1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstSimplifyFolder.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/CodeGen/TargetPassConfig.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsHexagon.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetMachine.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 45 #include "HexagonSubtarget.h" 46 #include "HexagonTargetMachine.h" 47 48 #include <algorithm> 49 #include <deque> 50 #include <map> 51 #include <optional> 52 #include <set> 53 #include <utility> 54 #include <vector> 55 56 #define DEBUG_TYPE "hexagon-vc" 57 58 using namespace llvm; 59 60 namespace { 61 class HexagonVectorCombine { 62 public: 63 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 64 DominatorTree &DT_, TargetLibraryInfo &TLI_, 65 const TargetMachine &TM_) 66 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 67 TLI(TLI_), 68 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 69 70 bool run(); 71 72 // Common integer type. 73 IntegerType *getIntTy(unsigned Width = 32) const; 74 // Byte type: either scalar (when Length = 0), or vector with given 75 // element count. 76 Type *getByteTy(int ElemCount = 0) const; 77 // Boolean type: either scalar (when Length = 0), or vector with given 78 // element count. 79 Type *getBoolTy(int ElemCount = 0) const; 80 // Create a ConstantInt of type returned by getIntTy with the value Val. 81 ConstantInt *getConstInt(int Val) const; 82 // Get the integer value of V, if it exists. 83 std::optional<APInt> getIntValue(const Value *Val) const; 84 // Is V a constant 0, or a vector of 0s? 85 bool isZero(const Value *Val) const; 86 // Is V an undef value? 87 bool isUndef(const Value *Val) const; 88 89 // Get HVX vector type with the given element type. 90 VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const; 91 92 enum SizeKind { 93 Store, // Store size 94 Alloc, // Alloc size 95 }; 96 int getSizeOf(const Value *Val, SizeKind Kind = Store) const; 97 int getSizeOf(const Type *Ty, SizeKind Kind = Store) const; 98 int getTypeAlignment(Type *Ty) const; 99 size_t length(Value *Val) const; 100 size_t length(Type *Ty) const; 101 102 Constant *getNullValue(Type *Ty) const; 103 Constant *getFullValue(Type *Ty) const; 104 Constant *getConstSplat(Type *Ty, int Val) const; 105 106 Value *simplify(Value *Val) const; 107 108 Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start, 109 int Length, int Where) const; 110 Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 111 Value *Amt) const; 112 Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 113 Value *Amt) const; 114 Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const; 115 Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize, 116 Value *Pad) const; 117 Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy, 118 Type *ToTy) const; 119 Value *vlsb(IRBuilderBase &Builder, Value *Val) const; 120 Value *vbytes(IRBuilderBase &Builder, Value *Val) const; 121 Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start, 122 unsigned Length) const; 123 Value *sublo(IRBuilderBase &Builder, Value *Val) const; 124 Value *subhi(IRBuilderBase &Builder, Value *Val) const; 125 Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 126 Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 127 128 Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID, 129 Type *RetTy, ArrayRef<Value *> Args, 130 ArrayRef<Type *> ArgTys = None) const; 131 SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec, 132 unsigned ToWidth) const; 133 Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values, 134 VectorType *ToType) const; 135 136 std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 137 138 unsigned getNumSignificantBits(const Value *V, 139 const Instruction *CtxI = nullptr) const; 140 KnownBits getKnownBits(const Value *V, 141 const Instruction *CtxI = nullptr) const; 142 143 template <typename T = std::vector<Instruction *>> 144 bool isSafeToMoveBeforeInBB(const Instruction &In, 145 BasicBlock::const_iterator To, 146 const T &Ignore = {}) const; 147 148 // This function is only used for assertions at the moment. 149 [[maybe_unused]] bool isByteVecTy(Type *Ty) const; 150 151 Function &F; 152 const DataLayout &DL; 153 AliasAnalysis &AA; 154 AssumptionCache &AC; 155 DominatorTree &DT; 156 TargetLibraryInfo &TLI; 157 const HexagonSubtarget &HST; 158 159 private: 160 Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi, 161 int Start, int Length) const; 162 }; 163 164 class AlignVectors { 165 public: 166 AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {} 167 168 bool run(); 169 170 private: 171 using InstList = std::vector<Instruction *>; 172 173 struct Segment { 174 void *Data; 175 int Start; 176 int Size; 177 }; 178 179 struct AddrInfo { 180 AddrInfo(const AddrInfo &) = default; 181 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 182 Align H) 183 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 184 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 185 AddrInfo &operator=(const AddrInfo &) = default; 186 187 // XXX: add Size member? 188 Instruction *Inst; 189 Value *Addr; 190 Type *ValTy; 191 Align HaveAlign; 192 Align NeedAlign; 193 int Offset = 0; // Offset (in bytes) from the first member of the 194 // containing AddrList. 195 }; 196 using AddrList = std::vector<AddrInfo>; 197 198 struct InstrLess { 199 bool operator()(const Instruction *A, const Instruction *B) const { 200 return A->comesBefore(B); 201 } 202 }; 203 using DepList = std::set<Instruction *, InstrLess>; 204 205 struct MoveGroup { 206 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 207 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 208 Instruction *Base; // Base instruction of the parent address group. 209 InstList Main; // Main group of instructions. 210 InstList Deps; // List of dependencies. 211 bool IsHvx; // Is this group of HVX instructions? 212 bool IsLoad; // Is this a load group? 213 }; 214 using MoveList = std::vector<MoveGroup>; 215 216 struct ByteSpan { 217 struct Segment { 218 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 219 Segment(Value *Val, int Begin, int Len) 220 : Val(Val), Start(Begin), Size(Len) {} 221 Segment(const Segment &Seg) = default; 222 Segment &operator=(const Segment &Seg) = default; 223 Value *Val; // Value representable as a sequence of bytes. 224 int Start; // First byte of the value that belongs to the segment. 225 int Size; // Number of bytes in the segment. 226 }; 227 228 struct Block { 229 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 230 Block(Value *Val, int Off, int Len, int Pos) 231 : Seg(Val, Off, Len), Pos(Pos) {} 232 Block(const Block &Blk) = default; 233 Block &operator=(const Block &Blk) = default; 234 Segment Seg; // Value segment. 235 int Pos; // Position (offset) of the segment in the Block. 236 }; 237 238 int extent() const; 239 ByteSpan section(int Start, int Length) const; 240 ByteSpan &shift(int Offset); 241 SmallVector<Value *, 8> values() const; 242 243 int size() const { return Blocks.size(); } 244 Block &operator[](int i) { return Blocks[i]; } 245 246 std::vector<Block> Blocks; 247 248 using iterator = decltype(Blocks)::iterator; 249 iterator begin() { return Blocks.begin(); } 250 iterator end() { return Blocks.end(); } 251 using const_iterator = decltype(Blocks)::const_iterator; 252 const_iterator begin() const { return Blocks.begin(); } 253 const_iterator end() const { return Blocks.end(); } 254 }; 255 256 Align getAlignFromValue(const Value *V) const; 257 std::optional<MemoryLocation> getLocation(const Instruction &In) const; 258 std::optional<AddrInfo> getAddrInfo(Instruction &In) const; 259 bool isHvx(const AddrInfo &AI) const; 260 // This function is only used for assertions at the moment. 261 [[maybe_unused]] bool isSectorTy(Type *Ty) const; 262 263 Value *getPayload(Value *Val) const; 264 Value *getMask(Value *Val) const; 265 Value *getPassThrough(Value *Val) const; 266 267 Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 268 int Adjust) const; 269 Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 270 int Alignment) const; 271 Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 272 int Alignment, Value *Mask, Value *PassThru) const; 273 Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 274 int Alignment, Value *Mask) const; 275 276 bool createAddressGroups(); 277 MoveList createLoadGroups(const AddrList &Group) const; 278 MoveList createStoreGroups(const AddrList &Group) const; 279 bool move(const MoveGroup &Move) const; 280 bool realignGroup(const MoveGroup &Move) const; 281 282 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 283 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 284 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 285 286 std::map<Instruction *, AddrList> AddrGroups; 287 const HexagonVectorCombine &HVC; 288 }; 289 290 LLVM_ATTRIBUTE_UNUSED 291 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 292 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 293 OS << "Addr: " << *AI.Addr << '\n'; 294 OS << "Type: " << *AI.ValTy << '\n'; 295 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 296 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 297 OS << "Offset: " << AI.Offset; 298 return OS; 299 } 300 301 LLVM_ATTRIBUTE_UNUSED 302 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 303 OS << "Main\n"; 304 for (Instruction *I : MG.Main) 305 OS << " " << *I << '\n'; 306 OS << "Deps\n"; 307 for (Instruction *I : MG.Deps) 308 OS << " " << *I << '\n'; 309 return OS; 310 } 311 312 LLVM_ATTRIBUTE_UNUSED 313 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 314 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 315 for (const AlignVectors::ByteSpan::Block &B : BS) { 316 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 317 << *B.Seg.Val << '\n'; 318 } 319 OS << ']'; 320 return OS; 321 } 322 323 class HvxIdioms { 324 public: 325 HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) { 326 auto *Int32Ty = HVC.getIntTy(32); 327 HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false); 328 HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true); 329 } 330 331 bool run(); 332 333 private: 334 struct FxpOp { 335 unsigned Opcode; 336 unsigned Frac; // Number of fraction bits 337 Value *X, *Y; 338 // If present, add 1 << RoundAt before shift: 339 std::optional<unsigned> RoundAt; 340 }; 341 342 // Value + sign 343 // This is to distinguish multiplications: s*s, s*u, u*s, u*u. 344 struct SValue { 345 Value *Val; 346 bool Signed; 347 }; 348 349 std::optional<FxpOp> matchFxpMul(Instruction &In) const; 350 Value *processFxpMul(Instruction &In, const FxpOp &Op) const; 351 352 Value *processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 353 const FxpOp &Op) const; 354 Value *createMulQ15(IRBuilderBase &Builder, Value *X, Value *Y, 355 bool Rounding) const; 356 Value *createMulQ31(IRBuilderBase &Builder, Value *X, Value *Y, 357 bool Rounding) const; 358 std::pair<Value *, Value *> createMul32(IRBuilderBase &Builder, SValue X, 359 SValue Y) const; 360 361 VectorType *HvxI32Ty; 362 VectorType *HvxP32Ty; 363 const HexagonVectorCombine &HVC; 364 365 friend raw_ostream &operator<<(raw_ostream &, const FxpOp &); 366 }; 367 368 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS, 369 const HvxIdioms::FxpOp &Op) { 370 OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac; 371 if (Op.RoundAt.has_value()) { 372 if (Op.Frac != 0 && Op.RoundAt.value() == Op.Frac - 1) { 373 OS << ":rnd"; 374 } else { 375 OS << " + 1<<" << Op.RoundAt.value(); 376 } 377 } 378 OS << "\n X:" << *Op.X << "\n Y:" << *Op.Y; 379 return OS; 380 } 381 382 } // namespace 383 384 namespace { 385 386 template <typename T> T *getIfUnordered(T *MaybeT) { 387 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 388 } 389 template <typename T> T *isCandidate(Instruction *In) { 390 return dyn_cast<T>(In); 391 } 392 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 393 return getIfUnordered(dyn_cast<LoadInst>(In)); 394 } 395 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 396 return getIfUnordered(dyn_cast<StoreInst>(In)); 397 } 398 399 #if !defined(_MSC_VER) || _MSC_VER >= 1926 400 // VS2017 and some versions of VS2019 have trouble compiling this: 401 // error C2976: 'std::map': too few template arguments 402 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 403 template <typename Pred, typename... Ts> 404 void erase_if(std::map<Ts...> &map, Pred p) 405 #else 406 template <typename Pred, typename T, typename U> 407 void erase_if(std::map<T, U> &map, Pred p) 408 #endif 409 { 410 for (auto i = map.begin(), e = map.end(); i != e;) { 411 if (p(*i)) 412 i = map.erase(i); 413 else 414 i = std::next(i); 415 } 416 } 417 418 // Forward other erase_ifs to the LLVM implementations. 419 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 420 llvm::erase_if(std::forward<T>(container), p); 421 } 422 423 } // namespace 424 425 // --- Begin AlignVectors 426 427 auto AlignVectors::ByteSpan::extent() const -> int { 428 if (size() == 0) 429 return 0; 430 int Min = Blocks[0].Pos; 431 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 432 for (int i = 1, e = size(); i != e; ++i) { 433 Min = std::min(Min, Blocks[i].Pos); 434 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 435 } 436 return Max - Min; 437 } 438 439 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 440 ByteSpan Section; 441 for (const ByteSpan::Block &B : Blocks) { 442 int L = std::max(B.Pos, Start); // Left end. 443 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 444 if (L < R) { 445 // How much to chop off the beginning of the segment: 446 int Off = L > B.Pos ? L - B.Pos : 0; 447 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 448 } 449 } 450 return Section; 451 } 452 453 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 454 for (Block &B : Blocks) 455 B.Pos += Offset; 456 return *this; 457 } 458 459 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 460 SmallVector<Value *, 8> Values(Blocks.size()); 461 for (int i = 0, e = Blocks.size(); i != e; ++i) 462 Values[i] = Blocks[i].Seg.Val; 463 return Values; 464 } 465 466 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 467 const auto *C = dyn_cast<ConstantInt>(V); 468 assert(C && "Alignment must be a compile-time constant integer"); 469 return C->getAlignValue(); 470 } 471 472 auto AlignVectors::getAddrInfo(Instruction &In) const 473 -> std::optional<AddrInfo> { 474 if (auto *L = isCandidate<LoadInst>(&In)) 475 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 476 L->getAlign()); 477 if (auto *S = isCandidate<StoreInst>(&In)) 478 return AddrInfo(HVC, S, S->getPointerOperand(), 479 S->getValueOperand()->getType(), S->getAlign()); 480 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 481 Intrinsic::ID ID = II->getIntrinsicID(); 482 switch (ID) { 483 case Intrinsic::masked_load: 484 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 485 getAlignFromValue(II->getArgOperand(1))); 486 case Intrinsic::masked_store: 487 return AddrInfo(HVC, II, II->getArgOperand(1), 488 II->getArgOperand(0)->getType(), 489 getAlignFromValue(II->getArgOperand(2))); 490 } 491 } 492 return std::nullopt; 493 } 494 495 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 496 return HVC.HST.isTypeForHVX(AI.ValTy); 497 } 498 499 auto AlignVectors::getPayload(Value *Val) const -> Value * { 500 if (auto *In = dyn_cast<Instruction>(Val)) { 501 Intrinsic::ID ID = 0; 502 if (auto *II = dyn_cast<IntrinsicInst>(In)) 503 ID = II->getIntrinsicID(); 504 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 505 return In->getOperand(0); 506 } 507 return Val; 508 } 509 510 auto AlignVectors::getMask(Value *Val) const -> Value * { 511 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 512 switch (II->getIntrinsicID()) { 513 case Intrinsic::masked_load: 514 return II->getArgOperand(2); 515 case Intrinsic::masked_store: 516 return II->getArgOperand(3); 517 } 518 } 519 520 Type *ValTy = getPayload(Val)->getType(); 521 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) 522 return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy))); 523 return HVC.getFullValue(HVC.getBoolTy()); 524 } 525 526 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 527 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 528 if (II->getIntrinsicID() == Intrinsic::masked_load) 529 return II->getArgOperand(3); 530 } 531 return UndefValue::get(getPayload(Val)->getType()); 532 } 533 534 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, 535 Type *ValTy, int Adjust) const 536 -> Value * { 537 // The adjustment is in bytes, but if it's a multiple of the type size, 538 // we don't need to do pointer casts. 539 auto *PtrTy = cast<PointerType>(Ptr->getType()); 540 if (!PtrTy->isOpaque()) { 541 Type *ElemTy = PtrTy->getNonOpaquePointerElementType(); 542 int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc); 543 if (Adjust % ElemSize == 0 && Adjust != 0) { 544 Value *Tmp0 = 545 Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); 546 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 547 } 548 } 549 550 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 551 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 552 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 553 HVC.getConstInt(Adjust)); 554 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 555 } 556 557 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, 558 Type *ValTy, int Alignment) const 559 -> Value * { 560 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 561 Value *Mask = HVC.getConstInt(-Alignment); 562 Value *And = Builder.CreateAnd(AsInt, Mask); 563 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 564 } 565 566 auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, 567 Value *Ptr, int Alignment, Value *Mask, 568 Value *PassThru) const -> Value * { 569 assert(!HVC.isUndef(Mask)); // Should this be allowed? 570 if (HVC.isZero(Mask)) 571 return PassThru; 572 if (Mask == ConstantInt::getTrue(Mask->getType())) 573 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 574 return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru); 575 } 576 577 auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val, 578 Value *Ptr, int Alignment, 579 Value *Mask) const -> Value * { 580 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 581 return UndefValue::get(Val->getType()); 582 if (Mask == ConstantInt::getTrue(Mask->getType())) 583 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 584 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 585 } 586 587 auto AlignVectors::createAddressGroups() -> bool { 588 // An address group created here may contain instructions spanning 589 // multiple basic blocks. 590 AddrList WorkStack; 591 592 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 593 for (AddrInfo &W : WorkStack) { 594 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 595 return std::make_pair(W.Inst, *D); 596 } 597 return std::make_pair(nullptr, 0); 598 }; 599 600 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 601 BasicBlock &Block = *DomN->getBlock(); 602 for (Instruction &I : Block) { 603 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 604 if (!AI) 605 continue; 606 auto F = findBaseAndOffset(*AI); 607 Instruction *GroupInst; 608 if (Instruction *BI = F.first) { 609 AI->Offset = F.second; 610 GroupInst = BI; 611 } else { 612 WorkStack.push_back(*AI); 613 GroupInst = AI->Inst; 614 } 615 AddrGroups[GroupInst].push_back(*AI); 616 } 617 618 for (DomTreeNode *C : DomN->children()) 619 Visit(C, Visit); 620 621 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 622 WorkStack.pop_back(); 623 }; 624 625 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 626 assert(WorkStack.empty()); 627 628 // AddrGroups are formed. 629 630 // Remove groups of size 1. 631 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 632 // Remove groups that don't use HVX types. 633 erase_if(AddrGroups, [&](auto &G) { 634 return llvm::none_of( 635 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 636 }); 637 638 return !AddrGroups.empty(); 639 } 640 641 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 642 // Form load groups. 643 // To avoid complications with moving code across basic blocks, only form 644 // groups that are contained within a single basic block. 645 646 auto getUpwardDeps = [](Instruction *In, Instruction *Base) { 647 BasicBlock *Parent = Base->getParent(); 648 assert(In->getParent() == Parent && 649 "Base and In should be in the same block"); 650 assert(Base->comesBefore(In) && "Base should come before In"); 651 652 DepList Deps; 653 std::deque<Instruction *> WorkQ = {In}; 654 while (!WorkQ.empty()) { 655 Instruction *D = WorkQ.front(); 656 WorkQ.pop_front(); 657 Deps.insert(D); 658 for (Value *Op : D->operands()) { 659 if (auto *I = dyn_cast<Instruction>(Op)) { 660 if (I->getParent() == Parent && Base->comesBefore(I)) 661 WorkQ.push_back(I); 662 } 663 } 664 } 665 return Deps; 666 }; 667 668 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 669 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 670 // Don't mix HVX and non-HVX instructions. 671 if (Move.IsHvx != isHvx(Info)) 672 return false; 673 // Leading instruction in the load group. 674 Instruction *Base = Move.Main.front(); 675 if (Base->getParent() != Info.Inst->getParent()) 676 return false; 677 678 auto isSafeToMoveToBase = [&](const Instruction *I) { 679 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 680 }; 681 DepList Deps = getUpwardDeps(Info.Inst, Base); 682 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 683 return false; 684 685 // The dependencies will be moved together with the load, so make sure 686 // that none of them could be moved independently in another group. 687 Deps.erase(Info.Inst); 688 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 689 if (llvm::any_of(Deps, inAddrMap)) 690 return false; 691 Move.Main.push_back(Info.Inst); 692 llvm::append_range(Move.Deps, Deps); 693 return true; 694 }; 695 696 MoveList LoadGroups; 697 698 for (const AddrInfo &Info : Group) { 699 if (!Info.Inst->mayReadFromMemory()) 700 continue; 701 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 702 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 703 } 704 705 // Erase singleton groups. 706 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 707 return LoadGroups; 708 } 709 710 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 711 // Form store groups. 712 // To avoid complications with moving code across basic blocks, only form 713 // groups that are contained within a single basic block. 714 715 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 716 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 717 // For stores with return values we'd have to collect downward depenencies. 718 // There are no such stores that we handle at the moment, so omit that. 719 assert(Info.Inst->getType()->isVoidTy() && 720 "Not handling stores with return values"); 721 // Don't mix HVX and non-HVX instructions. 722 if (Move.IsHvx != isHvx(Info)) 723 return false; 724 // For stores we need to be careful whether it's safe to move them. 725 // Stores that are otherwise safe to move together may not appear safe 726 // to move over one another (i.e. isSafeToMoveBefore may return false). 727 Instruction *Base = Move.Main.front(); 728 if (Base->getParent() != Info.Inst->getParent()) 729 return false; 730 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 731 return false; 732 Move.Main.push_back(Info.Inst); 733 return true; 734 }; 735 736 MoveList StoreGroups; 737 738 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 739 const AddrInfo &Info = *I; 740 if (!Info.Inst->mayWriteToMemory()) 741 continue; 742 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 743 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 744 } 745 746 // Erase singleton groups. 747 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 748 return StoreGroups; 749 } 750 751 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 752 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 753 Instruction *Where = Move.Main.front(); 754 755 if (Move.IsLoad) { 756 // Move all deps to before Where, keeping order. 757 for (Instruction *D : Move.Deps) 758 D->moveBefore(Where); 759 // Move all main instructions to after Where, keeping order. 760 ArrayRef<Instruction *> Main(Move.Main); 761 for (Instruction *M : Main.drop_front(1)) { 762 M->moveAfter(Where); 763 Where = M; 764 } 765 } else { 766 // NOTE: Deps are empty for "store" groups. If they need to be 767 // non-empty, decide on the order. 768 assert(Move.Deps.empty()); 769 // Move all main instructions to before Where, inverting order. 770 ArrayRef<Instruction *> Main(Move.Main); 771 for (Instruction *M : Main.drop_front(1)) { 772 M->moveBefore(Where); 773 Where = M; 774 } 775 } 776 777 return Move.Main.size() + Move.Deps.size() > 1; 778 } 779 780 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 781 // TODO: Needs support for masked loads/stores of "scalar" vectors. 782 if (!Move.IsHvx) 783 return false; 784 785 // Return the element with the maximum alignment from Range, 786 // where GetValue obtains the value to compare from an element. 787 auto getMaxOf = [](auto Range, auto GetValue) { 788 return *std::max_element( 789 Range.begin(), Range.end(), 790 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 791 }; 792 793 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 794 795 // Conceptually, there is a vector of N bytes covering the addresses 796 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 797 // represents a contiguous memory region that spans all accessed memory 798 // locations. 799 // The correspondence between loaded or stored values will be expressed 800 // in terms of this vector. For example, the 0th element of the vector 801 // from the Base address info will start at byte Start from the beginning 802 // of this conceptual vector. 803 // 804 // This vector will be loaded/stored starting at the nearest down-aligned 805 // address and the amount od the down-alignment will be AlignVal: 806 // valign(load_vector(align_down(Base+Start)), AlignVal) 807 808 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 809 AddrList MoveInfos; 810 llvm::copy_if( 811 BaseInfos, std::back_inserter(MoveInfos), 812 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 813 814 // Maximum alignment present in the whole address group. 815 const AddrInfo &WithMaxAlign = 816 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 817 Align MaxGiven = WithMaxAlign.HaveAlign; 818 819 // Minimum alignment present in the move address group. 820 const AddrInfo &WithMinOffset = 821 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 822 823 const AddrInfo &WithMaxNeeded = 824 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 825 Align MinNeeded = WithMaxNeeded.NeedAlign; 826 827 // Set the builder at the top instruction in the move group. 828 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back(); 829 IRBuilder<> Builder(TopIn); 830 Value *AlignAddr = nullptr; // Actual aligned address. 831 Value *AlignVal = nullptr; // Right-shift amount (for valign). 832 833 if (MinNeeded <= MaxGiven) { 834 int Start = WithMinOffset.Offset; 835 int OffAtMax = WithMaxAlign.Offset; 836 // Shift the offset of the maximally aligned instruction (OffAtMax) 837 // back by just enough multiples of the required alignment to cover the 838 // distance from Start to OffAtMax. 839 // Calculate the address adjustment amount based on the address with the 840 // maximum alignment. This is to allow a simple gep instruction instead 841 // of potential bitcasts to i8*. 842 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 843 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 844 WithMaxAlign.ValTy, Adjust); 845 int Diff = Start - (OffAtMax + Adjust); 846 AlignVal = HVC.getConstInt(Diff); 847 assert(Diff >= 0); 848 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 849 } else { 850 // WithMinOffset is the lowest address in the group, 851 // WithMinOffset.Addr = Base+Start. 852 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 853 // mask off unnecessary bits, so it's ok to just the original pointer as 854 // the alignment amount. 855 // Do an explicit down-alignment of the address to avoid creating an 856 // aligned instruction with an address that is not really aligned. 857 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 858 WithMinOffset.ValTy, MinNeeded.value()); 859 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 860 } 861 862 ByteSpan VSpan; 863 for (const AddrInfo &AI : MoveInfos) { 864 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 865 AI.Offset - WithMinOffset.Offset); 866 } 867 868 // The aligned loads/stores will use blocks that are either scalars, 869 // or HVX vectors. Let "sector" be the unified term for such a block. 870 // blend(scalar, vector) -> sector... 871 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 872 : std::max<int>(MinNeeded.value(), 4); 873 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 874 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 875 876 Type *SecTy = HVC.getByteTy(ScLen); 877 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 878 bool DoAlign = !HVC.isZero(AlignVal); 879 880 if (Move.IsLoad) { 881 ByteSpan ASpan; 882 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 883 auto *Undef = UndefValue::get(SecTy); 884 885 for (int i = 0; i != NumSectors + DoAlign; ++i) { 886 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 887 // FIXME: generate a predicated load? 888 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 889 // If vector shifting is potentially needed, accumulate metadata 890 // from source sections of twice the load width. 891 int Start = (i - DoAlign) * ScLen; 892 int Width = (1 + DoAlign) * ScLen; 893 propagateMetadata(cast<Instruction>(Load), 894 VSpan.section(Start, Width).values()); 895 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen); 896 } 897 898 if (DoAlign) { 899 for (int j = 0; j != NumSectors; ++j) { 900 assert(isSectorTy(ASpan[j].Seg.Val->getType())); 901 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val, 902 ASpan[j + 1].Seg.Val, AlignVal); 903 } 904 } 905 906 for (ByteSpan::Block &B : VSpan) { 907 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 908 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 909 for (ByteSpan::Block &S : ASection) { 910 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 911 Accum = 912 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 913 } 914 // Instead of casting everything to bytes for the vselect, cast to the 915 // original value type. This will avoid complications with casting masks. 916 // For example, in cases when the original mask applied to i32, it could 917 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 918 // but if the mask is not exactly of HVX length, extra handling would be 919 // needed to make it work. 920 Type *ValTy = getPayload(B.Seg.Val)->getType(); 921 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 922 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 923 getPassThrough(B.Seg.Val)); 924 B.Seg.Val->replaceAllUsesWith(Sel); 925 } 926 } else { 927 // Stores. 928 ByteSpan ASpanV, ASpanM; 929 930 // Return a vector value corresponding to the input value Val: 931 // either <1 x Val> for scalar Val, or Val itself for vector Val. 932 auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * { 933 Type *Ty = Val->getType(); 934 if (Ty->isVectorTy()) 935 return Val; 936 auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false); 937 return Builder.CreateBitCast(Val, VecTy); 938 }; 939 940 // Create an extra "undef" sector at the beginning and at the end. 941 // They will be used as the left/right filler in the vlalign step. 942 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { 943 // For stores, the size of each section is an aligned vector length. 944 // Adjust the store offsets relative to the section start offset. 945 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); 946 Value *AccumV = UndefValue::get(SecTy); 947 Value *AccumM = HVC.getNullValue(SecTy); 948 for (ByteSpan::Block &S : VSection) { 949 Value *Pay = getPayload(S.Seg.Val); 950 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 951 Pay->getType(), HVC.getByteTy()); 952 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 953 S.Seg.Start, S.Seg.Size, S.Pos); 954 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 955 S.Seg.Start, S.Seg.Size, S.Pos); 956 } 957 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 958 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 959 } 960 961 // vlalign 962 if (DoAlign) { 963 for (int j = 1; j != NumSectors + 2; ++j) { 964 Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val; 965 Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val; 966 assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType())); 967 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal); 968 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal); 969 } 970 } 971 972 for (int i = 0; i != NumSectors + DoAlign; ++i) { 973 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 974 Value *Val = ASpanV[i].Seg.Val; 975 Value *Mask = ASpanM[i].Seg.Val; // bytes 976 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { 977 Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen, 978 HVC.vlsb(Builder, Mask)); 979 // If vector shifting is potentially needed, accumulate metadata 980 // from source sections of twice the store width. 981 int Start = (i - DoAlign) * ScLen; 982 int Width = (1 + DoAlign) * ScLen; 983 propagateMetadata(cast<Instruction>(Store), 984 VSpan.section(Start, Width).values()); 985 } 986 } 987 } 988 989 for (auto *Inst : Move.Main) 990 Inst->eraseFromParent(); 991 992 return true; 993 } 994 995 auto AlignVectors::isSectorTy(Type *Ty) const -> bool { 996 if (!HVC.isByteVecTy(Ty)) 997 return false; 998 int Size = HVC.getSizeOf(Ty); 999 if (HVC.HST.isTypeForHVX(Ty)) 1000 return Size == static_cast<int>(HVC.HST.getVectorLength()); 1001 return Size == 4 || Size == 8; 1002 } 1003 1004 auto AlignVectors::run() -> bool { 1005 if (!createAddressGroups()) 1006 return false; 1007 1008 bool Changed = false; 1009 MoveList LoadGroups, StoreGroups; 1010 1011 for (auto &G : AddrGroups) { 1012 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 1013 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 1014 } 1015 1016 for (auto &M : LoadGroups) 1017 Changed |= move(M); 1018 for (auto &M : StoreGroups) 1019 Changed |= move(M); 1020 1021 for (auto &M : LoadGroups) 1022 Changed |= realignGroup(M); 1023 for (auto &M : StoreGroups) 1024 Changed |= realignGroup(M); 1025 1026 return Changed; 1027 } 1028 1029 // --- End AlignVectors 1030 1031 // --- Begin HvxIdioms 1032 1033 // Match 1034 // (X * Y) [>> N], or 1035 // ((X * Y) + (1 << N-1)) >> N 1036 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> { 1037 using namespace PatternMatch; 1038 auto *Ty = In.getType(); 1039 1040 if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy()) 1041 return std::nullopt; 1042 1043 unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth(); 1044 1045 FxpOp Op; 1046 Value *Exp = &In; 1047 1048 // Fixed-point multiplication is always shifted right (except when the 1049 // fraction is 0 bits). 1050 auto m_Shr = [](auto &&V, auto &&S) { 1051 return m_CombineOr(m_LShr(V, S), m_AShr(V, S)); 1052 }; 1053 1054 const APInt *Qn = nullptr; 1055 if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) { 1056 Op.Frac = Qn->getZExtValue(); 1057 Exp = T; 1058 } else { 1059 Op.Frac = 0; 1060 } 1061 1062 if (Op.Frac > Width) 1063 return std::nullopt; 1064 1065 // Check if there is rounding added. 1066 const APInt *C = nullptr; 1067 if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) { 1068 unsigned CV = C->getZExtValue(); 1069 if (CV != 0 && !isPowerOf2_32(CV)) 1070 return std::nullopt; 1071 if (CV != 0) 1072 Op.RoundAt = Log2_32(CV); 1073 Exp = T; 1074 } 1075 1076 // Check if the rest is a multiplication. 1077 if (match(Exp, m_Mul(m_Value(Op.X), m_Value(Op.Y)))) { 1078 Op.Opcode = Instruction::Mul; 1079 return Op; 1080 } 1081 1082 return std::nullopt; 1083 } 1084 1085 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const 1086 -> Value * { 1087 assert(Op.X->getType() == Op.Y->getType()); 1088 1089 auto *VecTy = cast<VectorType>(Op.X->getType()); 1090 auto *ElemTy = cast<IntegerType>(VecTy->getElementType()); 1091 unsigned ElemWidth = ElemTy->getBitWidth(); 1092 if (ElemWidth < 8 || !isPowerOf2_32(ElemWidth)) 1093 return nullptr; 1094 1095 unsigned VecLen = HVC.length(VecTy); 1096 unsigned HvxLen = (8 * HVC.HST.getVectorLength()) / std::min(ElemWidth, 32u); 1097 if (VecLen % HvxLen != 0) 1098 return nullptr; 1099 1100 // FIXME: handle 8-bit multiplications 1101 if (ElemWidth < 16) 1102 return nullptr; 1103 1104 SmallVector<Value *> Results; 1105 FxpOp ChopOp; 1106 ChopOp.Opcode = Op.Opcode; 1107 ChopOp.Frac = Op.Frac; 1108 ChopOp.RoundAt = Op.RoundAt; 1109 1110 IRBuilder<InstSimplifyFolder> Builder(In.getParent(), In.getIterator(), 1111 InstSimplifyFolder(HVC.DL)); 1112 1113 for (unsigned V = 0; V != VecLen / HvxLen; ++V) { 1114 ChopOp.X = HVC.subvector(Builder, Op.X, V * HvxLen, HvxLen); 1115 ChopOp.Y = HVC.subvector(Builder, Op.Y, V * HvxLen, HvxLen); 1116 Results.push_back(processFxpMulChopped(Builder, In, ChopOp)); 1117 if (Results.back() == nullptr) 1118 break; 1119 } 1120 1121 if (Results.back() == nullptr) { 1122 // FIXME: clean up leftover instructions 1123 return nullptr; 1124 } 1125 1126 return HVC.concat(Builder, Results); 1127 } 1128 1129 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 1130 const FxpOp &Op) const -> Value * { 1131 // FIXME: make this more elegant 1132 struct TempValues { 1133 void insert(Value *V) { // 1134 Values.push_back(V); 1135 } 1136 void insert(ArrayRef<Value *> Vs) { 1137 Values.insert(Values.end(), Vs.begin(), Vs.end()); 1138 } 1139 void clear() { // 1140 Values.clear(); 1141 } 1142 ~TempValues() { 1143 for (Value *V : llvm::reverse(Values)) { 1144 if (auto *In = dyn_cast<Instruction>(V)) 1145 In->eraseFromParent(); 1146 } 1147 } 1148 SmallVector<Value *> Values; 1149 }; 1150 TempValues DeleteOnFailure; 1151 1152 // TODO: Make it general. 1153 // if (Op.Frac != 15 && Op.Frac != 31) 1154 // return nullptr; 1155 1156 enum Signedness { Positive, Signed, Unsigned }; 1157 auto getNumSignificantBits = 1158 [this, &In](Value *V) -> std::pair<unsigned, Signedness> { 1159 unsigned Bits = HVC.getNumSignificantBits(V, &In); 1160 // The significant bits are calculated including the sign bit. This may 1161 // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may 1162 // result in 33 significant bits. To avoid extra words, skip the extra 1163 // sign bit, but keep information that the value is to be treated as 1164 // unsigned. 1165 KnownBits Known = HVC.getKnownBits(V, &In); 1166 Signedness Sign = Signed; 1167 if (Bits > 1 && isPowerOf2_32(Bits - 1)) { 1168 if (Known.Zero.ashr(Bits - 1).isAllOnes()) { 1169 Sign = Unsigned; 1170 Bits--; 1171 } 1172 } 1173 // If the top bit of the nearest power-of-2 is zero, this value is 1174 // positive. It could be treated as either signed or unsigned. 1175 if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) { 1176 if (Known.Zero.ashr(Pow2 - 1).isAllOnes()) 1177 Sign = Positive; 1178 } 1179 return {Bits, Sign}; 1180 }; 1181 1182 auto *OrigTy = dyn_cast<VectorType>(Op.X->getType()); 1183 if (OrigTy == nullptr) 1184 return nullptr; 1185 1186 auto [BitsX, SignX] = getNumSignificantBits(Op.X); 1187 auto [BitsY, SignY] = getNumSignificantBits(Op.Y); 1188 unsigned Width = PowerOf2Ceil(std::max(BitsX, BitsY)); 1189 1190 if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) { 1191 bool Rounding = Op.RoundAt.has_value(); 1192 // The fixed-point intrinsics do signed multiplication. 1193 if (Width == Op.Frac + 1 && SignX != Unsigned && SignY != Unsigned) { 1194 auto *TruncTy = VectorType::get(HVC.getIntTy(Width), OrigTy); 1195 Value *TruncX = Builder.CreateTrunc(Op.X, TruncTy); 1196 Value *TruncY = Builder.CreateTrunc(Op.Y, TruncTy); 1197 Value *QMul = nullptr; 1198 if (Width == 16) { 1199 QMul = createMulQ15(Builder, TruncX, TruncY, Rounding); 1200 } else if (Width == 32) { 1201 QMul = createMulQ31(Builder, TruncX, TruncY, Rounding); 1202 } 1203 if (QMul != nullptr) 1204 return Builder.CreateSExt(QMul, OrigTy); 1205 1206 if (TruncX != Op.X && isa<Instruction>(TruncX)) 1207 cast<Instruction>(TruncX)->eraseFromParent(); 1208 if (TruncY != Op.Y && isa<Instruction>(TruncY)) 1209 cast<Instruction>(TruncY)->eraseFromParent(); 1210 } 1211 } 1212 1213 // FIXME: make it general, _64, addcarry 1214 if (!HVC.HST.useHVXV62Ops()) 1215 return nullptr; 1216 1217 // FIXME: make it general 1218 if (OrigTy->getScalarSizeInBits() < 32) 1219 return nullptr; 1220 1221 if (Width > 64) 1222 return nullptr; 1223 1224 // At this point, NewX and NewY may be truncated to different element 1225 // widths to save on the number of multiplications to perform. 1226 unsigned WidthX = 1227 PowerOf2Ceil(std::max(BitsX, 32u)); // FIXME: handle shorter ones 1228 unsigned WidthY = PowerOf2Ceil(std::max(BitsY, 32u)); 1229 Value *NewX = Builder.CreateTrunc( 1230 Op.X, VectorType::get(HVC.getIntTy(WidthX), HVC.length(Op.X), false)); 1231 Value *NewY = Builder.CreateTrunc( 1232 Op.Y, VectorType::get(HVC.getIntTy(WidthY), HVC.length(Op.Y), false)); 1233 if (NewX != Op.X) 1234 DeleteOnFailure.insert(NewX); 1235 if (NewY != Op.Y) 1236 DeleteOnFailure.insert(NewY); 1237 1238 // Break up the arguments NewX and NewY into vectors of smaller widths 1239 // in preparation of doing the multiplication via HVX intrinsics. 1240 // TODO: 1241 // Make sure that the number of elements in NewX/NewY is 32. In the future 1242 // add generic code that will break up a (presumable long) vector into 1243 // shorter pieces, pad the last one, then concatenate all the pieces back. 1244 if (HVC.length(NewX) != 32) 1245 return nullptr; 1246 auto WordX = HVC.splitVectorElements(Builder, NewX, /*ToWidth=*/32); 1247 auto WordY = HVC.splitVectorElements(Builder, NewY, /*ToWidth=*/32); 1248 auto HvxWordTy = WordX[0]->getType(); 1249 1250 SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size()); 1251 1252 // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results, 1253 // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3. 1254 for (int i = 0, e = WordX.size(); i != e; ++i) { 1255 for (int j = 0, f = WordY.size(); j != f; ++j) { 1256 bool SgnX = (i + 1 == e) && SignX != Unsigned; 1257 bool SgnY = (j + 1 == f) && SignY != Unsigned; 1258 auto [Lo, Hi] = createMul32(Builder, {WordX[i], SgnX}, {WordY[j], SgnY}); 1259 Products[i + j + 0].push_back(Lo); 1260 Products[i + j + 1].push_back(Hi); 1261 } 1262 } 1263 1264 // Add the optional rounding to the proper word. 1265 if (Op.RoundAt.has_value()) { 1266 Products[*Op.RoundAt / 32].push_back( 1267 HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32))); 1268 } 1269 1270 auto V6_vaddcarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry); 1271 Value *NoCarry = HVC.getNullValue(HVC.getBoolTy(HVC.length(HvxWordTy))); 1272 auto pop_back_or_zero = [this, HvxWordTy](auto &Vector) -> Value * { 1273 if (Vector.empty()) 1274 return HVC.getNullValue(HvxWordTy); 1275 auto Last = Vector.back(); 1276 Vector.pop_back(); 1277 return Last; 1278 }; 1279 1280 for (int i = 0, e = Products.size(); i != e; ++i) { 1281 while (Products[i].size() > 1) { 1282 Value *Carry = NoCarry; 1283 for (int j = i; j != e; ++j) { 1284 auto &ProdJ = Products[j]; 1285 Value *Ret = HVC.createHvxIntrinsic( 1286 Builder, V6_vaddcarry, nullptr, 1287 {pop_back_or_zero(ProdJ), pop_back_or_zero(ProdJ), Carry}); 1288 ProdJ.insert(ProdJ.begin(), Builder.CreateExtractValue(Ret, {0})); 1289 Carry = Builder.CreateExtractValue(Ret, {1}); 1290 } 1291 } 1292 } 1293 1294 SmallVector<Value *> WordP; 1295 for (auto &P : Products) { 1296 assert(P.size() == 1 && "Should have been added together"); 1297 WordP.push_back(P.front()); 1298 } 1299 1300 // Shift all products right by Op.Frac. 1301 unsigned SkipWords = Op.Frac / 32; 1302 Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32); 1303 1304 for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) { 1305 int Src = Dst + SkipWords; 1306 Value *Lo = WordP[Src]; 1307 if (Src + 1 < End) { 1308 Value *Hi = WordP[Src + 1]; 1309 WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr, 1310 {Hi, Lo, ShiftAmt}); 1311 } else { 1312 // The shift of the most significant word. 1313 WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt); 1314 } 1315 } 1316 if (SkipWords != 0) 1317 WordP.resize(WordP.size() - SkipWords); 1318 1319 DeleteOnFailure.clear(); 1320 Value *Ret = HVC.joinVectorElements(Builder, WordP, OrigTy); 1321 return Ret; 1322 } 1323 1324 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, Value *X, Value *Y, 1325 bool Rounding) const -> Value * { 1326 assert(X->getType() == Y->getType()); 1327 assert(X->getType()->getScalarType() == HVC.getIntTy(16)); 1328 if (!HVC.HST.isHVXVectorType(EVT::getEVT(X->getType(), false))) 1329 return nullptr; 1330 1331 unsigned HwLen = HVC.HST.getVectorLength(); 1332 1333 if (Rounding) { 1334 auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs); 1335 return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X->getType(), {X, Y}); 1336 } 1337 // No rounding, do i16*i16 -> i32, << 1, take upper half. 1338 auto V6_vmpyhv = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv); 1339 1340 // i16*i16 -> i32 / interleaved 1341 Value *V1 = HVC.createHvxIntrinsic(Builder, V6_vmpyhv, HvxP32Ty, {X, Y}); 1342 // <<1 1343 Value *V2 = Builder.CreateAdd(V1, V1); 1344 // i32 -> i32 deinterleave 1345 SmallVector<int, 64> DeintMask; 1346 for (int i = 0; i != static_cast<int>(HwLen) / 4; ++i) { 1347 DeintMask.push_back(i); 1348 DeintMask.push_back(i + HwLen / 4); 1349 } 1350 1351 Value *V3 = 1352 HVC.vdeal(Builder, HVC.sublo(Builder, V2), HVC.subhi(Builder, V2)); 1353 // High halves: i32 -> i16 1354 SmallVector<int, 64> HighMask; 1355 for (int i = 0; i != static_cast<int>(HwLen) / 2; ++i) { 1356 HighMask.push_back(2 * i + 1); 1357 } 1358 auto *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true); 1359 Value *V4 = Builder.CreateBitCast(V3, HvxP16Ty); 1360 return Builder.CreateShuffleVector(V4, HighMask); 1361 } 1362 1363 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, Value *X, Value *Y, 1364 bool Rounding) const -> Value * { 1365 assert(X->getType() == Y->getType()); 1366 assert(X->getType()->getScalarType() == HVC.getIntTy(32)); 1367 if (!HVC.HST.isHVXVectorType(EVT::getEVT(X->getType(), false))) 1368 return nullptr; 1369 1370 auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh); 1371 auto MpyOddAcc = Rounding 1372 ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc) 1373 : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc); 1374 Value *V1 = 1375 HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, X->getType(), {X, Y}); 1376 return HVC.createHvxIntrinsic(Builder, MpyOddAcc, X->getType(), {V1, X, Y}); 1377 } 1378 1379 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 1380 -> std::pair<Value *, Value *> { 1381 assert(X.Val->getType() == Y.Val->getType()); 1382 assert(X.Val->getType() == HVC.getHvxTy(HVC.getIntTy(32), /*Pair=*/false)); 1383 1384 Intrinsic::ID V6_vmpy_parts; 1385 if (X.Signed == Y.Signed) { 1386 V6_vmpy_parts = X.Signed ? Intrinsic::hexagon_V6_vmpyss_parts 1387 : Intrinsic::hexagon_V6_vmpyuu_parts; 1388 } else { 1389 if (X.Signed) 1390 std::swap(X, Y); 1391 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts; 1392 } 1393 1394 Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr, 1395 {X.Val, Y.Val}, {HvxI32Ty}); 1396 Value *Hi = Builder.CreateExtractValue(Parts, {0}); 1397 Value *Lo = Builder.CreateExtractValue(Parts, {1}); 1398 return {Lo, Hi}; 1399 } 1400 1401 auto HvxIdioms::run() -> bool { 1402 bool Changed = false; 1403 1404 for (BasicBlock &B : HVC.F) { 1405 for (auto It = B.rbegin(); It != B.rend(); ++It) { 1406 if (auto Fxm = matchFxpMul(*It)) { 1407 Value *New = processFxpMul(*It, *Fxm); 1408 if (!New) 1409 continue; 1410 bool StartOver = !isa<Instruction>(New); 1411 It->replaceAllUsesWith(New); 1412 RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI); 1413 It = StartOver ? B.rbegin() 1414 : cast<Instruction>(New)->getReverseIterator(); 1415 Changed = true; 1416 } 1417 } 1418 } 1419 1420 return Changed; 1421 } 1422 1423 // --- End HvxIdioms 1424 1425 auto HexagonVectorCombine::run() -> bool { 1426 if (!HST.useHVXOps()) 1427 return false; 1428 1429 bool Changed = false; 1430 Changed |= AlignVectors(*this).run(); 1431 Changed |= HvxIdioms(*this).run(); 1432 1433 return Changed; 1434 } 1435 1436 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * { 1437 return IntegerType::get(F.getContext(), Width); 1438 } 1439 1440 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 1441 assert(ElemCount >= 0); 1442 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 1443 if (ElemCount == 0) 1444 return ByteTy; 1445 return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false); 1446 } 1447 1448 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 1449 assert(ElemCount >= 0); 1450 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 1451 if (ElemCount == 0) 1452 return BoolTy; 1453 return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false); 1454 } 1455 1456 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * { 1457 return ConstantInt::getSigned(getIntTy(), Val); 1458 } 1459 1460 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 1461 if (auto *C = dyn_cast<Constant>(Val)) 1462 return C->isZeroValue(); 1463 return false; 1464 } 1465 1466 auto HexagonVectorCombine::getIntValue(const Value *Val) const 1467 -> std::optional<APInt> { 1468 if (auto *CI = dyn_cast<ConstantInt>(Val)) 1469 return CI->getValue(); 1470 return std::nullopt; 1471 } 1472 1473 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 1474 return isa<UndefValue>(Val); 1475 } 1476 1477 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const 1478 -> VectorType * { 1479 EVT ETy = EVT::getEVT(ElemTy, false); 1480 assert(ETy.isSimple() && "Invalid HVX element type"); 1481 // Do not allow boolean types here: they don't have a fixed length. 1482 assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) && 1483 "Invalid HVX element type"); 1484 unsigned HwLen = HST.getVectorLength(); 1485 unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits(); 1486 return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems, 1487 /*Scalable=*/false); 1488 } 1489 1490 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const 1491 -> int { 1492 return getSizeOf(Val->getType(), Kind); 1493 } 1494 1495 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const 1496 -> int { 1497 auto *NcTy = const_cast<Type *>(Ty); 1498 switch (Kind) { 1499 case Store: 1500 return DL.getTypeStoreSize(NcTy).getFixedValue(); 1501 case Alloc: 1502 return DL.getTypeAllocSize(NcTy).getFixedValue(); 1503 } 1504 llvm_unreachable("Unhandled SizeKind enum"); 1505 } 1506 1507 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 1508 // The actual type may be shorter than the HVX vector, so determine 1509 // the alignment based on subtarget info. 1510 if (HST.isTypeForHVX(Ty)) 1511 return HST.getVectorLength(); 1512 return DL.getABITypeAlign(Ty).value(); 1513 } 1514 1515 auto HexagonVectorCombine::length(Value *Val) const -> size_t { 1516 return length(Val->getType()); 1517 } 1518 1519 auto HexagonVectorCombine::length(Type *Ty) const -> size_t { 1520 auto *VecTy = dyn_cast<VectorType>(Ty); 1521 assert(VecTy && "Must be a vector type"); 1522 return VecTy->getElementCount().getFixedValue(); 1523 } 1524 1525 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 1526 assert(Ty->isIntOrIntVectorTy()); 1527 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 1528 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1529 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 1530 return Zero; 1531 } 1532 1533 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 1534 assert(Ty->isIntOrIntVectorTy()); 1535 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 1536 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1537 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 1538 return Minus1; 1539 } 1540 1541 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const 1542 -> Constant * { 1543 assert(Ty->isVectorTy()); 1544 auto VecTy = cast<VectorType>(Ty); 1545 Type *ElemTy = VecTy->getElementType(); 1546 // Add support for floats if needed. 1547 auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(), 1548 ConstantInt::get(ElemTy, Val)); 1549 return Splat; 1550 } 1551 1552 auto HexagonVectorCombine::simplify(Value *V) const -> Value * { 1553 if (auto *In = dyn_cast<Instruction>(V)) { 1554 SimplifyQuery Q(DL, &TLI, &DT, &AC, In); 1555 return simplifyInstruction(In, Q); 1556 } 1557 return nullptr; 1558 } 1559 1560 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 1561 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst, 1562 Value *Src, int Start, int Length, 1563 int Where) const -> Value * { 1564 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 1565 int SrcLen = getSizeOf(Src); 1566 int DstLen = getSizeOf(Dst); 1567 assert(0 <= Start && Start + Length <= SrcLen); 1568 assert(0 <= Where && Where + Length <= DstLen); 1569 1570 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 1571 auto *Undef = UndefValue::get(getByteTy()); 1572 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 1573 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 1574 1575 SmallVector<int, 256> SMask(P2Len); 1576 for (int i = 0; i != P2Len; ++i) { 1577 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 1578 // Otherwise, pick Dst[i]; 1579 SMask[i] = 1580 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 1581 } 1582 1583 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1584 return vresize(Builder, P2Insert, DstLen, Undef); 1585 } 1586 1587 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo, 1588 Value *Hi, Value *Amt) const -> Value * { 1589 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1590 if (isZero(Amt)) 1591 return Hi; 1592 int VecLen = getSizeOf(Hi); 1593 if (auto IntAmt = getIntValue(Amt)) 1594 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1595 VecLen); 1596 1597 if (HST.isTypeForHVX(Hi->getType())) { 1598 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1599 "Expecting an exact HVX type"); 1600 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb), 1601 Hi->getType(), {Hi, Lo, Amt}); 1602 } 1603 1604 if (VecLen == 4) { 1605 Value *Pair = concat(Builder, {Lo, Hi}); 1606 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1607 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1608 return Builder.CreateBitCast(Trunc, Hi->getType()); 1609 } 1610 if (VecLen == 8) { 1611 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1612 return vralignb(Builder, Lo, Hi, Sub); 1613 } 1614 llvm_unreachable("Unexpected vector length"); 1615 } 1616 1617 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo, 1618 Value *Hi, Value *Amt) const -> Value * { 1619 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1620 if (isZero(Amt)) 1621 return Lo; 1622 int VecLen = getSizeOf(Lo); 1623 if (auto IntAmt = getIntValue(Amt)) 1624 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1625 1626 if (HST.isTypeForHVX(Lo->getType())) { 1627 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1628 "Expecting an exact HVX type"); 1629 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb), 1630 Lo->getType(), {Hi, Lo, Amt}); 1631 } 1632 1633 if (VecLen == 4) { 1634 Value *Pair = concat(Builder, {Lo, Hi}); 1635 Value *Shift = Builder.CreateLShr(Pair, Amt); 1636 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1637 return Builder.CreateBitCast(Trunc, Lo->getType()); 1638 } 1639 if (VecLen == 8) { 1640 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1641 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1642 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1643 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1644 Intrinsic::hexagon_S2_valignrb); 1645 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1646 return Builder.CreateBitCast(Call, Lo->getType()); 1647 } 1648 llvm_unreachable("Unexpected vector length"); 1649 } 1650 1651 // Concatenates a sequence of vectors of the same type. 1652 auto HexagonVectorCombine::concat(IRBuilderBase &Builder, 1653 ArrayRef<Value *> Vecs) const -> Value * { 1654 assert(!Vecs.empty()); 1655 SmallVector<int, 256> SMask; 1656 std::vector<Value *> Work[2]; 1657 int ThisW = 0, OtherW = 1; 1658 1659 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1660 while (Work[ThisW].size() > 1) { 1661 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1662 SMask.resize(length(Ty) * 2); 1663 std::iota(SMask.begin(), SMask.end(), 0); 1664 1665 Work[OtherW].clear(); 1666 if (Work[ThisW].size() % 2 != 0) 1667 Work[ThisW].push_back(UndefValue::get(Ty)); 1668 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1669 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1670 Work[ThisW][i + 1], SMask); 1671 Work[OtherW].push_back(Joined); 1672 } 1673 std::swap(ThisW, OtherW); 1674 } 1675 1676 // Since there may have been some undefs appended to make shuffle operands 1677 // have the same type, perform the last shuffle to only pick the original 1678 // elements. 1679 SMask.resize(Vecs.size() * length(Vecs.front()->getType())); 1680 std::iota(SMask.begin(), SMask.end(), 0); 1681 Value *Total = Work[ThisW].front(); 1682 return Builder.CreateShuffleVector(Total, SMask); 1683 } 1684 1685 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val, 1686 int NewSize, Value *Pad) const -> Value * { 1687 assert(isa<VectorType>(Val->getType())); 1688 auto *ValTy = cast<VectorType>(Val->getType()); 1689 assert(ValTy->getElementType() == Pad->getType()); 1690 1691 int CurSize = length(ValTy); 1692 if (CurSize == NewSize) 1693 return Val; 1694 // Truncate? 1695 if (CurSize > NewSize) 1696 return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize); 1697 // Extend. 1698 SmallVector<int, 128> SMask(NewSize); 1699 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 1700 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 1701 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 1702 return Builder.CreateShuffleVector(Val, PadVec, SMask); 1703 } 1704 1705 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask, 1706 Type *FromTy, Type *ToTy) const -> Value * { 1707 // Mask is a vector <N x i1>, where each element corresponds to an 1708 // element of FromTy. Remap it so that each element will correspond 1709 // to an element of ToTy. 1710 assert(isa<VectorType>(Mask->getType())); 1711 1712 Type *FromSTy = FromTy->getScalarType(); 1713 Type *ToSTy = ToTy->getScalarType(); 1714 if (FromSTy == ToSTy) 1715 return Mask; 1716 1717 int FromSize = getSizeOf(FromSTy); 1718 int ToSize = getSizeOf(ToSTy); 1719 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 1720 1721 auto *MaskTy = cast<VectorType>(Mask->getType()); 1722 int FromCount = length(MaskTy); 1723 int ToCount = (FromCount * FromSize) / ToSize; 1724 assert((FromCount * FromSize) % ToSize == 0); 1725 1726 auto *FromITy = getIntTy(FromSize * 8); 1727 auto *ToITy = getIntTy(ToSize * 8); 1728 1729 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 1730 // -> trunc to <M x i1>. 1731 Value *Ext = Builder.CreateSExt( 1732 Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false)); 1733 Value *Cast = Builder.CreateBitCast( 1734 Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false)); 1735 return Builder.CreateTrunc( 1736 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false)); 1737 } 1738 1739 // Bitcast to bytes, and return least significant bits. 1740 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const 1741 -> Value * { 1742 Type *ScalarTy = Val->getType()->getScalarType(); 1743 if (ScalarTy == getBoolTy()) 1744 return Val; 1745 1746 Value *Bytes = vbytes(Builder, Val); 1747 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 1748 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 1749 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 1750 // <1 x i1>. 1751 return Builder.CreateTrunc(Bytes, getBoolTy()); 1752 } 1753 1754 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 1755 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const 1756 -> Value * { 1757 Type *ScalarTy = Val->getType()->getScalarType(); 1758 if (ScalarTy == getByteTy()) 1759 return Val; 1760 1761 if (ScalarTy != getBoolTy()) 1762 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 1763 // For bool, return a sext from i1 to i8. 1764 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 1765 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 1766 return Builder.CreateSExt(Val, getByteTy()); 1767 } 1768 1769 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val, 1770 unsigned Start, unsigned Length) const 1771 -> Value * { 1772 assert(Start + Length <= length(Val)); 1773 return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length); 1774 } 1775 1776 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const 1777 -> Value * { 1778 size_t Len = length(Val); 1779 assert(Len % 2 == 0 && "Length should be even"); 1780 return subvector(Builder, Val, 0, Len / 2); 1781 } 1782 1783 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const 1784 -> Value * { 1785 size_t Len = length(Val); 1786 assert(Len % 2 == 0 && "Length should be even"); 1787 return subvector(Builder, Val, Len / 2, Len / 2); 1788 } 1789 1790 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0, 1791 Value *Val1) const -> Value * { 1792 assert(Val0->getType() == Val1->getType()); 1793 int Len = length(Val0); 1794 SmallVector<int, 128> Mask(2 * Len); 1795 1796 for (int i = 0; i != Len; ++i) { 1797 Mask[i] = 2 * i; // Even 1798 Mask[i + Len] = 2 * i + 1; // Odd 1799 } 1800 return Builder.CreateShuffleVector(Val0, Val1, Mask); 1801 } 1802 1803 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0, 1804 Value *Val1) const -> Value * { // 1805 assert(Val0->getType() == Val1->getType()); 1806 int Len = length(Val0); 1807 SmallVector<int, 128> Mask(2 * Len); 1808 1809 for (int i = 0; i != Len; ++i) { 1810 Mask[2 * i + 0] = i; // Val0 1811 Mask[2 * i + 1] = i + Len; // Val1 1812 } 1813 return Builder.CreateShuffleVector(Val0, Val1, Mask); 1814 } 1815 1816 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder, 1817 Intrinsic::ID IntID, Type *RetTy, 1818 ArrayRef<Value *> Args, 1819 ArrayRef<Type *> ArgTys) const 1820 -> Value * { 1821 auto getCast = [&](IRBuilderBase &Builder, Value *Val, 1822 Type *DestTy) -> Value * { 1823 Type *SrcTy = Val->getType(); 1824 if (SrcTy == DestTy) 1825 return Val; 1826 1827 // Non-HVX type. It should be a scalar, and it should already have 1828 // a valid type. 1829 assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true)); 1830 1831 Type *BoolTy = Type::getInt1Ty(F.getContext()); 1832 if (cast<VectorType>(SrcTy)->getElementType() != BoolTy) 1833 return Builder.CreateBitCast(Val, DestTy); 1834 1835 // Predicate HVX vector. 1836 unsigned HwLen = HST.getVectorLength(); 1837 Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast 1838 : Intrinsic::hexagon_V6_pred_typecast_128B; 1839 Function *FI = 1840 Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); 1841 return Builder.CreateCall(FI, {Val}); 1842 }; 1843 1844 Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys); 1845 FunctionType *IntrTy = IntrFn->getFunctionType(); 1846 1847 SmallVector<Value *, 4> IntrArgs; 1848 for (int i = 0, e = Args.size(); i != e; ++i) { 1849 Value *A = Args[i]; 1850 Type *T = IntrTy->getParamType(i); 1851 if (A->getType() != T) { 1852 IntrArgs.push_back(getCast(Builder, A, T)); 1853 } else { 1854 IntrArgs.push_back(A); 1855 } 1856 } 1857 Value *Call = Builder.CreateCall(IntrFn, IntrArgs); 1858 1859 Type *CallTy = Call->getType(); 1860 if (RetTy == nullptr || CallTy == RetTy) 1861 return Call; 1862 // Scalar types should have RetTy matching the call return type. 1863 assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true)); 1864 return getCast(Builder, Call, RetTy); 1865 } 1866 1867 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder, 1868 Value *Vec, 1869 unsigned ToWidth) const 1870 -> SmallVector<Value *> { 1871 // Break a vector of wide elements into a series of vectors with narrow 1872 // elements: 1873 // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...) 1874 // --> 1875 // (a0, a1, a2, ...) // lowest "ToWidth" bits 1876 // (b0, b1, b2, ...) // the next lowest... 1877 // (c0, c1, c2, ...) // ... 1878 // ... 1879 // 1880 // The number of elements in each resulting vector is the same as 1881 // in the original vector. 1882 1883 auto *VecTy = cast<VectorType>(Vec->getType()); 1884 assert(VecTy->getElementType()->isIntegerTy()); 1885 unsigned FromWidth = VecTy->getScalarSizeInBits(); 1886 assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth)); 1887 assert(ToWidth <= FromWidth && "Breaking up into wider elements?"); 1888 unsigned NumResults = FromWidth / ToWidth; 1889 1890 SmallVector<Value *> Results(NumResults); 1891 Results[0] = Vec; 1892 unsigned Length = length(VecTy); 1893 1894 // Do it by splitting in half, since those operations correspond to deal 1895 // instructions. 1896 auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void { 1897 // Take V = Results[Begin], split it in L, H. 1898 // Store Results[Begin] = L, Results[(Begin+End)/2] = H 1899 // Call itself recursively split(Begin, Half), split(Half+1, End) 1900 if (Begin + 1 == End) 1901 return; 1902 1903 Value *Val = Results[Begin]; 1904 unsigned Width = Val->getType()->getScalarSizeInBits(); 1905 1906 auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false); 1907 Value *VVal = Builder.CreateBitCast(Val, VTy); 1908 1909 Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal)); 1910 1911 unsigned Half = (Begin + End) / 2; 1912 Results[Begin] = sublo(Builder, Res); 1913 Results[Half] = subhi(Builder, Res); 1914 1915 splitFunc(Begin, Half, splitFunc); 1916 splitFunc(Half, End, splitFunc); 1917 }; 1918 1919 splitInHalf(0, NumResults, splitInHalf); 1920 return Results; 1921 } 1922 1923 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder, 1924 ArrayRef<Value *> Values, 1925 VectorType *ToType) const 1926 -> Value * { 1927 assert(ToType->getElementType()->isIntegerTy()); 1928 1929 // If the list of values does not have power-of-2 elements, append copies 1930 // of the sign bit to it, to make the size be 2^n. 1931 // The reason for this is that the values will be joined in pairs, because 1932 // otherwise the shuffles will result in convoluted code. With pairwise 1933 // joins, the shuffles will hopefully be folded into a perfect shuffle. 1934 // The output will need to be sign-extended to a type with element width 1935 // being a power-of-2 anyways. 1936 SmallVector<Value *> Inputs(Values.begin(), Values.end()); 1937 1938 unsigned ToWidth = ToType->getScalarSizeInBits(); 1939 unsigned Width = Inputs.front()->getType()->getScalarSizeInBits(); 1940 assert(Width <= ToWidth); 1941 assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth)); 1942 unsigned Length = length(Inputs.front()->getType()); 1943 1944 unsigned NeedInputs = ToWidth / Width; 1945 if (Inputs.size() != NeedInputs) { 1946 Value *Last = Inputs.back(); 1947 Value *Sign = 1948 Builder.CreateAShr(Last, getConstSplat(Last->getType(), Width - 1)); 1949 Inputs.resize(NeedInputs, Sign); 1950 } 1951 1952 while (Inputs.size() > 1) { 1953 Width *= 2; 1954 auto *VTy = VectorType::get(getIntTy(Width), Length, false); 1955 for (int i = 0, e = Inputs.size(); i < e; i += 2) { 1956 Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]); 1957 Inputs[i / 2] = Builder.CreateBitCast(Res, VTy); 1958 } 1959 Inputs.resize(Inputs.size() / 2); 1960 } 1961 1962 assert(Inputs.front()->getType() == ToType); 1963 return Inputs.front(); 1964 } 1965 1966 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 1967 Value *Ptr1) const 1968 -> std::optional<int> { 1969 struct Builder : IRBuilder<> { 1970 Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {} 1971 ~Builder() { 1972 for (Instruction *I : llvm::reverse(ToErase)) 1973 I->eraseFromParent(); 1974 } 1975 SmallVector<Instruction *, 8> ToErase; 1976 }; 1977 1978 #define CallBuilder(B, F) \ 1979 [&](auto &B_) { \ 1980 Value *V = B_.F; \ 1981 if (auto *I = dyn_cast<Instruction>(V)) \ 1982 B_.ToErase.push_back(I); \ 1983 return V; \ 1984 }(B) 1985 1986 auto Simplify = [&](Value *V) { 1987 if (auto *I = dyn_cast<Instruction>(V)) { 1988 SimplifyQuery Q(DL, &TLI, &DT, &AC, I); 1989 if (Value *S = simplifyInstruction(I, Q)) 1990 return S; 1991 } 1992 return V; 1993 }; 1994 1995 auto StripBitCast = [](Value *V) { 1996 while (auto *C = dyn_cast<BitCastInst>(V)) 1997 V = C->getOperand(0); 1998 return V; 1999 }; 2000 2001 Ptr0 = StripBitCast(Ptr0); 2002 Ptr1 = StripBitCast(Ptr1); 2003 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 2004 return std::nullopt; 2005 2006 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 2007 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 2008 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 2009 return std::nullopt; 2010 2011 Builder B(Gep0->getParent()); 2012 int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc); 2013 2014 // FIXME: for now only check GEPs with a single index. 2015 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 2016 return std::nullopt; 2017 2018 Value *Idx0 = Gep0->getOperand(1); 2019 Value *Idx1 = Gep1->getOperand(1); 2020 2021 // First, try to simplify the subtraction directly. 2022 if (auto *Diff = dyn_cast<ConstantInt>( 2023 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 2024 return Diff->getSExtValue() * Scale; 2025 2026 KnownBits Known0 = getKnownBits(Idx0, Gep0); 2027 KnownBits Known1 = getKnownBits(Idx1, Gep1); 2028 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 2029 if (Unknown.isAllOnes()) 2030 return std::nullopt; 2031 2032 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 2033 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 2034 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 2035 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 2036 int Diff0 = 0; 2037 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 2038 Diff0 = C->getSExtValue(); 2039 } else { 2040 return std::nullopt; 2041 } 2042 2043 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 2044 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 2045 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 2046 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 2047 int Diff1 = 0; 2048 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 2049 Diff1 = C->getSExtValue(); 2050 } else { 2051 return std::nullopt; 2052 } 2053 2054 return (Diff0 + Diff1) * Scale; 2055 2056 #undef CallBuilder 2057 } 2058 2059 auto HexagonVectorCombine::getNumSignificantBits(const Value *V, 2060 const Instruction *CtxI) const 2061 -> unsigned { 2062 return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2063 } 2064 2065 auto HexagonVectorCombine::getKnownBits(const Value *V, 2066 const Instruction *CtxI) const 2067 -> KnownBits { 2068 return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr, 2069 /*UseInstrInfo=*/true); 2070 } 2071 2072 template <typename T> 2073 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 2074 BasicBlock::const_iterator To, 2075 const T &Ignore) const 2076 -> bool { 2077 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> { 2078 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 2079 switch (II->getIntrinsicID()) { 2080 case Intrinsic::masked_load: 2081 return MemoryLocation::getForArgument(II, 0, TLI); 2082 case Intrinsic::masked_store: 2083 return MemoryLocation::getForArgument(II, 1, TLI); 2084 } 2085 } 2086 return MemoryLocation::getOrNone(&I); 2087 }; 2088 2089 // The source and the destination must be in the same basic block. 2090 const BasicBlock &Block = *In.getParent(); 2091 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 2092 // No PHIs. 2093 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 2094 return false; 2095 2096 if (!mayHaveNonDefUseDependency(In)) 2097 return true; 2098 bool MayWrite = In.mayWriteToMemory(); 2099 auto MaybeLoc = getLocOrNone(In); 2100 2101 auto From = In.getIterator(); 2102 if (From == To) 2103 return true; 2104 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 2105 auto Range = 2106 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 2107 for (auto It = Range.first; It != Range.second; ++It) { 2108 const Instruction &I = *It; 2109 if (llvm::is_contained(Ignore, &I)) 2110 continue; 2111 // assume intrinsic can be ignored 2112 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2113 if (II->getIntrinsicID() == Intrinsic::assume) 2114 continue; 2115 } 2116 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 2117 if (I.mayThrow()) 2118 return false; 2119 if (auto *CB = dyn_cast<CallBase>(&I)) { 2120 if (!CB->hasFnAttr(Attribute::WillReturn)) 2121 return false; 2122 if (!CB->hasFnAttr(Attribute::NoSync)) 2123 return false; 2124 } 2125 if (I.mayReadOrWriteMemory()) { 2126 auto MaybeLocI = getLocOrNone(I); 2127 if (MayWrite || I.mayWriteToMemory()) { 2128 if (!MaybeLoc || !MaybeLocI) 2129 return false; 2130 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 2131 return false; 2132 } 2133 } 2134 } 2135 return true; 2136 } 2137 2138 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 2139 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2140 return VecTy->getElementType() == getByteTy(); 2141 return false; 2142 } 2143 2144 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo, 2145 Value *Hi, int Start, 2146 int Length) const -> Value * { 2147 assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi)); 2148 SmallVector<int, 128> SMask(Length); 2149 std::iota(SMask.begin(), SMask.end(), Start); 2150 return Builder.CreateShuffleVector(Lo, Hi, SMask); 2151 } 2152 2153 // Pass management. 2154 2155 namespace llvm { 2156 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 2157 FunctionPass *createHexagonVectorCombineLegacyPass(); 2158 } // namespace llvm 2159 2160 namespace { 2161 class HexagonVectorCombineLegacy : public FunctionPass { 2162 public: 2163 static char ID; 2164 2165 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 2166 2167 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 2168 2169 void getAnalysisUsage(AnalysisUsage &AU) const override { 2170 AU.setPreservesCFG(); 2171 AU.addRequired<AAResultsWrapperPass>(); 2172 AU.addRequired<AssumptionCacheTracker>(); 2173 AU.addRequired<DominatorTreeWrapperPass>(); 2174 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2175 AU.addRequired<TargetPassConfig>(); 2176 FunctionPass::getAnalysisUsage(AU); 2177 } 2178 2179 bool runOnFunction(Function &F) override { 2180 if (skipFunction(F)) 2181 return false; 2182 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2183 AssumptionCache &AC = 2184 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2185 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2186 TargetLibraryInfo &TLI = 2187 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2188 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 2189 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 2190 return HVC.run(); 2191 } 2192 }; 2193 } // namespace 2194 2195 char HexagonVectorCombineLegacy::ID = 0; 2196 2197 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 2198 "Hexagon Vector Combine", false, false) 2199 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2200 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2201 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2202 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2203 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 2204 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 2205 "Hexagon Vector Combine", false, false) 2206 2207 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 2208 return new HexagonVectorCombineLegacy(); 2209 } 2210