diff1) * Scale; 2369 2370 #undef CallBuilder 2371 } 2372 2373 auto HexagonVectorCombine::getNumSignificantBits(const Value *V, 2374 const Instruction *CtxI) const 2375 -> unsigned { 2376 return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2377 } 2378 2379 auto HexagonVectorCombine::getKnownBits(const Value *V, 2380 const Instruction *CtxI) const 2381 -> KnownBits { 2382 return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr, 2383 /*UseInstrInfo=*/true); 2384 } 2385 2386 template <typename T> 2387 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 2388 BasicBlock::const_iterator To, 2389 const T &IgnoreInsts) const 2390 -> bool { 2391 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> { 2392 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 2393 switch (II->getIntrinsicID()) { 2394 case Intrinsic::masked_load: 2395 return MemoryLocation::getForArgument(II, 0, TLI); 2396 case Intrinsic::masked_store: 2397 return MemoryLocation::getForArgument(II, 1, TLI); 2398 } 2399 } 2400 return MemoryLocation::getOrNone(&I); 2401 }; 2402 2403 // The source and the destination must be in the same basic block. 2404 const BasicBlock &Block = *In.getParent(); 2405 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 2406 // No PHIs. 2407 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 2408 return false; 2409 2410 if (!mayHaveNonDefUseDependency(In)) 2411 return true; 2412 bool MayWrite = In.mayWriteToMemory(); 2413 auto MaybeLoc = getLocOrNone(In); 2414 2415 auto From = In.getIterator(); 2416 if (From == To) 2417 return true; 2418 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 2419 auto Range = 2420 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 2421 for (auto It = Range.first; It != Range.second; ++It) { 2422 const Instruction &I = *It; 2423 if (llvm::is_contained(IgnoreInsts, &I)) 2424 continue; 2425 // assume intrinsic can be ignored 2426 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2427 if (II->getIntrinsicID() == Intrinsic::assume) 2428 continue; 2429 } 2430 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 2431 if (I.mayThrow()) 2432 return false; 2433 if (auto *CB = dyn_cast<CallBase>(&I)) { 2434 if (!CB->hasFnAttr(Attribute::WillReturn)) 2435 return false; 2436 if (!CB->hasFnAttr(Attribute::NoSync)) 2437 return false; 2438 } 2439 if (I.mayReadOrWriteMemory()) { 2440 auto MaybeLocI = getLocOrNone(I); 2441 if (MayWrite || I.mayWriteToMemory()) { 2442 if (!MaybeLoc || !MaybeLocI) 2443 return false; 2444 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 2445 return false; 2446 } 2447 } 2448 } 2449 return true; 2450 } 2451 2452 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 2453 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2454 return VecTy->getElementType() == getByteTy(); 2455 return false; 2456 } 2457 2458 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo, 2459 Value *Hi, int Start, 2460 int Length) const -> Value * { 2461 assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi)); 2462 SmallVector<int, 128> SMask(Length); 2463 std::iota(SMask.begin(), SMask.end(), Start); 2464 return Builder.CreateShuffleVector(Lo, Hi, SMask); 2465 } 2466 2467 // Pass management. 2468 2469 namespace llvm { 2470 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 2471 FunctionPass *createHexagonVectorCombineLegacyPass(); 2472 } // namespace llvm 2473 2474 namespace { 2475 class HexagonVectorCombineLegacy : public FunctionPass { 2476 public: 2477 static char ID; 2478 2479 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 2480 2481 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 2482 2483 void getAnalysisUsage(AnalysisUsage &AU) const override { 2484 AU.setPreservesCFG(); 2485 AU.addRequired<AAResultsWrapperPass>(); 2486 AU.addRequired<AssumptionCacheTracker>(); 2487 AU.addRequired<DominatorTreeWrapperPass>(); 2488 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2489 AU.addRequired<TargetPassConfig>(); 2490 FunctionPass::getAnalysisUsage(AU); 2491 } 2492 2493 bool runOnFunction(Function &F) override { 2494 if (skipFunction(F)) 2495 return false; 2496 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2497 AssumptionCache &AC = 2498 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2499 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2500 TargetLibraryInfo &TLI = 2501 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2502 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 2503 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 2504 return HVC.run(); 2505 } 2506 }; 2507 } // namespace 2508 2509 char HexagonVectorCombineLegacy::ID = 0; 2510 2511 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 2512 "Hexagon Vector Combine", false, false) 2513 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2514 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2515 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2516 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2517 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 2518 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 2519 "Hexagon Vector Combine", false, false) 2520 2521 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 2522 return new HexagonVectorCombineLegacy(); 2523 } 2524