1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 // HvxIdioms: recognize various opportunities to generate HVX intrinsic code. 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstSimplifyFolder.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/TargetPassConfig.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicsHexagon.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 45 #include "HexagonSubtarget.h" 46 #include "HexagonTargetMachine.h" 47 48 #include <algorithm> 49 #include <deque> 50 #include <map> 51 #include <optional> 52 #include <set> 53 #include <utility> 54 #include <vector> 55 56 #define DEBUG_TYPE "hexagon-vc" 57 58 using namespace llvm; 59 60 namespace { 61 cl::opt<bool> AlignFullHvxStores("hvc-align-full-hvx-stores", cl::Hidden); 62 63 class HexagonVectorCombine { 64 public: 65 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 66 DominatorTree &DT_, TargetLibraryInfo &TLI_, 67 const TargetMachine &TM_) 68 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 69 TLI(TLI_), 70 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 71 72 bool run(); 73 74 // Common integer type. 75 IntegerType *getIntTy(unsigned Width = 32) const; 76 // Byte type: either scalar (when Length = 0), or vector with given 77 // element count. 78 Type *getByteTy(int ElemCount = 0) const; 79 // Boolean type: either scalar (when Length = 0), or vector with given 80 // element count. 81 Type *getBoolTy(int ElemCount = 0) const; 82 // Create a ConstantInt of type returned by getIntTy with the value Val. 83 ConstantInt *getConstInt(int Val, unsigned Width = 32) const; 84 // Get the integer value of V, if it exists. 85 std::optional<APInt> getIntValue(const Value *Val) const; 86 // Is Val a constant 0, or a vector of 0s? 87 bool isZero(const Value *Val) const; 88 // Is Val an undef value? 89 bool isUndef(const Value *Val) const; 90 // Is Val a scalar (i1 true) or a vector of (i1 true)? 91 bool isTrue(const Value *Val) const; 92 // Is Val a scalar (i1 false) or a vector of (i1 false)? 93 bool isFalse(const Value *Val) const; 94 95 // Get HVX vector type with the given element type. 96 VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const; 97 98 enum SizeKind { 99 Store, // Store size 100 Alloc, // Alloc size 101 }; 102 int getSizeOf(const Value *Val, SizeKind Kind = Store) const; 103 int getSizeOf(const Type *Ty, SizeKind Kind = Store) const; 104 int getTypeAlignment(Type *Ty) const; 105 size_t length(Value *Val) const; 106 size_t length(Type *Ty) const; 107 108 Constant *getNullValue(Type *Ty) const; 109 Constant *getFullValue(Type *Ty) const; 110 Constant *getConstSplat(Type *Ty, int Val) const; 111 112 Value *simplify(Value *Val) const; 113 114 Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start, 115 int Length, int Where) const; 116 Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 117 Value *Amt) const; 118 Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 119 Value *Amt) const; 120 Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const; 121 Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize, 122 Value *Pad) const; 123 Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy, 124 Type *ToTy) const; 125 Value *vlsb(IRBuilderBase &Builder, Value *Val) const; 126 Value *vbytes(IRBuilderBase &Builder, Value *Val) const; 127 Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start, 128 unsigned Length) const; 129 Value *sublo(IRBuilderBase &Builder, Value *Val) const; 130 Value *subhi(IRBuilderBase &Builder, Value *Val) const; 131 Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 132 Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 133 134 Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID, 135 Type *RetTy, ArrayRef<Value *> Args, 136 ArrayRef<Type *> ArgTys = std::nullopt, 137 ArrayRef<Value *> MDSources = std::nullopt) const; 138 SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec, 139 unsigned ToWidth) const; 140 Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values, 141 VectorType *ToType) const; 142 143 std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 144 145 unsigned getNumSignificantBits(const Value *V, 146 const Instruction *CtxI = nullptr) const; 147 KnownBits getKnownBits(const Value *V, 148 const Instruction *CtxI = nullptr) const; 149 150 template <typename T = std::vector<Instruction *>> 151 bool isSafeToMoveBeforeInBB(const Instruction &In, 152 BasicBlock::const_iterator To, 153 const T &IgnoreInsts = {}) const; 154 155 // This function is only used for assertions at the moment. 156 [[maybe_unused]] bool isByteVecTy(Type *Ty) const; 157 158 Function &F; 159 const DataLayout &DL; 160 AliasAnalysis &AA; 161 AssumptionCache &AC; 162 DominatorTree &DT; 163 TargetLibraryInfo &TLI; 164 const HexagonSubtarget &HST; 165 166 private: 167 Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi, 168 int Start, int Length) const; 169 }; 170 171 class AlignVectors { 172 // This code tries to replace unaligned vector loads/stores with aligned 173 // ones. 174 // Consider unaligned load: 175 // %v = original_load %some_addr, align <bad> 176 // %user = %v 177 // It will generate 178 // = load ..., align <good> 179 // = load ..., align <good> 180 // = valign 181 // etc. 182 // %synthesize = combine/shuffle the loaded data so that it looks 183 // exactly like what "original_load" has loaded. 184 // %user = %synthesize 185 // Similarly for stores. 186 public: 187 AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {} 188 189 bool run(); 190 191 private: 192 using InstList = std::vector<Instruction *>; 193 194 struct AddrInfo { 195 AddrInfo(const AddrInfo &) = default; 196 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 197 Align H) 198 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 199 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 200 AddrInfo &operator=(const AddrInfo &) = default; 201 202 // XXX: add Size member? 203 Instruction *Inst; 204 Value *Addr; 205 Type *ValTy; 206 Align HaveAlign; 207 Align NeedAlign; 208 int Offset = 0; // Offset (in bytes) from the first member of the 209 // containing AddrList. 210 }; 211 using AddrList = std::vector<AddrInfo>; 212 213 struct InstrLess { 214 bool operator()(const Instruction *A, const Instruction *B) const { 215 return A->comesBefore(B); 216 } 217 }; 218 using DepList = std::set<Instruction *, InstrLess>; 219 220 struct MoveGroup { 221 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 222 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 223 Instruction *Base; // Base instruction of the parent address group. 224 InstList Main; // Main group of instructions. 225 InstList Deps; // List of dependencies. 226 bool IsHvx; // Is this group of HVX instructions? 227 bool IsLoad; // Is this a load group? 228 }; 229 using MoveList = std::vector<MoveGroup>; 230 231 struct ByteSpan { 232 // A representation of "interesting" bytes within a given span of memory. 233 // These bytes are those that are loaded or stored, and they don't have 234 // to cover the entire span of memory. 235 // 236 // The representation works by picking a contiguous sequence of bytes 237 // from somewhere within a llvm::Value, and placing it at a given offset 238 // within the span. 239 // 240 // The sequence of bytes from llvm:Value is represented by Segment. 241 // Block is Segment, plus where it goes in the span. 242 // 243 // An important feature of ByteSpan is being able to make a "section", 244 // i.e. creating another ByteSpan corresponding to a range of offsets 245 // relative to the source span. 246 247 struct Segment { 248 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 249 Segment(Value *Val, int Begin, int Len) 250 : Val(Val), Start(Begin), Size(Len) {} 251 Segment(const Segment &Seg) = default; 252 Segment &operator=(const Segment &Seg) = default; 253 Value *Val; // Value representable as a sequence of bytes. 254 int Start; // First byte of the value that belongs to the segment. 255 int Size; // Number of bytes in the segment. 256 }; 257 258 struct Block { 259 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 260 Block(Value *Val, int Off, int Len, int Pos) 261 : Seg(Val, Off, Len), Pos(Pos) {} 262 Block(const Block &Blk) = default; 263 Block &operator=(const Block &Blk) = default; 264 Segment Seg; // Value segment. 265 int Pos; // Position (offset) of the block in the span. 266 }; 267 268 int extent() const; 269 ByteSpan section(int Start, int Length) const; 270 ByteSpan &shift(int Offset); 271 SmallVector<Value *, 8> values() const; 272 273 int size() const { return Blocks.size(); } 274 Block &operator[](int i) { return Blocks[i]; } 275 const Block &operator[](int i) const { return Blocks[i]; } 276 277 std::vector<Block> Blocks; 278 279 using iterator = decltype(Blocks)::iterator; 280 iterator begin() { return Blocks.begin(); } 281 iterator end() { return Blocks.end(); } 282 using const_iterator = decltype(Blocks)::const_iterator; 283 const_iterator begin() const { return Blocks.begin(); } 284 const_iterator end() const { return Blocks.end(); } 285 }; 286 287 Align getAlignFromValue(const Value *V) const; 288 std::optional<AddrInfo> getAddrInfo(Instruction &In) const; 289 bool isHvx(const AddrInfo &AI) const; 290 // This function is only used for assertions at the moment. 291 [[maybe_unused]] bool isSectorTy(Type *Ty) const; 292 293 Value *getPayload(Value *Val) const; 294 Value *getMask(Value *Val) const; 295 Value *getPassThrough(Value *Val) const; 296 297 Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 298 int Adjust) const; 299 Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 300 int Alignment) const; 301 302 Value *createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 303 Value *Predicate, int Alignment, Value *Mask, 304 Value *PassThru, 305 ArrayRef<Value *> MDSources = std::nullopt) const; 306 Value *createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 307 int Alignment, 308 ArrayRef<Value *> MDSources = std::nullopt) const; 309 310 Value *createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 311 Value *Predicate, int Alignment, Value *Mask, 312 ArrayRef<Value *> MDSources = std ::nullopt) const; 313 Value *createSimpleStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 314 int Alignment, 315 ArrayRef<Value *> MDSources = std ::nullopt) const; 316 317 Value *createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 318 Value *Predicate, int Alignment, 319 ArrayRef<Value *> MDSources = std::nullopt) const; 320 Value * 321 createPredicatedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 322 Value *Predicate, int Alignment, 323 ArrayRef<Value *> MDSources = std::nullopt) const; 324 325 DepList getUpwardDeps(Instruction *In, Instruction *Base) const; 326 bool createAddressGroups(); 327 MoveList createLoadGroups(const AddrList &Group) const; 328 MoveList createStoreGroups(const AddrList &Group) const; 329 bool move(const MoveGroup &Move) const; 330 void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 331 int ScLen, Value *AlignVal, Value *AlignAddr) const; 332 void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 333 int ScLen, Value *AlignVal, Value *AlignAddr) const; 334 bool realignGroup(const MoveGroup &Move) const; 335 336 Value *makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal, 337 int Alignment) const; 338 339 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 340 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 341 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B); 342 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 343 344 std::map<Instruction *, AddrList> AddrGroups; 345 const HexagonVectorCombine &HVC; 346 }; 347 348 LLVM_ATTRIBUTE_UNUSED 349 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 350 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 351 OS << "Addr: " << *AI.Addr << '\n'; 352 OS << "Type: " << *AI.ValTy << '\n'; 353 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 354 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 355 OS << "Offset: " << AI.Offset; 356 return OS; 357 } 358 359 LLVM_ATTRIBUTE_UNUSED 360 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 361 OS << "IsLoad:" << (MG.IsLoad ? "yes" : "no"); 362 OS << ", IsHvx:" << (MG.IsHvx ? "yes" : "no") << '\n'; 363 OS << "Main\n"; 364 for (Instruction *I : MG.Main) 365 OS << " " << *I << '\n'; 366 OS << "Deps\n"; 367 for (Instruction *I : MG.Deps) 368 OS << " " << *I << '\n'; 369 return OS; 370 } 371 372 LLVM_ATTRIBUTE_UNUSED 373 raw_ostream &operator<<(raw_ostream &OS, 374 const AlignVectors::ByteSpan::Block &B) { 375 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "; 376 if (B.Seg.Val == reinterpret_cast<const Value *>(&B)) { 377 OS << "(self:" << B.Seg.Val << ')'; 378 } else if (B.Seg.Val != nullptr) { 379 OS << *B.Seg.Val; 380 } else { 381 OS << "(null)"; 382 } 383 return OS; 384 } 385 386 LLVM_ATTRIBUTE_UNUSED 387 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 388 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 389 for (const AlignVectors::ByteSpan::Block &B : BS) 390 OS << B << '\n'; 391 OS << ']'; 392 return OS; 393 } 394 395 class HvxIdioms { 396 public: 397 HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) { 398 auto *Int32Ty = HVC.getIntTy(32); 399 HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false); 400 HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true); 401 } 402 403 bool run(); 404 405 private: 406 enum Signedness { Positive, Signed, Unsigned }; 407 408 // Value + sign 409 // This is to keep track of whether the value should be treated as signed 410 // or unsigned, or is known to be positive. 411 struct SValue { 412 Value *Val; 413 Signedness Sgn; 414 }; 415 416 struct FxpOp { 417 unsigned Opcode; 418 unsigned Frac; // Number of fraction bits 419 SValue X, Y; 420 // If present, add 1 << RoundAt before shift: 421 std::optional<unsigned> RoundAt; 422 VectorType *ResTy; 423 }; 424 425 auto getNumSignificantBits(Value *V, Instruction *In) const 426 -> std::pair<unsigned, Signedness>; 427 auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>; 428 429 auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>; 430 auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *; 431 432 auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 433 const FxpOp &Op) const -> Value *; 434 auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 435 bool Rounding) const -> Value *; 436 auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 437 bool Rounding) const -> Value *; 438 // Return {Result, Carry}, where Carry is a vector predicate. 439 auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 440 Value *CarryIn = nullptr) const 441 -> std::pair<Value *, Value *>; 442 auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *; 443 auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 444 -> Value *; 445 auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 446 -> std::pair<Value *, Value *>; 447 auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 448 ArrayRef<Value *> WordY) const -> SmallVector<Value *>; 449 auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 450 Signedness SgnX, ArrayRef<Value *> WordY, 451 Signedness SgnY) const -> SmallVector<Value *>; 452 453 VectorType *HvxI32Ty; 454 VectorType *HvxP32Ty; 455 const HexagonVectorCombine &HVC; 456 457 friend raw_ostream &operator<<(raw_ostream &, const FxpOp &); 458 }; 459 460 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS, 461 const HvxIdioms::FxpOp &Op) { 462 static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"}; 463 OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac; 464 if (Op.RoundAt.has_value()) { 465 if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) { 466 OS << ":rnd"; 467 } else { 468 OS << " + 1<<" << *Op.RoundAt; 469 } 470 } 471 OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n" 472 << " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val; 473 return OS; 474 } 475 476 } // namespace 477 478 namespace { 479 480 template <typename T> T *getIfUnordered(T *MaybeT) { 481 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 482 } 483 template <typename T> T *isCandidate(Instruction *In) { 484 return dyn_cast<T>(In); 485 } 486 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 487 return getIfUnordered(dyn_cast<LoadInst>(In)); 488 } 489 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 490 return getIfUnordered(dyn_cast<StoreInst>(In)); 491 } 492 493 #if !defined(_MSC_VER) || _MSC_VER >= 1926 494 // VS2017 and some versions of VS2019 have trouble compiling this: 495 // error C2976: 'std::map': too few template arguments 496 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 497 template <typename Pred, typename... Ts> 498 void erase_if(std::map<Ts...> &map, Pred p) 499 #else 500 template <typename Pred, typename T, typename U> 501 void erase_if(std::map<T, U> &map, Pred p) 502 #endif 503 { 504 for (auto i = map.begin(), e = map.end(); i != e;) { 505 if (p(*i)) 506 i = map.erase(i); 507 else 508 i = std::next(i); 509 } 510 } 511 512 // Forward other erase_ifs to the LLVM implementations. 513 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 514 llvm::erase_if(std::forward<T>(container), p); 515 } 516 517 } // namespace 518 519 // --- Begin AlignVectors 520 521 // For brevity, only consider loads. We identify a group of loads where we 522 // know the relative differences between their addresses, so we know how they 523 // are laid out in memory (relative to one another). These loads can overlap, 524 // can be shorter or longer than the desired vector length. 525 // Ultimately we want to generate a sequence of aligned loads that will load 526 // every byte that the original loads loaded, and have the program use these 527 // loaded values instead of the original loads. 528 // We consider the contiguous memory area spanned by all these loads. 529 // 530 // Let's say that a single aligned vector load can load 16 bytes at a time. 531 // If the program wanted to use a byte at offset 13 from the beginning of the 532 // original span, it will be a byte at offset 13+x in the aligned data for 533 // some x>=0. This may happen to be in the first aligned load, or in the load 534 // following it. Since we generally don't know what the that alignment value 535 // is at compile time, we proactively do valigns on the aligned loads, so that 536 // byte that was at offset 13 is still at offset 13 after the valigns. 537 // 538 // This will be the starting point for making the rest of the program use the 539 // data loaded by the new loads. 540 // For each original load, and its users: 541 // %v = load ... 542 // ... = %v 543 // ... = %v 544 // we create 545 // %new_v = extract/combine/shuffle data from loaded/valigned vectors so 546 // it contains the same value as %v did before 547 // then replace all users of %v with %new_v. 548 // ... = %new_v 549 // ... = %new_v 550 551 auto AlignVectors::ByteSpan::extent() const -> int { 552 if (size() == 0) 553 return 0; 554 int Min = Blocks[0].Pos; 555 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 556 for (int i = 1, e = size(); i != e; ++i) { 557 Min = std::min(Min, Blocks[i].Pos); 558 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 559 } 560 return Max - Min; 561 } 562 563 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 564 ByteSpan Section; 565 for (const ByteSpan::Block &B : Blocks) { 566 int L = std::max(B.Pos, Start); // Left end. 567 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 568 if (L < R) { 569 // How much to chop off the beginning of the segment: 570 int Off = L > B.Pos ? L - B.Pos : 0; 571 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 572 } 573 } 574 return Section; 575 } 576 577 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 578 for (Block &B : Blocks) 579 B.Pos += Offset; 580 return *this; 581 } 582 583 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 584 SmallVector<Value *, 8> Values(Blocks.size()); 585 for (int i = 0, e = Blocks.size(); i != e; ++i) 586 Values[i] = Blocks[i].Seg.Val; 587 return Values; 588 } 589 590 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 591 const auto *C = dyn_cast<ConstantInt>(V); 592 assert(C && "Alignment must be a compile-time constant integer"); 593 return C->getAlignValue(); 594 } 595 596 auto AlignVectors::getAddrInfo(Instruction &In) const 597 -> std::optional<AddrInfo> { 598 if (auto *L = isCandidate<LoadInst>(&In)) 599 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 600 L->getAlign()); 601 if (auto *S = isCandidate<StoreInst>(&In)) 602 return AddrInfo(HVC, S, S->getPointerOperand(), 603 S->getValueOperand()->getType(), S->getAlign()); 604 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 605 Intrinsic::ID ID = II->getIntrinsicID(); 606 switch (ID) { 607 case Intrinsic::masked_load: 608 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 609 getAlignFromValue(II->getArgOperand(1))); 610 case Intrinsic::masked_store: 611 return AddrInfo(HVC, II, II->getArgOperand(1), 612 II->getArgOperand(0)->getType(), 613 getAlignFromValue(II->getArgOperand(2))); 614 } 615 } 616 return std::nullopt; 617 } 618 619 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 620 return HVC.HST.isTypeForHVX(AI.ValTy); 621 } 622 623 auto AlignVectors::getPayload(Value *Val) const -> Value * { 624 if (auto *In = dyn_cast<Instruction>(Val)) { 625 Intrinsic::ID ID = 0; 626 if (auto *II = dyn_cast<IntrinsicInst>(In)) 627 ID = II->getIntrinsicID(); 628 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 629 return In->getOperand(0); 630 } 631 return Val; 632 } 633 634 auto AlignVectors::getMask(Value *Val) const -> Value * { 635 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 636 switch (II->getIntrinsicID()) { 637 case Intrinsic::masked_load: 638 return II->getArgOperand(2); 639 case Intrinsic::masked_store: 640 return II->getArgOperand(3); 641 } 642 } 643 644 Type *ValTy = getPayload(Val)->getType(); 645 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) 646 return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy))); 647 return HVC.getFullValue(HVC.getBoolTy()); 648 } 649 650 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 651 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 652 if (II->getIntrinsicID() == Intrinsic::masked_load) 653 return II->getArgOperand(3); 654 } 655 return UndefValue::get(getPayload(Val)->getType()); 656 } 657 658 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, 659 Type *ValTy, int Adjust) const 660 -> Value * { 661 // The adjustment is in bytes, but if it's a multiple of the type size, 662 // we don't need to do pointer casts. 663 auto *PtrTy = cast<PointerType>(Ptr->getType()); 664 if (!PtrTy->isOpaque()) { 665 Type *ElemTy = PtrTy->getNonOpaquePointerElementType(); 666 int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc); 667 if (Adjust % ElemSize == 0 && Adjust != 0) { 668 Value *Tmp0 = Builder.CreateGEP( 669 ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize), "gep"); 670 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo(), "cst"); 671 } 672 } 673 674 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 675 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy, "cst"); 676 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 677 HVC.getConstInt(Adjust), "gep"); 678 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo(), "cst"); 679 } 680 681 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, 682 Type *ValTy, int Alignment) const 683 -> Value * { 684 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy(), "pti"); 685 Value *Mask = HVC.getConstInt(-Alignment); 686 Value *And = Builder.CreateAnd(AsInt, Mask, "add"); 687 return Builder.CreateIntToPtr(And, ValTy->getPointerTo(), "itp"); 688 } 689 690 auto AlignVectors::createLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 691 Value *Predicate, int Alignment, Value *Mask, 692 Value *PassThru, 693 ArrayRef<Value *> MDSources) const -> Value * { 694 bool HvxHasPredLoad = HVC.HST.useHVXV62Ops(); 695 // Predicate is nullptr if not creating predicated load 696 if (Predicate) { 697 assert(!Predicate->getType()->isVectorTy() && 698 "Expectning scalar predicate"); 699 if (HVC.isFalse(Predicate)) 700 return UndefValue::get(ValTy); 701 if (!HVC.isTrue(Predicate) && HvxHasPredLoad) { 702 Value *Load = createPredicatedLoad(Builder, ValTy, Ptr, Predicate, 703 Alignment, MDSources); 704 return Builder.CreateSelect(Mask, Load, PassThru); 705 } 706 // Predicate == true here. 707 } 708 assert(!HVC.isUndef(Mask)); // Should this be allowed? 709 if (HVC.isZero(Mask)) 710 return PassThru; 711 if (HVC.isTrue(Mask)) 712 return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources); 713 714 Instruction *Load = Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), 715 Mask, PassThru, "mld"); 716 propagateMetadata(Load, MDSources); 717 return Load; 718 } 719 720 auto AlignVectors::createSimpleLoad(IRBuilderBase &Builder, Type *ValTy, 721 Value *Ptr, int Alignment, 722 ArrayRef<Value *> MDSources) const 723 -> Value * { 724 Instruction *Load = 725 Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment), "ald"); 726 propagateMetadata(Load, MDSources); 727 return Load; 728 } 729 730 auto AlignVectors::createPredicatedLoad(IRBuilderBase &Builder, Type *ValTy, 731 Value *Ptr, Value *Predicate, 732 int Alignment, 733 ArrayRef<Value *> MDSources) const 734 -> Value * { 735 assert(HVC.HST.isTypeForHVX(ValTy) && 736 "Predicates 'scalar' vector loads not yet supported"); 737 assert(Predicate); 738 assert(!Predicate->getType()->isVectorTy() && "Expectning scalar predicate"); 739 assert(HVC.getSizeOf(ValTy, HVC.Alloc) % Alignment == 0); 740 if (HVC.isFalse(Predicate)) 741 return UndefValue::get(ValTy); 742 if (HVC.isTrue(Predicate)) 743 return createSimpleLoad(Builder, ValTy, Ptr, Alignment, MDSources); 744 745 auto V6_vL32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vL32b_pred_ai); 746 // FIXME: This may not put the offset from Ptr into the vmem offset. 747 return HVC.createHvxIntrinsic(Builder, V6_vL32b_pred_ai, ValTy, 748 {Predicate, Ptr, HVC.getConstInt(0)}, 749 std::nullopt, MDSources); 750 } 751 752 auto AlignVectors::createStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 753 Value *Predicate, int Alignment, Value *Mask, 754 ArrayRef<Value *> MDSources) const -> Value * { 755 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 756 return UndefValue::get(Val->getType()); 757 assert(!Predicate || (!Predicate->getType()->isVectorTy() && 758 "Expectning scalar predicate")); 759 if (Predicate) { 760 if (HVC.isFalse(Predicate)) 761 return UndefValue::get(Val->getType()); 762 if (HVC.isTrue(Predicate)) 763 Predicate = nullptr; 764 } 765 // Here both Predicate and Mask are true or unknown. 766 767 if (HVC.isTrue(Mask)) { 768 if (Predicate) { // Predicate unknown 769 return createPredicatedStore(Builder, Val, Ptr, Predicate, Alignment, 770 MDSources); 771 } 772 // Predicate is true: 773 return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources); 774 } 775 776 // Mask is unknown 777 if (!Predicate) { 778 Instruction *Store = 779 Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 780 propagateMetadata(Store, MDSources); 781 return Store; 782 } 783 784 // Both Predicate and Mask are unknown. 785 // Emulate masked store with predicated-load + mux + predicated-store. 786 Value *PredLoad = createPredicatedLoad(Builder, Val->getType(), Ptr, 787 Predicate, Alignment, MDSources); 788 Value *Mux = Builder.CreateSelect(Mask, Val, PredLoad); 789 return createPredicatedStore(Builder, Mux, Ptr, Predicate, Alignment, 790 MDSources); 791 } 792 793 auto AlignVectors::createSimpleStore(IRBuilderBase &Builder, Value *Val, 794 Value *Ptr, int Alignment, 795 ArrayRef<Value *> MDSources) const 796 -> Value * { 797 Instruction *Store = Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 798 propagateMetadata(Store, MDSources); 799 return Store; 800 } 801 802 auto AlignVectors::createPredicatedStore(IRBuilderBase &Builder, Value *Val, 803 Value *Ptr, Value *Predicate, 804 int Alignment, 805 ArrayRef<Value *> MDSources) const 806 -> Value * { 807 assert(HVC.HST.isTypeForHVX(Val->getType()) && 808 "Predicates 'scalar' vector stores not yet supported"); 809 assert(Predicate); 810 if (HVC.isFalse(Predicate)) 811 return UndefValue::get(Val->getType()); 812 if (HVC.isTrue(Predicate)) 813 return createSimpleStore(Builder, Val, Ptr, Alignment, MDSources); 814 815 assert(HVC.getSizeOf(Val, HVC.Alloc) % Alignment == 0); 816 auto V6_vS32b_pred_ai = HVC.HST.getIntrinsicId(Hexagon::V6_vS32b_pred_ai); 817 // FIXME: This may not put the offset from Ptr into the vmem offset. 818 return HVC.createHvxIntrinsic(Builder, V6_vS32b_pred_ai, nullptr, 819 {Predicate, Ptr, HVC.getConstInt(0), Val}, 820 std::nullopt, MDSources); 821 } 822 823 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const 824 -> DepList { 825 BasicBlock *Parent = Base->getParent(); 826 assert(In->getParent() == Parent && 827 "Base and In should be in the same block"); 828 assert(Base->comesBefore(In) && "Base should come before In"); 829 830 DepList Deps; 831 std::deque<Instruction *> WorkQ = {In}; 832 while (!WorkQ.empty()) { 833 Instruction *D = WorkQ.front(); 834 WorkQ.pop_front(); 835 Deps.insert(D); 836 for (Value *Op : D->operands()) { 837 if (auto *I = dyn_cast<Instruction>(Op)) { 838 if (I->getParent() == Parent && Base->comesBefore(I)) 839 WorkQ.push_back(I); 840 } 841 } 842 } 843 return Deps; 844 } 845 846 auto AlignVectors::createAddressGroups() -> bool { 847 // An address group created here may contain instructions spanning 848 // multiple basic blocks. 849 AddrList WorkStack; 850 851 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 852 for (AddrInfo &W : WorkStack) { 853 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 854 return std::make_pair(W.Inst, *D); 855 } 856 return std::make_pair(nullptr, 0); 857 }; 858 859 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 860 BasicBlock &Block = *DomN->getBlock(); 861 for (Instruction &I : Block) { 862 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 863 if (!AI) 864 continue; 865 auto F = findBaseAndOffset(*AI); 866 Instruction *GroupInst; 867 if (Instruction *BI = F.first) { 868 AI->Offset = F.second; 869 GroupInst = BI; 870 } else { 871 WorkStack.push_back(*AI); 872 GroupInst = AI->Inst; 873 } 874 AddrGroups[GroupInst].push_back(*AI); 875 } 876 877 for (DomTreeNode *C : DomN->children()) 878 Visit(C, Visit); 879 880 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 881 WorkStack.pop_back(); 882 }; 883 884 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 885 assert(WorkStack.empty()); 886 887 // AddrGroups are formed. 888 889 // Remove groups of size 1. 890 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 891 // Remove groups that don't use HVX types. 892 erase_if(AddrGroups, [&](auto &G) { 893 return llvm::none_of( 894 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 895 }); 896 897 return !AddrGroups.empty(); 898 } 899 900 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 901 // Form load groups. 902 // To avoid complications with moving code across basic blocks, only form 903 // groups that are contained within a single basic block. 904 905 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 906 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 907 // Don't mix HVX and non-HVX instructions. 908 if (Move.IsHvx != isHvx(Info)) 909 return false; 910 // Leading instruction in the load group. 911 Instruction *Base = Move.Main.front(); 912 if (Base->getParent() != Info.Inst->getParent()) 913 return false; 914 915 auto isSafeToMoveToBase = [&](const Instruction *I) { 916 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 917 }; 918 DepList Deps = getUpwardDeps(Info.Inst, Base); 919 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 920 return false; 921 922 // The dependencies will be moved together with the load, so make sure 923 // that none of them could be moved independently in another group. 924 Deps.erase(Info.Inst); 925 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 926 if (llvm::any_of(Deps, inAddrMap)) 927 return false; 928 Move.Main.push_back(Info.Inst); 929 llvm::append_range(Move.Deps, Deps); 930 return true; 931 }; 932 933 MoveList LoadGroups; 934 935 for (const AddrInfo &Info : Group) { 936 if (!Info.Inst->mayReadFromMemory()) 937 continue; 938 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 939 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 940 } 941 942 // Erase singleton groups. 943 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 944 945 // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads). 946 if (!HVC.HST.useHVXV62Ops()) 947 erase_if(LoadGroups, [](const MoveGroup &G) { return G.IsHvx; }); 948 949 return LoadGroups; 950 } 951 952 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 953 // Form store groups. 954 // To avoid complications with moving code across basic blocks, only form 955 // groups that are contained within a single basic block. 956 957 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 958 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 959 // For stores with return values we'd have to collect downward depenencies. 960 // There are no such stores that we handle at the moment, so omit that. 961 assert(Info.Inst->getType()->isVoidTy() && 962 "Not handling stores with return values"); 963 // Don't mix HVX and non-HVX instructions. 964 if (Move.IsHvx != isHvx(Info)) 965 return false; 966 // For stores we need to be careful whether it's safe to move them. 967 // Stores that are otherwise safe to move together may not appear safe 968 // to move over one another (i.e. isSafeToMoveBefore may return false). 969 Instruction *Base = Move.Main.front(); 970 if (Base->getParent() != Info.Inst->getParent()) 971 return false; 972 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 973 return false; 974 Move.Main.push_back(Info.Inst); 975 return true; 976 }; 977 978 MoveList StoreGroups; 979 980 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 981 const AddrInfo &Info = *I; 982 if (!Info.Inst->mayWriteToMemory()) 983 continue; 984 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 985 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 986 } 987 988 // Erase singleton groups. 989 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 990 991 // Erase HVX groups on targets < HvxV62 (due to lack of predicated loads). 992 if (!HVC.HST.useHVXV62Ops()) 993 erase_if(StoreGroups, [](const MoveGroup &G) { return G.IsHvx; }); 994 995 // Erase groups where every store is a full HVX vector. The reason is that 996 // aligning predicated stores generates complex code that may be less 997 // efficient than a sequence of unaligned vector stores. 998 if (!AlignFullHvxStores) { 999 erase_if(StoreGroups, [this](const MoveGroup &G) { 1000 return G.IsHvx && llvm::all_of(G.Main, [this](Instruction *S) { 1001 auto MaybeInfo = this->getAddrInfo(*S); 1002 assert(MaybeInfo.has_value()); 1003 return HVC.HST.isHVXVectorType( 1004 EVT::getEVT(MaybeInfo->ValTy, false)); 1005 }); 1006 }); 1007 } 1008 1009 return StoreGroups; 1010 } 1011 1012 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 1013 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 1014 Instruction *Where = Move.Main.front(); 1015 1016 if (Move.IsLoad) { 1017 // Move all deps to before Where, keeping order. 1018 for (Instruction *D : Move.Deps) 1019 D->moveBefore(Where); 1020 // Move all main instructions to after Where, keeping order. 1021 ArrayRef<Instruction *> Main(Move.Main); 1022 for (Instruction *M : Main.drop_front(1)) { 1023 M->moveAfter(Where); 1024 Where = M; 1025 } 1026 } else { 1027 // NOTE: Deps are empty for "store" groups. If they need to be 1028 // non-empty, decide on the order. 1029 assert(Move.Deps.empty()); 1030 // Move all main instructions to before Where, inverting order. 1031 ArrayRef<Instruction *> Main(Move.Main); 1032 for (Instruction *M : Main.drop_front(1)) { 1033 M->moveBefore(Where); 1034 Where = M; 1035 } 1036 } 1037 1038 return Move.Main.size() + Move.Deps.size() > 1; 1039 } 1040 1041 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder, 1042 const ByteSpan &VSpan, int ScLen, 1043 Value *AlignVal, Value *AlignAddr) const 1044 -> void { 1045 LLVM_DEBUG(dbgs() << __func__ << "\n"); 1046 1047 Type *SecTy = HVC.getByteTy(ScLen); 1048 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 1049 bool DoAlign = !HVC.isZero(AlignVal); 1050 BasicBlock::iterator BasePos = Builder.GetInsertPoint(); 1051 BasicBlock *BaseBlock = Builder.GetInsertBlock(); 1052 1053 ByteSpan ASpan; 1054 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 1055 auto *Undef = UndefValue::get(SecTy); 1056 1057 SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr); 1058 1059 // We could create all of the aligned loads, and generate the valigns 1060 // at the location of the first load, but for large load groups, this 1061 // could create highly suboptimal code (there have been groups of 140+ 1062 // loads in real code). 1063 // Instead, place the loads/valigns as close to the users as possible. 1064 // In any case we need to have a mapping from the blocks of VSpan (the 1065 // span covered by the pre-existing loads) to ASpan (the span covered 1066 // by the aligned loads). There is a small problem, though: ASpan needs 1067 // to have pointers to the loads/valigns, but we don't have these loads 1068 // because we don't know where to put them yet. We find out by creating 1069 // a section of ASpan that corresponds to values (blocks) from VSpan, 1070 // and checking where the new load should be placed. We need to attach 1071 // this location information to each block in ASpan somehow, so we put 1072 // distincts values for Seg.Val in each ASpan.Blocks[i], and use a map 1073 // to store the location for each Seg.Val. 1074 // The distinct values happen to be Blocks[i].Seg.Val = &Blocks[i], 1075 // which helps with printing ByteSpans without crashing when printing 1076 // Segments with these temporary identifiers in place of Val. 1077 1078 // Populate the blocks first, to avoid reallocations of the vector 1079 // interfering with generating the placeholder addresses. 1080 for (int Index = 0; Index != NumSectors; ++Index) 1081 ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen); 1082 for (int Index = 0; Index != NumSectors; ++Index) { 1083 ASpan.Blocks[Index].Seg.Val = 1084 reinterpret_cast<Value *>(&ASpan.Blocks[Index]); 1085 } 1086 1087 // Multiple values from VSpan can map to the same value in ASpan. Since we 1088 // try to create loads lazily, we need to find the earliest use for each 1089 // value from ASpan. 1090 DenseMap<void *, Instruction *> EarliestUser; 1091 auto isEarlier = [](Instruction *A, Instruction *B) { 1092 if (B == nullptr) 1093 return true; 1094 if (A == nullptr) 1095 return false; 1096 assert(A->getParent() == B->getParent()); 1097 return A->comesBefore(B); 1098 }; 1099 auto earliestUser = [&](const auto &Uses) { 1100 Instruction *User = nullptr; 1101 for (const Use &U : Uses) { 1102 auto *I = dyn_cast<Instruction>(U.getUser()); 1103 assert(I != nullptr && "Load used in a non-instruction?"); 1104 // Make sure we only consider users in this block, but we need 1105 // to remember if there were users outside the block too. This is 1106 // because if no users are found, aligned loads will not be created. 1107 if (I->getParent() == BaseBlock) { 1108 if (!isa<PHINode>(I)) 1109 User = std::min(User, I, isEarlier); 1110 } else { 1111 User = std::min(User, BaseBlock->getTerminator(), isEarlier); 1112 } 1113 } 1114 return User; 1115 }; 1116 1117 for (const ByteSpan::Block &B : VSpan) { 1118 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size); 1119 for (const ByteSpan::Block &S : ASection) { 1120 EarliestUser[S.Seg.Val] = std::min( 1121 EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier); 1122 } 1123 } 1124 1125 LLVM_DEBUG({ 1126 dbgs() << "ASpan:\n" << ASpan << '\n'; 1127 dbgs() << "Earliest users of ASpan:\n"; 1128 for (auto &[Val, User] : EarliestUser) { 1129 dbgs() << Val << "\n ->" << *User << '\n'; 1130 } 1131 }); 1132 1133 auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan, 1134 int Index, bool MakePred) { 1135 Value *Ptr = 1136 createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 1137 Value *Predicate = 1138 MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr; 1139 1140 // If vector shifting is potentially needed, accumulate metadata 1141 // from source sections of twice the load width. 1142 int Start = (Index - DoAlign) * ScLen; 1143 int Width = (1 + DoAlign) * ScLen; 1144 Value *Load = this->createLoad(Builder, SecTy, Ptr, Predicate, ScLen, True, 1145 Undef, VSpan.section(Start, Width).values()); 1146 return cast<Instruction>(Load); 1147 }; 1148 1149 auto moveBefore = [this](Instruction *In, Instruction *To) { 1150 // Move In and its upward dependencies to before To. 1151 assert(In->getParent() == To->getParent()); 1152 DepList Deps = getUpwardDeps(In, To); 1153 // DepList is sorted with respect to positions in the basic block. 1154 for (Instruction *I : Deps) 1155 I->moveBefore(To); 1156 }; 1157 1158 // Generate necessary loads at appropriate locations. 1159 LLVM_DEBUG(dbgs() << "Creating loads for ASpan sectors\n"); 1160 for (int Index = 0; Index != NumSectors + 1; ++Index) { 1161 // In ASpan, each block will be either a single aligned load, or a 1162 // valign of a pair of loads. In the latter case, an aligned load j 1163 // will belong to the current valign, and the one in the previous 1164 // block (for j > 0). 1165 // Place the load at a location which will dominate the valign, assuming 1166 // the valign will be placed right before the earliest user. 1167 Instruction *PrevAt = 1168 DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr; 1169 Instruction *ThisAt = 1170 Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr; 1171 if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) { 1172 Builder.SetInsertPoint(Where); 1173 Loads[Index] = 1174 createLoad(Builder, VSpan, Index, DoAlign && Index == NumSectors); 1175 // We know it's safe to put the load at BasePos, but we'd prefer to put 1176 // it at "Where". To see if the load is safe to be placed at Where, put 1177 // it there first and then check if it's safe to move it to BasePos. 1178 // If not, then the load needs to be placed at BasePos. 1179 // We can't do this check proactively because we need the load to exist 1180 // in order to check legality. 1181 if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos)) 1182 moveBefore(Loads[Index], &*BasePos); 1183 LLVM_DEBUG(dbgs() << "Loads[" << Index << "]:" << *Loads[Index] << '\n'); 1184 } 1185 } 1186 1187 // Generate valigns if needed, and fill in proper values in ASpan 1188 LLVM_DEBUG(dbgs() << "Creating values for ASpan sectors\n"); 1189 for (int Index = 0; Index != NumSectors; ++Index) { 1190 ASpan[Index].Seg.Val = nullptr; 1191 if (auto *Where = EarliestUser[&ASpan[Index]]) { 1192 Builder.SetInsertPoint(Where); 1193 Value *Val = Loads[Index]; 1194 assert(Val != nullptr); 1195 if (DoAlign) { 1196 Value *NextLoad = Loads[Index + 1]; 1197 assert(NextLoad != nullptr); 1198 Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal); 1199 } 1200 ASpan[Index].Seg.Val = Val; 1201 LLVM_DEBUG(dbgs() << "ASpan[" << Index << "]:" << *Val << '\n'); 1202 } 1203 } 1204 1205 for (const ByteSpan::Block &B : VSpan) { 1206 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 1207 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 1208 Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val)); 1209 1210 // We're generating a reduction, where each instruction depends on 1211 // the previous one, so we need to order them according to the position 1212 // of their inputs in the code. 1213 std::vector<ByteSpan::Block *> ABlocks; 1214 for (ByteSpan::Block &S : ASection) { 1215 if (S.Seg.Val != nullptr) 1216 ABlocks.push_back(&S); 1217 } 1218 llvm::sort(ABlocks, 1219 [&](const ByteSpan::Block *A, const ByteSpan::Block *B) { 1220 return isEarlier(cast<Instruction>(A->Seg.Val), 1221 cast<Instruction>(B->Seg.Val)); 1222 }); 1223 for (ByteSpan::Block *S : ABlocks) { 1224 // The processing of the data loaded by the aligned loads 1225 // needs to be inserted after the data is available. 1226 Instruction *SegI = cast<Instruction>(S->Seg.Val); 1227 Builder.SetInsertPoint(&*std::next(SegI->getIterator())); 1228 Value *Pay = HVC.vbytes(Builder, getPayload(S->Seg.Val)); 1229 Accum = 1230 HVC.insertb(Builder, Accum, Pay, S->Seg.Start, S->Seg.Size, S->Pos); 1231 } 1232 // Instead of casting everything to bytes for the vselect, cast to the 1233 // original value type. This will avoid complications with casting masks. 1234 // For example, in cases when the original mask applied to i32, it could 1235 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 1236 // but if the mask is not exactly of HVX length, extra handling would be 1237 // needed to make it work. 1238 Type *ValTy = getPayload(B.Seg.Val)->getType(); 1239 Value *Cast = Builder.CreateBitCast(Accum, ValTy, "cst"); 1240 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 1241 getPassThrough(B.Seg.Val), "sel"); 1242 B.Seg.Val->replaceAllUsesWith(Sel); 1243 } 1244 } 1245 1246 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder, 1247 const ByteSpan &VSpan, int ScLen, 1248 Value *AlignVal, Value *AlignAddr) const 1249 -> void { 1250 LLVM_DEBUG(dbgs() << __func__ << "\n"); 1251 1252 Type *SecTy = HVC.getByteTy(ScLen); 1253 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 1254 bool DoAlign = !HVC.isZero(AlignVal); 1255 1256 // Stores. 1257 ByteSpan ASpanV, ASpanM; 1258 1259 // Return a vector value corresponding to the input value Val: 1260 // either <1 x Val> for scalar Val, or Val itself for vector Val. 1261 auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * { 1262 Type *Ty = Val->getType(); 1263 if (Ty->isVectorTy()) 1264 return Val; 1265 auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false); 1266 return Builder.CreateBitCast(Val, VecTy, "cst"); 1267 }; 1268 1269 // Create an extra "undef" sector at the beginning and at the end. 1270 // They will be used as the left/right filler in the vlalign step. 1271 for (int Index = (DoAlign ? -1 : 0); Index != NumSectors + DoAlign; ++Index) { 1272 // For stores, the size of each section is an aligned vector length. 1273 // Adjust the store offsets relative to the section start offset. 1274 ByteSpan VSection = 1275 VSpan.section(Index * ScLen, ScLen).shift(-Index * ScLen); 1276 Value *AccumV = UndefValue::get(SecTy); 1277 Value *AccumM = HVC.getNullValue(SecTy); 1278 for (ByteSpan::Block &S : VSection) { 1279 Value *Pay = getPayload(S.Seg.Val); 1280 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 1281 Pay->getType(), HVC.getByteTy()); 1282 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 1283 S.Seg.Start, S.Seg.Size, S.Pos); 1284 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 1285 S.Seg.Start, S.Seg.Size, S.Pos); 1286 } 1287 ASpanV.Blocks.emplace_back(AccumV, ScLen, Index * ScLen); 1288 ASpanM.Blocks.emplace_back(AccumM, ScLen, Index * ScLen); 1289 } 1290 1291 // vlalign 1292 if (DoAlign) { 1293 for (int Index = 1; Index != NumSectors + 2; ++Index) { 1294 Value *PrevV = ASpanV[Index - 1].Seg.Val, *ThisV = ASpanV[Index].Seg.Val; 1295 Value *PrevM = ASpanM[Index - 1].Seg.Val, *ThisM = ASpanM[Index].Seg.Val; 1296 assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType())); 1297 ASpanV[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal); 1298 ASpanM[Index - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal); 1299 } 1300 } 1301 1302 auto createStore = [&](IRBuilderBase &Builder, const ByteSpan &ASpanV, 1303 const ByteSpan &ASpanM, int Index, bool MakePred) { 1304 Value *Val = ASpanV[Index].Seg.Val; 1305 Value *Mask = ASpanM[Index].Seg.Val; // bytes 1306 if (HVC.isUndef(Val) || HVC.isZero(Mask)) 1307 return; 1308 Value *Ptr = 1309 createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 1310 Value *Predicate = 1311 MakePred ? makeTestIfUnaligned(Builder, AlignVal, ScLen) : nullptr; 1312 1313 // If vector shifting is potentially needed, accumulate metadata 1314 // from source sections of twice the store width. 1315 int Start = (Index - DoAlign) * ScLen; 1316 int Width = (1 + DoAlign) * ScLen; 1317 this->createStore(Builder, Val, Ptr, Predicate, ScLen, 1318 HVC.vlsb(Builder, Mask), 1319 VSpan.section(Start, Width).values()); 1320 }; 1321 1322 for (int Index = 0; Index != NumSectors + DoAlign; ++Index) { 1323 createStore(Builder, ASpanV, ASpanM, Index, DoAlign && Index == NumSectors); 1324 } 1325 } 1326 1327 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 1328 LLVM_DEBUG(dbgs() << "Realigning group:\n" << Move << '\n'); 1329 1330 // TODO: Needs support for masked loads/stores of "scalar" vectors. 1331 if (!Move.IsHvx) 1332 return false; 1333 1334 // Return the element with the maximum alignment from Range, 1335 // where GetValue obtains the value to compare from an element. 1336 auto getMaxOf = [](auto Range, auto GetValue) { 1337 return *std::max_element( 1338 Range.begin(), Range.end(), 1339 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 1340 }; 1341 1342 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 1343 1344 // Conceptually, there is a vector of N bytes covering the addresses 1345 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 1346 // represents a contiguous memory region that spans all accessed memory 1347 // locations. 1348 // The correspondence between loaded or stored values will be expressed 1349 // in terms of this vector. For example, the 0th element of the vector 1350 // from the Base address info will start at byte Start from the beginning 1351 // of this conceptual vector. 1352 // 1353 // This vector will be loaded/stored starting at the nearest down-aligned 1354 // address and the amount od the down-alignment will be AlignVal: 1355 // valign(load_vector(align_down(Base+Start)), AlignVal) 1356 1357 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 1358 AddrList MoveInfos; 1359 llvm::copy_if( 1360 BaseInfos, std::back_inserter(MoveInfos), 1361 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 1362 1363 // Maximum alignment present in the whole address group. 1364 const AddrInfo &WithMaxAlign = 1365 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 1366 Align MaxGiven = WithMaxAlign.HaveAlign; 1367 1368 // Minimum alignment present in the move address group. 1369 const AddrInfo &WithMinOffset = 1370 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 1371 1372 const AddrInfo &WithMaxNeeded = 1373 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 1374 Align MinNeeded = WithMaxNeeded.NeedAlign; 1375 1376 // Set the builder's insertion point right before the load group, or 1377 // immediately after the store group. (Instructions in a store group are 1378 // listed in reverse order.) 1379 Instruction *InsertAt = Move.Main.front(); 1380 if (!Move.IsLoad) { 1381 // There should be a terminator (which store isn't, but check anyways). 1382 assert(InsertAt->getIterator() != InsertAt->getParent()->end()); 1383 InsertAt = &*std::next(InsertAt->getIterator()); 1384 } 1385 1386 IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(), 1387 InstSimplifyFolder(HVC.DL)); 1388 Value *AlignAddr = nullptr; // Actual aligned address. 1389 Value *AlignVal = nullptr; // Right-shift amount (for valign). 1390 1391 if (MinNeeded <= MaxGiven) { 1392 int Start = WithMinOffset.Offset; 1393 int OffAtMax = WithMaxAlign.Offset; 1394 // Shift the offset of the maximally aligned instruction (OffAtMax) 1395 // back by just enough multiples of the required alignment to cover the 1396 // distance from Start to OffAtMax. 1397 // Calculate the address adjustment amount based on the address with the 1398 // maximum alignment. This is to allow a simple gep instruction instead 1399 // of potential bitcasts to i8*. 1400 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 1401 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 1402 WithMaxAlign.ValTy, Adjust); 1403 int Diff = Start - (OffAtMax + Adjust); 1404 AlignVal = HVC.getConstInt(Diff); 1405 assert(Diff >= 0); 1406 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 1407 } else { 1408 // WithMinOffset is the lowest address in the group, 1409 // WithMinOffset.Addr = Base+Start. 1410 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 1411 // mask off unnecessary bits, so it's ok to just the original pointer as 1412 // the alignment amount. 1413 // Do an explicit down-alignment of the address to avoid creating an 1414 // aligned instruction with an address that is not really aligned. 1415 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 1416 WithMinOffset.ValTy, MinNeeded.value()); 1417 AlignVal = 1418 Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy(), "pti"); 1419 } 1420 1421 ByteSpan VSpan; 1422 for (const AddrInfo &AI : MoveInfos) { 1423 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 1424 AI.Offset - WithMinOffset.Offset); 1425 } 1426 1427 // The aligned loads/stores will use blocks that are either scalars, 1428 // or HVX vectors. Let "sector" be the unified term for such a block. 1429 // blend(scalar, vector) -> sector... 1430 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 1431 : std::max<int>(MinNeeded.value(), 4); 1432 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 1433 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 1434 1435 LLVM_DEBUG({ 1436 dbgs() << "ScLen: " << ScLen << "\n"; 1437 dbgs() << "AlignVal:" << *AlignVal << "\n"; 1438 dbgs() << "AlignAddr:" << *AlignAddr << "\n"; 1439 dbgs() << "VSpan:\n" << VSpan << '\n'; 1440 }); 1441 1442 if (Move.IsLoad) 1443 realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1444 else 1445 realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1446 1447 for (auto *Inst : Move.Main) 1448 Inst->eraseFromParent(); 1449 1450 return true; 1451 } 1452 1453 auto AlignVectors::makeTestIfUnaligned(IRBuilderBase &Builder, Value *AlignVal, 1454 int Alignment) const -> Value * { 1455 auto *AlignTy = AlignVal->getType(); 1456 Value *And = 1457 Builder.CreateAnd(AlignVal, ConstantInt::get(AlignTy, Alignment - 1)); 1458 Value *Zero = ConstantInt::get(AlignTy, 0); 1459 return Builder.CreateICmpNE(And, Zero, "isz"); 1460 } 1461 1462 auto AlignVectors::isSectorTy(Type *Ty) const -> bool { 1463 if (!HVC.isByteVecTy(Ty)) 1464 return false; 1465 int Size = HVC.getSizeOf(Ty); 1466 if (HVC.HST.isTypeForHVX(Ty)) 1467 return Size == static_cast<int>(HVC.HST.getVectorLength()); 1468 return Size == 4 || Size == 8; 1469 } 1470 1471 auto AlignVectors::run() -> bool { 1472 LLVM_DEBUG(dbgs() << "Running HVC::AlignVectors\n"); 1473 if (!createAddressGroups()) 1474 return false; 1475 1476 LLVM_DEBUG({ 1477 dbgs() << "Address groups(" << AddrGroups.size() << "):\n"; 1478 for (auto &[In, AL] : AddrGroups) { 1479 for (const AddrInfo &AI : AL) 1480 dbgs() << "---\n" << AI << '\n'; 1481 } 1482 }); 1483 1484 bool Changed = false; 1485 MoveList LoadGroups, StoreGroups; 1486 1487 for (auto &G : AddrGroups) { 1488 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 1489 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 1490 } 1491 1492 LLVM_DEBUG({ 1493 dbgs() << "\nLoad groups(" << LoadGroups.size() << "):\n"; 1494 for (const MoveGroup &G : LoadGroups) 1495 dbgs() << G << "\n"; 1496 dbgs() << "Store groups(" << StoreGroups.size() << "):\n"; 1497 for (const MoveGroup &G : StoreGroups) 1498 dbgs() << G << "\n"; 1499 }); 1500 1501 for (auto &M : LoadGroups) 1502 Changed |= move(M); 1503 for (auto &M : StoreGroups) 1504 Changed |= move(M); 1505 1506 LLVM_DEBUG(dbgs() << "After move:\n" << HVC.F); 1507 1508 for (auto &M : LoadGroups) 1509 Changed |= realignGroup(M); 1510 for (auto &M : StoreGroups) 1511 Changed |= realignGroup(M); 1512 1513 return Changed; 1514 } 1515 1516 // --- End AlignVectors 1517 1518 // --- Begin HvxIdioms 1519 1520 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const 1521 -> std::pair<unsigned, Signedness> { 1522 unsigned Bits = HVC.getNumSignificantBits(V, In); 1523 // The significant bits are calculated including the sign bit. This may 1524 // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may 1525 // result in 33 significant bits. To avoid extra words, skip the extra 1526 // sign bit, but keep information that the value is to be treated as 1527 // unsigned. 1528 KnownBits Known = HVC.getKnownBits(V, In); 1529 Signedness Sign = Signed; 1530 unsigned NumToTest = 0; // Number of bits used in test for unsignedness. 1531 if (isPowerOf2_32(Bits)) 1532 NumToTest = Bits; 1533 else if (Bits > 1 && isPowerOf2_32(Bits - 1)) 1534 NumToTest = Bits - 1; 1535 1536 if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) { 1537 Sign = Unsigned; 1538 Bits = NumToTest; 1539 } 1540 1541 // If the top bit of the nearest power-of-2 is zero, this value is 1542 // positive. It could be treated as either signed or unsigned. 1543 if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) { 1544 if (Known.Zero.ashr(Pow2 - 1).isAllOnes()) 1545 Sign = Positive; 1546 } 1547 return {Bits, Sign}; 1548 } 1549 1550 auto HvxIdioms::canonSgn(SValue X, SValue Y) const 1551 -> std::pair<SValue, SValue> { 1552 // Canonicalize the signedness of X and Y, so that the result is one of: 1553 // S, S 1554 // U/P, S 1555 // U/P, U/P 1556 if (X.Sgn == Signed && Y.Sgn != Signed) 1557 std::swap(X, Y); 1558 return {X, Y}; 1559 } 1560 1561 // Match 1562 // (X * Y) [>> N], or 1563 // ((X * Y) + (1 << M)) >> N 1564 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> { 1565 using namespace PatternMatch; 1566 auto *Ty = In.getType(); 1567 1568 if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy()) 1569 return std::nullopt; 1570 1571 unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth(); 1572 1573 FxpOp Op; 1574 Value *Exp = &In; 1575 1576 // Fixed-point multiplication is always shifted right (except when the 1577 // fraction is 0 bits). 1578 auto m_Shr = [](auto &&V, auto &&S) { 1579 return m_CombineOr(m_LShr(V, S), m_AShr(V, S)); 1580 }; 1581 1582 const APInt *Qn = nullptr; 1583 if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) { 1584 Op.Frac = Qn->getZExtValue(); 1585 Exp = T; 1586 } else { 1587 Op.Frac = 0; 1588 } 1589 1590 if (Op.Frac > Width) 1591 return std::nullopt; 1592 1593 // Check if there is rounding added. 1594 const APInt *C = nullptr; 1595 if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) { 1596 uint64_t CV = C->getZExtValue(); 1597 if (CV != 0 && !isPowerOf2_64(CV)) 1598 return std::nullopt; 1599 if (CV != 0) 1600 Op.RoundAt = Log2_64(CV); 1601 Exp = T; 1602 } 1603 1604 // Check if the rest is a multiplication. 1605 if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) { 1606 Op.Opcode = Instruction::Mul; 1607 // FIXME: The information below is recomputed. 1608 Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second; 1609 Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second; 1610 Op.ResTy = cast<VectorType>(Ty); 1611 return Op; 1612 } 1613 1614 return std::nullopt; 1615 } 1616 1617 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const 1618 -> Value * { 1619 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1620 1621 auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType()); 1622 if (VecTy == nullptr) 1623 return nullptr; 1624 auto *ElemTy = cast<IntegerType>(VecTy->getElementType()); 1625 unsigned ElemWidth = ElemTy->getBitWidth(); 1626 1627 // TODO: This can be relaxed after legalization is done pre-isel. 1628 if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0) 1629 return nullptr; 1630 1631 // There are no special intrinsics that should be used for multiplying 1632 // signed 8-bit values, so just skip them. Normal codegen should handle 1633 // this just fine. 1634 if (ElemWidth <= 8) 1635 return nullptr; 1636 // Similarly, if this is just a multiplication that can be handled without 1637 // intervention, then leave it alone. 1638 if (ElemWidth <= 32 && Op.Frac == 0) 1639 return nullptr; 1640 1641 auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In); 1642 auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In); 1643 1644 // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes). 1645 1646 Value *X = Op.X.Val, *Y = Op.Y.Val; 1647 IRBuilder Builder(In.getParent(), In.getIterator(), 1648 InstSimplifyFolder(HVC.DL)); 1649 1650 auto roundUpWidth = [](unsigned Width) -> unsigned { 1651 if (Width <= 32 && !isPowerOf2_32(Width)) { 1652 // If the element width is not a power of 2, round it up 1653 // to the next one. Do this for widths not exceeding 32. 1654 return PowerOf2Ceil(Width); 1655 } 1656 if (Width > 32 && Width % 32 != 0) { 1657 // For wider elements, round it up to the multiple of 32. 1658 return alignTo(Width, 32u); 1659 } 1660 return Width; 1661 }; 1662 1663 BitsX = roundUpWidth(BitsX); 1664 BitsY = roundUpWidth(BitsY); 1665 1666 // For elementwise multiplication vectors must have the same lengths, so 1667 // resize the elements of both inputs to the same width, the max of the 1668 // calculated significant bits. 1669 unsigned Width = std::max(BitsX, BitsY); 1670 1671 auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy); 1672 if (Width < ElemWidth) { 1673 X = Builder.CreateTrunc(X, ResizeTy, "trn"); 1674 Y = Builder.CreateTrunc(Y, ResizeTy, "trn"); 1675 } else if (Width > ElemWidth) { 1676 X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy, "sxt") 1677 : Builder.CreateZExt(X, ResizeTy, "zxt"); 1678 Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy, "sxt") 1679 : Builder.CreateZExt(Y, ResizeTy, "zxt"); 1680 }; 1681 1682 assert(X->getType() == Y->getType() && X->getType() == ResizeTy); 1683 1684 unsigned VecLen = HVC.length(ResizeTy); 1685 unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u); 1686 1687 SmallVector<Value *> Results; 1688 FxpOp ChopOp = Op; 1689 ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false); 1690 1691 for (unsigned V = 0; V != VecLen / ChopLen; ++V) { 1692 ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen); 1693 ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen); 1694 Results.push_back(processFxpMulChopped(Builder, In, ChopOp)); 1695 if (Results.back() == nullptr) 1696 break; 1697 } 1698 1699 if (Results.empty() || Results.back() == nullptr) 1700 return nullptr; 1701 1702 Value *Cat = HVC.concat(Builder, Results); 1703 Value *Ext = SignX == Signed || SignY == Signed 1704 ? Builder.CreateSExt(Cat, VecTy, "sxt") 1705 : Builder.CreateZExt(Cat, VecTy, "zxt"); 1706 return Ext; 1707 } 1708 1709 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 1710 const FxpOp &Op) const -> Value * { 1711 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1712 auto *InpTy = cast<VectorType>(Op.X.Val->getType()); 1713 unsigned Width = InpTy->getScalarSizeInBits(); 1714 bool Rounding = Op.RoundAt.has_value(); 1715 1716 if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) { 1717 // The fixed-point intrinsics do signed multiplication. 1718 if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) { 1719 Value *QMul = nullptr; 1720 if (Width == 16) { 1721 QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding); 1722 } else if (Width == 32) { 1723 QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding); 1724 } 1725 if (QMul != nullptr) 1726 return QMul; 1727 } 1728 } 1729 1730 assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n 1731 assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k 1732 1733 // If Width < 32, then it should really be 16. 1734 if (Width < 32) { 1735 if (Width < 16) 1736 return nullptr; 1737 // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we 1738 // generate a full precision products, which is unnecessary if there is 1739 // no shift. 1740 assert(Width == 16); 1741 assert(Op.Frac != 0 && "Unshifted mul should have been skipped"); 1742 if (Op.Frac == 16) { 1743 // Multiply high 1744 if (Value *MulH = createMulH16(Builder, Op.X, Op.Y)) 1745 return MulH; 1746 } 1747 // Do full-precision multiply and shift. 1748 Value *Prod32 = createMul16(Builder, Op.X, Op.Y); 1749 if (Rounding) { 1750 Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt); 1751 Prod32 = Builder.CreateAdd(Prod32, RoundVal, "add"); 1752 } 1753 1754 Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac); 1755 Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed 1756 ? Builder.CreateAShr(Prod32, ShiftAmt, "asr") 1757 : Builder.CreateLShr(Prod32, ShiftAmt, "lsr"); 1758 return Builder.CreateTrunc(Shifted, InpTy, "trn"); 1759 } 1760 1761 // Width >= 32 1762 1763 // Break up the arguments Op.X and Op.Y into vectors of smaller widths 1764 // in preparation of doing the multiplication by 32-bit parts. 1765 auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32); 1766 auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32); 1767 auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn); 1768 1769 auto *HvxWordTy = cast<VectorType>(WordP.front()->getType()); 1770 1771 // Add the optional rounding to the proper word. 1772 if (Op.RoundAt.has_value()) { 1773 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1774 SmallVector<Value *> RoundV(WordP.size(), Zero); 1775 RoundV[*Op.RoundAt / 32] = 1776 HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32)); 1777 WordP = createAddLong(Builder, WordP, RoundV); 1778 } 1779 1780 // createRightShiftLong? 1781 1782 // Shift all products right by Op.Frac. 1783 unsigned SkipWords = Op.Frac / 32; 1784 Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32); 1785 1786 for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) { 1787 int Src = Dst + SkipWords; 1788 Value *Lo = WordP[Src]; 1789 if (Src + 1 < End) { 1790 Value *Hi = WordP[Src + 1]; 1791 WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr, 1792 {Hi, Lo, ShiftAmt}, 1793 /*FMFSource*/ nullptr, "int"); 1794 } else { 1795 // The shift of the most significant word. 1796 WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt, "asr"); 1797 } 1798 } 1799 if (SkipWords != 0) 1800 WordP.resize(WordP.size() - SkipWords); 1801 1802 return HVC.joinVectorElements(Builder, WordP, Op.ResTy); 1803 } 1804 1805 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 1806 bool Rounding) const -> Value * { 1807 assert(X.Val->getType() == Y.Val->getType()); 1808 assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16)); 1809 assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false))); 1810 1811 // There is no non-rounding intrinsic for i16. 1812 if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned) 1813 return nullptr; 1814 1815 auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs); 1816 return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(), 1817 {X.Val, Y.Val}); 1818 } 1819 1820 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 1821 bool Rounding) const -> Value * { 1822 Type *InpTy = X.Val->getType(); 1823 assert(InpTy == Y.Val->getType()); 1824 assert(InpTy->getScalarType() == HVC.getIntTy(32)); 1825 assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false))); 1826 1827 if (X.Sgn == Unsigned || Y.Sgn == Unsigned) 1828 return nullptr; 1829 1830 auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh); 1831 auto V6_vmpyo_acc = Rounding 1832 ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc) 1833 : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc); 1834 Value *V1 = 1835 HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val}); 1836 return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy, 1837 {V1, X.Val, Y.Val}); 1838 } 1839 1840 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 1841 Value *CarryIn) const 1842 -> std::pair<Value *, Value *> { 1843 assert(X->getType() == Y->getType()); 1844 auto VecTy = cast<VectorType>(X->getType()); 1845 if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) { 1846 SmallVector<Value *> Args = {X, Y}; 1847 Intrinsic::ID AddCarry; 1848 if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) { 1849 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo); 1850 } else { 1851 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry); 1852 if (CarryIn == nullptr) 1853 CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy))); 1854 Args.push_back(CarryIn); 1855 } 1856 Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry, 1857 /*RetTy=*/nullptr, Args); 1858 Value *Result = Builder.CreateExtractValue(Ret, {0}, "ext"); 1859 Value *CarryOut = Builder.CreateExtractValue(Ret, {1}, "ext"); 1860 return {Result, CarryOut}; 1861 } 1862 1863 // In other cases, do a regular add, and unsigned compare-less-than. 1864 // The carry-out can originate in two places: adding the carry-in or adding 1865 // the two input values. 1866 Value *Result1 = X; // Result1 = X + CarryIn 1867 if (CarryIn != nullptr) { 1868 unsigned Width = VecTy->getScalarSizeInBits(); 1869 uint32_t Mask = 1; 1870 if (Width < 32) { 1871 for (unsigned i = 0, e = 32 / Width; i != e; ++i) 1872 Mask = (Mask << Width) | 1; 1873 } 1874 auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt); 1875 Value *ValueIn = 1876 HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr, 1877 {CarryIn, HVC.getConstInt(Mask)}); 1878 Result1 = Builder.CreateAdd(X, ValueIn, "add"); 1879 } 1880 1881 Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X, "cmp"); 1882 Value *Result2 = Builder.CreateAdd(Result1, Y, "add"); 1883 Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y, "cmp"); 1884 return {Result2, Builder.CreateOr(CarryOut1, CarryOut2, "orb")}; 1885 } 1886 1887 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const 1888 -> Value * { 1889 Intrinsic::ID V6_vmpyh = 0; 1890 std::tie(X, Y) = canonSgn(X, Y); 1891 1892 if (X.Sgn == Signed) { 1893 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv); 1894 } else if (Y.Sgn == Signed) { 1895 // In vmpyhus the second operand is unsigned 1896 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus); 1897 } else { 1898 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv); 1899 } 1900 1901 // i16*i16 -> i32 / interleaved 1902 Value *P = 1903 HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val}); 1904 // Deinterleave 1905 return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P)); 1906 } 1907 1908 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 1909 -> Value * { 1910 Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false); 1911 1912 if (HVC.HST.useHVXV69Ops()) { 1913 if (X.Sgn != Signed && Y.Sgn != Signed) { 1914 auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs); 1915 return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty, 1916 {X.Val, Y.Val}); 1917 } 1918 } 1919 1920 Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true); 1921 Value *Pair16 = 1922 Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty, "cst"); 1923 unsigned Len = HVC.length(HvxP16Ty) / 2; 1924 1925 SmallVector<int, 128> PickOdd(Len); 1926 for (int i = 0; i != static_cast<int>(Len); ++i) 1927 PickOdd[i] = 2 * i + 1; 1928 1929 return Builder.CreateShuffleVector( 1930 HVC.sublo(Builder, Pair16), HVC.subhi(Builder, Pair16), PickOdd, "shf"); 1931 } 1932 1933 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 1934 -> std::pair<Value *, Value *> { 1935 assert(X.Val->getType() == Y.Val->getType()); 1936 assert(X.Val->getType() == HvxI32Ty); 1937 1938 Intrinsic::ID V6_vmpy_parts; 1939 std::tie(X, Y) = canonSgn(X, Y); 1940 1941 if (X.Sgn == Signed) { 1942 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts; 1943 } else if (Y.Sgn == Signed) { 1944 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts; 1945 } else { 1946 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts; 1947 } 1948 1949 Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr, 1950 {X.Val, Y.Val}, {HvxI32Ty}); 1951 Value *Hi = Builder.CreateExtractValue(Parts, {0}, "ext"); 1952 Value *Lo = Builder.CreateExtractValue(Parts, {1}, "ext"); 1953 return {Lo, Hi}; 1954 } 1955 1956 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1957 ArrayRef<Value *> WordY) const 1958 -> SmallVector<Value *> { 1959 assert(WordX.size() == WordY.size()); 1960 unsigned Idx = 0, Length = WordX.size(); 1961 SmallVector<Value *> Sum(Length); 1962 1963 while (Idx != Length) { 1964 if (HVC.isZero(WordX[Idx])) 1965 Sum[Idx] = WordY[Idx]; 1966 else if (HVC.isZero(WordY[Idx])) 1967 Sum[Idx] = WordX[Idx]; 1968 else 1969 break; 1970 ++Idx; 1971 } 1972 1973 Value *Carry = nullptr; 1974 for (; Idx != Length; ++Idx) { 1975 std::tie(Sum[Idx], Carry) = 1976 createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry); 1977 } 1978 1979 // This drops the final carry beyond the highest word. 1980 return Sum; 1981 } 1982 1983 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1984 Signedness SgnX, ArrayRef<Value *> WordY, 1985 Signedness SgnY) const -> SmallVector<Value *> { 1986 SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size()); 1987 1988 // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results, 1989 // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3. 1990 for (int i = 0, e = WordX.size(); i != e; ++i) { 1991 for (int j = 0, f = WordY.size(); j != f; ++j) { 1992 // Check the 4 halves that this multiplication can generate. 1993 Signedness SX = (i + 1 == e) ? SgnX : Unsigned; 1994 Signedness SY = (j + 1 == f) ? SgnY : Unsigned; 1995 auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY}); 1996 Products[i + j + 0].push_back(Lo); 1997 Products[i + j + 1].push_back(Hi); 1998 } 1999 } 2000 2001 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 2002 2003 auto pop_back_or_zero = [Zero](auto &Vector) -> Value * { 2004 if (Vector.empty()) 2005 return Zero; 2006 auto Last = Vector.back(); 2007 Vector.pop_back(); 2008 return Last; 2009 }; 2010 2011 for (int i = 0, e = Products.size(); i != e; ++i) { 2012 while (Products[i].size() > 1) { 2013 Value *Carry = nullptr; // no carry-in 2014 for (int j = i; j != e; ++j) { 2015 auto &ProdJ = Products[j]; 2016 auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ), 2017 pop_back_or_zero(ProdJ), Carry); 2018 ProdJ.insert(ProdJ.begin(), Sum); 2019 Carry = CarryOut; 2020 } 2021 } 2022 } 2023 2024 SmallVector<Value *> WordP; 2025 for (auto &P : Products) { 2026 assert(P.size() == 1 && "Should have been added together"); 2027 WordP.push_back(P.front()); 2028 } 2029 2030 return WordP; 2031 } 2032 2033 auto HvxIdioms::run() -> bool { 2034 bool Changed = false; 2035 2036 for (BasicBlock &B : HVC.F) { 2037 for (auto It = B.rbegin(); It != B.rend(); ++It) { 2038 if (auto Fxm = matchFxpMul(*It)) { 2039 Value *New = processFxpMul(*It, *Fxm); 2040 // Always report "changed" for now. 2041 Changed = true; 2042 if (!New) 2043 continue; 2044 bool StartOver = !isa<Instruction>(New); 2045 It->replaceAllUsesWith(New); 2046 RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI); 2047 It = StartOver ? B.rbegin() 2048 : cast<Instruction>(New)->getReverseIterator(); 2049 Changed = true; 2050 } 2051 } 2052 } 2053 2054 return Changed; 2055 } 2056 2057 // --- End HvxIdioms 2058 2059 auto HexagonVectorCombine::run() -> bool { 2060 if (!HST.useHVXOps()) 2061 return false; 2062 2063 bool Changed = false; 2064 Changed |= AlignVectors(*this).run(); 2065 Changed |= HvxIdioms(*this).run(); 2066 2067 return Changed; 2068 } 2069 2070 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * { 2071 return IntegerType::get(F.getContext(), Width); 2072 } 2073 2074 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 2075 assert(ElemCount >= 0); 2076 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 2077 if (ElemCount == 0) 2078 return ByteTy; 2079 return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false); 2080 } 2081 2082 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 2083 assert(ElemCount >= 0); 2084 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 2085 if (ElemCount == 0) 2086 return BoolTy; 2087 return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false); 2088 } 2089 2090 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const 2091 -> ConstantInt * { 2092 return ConstantInt::getSigned(getIntTy(Width), Val); 2093 } 2094 2095 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 2096 if (auto *C = dyn_cast<Constant>(Val)) 2097 return C->isZeroValue(); 2098 return false; 2099 } 2100 2101 auto HexagonVectorCombine::getIntValue(const Value *Val) const 2102 -> std::optional<APInt> { 2103 if (auto *CI = dyn_cast<ConstantInt>(Val)) 2104 return CI->getValue(); 2105 return std::nullopt; 2106 } 2107 2108 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 2109 return isa<UndefValue>(Val); 2110 } 2111 2112 auto HexagonVectorCombine::isTrue(const Value *Val) const -> bool { 2113 return Val == ConstantInt::getTrue(Val->getType()); 2114 } 2115 2116 auto HexagonVectorCombine::isFalse(const Value *Val) const -> bool { 2117 return isZero(Val); 2118 } 2119 2120 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const 2121 -> VectorType * { 2122 EVT ETy = EVT::getEVT(ElemTy, false); 2123 assert(ETy.isSimple() && "Invalid HVX element type"); 2124 // Do not allow boolean types here: they don't have a fixed length. 2125 assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) && 2126 "Invalid HVX element type"); 2127 unsigned HwLen = HST.getVectorLength(); 2128 unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits(); 2129 return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems, 2130 /*Scalable=*/false); 2131 } 2132 2133 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const 2134 -> int { 2135 return getSizeOf(Val->getType(), Kind); 2136 } 2137 2138 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const 2139 -> int { 2140 auto *NcTy = const_cast<Type *>(Ty); 2141 switch (Kind) { 2142 case Store: 2143 return DL.getTypeStoreSize(NcTy).getFixedValue(); 2144 case Alloc: 2145 return DL.getTypeAllocSize(NcTy).getFixedValue(); 2146 } 2147 llvm_unreachable("Unhandled SizeKind enum"); 2148 } 2149 2150 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 2151 // The actual type may be shorter than the HVX vector, so determine 2152 // the alignment based on subtarget info. 2153 if (HST.isTypeForHVX(Ty)) 2154 return HST.getVectorLength(); 2155 return DL.getABITypeAlign(Ty).value(); 2156 } 2157 2158 auto HexagonVectorCombine::length(Value *Val) const -> size_t { 2159 return length(Val->getType()); 2160 } 2161 2162 auto HexagonVectorCombine::length(Type *Ty) const -> size_t { 2163 auto *VecTy = dyn_cast<VectorType>(Ty); 2164 assert(VecTy && "Must be a vector type"); 2165 return VecTy->getElementCount().getFixedValue(); 2166 } 2167 2168 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 2169 assert(Ty->isIntOrIntVectorTy()); 2170 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 2171 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2172 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 2173 return Zero; 2174 } 2175 2176 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 2177 assert(Ty->isIntOrIntVectorTy()); 2178 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 2179 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2180 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 2181 return Minus1; 2182 } 2183 2184 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const 2185 -> Constant * { 2186 assert(Ty->isVectorTy()); 2187 auto VecTy = cast<VectorType>(Ty); 2188 Type *ElemTy = VecTy->getElementType(); 2189 // Add support for floats if needed. 2190 auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(), 2191 ConstantInt::get(ElemTy, Val)); 2192 return Splat; 2193 } 2194 2195 auto HexagonVectorCombine::simplify(Value *V) const -> Value * { 2196 if (auto *In = dyn_cast<Instruction>(V)) { 2197 SimplifyQuery Q(DL, &TLI, &DT, &AC, In); 2198 return simplifyInstruction(In, Q); 2199 } 2200 return nullptr; 2201 } 2202 2203 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 2204 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst, 2205 Value *Src, int Start, int Length, 2206 int Where) const -> Value * { 2207 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 2208 int SrcLen = getSizeOf(Src); 2209 int DstLen = getSizeOf(Dst); 2210 assert(0 <= Start && Start + Length <= SrcLen); 2211 assert(0 <= Where && Where + Length <= DstLen); 2212 2213 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 2214 auto *Undef = UndefValue::get(getByteTy()); 2215 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 2216 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 2217 2218 SmallVector<int, 256> SMask(P2Len); 2219 for (int i = 0; i != P2Len; ++i) { 2220 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 2221 // Otherwise, pick Dst[i]; 2222 SMask[i] = 2223 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 2224 } 2225 2226 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask, "shf"); 2227 return vresize(Builder, P2Insert, DstLen, Undef); 2228 } 2229 2230 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo, 2231 Value *Hi, Value *Amt) const -> Value * { 2232 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 2233 if (isZero(Amt)) 2234 return Hi; 2235 int VecLen = getSizeOf(Hi); 2236 if (auto IntAmt = getIntValue(Amt)) 2237 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 2238 VecLen); 2239 2240 if (HST.isTypeForHVX(Hi->getType())) { 2241 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 2242 "Expecting an exact HVX type"); 2243 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb), 2244 Hi->getType(), {Hi, Lo, Amt}); 2245 } 2246 2247 if (VecLen == 4) { 2248 Value *Pair = concat(Builder, {Lo, Hi}); 2249 Value *Shift = 2250 Builder.CreateLShr(Builder.CreateShl(Pair, Amt, "shl"), 32, "lsr"); 2251 Value *Trunc = 2252 Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn"); 2253 return Builder.CreateBitCast(Trunc, Hi->getType(), "cst"); 2254 } 2255 if (VecLen == 8) { 2256 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt, "sub"); 2257 return vralignb(Builder, Lo, Hi, Sub); 2258 } 2259 llvm_unreachable("Unexpected vector length"); 2260 } 2261 2262 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo, 2263 Value *Hi, Value *Amt) const -> Value * { 2264 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 2265 if (isZero(Amt)) 2266 return Lo; 2267 int VecLen = getSizeOf(Lo); 2268 if (auto IntAmt = getIntValue(Amt)) 2269 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 2270 2271 if (HST.isTypeForHVX(Lo->getType())) { 2272 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 2273 "Expecting an exact HVX type"); 2274 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb), 2275 Lo->getType(), {Hi, Lo, Amt}); 2276 } 2277 2278 if (VecLen == 4) { 2279 Value *Pair = concat(Builder, {Lo, Hi}); 2280 Value *Shift = Builder.CreateLShr(Pair, Amt, "lsr"); 2281 Value *Trunc = 2282 Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn"); 2283 return Builder.CreateBitCast(Trunc, Lo->getType(), "cst"); 2284 } 2285 if (VecLen == 8) { 2286 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 2287 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty, "cst"); 2288 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty, "cst"); 2289 Function *FI = Intrinsic::getDeclaration(F.getParent(), 2290 Intrinsic::hexagon_S2_valignrb); 2291 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}, "cup"); 2292 return Builder.CreateBitCast(Call, Lo->getType(), "cst"); 2293 } 2294 llvm_unreachable("Unexpected vector length"); 2295 } 2296 2297 // Concatenates a sequence of vectors of the same type. 2298 auto HexagonVectorCombine::concat(IRBuilderBase &Builder, 2299 ArrayRef<Value *> Vecs) const -> Value * { 2300 assert(!Vecs.empty()); 2301 SmallVector<int, 256> SMask; 2302 std::vector<Value *> Work[2]; 2303 int ThisW = 0, OtherW = 1; 2304 2305 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 2306 while (Work[ThisW].size() > 1) { 2307 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 2308 SMask.resize(length(Ty) * 2); 2309 std::iota(SMask.begin(), SMask.end(), 0); 2310 2311 Work[OtherW].clear(); 2312 if (Work[ThisW].size() % 2 != 0) 2313 Work[ThisW].push_back(UndefValue::get(Ty)); 2314 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 2315 Value *Joined = Builder.CreateShuffleVector( 2316 Work[ThisW][i], Work[ThisW][i + 1], SMask, "shf"); 2317 Work[OtherW].push_back(Joined); 2318 } 2319 std::swap(ThisW, OtherW); 2320 } 2321 2322 // Since there may have been some undefs appended to make shuffle operands 2323 // have the same type, perform the last shuffle to only pick the original 2324 // elements. 2325 SMask.resize(Vecs.size() * length(Vecs.front()->getType())); 2326 std::iota(SMask.begin(), SMask.end(), 0); 2327 Value *Total = Work[ThisW].front(); 2328 return Builder.CreateShuffleVector(Total, SMask, "shf"); 2329 } 2330 2331 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val, 2332 int NewSize, Value *Pad) const -> Value * { 2333 assert(isa<VectorType>(Val->getType())); 2334 auto *ValTy = cast<VectorType>(Val->getType()); 2335 assert(ValTy->getElementType() == Pad->getType()); 2336 2337 int CurSize = length(ValTy); 2338 if (CurSize == NewSize) 2339 return Val; 2340 // Truncate? 2341 if (CurSize > NewSize) 2342 return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize); 2343 // Extend. 2344 SmallVector<int, 128> SMask(NewSize); 2345 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 2346 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 2347 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad, "spt"); 2348 return Builder.CreateShuffleVector(Val, PadVec, SMask, "shf"); 2349 } 2350 2351 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask, 2352 Type *FromTy, Type *ToTy) const -> Value * { 2353 // Mask is a vector <N x i1>, where each element corresponds to an 2354 // element of FromTy. Remap it so that each element will correspond 2355 // to an element of ToTy. 2356 assert(isa<VectorType>(Mask->getType())); 2357 2358 Type *FromSTy = FromTy->getScalarType(); 2359 Type *ToSTy = ToTy->getScalarType(); 2360 if (FromSTy == ToSTy) 2361 return Mask; 2362 2363 int FromSize = getSizeOf(FromSTy); 2364 int ToSize = getSizeOf(ToSTy); 2365 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 2366 2367 auto *MaskTy = cast<VectorType>(Mask->getType()); 2368 int FromCount = length(MaskTy); 2369 int ToCount = (FromCount * FromSize) / ToSize; 2370 assert((FromCount * FromSize) % ToSize == 0); 2371 2372 auto *FromITy = getIntTy(FromSize * 8); 2373 auto *ToITy = getIntTy(ToSize * 8); 2374 2375 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 2376 // -> trunc to <M x i1>. 2377 Value *Ext = Builder.CreateSExt( 2378 Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false), "sxt"); 2379 Value *Cast = Builder.CreateBitCast( 2380 Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false), "cst"); 2381 return Builder.CreateTrunc( 2382 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false), "trn"); 2383 } 2384 2385 // Bitcast to bytes, and return least significant bits. 2386 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const 2387 -> Value * { 2388 Type *ScalarTy = Val->getType()->getScalarType(); 2389 if (ScalarTy == getBoolTy()) 2390 return Val; 2391 2392 Value *Bytes = vbytes(Builder, Val); 2393 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 2394 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)), "trn"); 2395 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 2396 // <1 x i1>. 2397 return Builder.CreateTrunc(Bytes, getBoolTy(), "trn"); 2398 } 2399 2400 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 2401 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const 2402 -> Value * { 2403 Type *ScalarTy = Val->getType()->getScalarType(); 2404 if (ScalarTy == getByteTy()) 2405 return Val; 2406 2407 if (ScalarTy != getBoolTy()) 2408 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)), "cst"); 2409 // For bool, return a sext from i1 to i8. 2410 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 2411 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy), "sxt"); 2412 return Builder.CreateSExt(Val, getByteTy(), "sxt"); 2413 } 2414 2415 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val, 2416 unsigned Start, unsigned Length) const 2417 -> Value * { 2418 assert(Start + Length <= length(Val)); 2419 return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length); 2420 } 2421 2422 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const 2423 -> Value * { 2424 size_t Len = length(Val); 2425 assert(Len % 2 == 0 && "Length should be even"); 2426 return subvector(Builder, Val, 0, Len / 2); 2427 } 2428 2429 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const 2430 -> Value * { 2431 size_t Len = length(Val); 2432 assert(Len % 2 == 0 && "Length should be even"); 2433 return subvector(Builder, Val, Len / 2, Len / 2); 2434 } 2435 2436 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0, 2437 Value *Val1) const -> Value * { 2438 assert(Val0->getType() == Val1->getType()); 2439 int Len = length(Val0); 2440 SmallVector<int, 128> Mask(2 * Len); 2441 2442 for (int i = 0; i != Len; ++i) { 2443 Mask[i] = 2 * i; // Even 2444 Mask[i + Len] = 2 * i + 1; // Odd 2445 } 2446 return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf"); 2447 } 2448 2449 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0, 2450 Value *Val1) const -> Value * { // 2451 assert(Val0->getType() == Val1->getType()); 2452 int Len = length(Val0); 2453 SmallVector<int, 128> Mask(2 * Len); 2454 2455 for (int i = 0; i != Len; ++i) { 2456 Mask[2 * i + 0] = i; // Val0 2457 Mask[2 * i + 1] = i + Len; // Val1 2458 } 2459 return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf"); 2460 } 2461 2462 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder, 2463 Intrinsic::ID IntID, Type *RetTy, 2464 ArrayRef<Value *> Args, 2465 ArrayRef<Type *> ArgTys, 2466 ArrayRef<Value *> MDSources) const 2467 -> Value * { 2468 auto getCast = [&](IRBuilderBase &Builder, Value *Val, 2469 Type *DestTy) -> Value * { 2470 Type *SrcTy = Val->getType(); 2471 if (SrcTy == DestTy) 2472 return Val; 2473 2474 // Non-HVX type. It should be a scalar, and it should already have 2475 // a valid type. 2476 assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true)); 2477 2478 Type *BoolTy = Type::getInt1Ty(F.getContext()); 2479 if (cast<VectorType>(SrcTy)->getElementType() != BoolTy) 2480 return Builder.CreateBitCast(Val, DestTy, "cst"); 2481 2482 // Predicate HVX vector. 2483 unsigned HwLen = HST.getVectorLength(); 2484 Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast 2485 : Intrinsic::hexagon_V6_pred_typecast_128B; 2486 Function *FI = 2487 Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); 2488 return Builder.CreateCall(FI, {Val}, "cup"); 2489 }; 2490 2491 Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys); 2492 FunctionType *IntrTy = IntrFn->getFunctionType(); 2493 2494 SmallVector<Value *, 4> IntrArgs; 2495 for (int i = 0, e = Args.size(); i != e; ++i) { 2496 Value *A = Args[i]; 2497 Type *T = IntrTy->getParamType(i); 2498 if (A->getType() != T) { 2499 IntrArgs.push_back(getCast(Builder, A, T)); 2500 } else { 2501 IntrArgs.push_back(A); 2502 } 2503 } 2504 StringRef MaybeName = !IntrTy->getReturnType()->isVoidTy() ? "cup" : ""; 2505 CallInst *Call = Builder.CreateCall(IntrFn, IntrArgs, MaybeName); 2506 2507 MemoryEffects ME = Call->getAttributes().getMemoryEffects(); 2508 if (!ME.doesNotAccessMemory() && !ME.onlyAccessesInaccessibleMem()) 2509 propagateMetadata(Call, MDSources); 2510 2511 Type *CallTy = Call->getType(); 2512 if (RetTy == nullptr || CallTy == RetTy) 2513 return Call; 2514 // Scalar types should have RetTy matching the call return type. 2515 assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true)); 2516 return getCast(Builder, Call, RetTy); 2517 } 2518 2519 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder, 2520 Value *Vec, 2521 unsigned ToWidth) const 2522 -> SmallVector<Value *> { 2523 // Break a vector of wide elements into a series of vectors with narrow 2524 // elements: 2525 // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...) 2526 // --> 2527 // (a0, a1, a2, ...) // lowest "ToWidth" bits 2528 // (b0, b1, b2, ...) // the next lowest... 2529 // (c0, c1, c2, ...) // ... 2530 // ... 2531 // 2532 // The number of elements in each resulting vector is the same as 2533 // in the original vector. 2534 2535 auto *VecTy = cast<VectorType>(Vec->getType()); 2536 assert(VecTy->getElementType()->isIntegerTy()); 2537 unsigned FromWidth = VecTy->getScalarSizeInBits(); 2538 assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth)); 2539 assert(ToWidth <= FromWidth && "Breaking up into wider elements?"); 2540 unsigned NumResults = FromWidth / ToWidth; 2541 2542 SmallVector<Value *> Results(NumResults); 2543 Results[0] = Vec; 2544 unsigned Length = length(VecTy); 2545 2546 // Do it by splitting in half, since those operations correspond to deal 2547 // instructions. 2548 auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void { 2549 // Take V = Results[Begin], split it in L, H. 2550 // Store Results[Begin] = L, Results[(Begin+End)/2] = H 2551 // Call itself recursively split(Begin, Half), split(Half+1, End) 2552 if (Begin + 1 == End) 2553 return; 2554 2555 Value *Val = Results[Begin]; 2556 unsigned Width = Val->getType()->getScalarSizeInBits(); 2557 2558 auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false); 2559 Value *VVal = Builder.CreateBitCast(Val, VTy, "cst"); 2560 2561 Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal)); 2562 2563 unsigned Half = (Begin + End) / 2; 2564 Results[Begin] = sublo(Builder, Res); 2565 Results[Half] = subhi(Builder, Res); 2566 2567 splitFunc(Begin, Half, splitFunc); 2568 splitFunc(Half, End, splitFunc); 2569 }; 2570 2571 splitInHalf(0, NumResults, splitInHalf); 2572 return Results; 2573 } 2574 2575 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder, 2576 ArrayRef<Value *> Values, 2577 VectorType *ToType) const 2578 -> Value * { 2579 assert(ToType->getElementType()->isIntegerTy()); 2580 2581 // If the list of values does not have power-of-2 elements, append copies 2582 // of the sign bit to it, to make the size be 2^n. 2583 // The reason for this is that the values will be joined in pairs, because 2584 // otherwise the shuffles will result in convoluted code. With pairwise 2585 // joins, the shuffles will hopefully be folded into a perfect shuffle. 2586 // The output will need to be sign-extended to a type with element width 2587 // being a power-of-2 anyways. 2588 SmallVector<Value *> Inputs(Values.begin(), Values.end()); 2589 2590 unsigned ToWidth = ToType->getScalarSizeInBits(); 2591 unsigned Width = Inputs.front()->getType()->getScalarSizeInBits(); 2592 assert(Width <= ToWidth); 2593 assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth)); 2594 unsigned Length = length(Inputs.front()->getType()); 2595 2596 unsigned NeedInputs = ToWidth / Width; 2597 if (Inputs.size() != NeedInputs) { 2598 // Having too many inputs is ok: drop the high bits (usual wrap-around). 2599 // If there are too few, fill them with the sign bit. 2600 Value *Last = Inputs.back(); 2601 Value *Sign = Builder.CreateAShr( 2602 Last, getConstSplat(Last->getType(), Width - 1), "asr"); 2603 Inputs.resize(NeedInputs, Sign); 2604 } 2605 2606 while (Inputs.size() > 1) { 2607 Width *= 2; 2608 auto *VTy = VectorType::get(getIntTy(Width), Length, false); 2609 for (int i = 0, e = Inputs.size(); i < e; i += 2) { 2610 Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]); 2611 Inputs[i / 2] = Builder.CreateBitCast(Res, VTy, "cst"); 2612 } 2613 Inputs.resize(Inputs.size() / 2); 2614 } 2615 2616 assert(Inputs.front()->getType() == ToType); 2617 return Inputs.front(); 2618 } 2619 2620 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 2621 Value *Ptr1) const 2622 -> std::optional<int> { 2623 struct Builder : IRBuilder<> { 2624 Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {} 2625 ~Builder() { 2626 for (Instruction *I : llvm::reverse(ToErase)) 2627 I->eraseFromParent(); 2628 } 2629 SmallVector<Instruction *, 8> ToErase; 2630 }; 2631 2632 #define CallBuilder(B, F) \ 2633 [&](auto &B_) { \ 2634 Value *V = B_.F; \ 2635 if (auto *I = dyn_cast<Instruction>(V)) \ 2636 B_.ToErase.push_back(I); \ 2637 return V; \ 2638 }(B) 2639 2640 auto Simplify = [this](Value *V) { 2641 if (Value *S = simplify(V)) 2642 return S; 2643 return V; 2644 }; 2645 2646 auto StripBitCast = [](Value *V) { 2647 while (auto *C = dyn_cast<BitCastInst>(V)) 2648 V = C->getOperand(0); 2649 return V; 2650 }; 2651 2652 Ptr0 = StripBitCast(Ptr0); 2653 Ptr1 = StripBitCast(Ptr1); 2654 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 2655 return std::nullopt; 2656 2657 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 2658 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 2659 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 2660 return std::nullopt; 2661 if (Gep0->getSourceElementType() != Gep1->getSourceElementType()) 2662 return std::nullopt; 2663 2664 Builder B(Gep0->getParent()); 2665 int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc); 2666 2667 // FIXME: for now only check GEPs with a single index. 2668 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 2669 return std::nullopt; 2670 2671 Value *Idx0 = Gep0->getOperand(1); 2672 Value *Idx1 = Gep1->getOperand(1); 2673 2674 // First, try to simplify the subtraction directly. 2675 if (auto *Diff = dyn_cast<ConstantInt>( 2676 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 2677 return Diff->getSExtValue() * Scale; 2678 2679 KnownBits Known0 = getKnownBits(Idx0, Gep0); 2680 KnownBits Known1 = getKnownBits(Idx1, Gep1); 2681 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 2682 if (Unknown.isAllOnes()) 2683 return std::nullopt; 2684 2685 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 2686 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 2687 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 2688 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 2689 int Diff0 = 0; 2690 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 2691 Diff0 = C->getSExtValue(); 2692 } else { 2693 return std::nullopt; 2694 } 2695 2696 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 2697 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 2698 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 2699 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 2700 int Diff1 = 0; 2701 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 2702 Diff1 = C->getSExtValue(); 2703 } else { 2704 return std::nullopt; 2705 } 2706 2707 return (Diff0 + Diff1) * Scale; 2708 2709 #undef CallBuilder 2710 } 2711 2712 auto HexagonVectorCombine::getNumSignificantBits(const Value *V, 2713 const Instruction *CtxI) const 2714 -> unsigned { 2715 return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2716 } 2717 2718 auto HexagonVectorCombine::getKnownBits(const Value *V, 2719 const Instruction *CtxI) const 2720 -> KnownBits { 2721 return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr, 2722 /*UseInstrInfo=*/true); 2723 } 2724 2725 template <typename T> 2726 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 2727 BasicBlock::const_iterator To, 2728 const T &IgnoreInsts) const 2729 -> bool { 2730 auto getLocOrNone = 2731 [this](const Instruction &I) -> std::optional<MemoryLocation> { 2732 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 2733 switch (II->getIntrinsicID()) { 2734 case Intrinsic::masked_load: 2735 return MemoryLocation::getForArgument(II, 0, TLI); 2736 case Intrinsic::masked_store: 2737 return MemoryLocation::getForArgument(II, 1, TLI); 2738 } 2739 } 2740 return MemoryLocation::getOrNone(&I); 2741 }; 2742 2743 // The source and the destination must be in the same basic block. 2744 const BasicBlock &Block = *In.getParent(); 2745 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 2746 // No PHIs. 2747 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 2748 return false; 2749 2750 if (!mayHaveNonDefUseDependency(In)) 2751 return true; 2752 bool MayWrite = In.mayWriteToMemory(); 2753 auto MaybeLoc = getLocOrNone(In); 2754 2755 auto From = In.getIterator(); 2756 if (From == To) 2757 return true; 2758 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 2759 auto Range = 2760 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 2761 for (auto It = Range.first; It != Range.second; ++It) { 2762 const Instruction &I = *It; 2763 if (llvm::is_contained(IgnoreInsts, &I)) 2764 continue; 2765 // assume intrinsic can be ignored 2766 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2767 if (II->getIntrinsicID() == Intrinsic::assume) 2768 continue; 2769 } 2770 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 2771 if (I.mayThrow()) 2772 return false; 2773 if (auto *CB = dyn_cast<CallBase>(&I)) { 2774 if (!CB->hasFnAttr(Attribute::WillReturn)) 2775 return false; 2776 if (!CB->hasFnAttr(Attribute::NoSync)) 2777 return false; 2778 } 2779 if (I.mayReadOrWriteMemory()) { 2780 auto MaybeLocI = getLocOrNone(I); 2781 if (MayWrite || I.mayWriteToMemory()) { 2782 if (!MaybeLoc || !MaybeLocI) 2783 return false; 2784 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 2785 return false; 2786 } 2787 } 2788 } 2789 return true; 2790 } 2791 2792 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 2793 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2794 return VecTy->getElementType() == getByteTy(); 2795 return false; 2796 } 2797 2798 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo, 2799 Value *Hi, int Start, 2800 int Length) const -> Value * { 2801 assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi)); 2802 SmallVector<int, 128> SMask(Length); 2803 std::iota(SMask.begin(), SMask.end(), Start); 2804 return Builder.CreateShuffleVector(Lo, Hi, SMask, "shf"); 2805 } 2806 2807 // Pass management. 2808 2809 namespace llvm { 2810 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 2811 FunctionPass *createHexagonVectorCombineLegacyPass(); 2812 } // namespace llvm 2813 2814 namespace { 2815 class HexagonVectorCombineLegacy : public FunctionPass { 2816 public: 2817 static char ID; 2818 2819 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 2820 2821 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 2822 2823 void getAnalysisUsage(AnalysisUsage &AU) const override { 2824 AU.setPreservesCFG(); 2825 AU.addRequired<AAResultsWrapperPass>(); 2826 AU.addRequired<AssumptionCacheTracker>(); 2827 AU.addRequired<DominatorTreeWrapperPass>(); 2828 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2829 AU.addRequired<TargetPassConfig>(); 2830 FunctionPass::getAnalysisUsage(AU); 2831 } 2832 2833 bool runOnFunction(Function &F) override { 2834 if (skipFunction(F)) 2835 return false; 2836 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2837 AssumptionCache &AC = 2838 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2839 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2840 TargetLibraryInfo &TLI = 2841 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2842 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 2843 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 2844 return HVC.run(); 2845 } 2846 }; 2847 } // namespace 2848 2849 char HexagonVectorCombineLegacy::ID = 0; 2850 2851 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 2852 "Hexagon Vector Combine", false, false) 2853 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2854 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2855 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2856 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2857 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 2858 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 2859 "Hexagon Vector Combine", false, false) 2860 2861 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 2862 return new HexagonVectorCombineLegacy(); 2863 } 2864