xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp (revision 5b10fa6e889dae746d5e9929dfc7015d1b627afa)
1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstSimplifyFolder.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsHexagon.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 
43 #include "HexagonSubtarget.h"
44 #include "HexagonTargetMachine.h"
45 
46 #include <algorithm>
47 #include <deque>
48 #include <map>
49 #include <optional>
50 #include <set>
51 #include <utility>
52 #include <vector>
53 
54 #define DEBUG_TYPE "hexagon-vc"
55 
56 using namespace llvm;
57 
58 namespace {
59 class HexagonVectorCombine {
60 public:
61   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
62                        DominatorTree &DT_, TargetLibraryInfo &TLI_,
63                        const TargetMachine &TM_)
64       : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
65         TLI(TLI_),
66         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
67 
68   bool run();
69 
70   // Common integer type.
71   IntegerType *getIntTy(unsigned Width = 32) const;
72   // Byte type: either scalar (when Length = 0), or vector with given
73   // element count.
74   Type *getByteTy(int ElemCount = 0) const;
75   // Boolean type: either scalar (when Length = 0), or vector with given
76   // element count.
77   Type *getBoolTy(int ElemCount = 0) const;
78   // Create a ConstantInt of type returned by getIntTy with the value Val.
79   ConstantInt *getConstInt(int Val, unsigned Width = 32) const;
80   // Get the integer value of V, if it exists.
81   std::optional<APInt> getIntValue(const Value *Val) const;
82   // Is V a constant 0, or a vector of 0s?
83   bool isZero(const Value *Val) const;
84   // Is V an undef value?
85   bool isUndef(const Value *Val) const;
86 
87   // Get HVX vector type with the given element type.
88   VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const;
89 
90   enum SizeKind {
91     Store, // Store size
92     Alloc, // Alloc size
93   };
94   int getSizeOf(const Value *Val, SizeKind Kind = Store) const;
95   int getSizeOf(const Type *Ty, SizeKind Kind = Store) const;
96   int getTypeAlignment(Type *Ty) const;
97   size_t length(Value *Val) const;
98   size_t length(Type *Ty) const;
99 
100   Constant *getNullValue(Type *Ty) const;
101   Constant *getFullValue(Type *Ty) const;
102   Constant *getConstSplat(Type *Ty, int Val) const;
103 
104   Value *simplify(Value *Val) const;
105 
106   Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start,
107                  int Length, int Where) const;
108   Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
109                   Value *Amt) const;
110   Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi,
111                   Value *Amt) const;
112   Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const;
113   Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize,
114                  Value *Pad) const;
115   Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy,
116                  Type *ToTy) const;
117   Value *vlsb(IRBuilderBase &Builder, Value *Val) const;
118   Value *vbytes(IRBuilderBase &Builder, Value *Val) const;
119   Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start,
120                    unsigned Length) const;
121   Value *sublo(IRBuilderBase &Builder, Value *Val) const;
122   Value *subhi(IRBuilderBase &Builder, Value *Val) const;
123   Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
124   Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const;
125 
126   Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID,
127                             Type *RetTy, ArrayRef<Value *> Args,
128                             ArrayRef<Type *> ArgTys = std::nullopt) const;
129   SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec,
130                                            unsigned ToWidth) const;
131   Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values,
132                             VectorType *ToType) const;
133 
134   std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
135 
136   unsigned getNumSignificantBits(const Value *V,
137                                  const Instruction *CtxI = nullptr) const;
138   KnownBits getKnownBits(const Value *V,
139                          const Instruction *CtxI = nullptr) const;
140 
141   template <typename T = std::vector<Instruction *>>
142   bool isSafeToMoveBeforeInBB(const Instruction &In,
143                               BasicBlock::const_iterator To,
144                               const T &IgnoreInsts = {}) const;
145 
146   // This function is only used for assertions at the moment.
147   [[maybe_unused]] bool isByteVecTy(Type *Ty) const;
148 
149   Function &F;
150   const DataLayout &DL;
151   AliasAnalysis &AA;
152   AssumptionCache &AC;
153   DominatorTree &DT;
154   TargetLibraryInfo &TLI;
155   const HexagonSubtarget &HST;
156 
157 private:
158   Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi,
159                          int Start, int Length) const;
160 };
161 
162 class AlignVectors {
163 public:
164   AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {}
165 
166   bool run();
167 
168 private:
169   using InstList = std::vector<Instruction *>;
170 
171   struct AddrInfo {
172     AddrInfo(const AddrInfo &) = default;
173     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
174              Align H)
175         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
176           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
177     AddrInfo &operator=(const AddrInfo &) = default;
178 
179     // XXX: add Size member?
180     Instruction *Inst;
181     Value *Addr;
182     Type *ValTy;
183     Align HaveAlign;
184     Align NeedAlign;
185     int Offset = 0; // Offset (in bytes) from the first member of the
186                     // containing AddrList.
187   };
188   using AddrList = std::vector<AddrInfo>;
189 
190   struct InstrLess {
191     bool operator()(const Instruction *A, const Instruction *B) const {
192       return A->comesBefore(B);
193     }
194   };
195   using DepList = std::set<Instruction *, InstrLess>;
196 
197   struct MoveGroup {
198     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
199         : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
200     Instruction *Base; // Base instruction of the parent address group.
201     InstList Main;     // Main group of instructions.
202     InstList Deps;     // List of dependencies.
203     bool IsHvx;        // Is this group of HVX instructions?
204     bool IsLoad;       // Is this a load group?
205   };
206   using MoveList = std::vector<MoveGroup>;
207 
208   struct ByteSpan {
209     struct Segment {
210       // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
211       Segment(Value *Val, int Begin, int Len)
212           : Val(Val), Start(Begin), Size(Len) {}
213       Segment(const Segment &Seg) = default;
214       Segment &operator=(const Segment &Seg) = default;
215       Value *Val; // Value representable as a sequence of bytes.
216       int Start;  // First byte of the value that belongs to the segment.
217       int Size;   // Number of bytes in the segment.
218     };
219 
220     struct Block {
221       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
222       Block(Value *Val, int Off, int Len, int Pos)
223           : Seg(Val, Off, Len), Pos(Pos) {}
224       Block(const Block &Blk) = default;
225       Block &operator=(const Block &Blk) = default;
226       Segment Seg; // Value segment.
227       int Pos;     // Position (offset) of the segment in the Block.
228     };
229 
230     int extent() const;
231     ByteSpan section(int Start, int Length) const;
232     ByteSpan &shift(int Offset);
233     SmallVector<Value *, 8> values() const;
234 
235     int size() const { return Blocks.size(); }
236     Block &operator[](int i) { return Blocks[i]; }
237 
238     std::vector<Block> Blocks;
239 
240     using iterator = decltype(Blocks)::iterator;
241     iterator begin() { return Blocks.begin(); }
242     iterator end() { return Blocks.end(); }
243     using const_iterator = decltype(Blocks)::const_iterator;
244     const_iterator begin() const { return Blocks.begin(); }
245     const_iterator end() const { return Blocks.end(); }
246   };
247 
248   Align getAlignFromValue(const Value *V) const;
249   std::optional<AddrInfo> getAddrInfo(Instruction &In) const;
250   bool isHvx(const AddrInfo &AI) const;
251   // This function is only used for assertions at the moment.
252   [[maybe_unused]] bool isSectorTy(Type *Ty) const;
253 
254   Value *getPayload(Value *Val) const;
255   Value *getMask(Value *Val) const;
256   Value *getPassThrough(Value *Val) const;
257 
258   Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
259                                int Adjust) const;
260   Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy,
261                               int Alignment) const;
262   Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr,
263                            int Alignment, Value *Mask, Value *PassThru) const;
264   Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr,
265                             int Alignment, Value *Mask) const;
266 
267   DepList getUpwardDeps(Instruction *In, Instruction *Base) const;
268   bool createAddressGroups();
269   MoveList createLoadGroups(const AddrList &Group) const;
270   MoveList createStoreGroups(const AddrList &Group) const;
271   bool move(const MoveGroup &Move) const;
272   void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
273                         int ScLen, Value *AlignVal, Value *AlignAddr) const;
274   void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan,
275                          int ScLen, Value *AlignVal, Value *AlignAddr) const;
276   bool realignGroup(const MoveGroup &Move) const;
277 
278   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
279   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
280   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B);
281   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
282 
283   std::map<Instruction *, AddrList> AddrGroups;
284   const HexagonVectorCombine &HVC;
285 };
286 
287 LLVM_ATTRIBUTE_UNUSED
288 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
289   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
290   OS << "Addr: " << *AI.Addr << '\n';
291   OS << "Type: " << *AI.ValTy << '\n';
292   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
293   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
294   OS << "Offset: " << AI.Offset;
295   return OS;
296 }
297 
298 LLVM_ATTRIBUTE_UNUSED
299 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
300   OS << "IsLoad:" << (MG.IsLoad ? "yes" : "no");
301   OS << ", IsHvx:" << (MG.IsHvx ? "yes" : "no") << '\n';
302   OS << "Main\n";
303   for (Instruction *I : MG.Main)
304     OS << "  " << *I << '\n';
305   OS << "Deps\n";
306   for (Instruction *I : MG.Deps)
307     OS << "  " << *I << '\n';
308   return OS;
309 }
310 
311 LLVM_ATTRIBUTE_UNUSED
312 raw_ostream &operator<<(raw_ostream &OS,
313                         const AlignVectors::ByteSpan::Block &B) {
314   OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] ";
315   if (B.Seg.Val == reinterpret_cast<const Value *>(&B)) {
316     OS << "(self:" << B.Seg.Val << ')';
317   } else if (B.Seg.Val != nullptr) {
318     OS << *B.Seg.Val;
319   } else {
320     OS << "(null)";
321   }
322   return OS;
323 }
324 
325 LLVM_ATTRIBUTE_UNUSED
326 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
327   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
328   for (const AlignVectors::ByteSpan::Block &B : BS)
329     OS << B << '\n';
330   OS << ']';
331   return OS;
332 }
333 
334 class HvxIdioms {
335 public:
336   HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) {
337     auto *Int32Ty = HVC.getIntTy(32);
338     HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false);
339     HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true);
340   }
341 
342   bool run();
343 
344 private:
345   enum Signedness { Positive, Signed, Unsigned };
346 
347   // Value + sign
348   // This is to keep track of whether the value should be treated as signed
349   // or unsigned, or is known to be positive.
350   struct SValue {
351     Value *Val;
352     Signedness Sgn;
353   };
354 
355   struct FxpOp {
356     unsigned Opcode;
357     unsigned Frac; // Number of fraction bits
358     SValue X, Y;
359     // If present, add 1 << RoundAt before shift:
360     std::optional<unsigned> RoundAt;
361     VectorType *ResTy;
362   };
363 
364   auto getNumSignificantBits(Value *V, Instruction *In) const
365       -> std::pair<unsigned, Signedness>;
366   auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>;
367 
368   auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>;
369   auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *;
370 
371   auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
372                             const FxpOp &Op) const -> Value *;
373   auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
374                     bool Rounding) const -> Value *;
375   auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
376                     bool Rounding) const -> Value *;
377   // Return {Result, Carry}, where Carry is a vector predicate.
378   auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
379                       Value *CarryIn = nullptr) const
380       -> std::pair<Value *, Value *>;
381   auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *;
382   auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
383       -> Value *;
384   auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
385       -> std::pair<Value *, Value *>;
386   auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
387                      ArrayRef<Value *> WordY) const -> SmallVector<Value *>;
388   auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
389                      Signedness SgnX, ArrayRef<Value *> WordY,
390                      Signedness SgnY) const -> SmallVector<Value *>;
391 
392   VectorType *HvxI32Ty;
393   VectorType *HvxP32Ty;
394   const HexagonVectorCombine &HVC;
395 
396   friend raw_ostream &operator<<(raw_ostream &, const FxpOp &);
397 };
398 
399 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS,
400                                          const HvxIdioms::FxpOp &Op) {
401   static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"};
402   OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac;
403   if (Op.RoundAt.has_value()) {
404     if (Op.Frac != 0 && *Op.RoundAt == Op.Frac - 1) {
405       OS << ":rnd";
406     } else {
407       OS << " + 1<<" << *Op.RoundAt;
408     }
409   }
410   OS << "\n  X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n"
411      << "  Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val;
412   return OS;
413 }
414 
415 } // namespace
416 
417 namespace {
418 
419 template <typename T> T *getIfUnordered(T *MaybeT) {
420   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
421 }
422 template <typename T> T *isCandidate(Instruction *In) {
423   return dyn_cast<T>(In);
424 }
425 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
426   return getIfUnordered(dyn_cast<LoadInst>(In));
427 }
428 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
429   return getIfUnordered(dyn_cast<StoreInst>(In));
430 }
431 
432 #if !defined(_MSC_VER) || _MSC_VER >= 1926
433 // VS2017 and some versions of VS2019 have trouble compiling this:
434 // error C2976: 'std::map': too few template arguments
435 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
436 template <typename Pred, typename... Ts>
437 void erase_if(std::map<Ts...> &map, Pred p)
438 #else
439 template <typename Pred, typename T, typename U>
440 void erase_if(std::map<T, U> &map, Pred p)
441 #endif
442 {
443   for (auto i = map.begin(), e = map.end(); i != e;) {
444     if (p(*i))
445       i = map.erase(i);
446     else
447       i = std::next(i);
448   }
449 }
450 
451 // Forward other erase_ifs to the LLVM implementations.
452 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
453   llvm::erase_if(std::forward<T>(container), p);
454 }
455 
456 } // namespace
457 
458 // --- Begin AlignVectors
459 
460 auto AlignVectors::ByteSpan::extent() const -> int {
461   if (size() == 0)
462     return 0;
463   int Min = Blocks[0].Pos;
464   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
465   for (int i = 1, e = size(); i != e; ++i) {
466     Min = std::min(Min, Blocks[i].Pos);
467     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
468   }
469   return Max - Min;
470 }
471 
472 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
473   ByteSpan Section;
474   for (const ByteSpan::Block &B : Blocks) {
475     int L = std::max(B.Pos, Start);                       // Left end.
476     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
477     if (L < R) {
478       // How much to chop off the beginning of the segment:
479       int Off = L > B.Pos ? L - B.Pos : 0;
480       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
481     }
482   }
483   return Section;
484 }
485 
486 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
487   for (Block &B : Blocks)
488     B.Pos += Offset;
489   return *this;
490 }
491 
492 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
493   SmallVector<Value *, 8> Values(Blocks.size());
494   for (int i = 0, e = Blocks.size(); i != e; ++i)
495     Values[i] = Blocks[i].Seg.Val;
496   return Values;
497 }
498 
499 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
500   const auto *C = dyn_cast<ConstantInt>(V);
501   assert(C && "Alignment must be a compile-time constant integer");
502   return C->getAlignValue();
503 }
504 
505 auto AlignVectors::getAddrInfo(Instruction &In) const
506     -> std::optional<AddrInfo> {
507   if (auto *L = isCandidate<LoadInst>(&In))
508     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
509                     L->getAlign());
510   if (auto *S = isCandidate<StoreInst>(&In))
511     return AddrInfo(HVC, S, S->getPointerOperand(),
512                     S->getValueOperand()->getType(), S->getAlign());
513   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
514     Intrinsic::ID ID = II->getIntrinsicID();
515     switch (ID) {
516     case Intrinsic::masked_load:
517       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
518                       getAlignFromValue(II->getArgOperand(1)));
519     case Intrinsic::masked_store:
520       return AddrInfo(HVC, II, II->getArgOperand(1),
521                       II->getArgOperand(0)->getType(),
522                       getAlignFromValue(II->getArgOperand(2)));
523     }
524   }
525   return std::nullopt;
526 }
527 
528 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
529   return HVC.HST.isTypeForHVX(AI.ValTy);
530 }
531 
532 auto AlignVectors::getPayload(Value *Val) const -> Value * {
533   if (auto *In = dyn_cast<Instruction>(Val)) {
534     Intrinsic::ID ID = 0;
535     if (auto *II = dyn_cast<IntrinsicInst>(In))
536       ID = II->getIntrinsicID();
537     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
538       return In->getOperand(0);
539   }
540   return Val;
541 }
542 
543 auto AlignVectors::getMask(Value *Val) const -> Value * {
544   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
545     switch (II->getIntrinsicID()) {
546     case Intrinsic::masked_load:
547       return II->getArgOperand(2);
548     case Intrinsic::masked_store:
549       return II->getArgOperand(3);
550     }
551   }
552 
553   Type *ValTy = getPayload(Val)->getType();
554   if (auto *VecTy = dyn_cast<VectorType>(ValTy))
555     return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy)));
556   return HVC.getFullValue(HVC.getBoolTy());
557 }
558 
559 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
560   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
561     if (II->getIntrinsicID() == Intrinsic::masked_load)
562       return II->getArgOperand(3);
563   }
564   return UndefValue::get(getPayload(Val)->getType());
565 }
566 
567 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr,
568                                          Type *ValTy, int Adjust) const
569     -> Value * {
570   // The adjustment is in bytes, but if it's a multiple of the type size,
571   // we don't need to do pointer casts.
572   auto *PtrTy = cast<PointerType>(Ptr->getType());
573   if (!PtrTy->isOpaque()) {
574     Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
575     int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc);
576     if (Adjust % ElemSize == 0 && Adjust != 0) {
577       Value *Tmp0 = Builder.CreateGEP(
578           ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize), "gep");
579       return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo(), "cst");
580     }
581   }
582 
583   PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
584   Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy, "cst");
585   Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
586                                   HVC.getConstInt(Adjust), "gep");
587   return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo(), "cst");
588 }
589 
590 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr,
591                                         Type *ValTy, int Alignment) const
592     -> Value * {
593   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy(), "pti");
594   Value *Mask = HVC.getConstInt(-Alignment);
595   Value *And = Builder.CreateAnd(AsInt, Mask, "add");
596   return Builder.CreateIntToPtr(And, ValTy->getPointerTo(), "itp");
597 }
598 
599 auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy,
600                                      Value *Ptr, int Alignment, Value *Mask,
601                                      Value *PassThru) const -> Value * {
602   assert(!HVC.isUndef(Mask)); // Should this be allowed?
603   if (HVC.isZero(Mask))
604     return PassThru;
605   if (Mask == ConstantInt::getTrue(Mask->getType()))
606     return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment), "ald");
607   return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru,
608                                   "mld");
609 }
610 
611 auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val,
612                                       Value *Ptr, int Alignment,
613                                       Value *Mask) const -> Value * {
614   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
615     return UndefValue::get(Val->getType());
616   if (Mask == ConstantInt::getTrue(Mask->getType()))
617     return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
618   return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
619 }
620 
621 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const
622     -> DepList {
623   BasicBlock *Parent = Base->getParent();
624   assert(In->getParent() == Parent &&
625          "Base and In should be in the same block");
626   assert(Base->comesBefore(In) && "Base should come before In");
627 
628   DepList Deps;
629   std::deque<Instruction *> WorkQ = {In};
630   while (!WorkQ.empty()) {
631     Instruction *D = WorkQ.front();
632     WorkQ.pop_front();
633     Deps.insert(D);
634     for (Value *Op : D->operands()) {
635       if (auto *I = dyn_cast<Instruction>(Op)) {
636         if (I->getParent() == Parent && Base->comesBefore(I))
637           WorkQ.push_back(I);
638       }
639     }
640   }
641   return Deps;
642 }
643 
644 auto AlignVectors::createAddressGroups() -> bool {
645   // An address group created here may contain instructions spanning
646   // multiple basic blocks.
647   AddrList WorkStack;
648 
649   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
650     for (AddrInfo &W : WorkStack) {
651       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
652         return std::make_pair(W.Inst, *D);
653     }
654     return std::make_pair(nullptr, 0);
655   };
656 
657   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
658     BasicBlock &Block = *DomN->getBlock();
659     for (Instruction &I : Block) {
660       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
661       if (!AI)
662         continue;
663       auto F = findBaseAndOffset(*AI);
664       Instruction *GroupInst;
665       if (Instruction *BI = F.first) {
666         AI->Offset = F.second;
667         GroupInst = BI;
668       } else {
669         WorkStack.push_back(*AI);
670         GroupInst = AI->Inst;
671       }
672       AddrGroups[GroupInst].push_back(*AI);
673     }
674 
675     for (DomTreeNode *C : DomN->children())
676       Visit(C, Visit);
677 
678     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
679       WorkStack.pop_back();
680   };
681 
682   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
683   assert(WorkStack.empty());
684 
685   // AddrGroups are formed.
686 
687   // Remove groups of size 1.
688   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
689   // Remove groups that don't use HVX types.
690   erase_if(AddrGroups, [&](auto &G) {
691     return llvm::none_of(
692         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
693   });
694 
695   return !AddrGroups.empty();
696 }
697 
698 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
699   // Form load groups.
700   // To avoid complications with moving code across basic blocks, only form
701   // groups that are contained within a single basic block.
702 
703   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
704     assert(!Move.Main.empty() && "Move group should have non-empty Main");
705     // Don't mix HVX and non-HVX instructions.
706     if (Move.IsHvx != isHvx(Info))
707       return false;
708     // Leading instruction in the load group.
709     Instruction *Base = Move.Main.front();
710     if (Base->getParent() != Info.Inst->getParent())
711       return false;
712 
713     auto isSafeToMoveToBase = [&](const Instruction *I) {
714       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
715     };
716     DepList Deps = getUpwardDeps(Info.Inst, Base);
717     if (!llvm::all_of(Deps, isSafeToMoveToBase))
718       return false;
719 
720     // The dependencies will be moved together with the load, so make sure
721     // that none of them could be moved independently in another group.
722     Deps.erase(Info.Inst);
723     auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
724     if (llvm::any_of(Deps, inAddrMap))
725       return false;
726     Move.Main.push_back(Info.Inst);
727     llvm::append_range(Move.Deps, Deps);
728     return true;
729   };
730 
731   MoveList LoadGroups;
732 
733   for (const AddrInfo &Info : Group) {
734     if (!Info.Inst->mayReadFromMemory())
735       continue;
736     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
737       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
738   }
739 
740   // Erase singleton groups.
741   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
742   return LoadGroups;
743 }
744 
745 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
746   // Form store groups.
747   // To avoid complications with moving code across basic blocks, only form
748   // groups that are contained within a single basic block.
749 
750   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
751     assert(!Move.Main.empty() && "Move group should have non-empty Main");
752     // For stores with return values we'd have to collect downward depenencies.
753     // There are no such stores that we handle at the moment, so omit that.
754     assert(Info.Inst->getType()->isVoidTy() &&
755            "Not handling stores with return values");
756     // Don't mix HVX and non-HVX instructions.
757     if (Move.IsHvx != isHvx(Info))
758       return false;
759     // For stores we need to be careful whether it's safe to move them.
760     // Stores that are otherwise safe to move together may not appear safe
761     // to move over one another (i.e. isSafeToMoveBefore may return false).
762     Instruction *Base = Move.Main.front();
763     if (Base->getParent() != Info.Inst->getParent())
764       return false;
765     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
766       return false;
767     Move.Main.push_back(Info.Inst);
768     return true;
769   };
770 
771   MoveList StoreGroups;
772 
773   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
774     const AddrInfo &Info = *I;
775     if (!Info.Inst->mayWriteToMemory())
776       continue;
777     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
778       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
779   }
780 
781   // Erase singleton groups.
782   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
783   return StoreGroups;
784 }
785 
786 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
787   assert(!Move.Main.empty() && "Move group should have non-empty Main");
788   Instruction *Where = Move.Main.front();
789 
790   if (Move.IsLoad) {
791     // Move all deps to before Where, keeping order.
792     for (Instruction *D : Move.Deps)
793       D->moveBefore(Where);
794     // Move all main instructions to after Where, keeping order.
795     ArrayRef<Instruction *> Main(Move.Main);
796     for (Instruction *M : Main.drop_front(1)) {
797       M->moveAfter(Where);
798       Where = M;
799     }
800   } else {
801     // NOTE: Deps are empty for "store" groups. If they need to be
802     // non-empty, decide on the order.
803     assert(Move.Deps.empty());
804     // Move all main instructions to before Where, inverting order.
805     ArrayRef<Instruction *> Main(Move.Main);
806     for (Instruction *M : Main.drop_front(1)) {
807       M->moveBefore(Where);
808       Where = M;
809     }
810   }
811 
812   return Move.Main.size() + Move.Deps.size() > 1;
813 }
814 
815 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder,
816                                     const ByteSpan &VSpan, int ScLen,
817                                     Value *AlignVal, Value *AlignAddr) const
818     -> void {
819   LLVM_DEBUG(dbgs() << __func__ << "\n");
820 
821   Type *SecTy = HVC.getByteTy(ScLen);
822   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
823   bool DoAlign = !HVC.isZero(AlignVal);
824   BasicBlock::iterator BasePos = Builder.GetInsertPoint();
825   BasicBlock *BaseBlock = Builder.GetInsertBlock();
826 
827   ByteSpan ASpan;
828   auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
829   auto *Undef = UndefValue::get(SecTy);
830 
831   SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr);
832 
833   // We could create all of the aligned loads, and generate the valigns
834   // at the location of the first load, but for large load groups, this
835   // could create highly suboptimal code (there have been groups of 140+
836   // loads in real code).
837   // Instead, place the loads/valigns as close to the users as possible.
838   // In any case we need to have a mapping from the blocks of VSpan (the
839   // span covered by the pre-existing loads) to ASpan (the span covered
840   // by the aligned loads). There is a small problem, though: ASpan needs
841   // to have pointers to the loads/valigns, but we don't know where to put
842   // them yet. We can't use nullptr, because when we create sections of
843   // ASpan (corresponding to blocks from VSpan), for each block in the
844   // section we need to know which blocks of ASpan they are a part of.
845   // To have 1-1 mapping between blocks of ASpan and the temporary value
846   // pointers, use the addresses of the blocks themselves.
847 
848   // Populate the blocks first, to avoid reallocations of the vector
849   // interfering with generating the placeholder addresses.
850   for (int Index = 0; Index != NumSectors; ++Index)
851     ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen);
852   for (int Index = 0; Index != NumSectors; ++Index) {
853     ASpan.Blocks[Index].Seg.Val =
854         reinterpret_cast<Value *>(&ASpan.Blocks[Index]);
855   }
856 
857   // Multiple values from VSpan can map to the same value in ASpan. Since we
858   // try to create loads lazily, we need to find the earliest use for each
859   // value from ASpan.
860   DenseMap<void *, Instruction *> EarliestUser;
861   auto isEarlier = [](Instruction *A, Instruction *B) {
862     if (B == nullptr)
863       return true;
864     if (A == nullptr)
865       return false;
866     assert(A->getParent() == B->getParent());
867     return A->comesBefore(B);
868   };
869   auto earliestUser = [&](const auto &Uses) {
870     Instruction *User = nullptr;
871     for (const Use &U : Uses) {
872       auto *I = dyn_cast<Instruction>(U.getUser());
873       assert(I != nullptr && "Load used in a non-instruction?");
874       // Make sure we only consider at users in this block, but we need
875       // to remember if there were users outside the block too. This is
876       // because if no users are found, aligned loads will not be created.
877       if (I->getParent() == BaseBlock) {
878         if (!isa<PHINode>(I))
879           User = std::min(User, I, isEarlier);
880       } else {
881         User = std::min(User, BaseBlock->getTerminator(), isEarlier);
882       }
883     }
884     return User;
885   };
886 
887   for (const ByteSpan::Block &B : VSpan) {
888     ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size);
889     for (const ByteSpan::Block &S : ASection) {
890       EarliestUser[S.Seg.Val] = std::min(
891           EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier);
892     }
893   }
894 
895   LLVM_DEBUG({
896     dbgs() << "ASpan:\n" << ASpan << '\n';
897     dbgs() << "Earliest users of ASpan:\n";
898     for (auto &[Val, User] : EarliestUser) {
899       dbgs() << Val << "\n ->" << *User << '\n';
900     }
901   });
902 
903   auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan,
904                         int Index) {
905     Value *Ptr =
906         createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen);
907     // FIXME: generate a predicated load?
908     Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
909     // If vector shifting is potentially needed, accumulate metadata
910     // from source sections of twice the load width.
911     int Start = (Index - DoAlign) * ScLen;
912     int Width = (1 + DoAlign) * ScLen;
913     propagateMetadata(cast<Instruction>(Load),
914                       VSpan.section(Start, Width).values());
915     return cast<Instruction>(Load);
916   };
917 
918   auto moveBefore = [this](Instruction *In, Instruction *To) {
919     // Move In and its upward dependencies to before To.
920     assert(In->getParent() == To->getParent());
921     DepList Deps = getUpwardDeps(In, To);
922     // DepList is sorted with respect to positions in the basic block.
923     for (Instruction *I : Deps)
924       I->moveBefore(To);
925   };
926 
927   // Generate necessary loads at appropriate locations.
928   LLVM_DEBUG(dbgs() << "Creating loads for ASpan sectors\n");
929   for (int Index = 0; Index != NumSectors + 1; ++Index) {
930     // In ASpan, each block will be either a single aligned load, or a
931     // valign of a pair of loads. In the latter case, an aligned load j
932     // will belong to the current valign, and the one in the previous
933     // block (for j > 0).
934     // Place the load at a location which will dominate the valign, assuming
935     // the valign will be placed right before the earliest user.
936     Instruction *PrevAt =
937         DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr;
938     Instruction *ThisAt =
939         Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr;
940     if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) {
941       Builder.SetInsertPoint(Where);
942       Loads[Index] = createLoad(Builder, VSpan, Index);
943       // We know it's safe to put the load at BasePos, but we'd prefer to put
944       // it at "Where". To see if the load is safe to be placed at Where, put
945       // it there first and then check if it's safe to move it to BasePos.
946       // If not, then the load needs to be placed at BasePos.
947       // We can't do this check proactively because we need the load to exist
948       // in order to check legality.
949       if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos))
950         moveBefore(Loads[Index], &*BasePos);
951       LLVM_DEBUG(dbgs() << "Loads[" << Index << "]:" << *Loads[Index] << '\n');
952     }
953   }
954 
955   // Generate valigns if needed, and fill in proper values in ASpan
956   LLVM_DEBUG(dbgs() << "Creating values for ASpan sectors\n");
957   for (int Index = 0; Index != NumSectors; ++Index) {
958     ASpan[Index].Seg.Val = nullptr;
959     if (auto *Where = EarliestUser[&ASpan[Index]]) {
960       Builder.SetInsertPoint(Where);
961       Value *Val = Loads[Index];
962       assert(Val != nullptr);
963       if (DoAlign) {
964         Value *NextLoad = Loads[Index + 1];
965         assert(NextLoad != nullptr);
966         Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal);
967       }
968       ASpan[Index].Seg.Val = Val;
969       LLVM_DEBUG(dbgs() << "ASpan[" << Index << "]:" << *Val << '\n');
970     }
971   }
972 
973   for (const ByteSpan::Block &B : VSpan) {
974     ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
975     Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
976     Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val));
977 
978     // We're generating a reduction, where each instruction depends on
979     // the previous one, so we need to order them according to the position
980     // of their inputs in the code.
981     std::vector<ByteSpan::Block *> ABlocks;
982     for (ByteSpan::Block &S : ASection) {
983       if (S.Seg.Val != nullptr)
984         ABlocks.push_back(&S);
985     }
986     llvm::sort(ABlocks,
987                [&](const ByteSpan::Block *A, const ByteSpan::Block *B) {
988                  return isEarlier(cast<Instruction>(A->Seg.Val),
989                                   cast<Instruction>(B->Seg.Val));
990                });
991     for (ByteSpan::Block *S : ABlocks) {
992       // The processing of the data loaded by the aligned loads
993       // needs to be inserted after the data is available.
994       Instruction *SegI = cast<Instruction>(S->Seg.Val);
995       Builder.SetInsertPoint(&*std::next(SegI->getIterator()));
996       Value *Pay = HVC.vbytes(Builder, getPayload(S->Seg.Val));
997       Accum =
998           HVC.insertb(Builder, Accum, Pay, S->Seg.Start, S->Seg.Size, S->Pos);
999     }
1000     // Instead of casting everything to bytes for the vselect, cast to the
1001     // original value type. This will avoid complications with casting masks.
1002     // For example, in cases when the original mask applied to i32, it could
1003     // be converted to a mask applicable to i8 via pred_typecast intrinsic,
1004     // but if the mask is not exactly of HVX length, extra handling would be
1005     // needed to make it work.
1006     Type *ValTy = getPayload(B.Seg.Val)->getType();
1007     Value *Cast = Builder.CreateBitCast(Accum, ValTy, "cst");
1008     Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
1009                                       getPassThrough(B.Seg.Val), "sel");
1010     B.Seg.Val->replaceAllUsesWith(Sel);
1011   }
1012 }
1013 
1014 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder,
1015                                      const ByteSpan &VSpan, int ScLen,
1016                                      Value *AlignVal, Value *AlignAddr) const
1017     -> void {
1018   LLVM_DEBUG(dbgs() << __func__ << "\n");
1019 
1020   Type *SecTy = HVC.getByteTy(ScLen);
1021   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
1022   bool DoAlign = !HVC.isZero(AlignVal);
1023 
1024   // Stores.
1025   ByteSpan ASpanV, ASpanM;
1026 
1027   // Return a vector value corresponding to the input value Val:
1028   // either <1 x Val> for scalar Val, or Val itself for vector Val.
1029   auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * {
1030     Type *Ty = Val->getType();
1031     if (Ty->isVectorTy())
1032       return Val;
1033     auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false);
1034     return Builder.CreateBitCast(Val, VecTy, "cst");
1035   };
1036 
1037   // Create an extra "undef" sector at the beginning and at the end.
1038   // They will be used as the left/right filler in the vlalign step.
1039   for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
1040     // For stores, the size of each section is an aligned vector length.
1041     // Adjust the store offsets relative to the section start offset.
1042     ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
1043     Value *AccumV = UndefValue::get(SecTy);
1044     Value *AccumM = HVC.getNullValue(SecTy);
1045     for (ByteSpan::Block &S : VSection) {
1046       Value *Pay = getPayload(S.Seg.Val);
1047       Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
1048                                 Pay->getType(), HVC.getByteTy());
1049       AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
1050                            S.Seg.Start, S.Seg.Size, S.Pos);
1051       AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
1052                            S.Seg.Start, S.Seg.Size, S.Pos);
1053     }
1054     ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
1055     ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
1056   }
1057 
1058   // vlalign
1059   if (DoAlign) {
1060     for (int j = 1; j != NumSectors + 2; ++j) {
1061       Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val;
1062       Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val;
1063       assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType()));
1064       ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal);
1065       ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal);
1066     }
1067   }
1068 
1069   for (int i = 0; i != NumSectors + DoAlign; ++i) {
1070     Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
1071     Value *Val = ASpanV[i].Seg.Val;
1072     Value *Mask = ASpanM[i].Seg.Val; // bytes
1073     if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
1074       Value *Store =
1075           createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask));
1076       // If vector shifting is potentially needed, accumulate metadata
1077       // from source sections of twice the store width.
1078       int Start = (i - DoAlign) * ScLen;
1079       int Width = (1 + DoAlign) * ScLen;
1080       propagateMetadata(cast<Instruction>(Store),
1081                         VSpan.section(Start, Width).values());
1082     }
1083   }
1084 }
1085 
1086 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
1087   LLVM_DEBUG(dbgs() << "Realigning group:\n" << Move << '\n');
1088 
1089   // TODO: Needs support for masked loads/stores of "scalar" vectors.
1090   if (!Move.IsHvx)
1091     return false;
1092 
1093   // Return the element with the maximum alignment from Range,
1094   // where GetValue obtains the value to compare from an element.
1095   auto getMaxOf = [](auto Range, auto GetValue) {
1096     return *std::max_element(
1097         Range.begin(), Range.end(),
1098         [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
1099   };
1100 
1101   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
1102 
1103   // Conceptually, there is a vector of N bytes covering the addresses
1104   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
1105   // represents a contiguous memory region that spans all accessed memory
1106   // locations.
1107   // The correspondence between loaded or stored values will be expressed
1108   // in terms of this vector. For example, the 0th element of the vector
1109   // from the Base address info will start at byte Start from the beginning
1110   // of this conceptual vector.
1111   //
1112   // This vector will be loaded/stored starting at the nearest down-aligned
1113   // address and the amount od the down-alignment will be AlignVal:
1114   //   valign(load_vector(align_down(Base+Start)), AlignVal)
1115 
1116   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
1117   AddrList MoveInfos;
1118   llvm::copy_if(
1119       BaseInfos, std::back_inserter(MoveInfos),
1120       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
1121 
1122   // Maximum alignment present in the whole address group.
1123   const AddrInfo &WithMaxAlign =
1124       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
1125   Align MaxGiven = WithMaxAlign.HaveAlign;
1126 
1127   // Minimum alignment present in the move address group.
1128   const AddrInfo &WithMinOffset =
1129       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
1130 
1131   const AddrInfo &WithMaxNeeded =
1132       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
1133   Align MinNeeded = WithMaxNeeded.NeedAlign;
1134 
1135   // Set the builder's insertion point right before the load group, or
1136   // immediately after the store group. (Instructions in a store group are
1137   // listed in reverse order.)
1138   Instruction *InsertAt = Move.Main.front();
1139   if (!Move.IsLoad) {
1140     // There should be a terminator (which store isn't, but check anyways).
1141     assert(InsertAt->getIterator() != InsertAt->getParent()->end());
1142     InsertAt = &*std::next(InsertAt->getIterator());
1143   }
1144 
1145   IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(),
1146                     InstSimplifyFolder(HVC.DL));
1147   Value *AlignAddr = nullptr; // Actual aligned address.
1148   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
1149 
1150   if (MinNeeded <= MaxGiven) {
1151     int Start = WithMinOffset.Offset;
1152     int OffAtMax = WithMaxAlign.Offset;
1153     // Shift the offset of the maximally aligned instruction (OffAtMax)
1154     // back by just enough multiples of the required alignment to cover the
1155     // distance from Start to OffAtMax.
1156     // Calculate the address adjustment amount based on the address with the
1157     // maximum alignment. This is to allow a simple gep instruction instead
1158     // of potential bitcasts to i8*.
1159     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
1160     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
1161                                       WithMaxAlign.ValTy, Adjust);
1162     int Diff = Start - (OffAtMax + Adjust);
1163     AlignVal = HVC.getConstInt(Diff);
1164     assert(Diff >= 0);
1165     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
1166   } else {
1167     // WithMinOffset is the lowest address in the group,
1168     //   WithMinOffset.Addr = Base+Start.
1169     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
1170     // mask off unnecessary bits, so it's ok to just the original pointer as
1171     // the alignment amount.
1172     // Do an explicit down-alignment of the address to avoid creating an
1173     // aligned instruction with an address that is not really aligned.
1174     AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
1175                                      WithMinOffset.ValTy, MinNeeded.value());
1176     AlignVal =
1177         Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy(), "pti");
1178   }
1179 
1180   ByteSpan VSpan;
1181   for (const AddrInfo &AI : MoveInfos) {
1182     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
1183                               AI.Offset - WithMinOffset.Offset);
1184   }
1185 
1186   // The aligned loads/stores will use blocks that are either scalars,
1187   // or HVX vectors. Let "sector" be the unified term for such a block.
1188   // blend(scalar, vector) -> sector...
1189   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
1190                          : std::max<int>(MinNeeded.value(), 4);
1191   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
1192   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
1193 
1194   LLVM_DEBUG({
1195     dbgs() << "ScLen:  " << ScLen << "\n";
1196     dbgs() << "AlignVal:" << *AlignVal << "\n";
1197     dbgs() << "AlignAddr:" << *AlignAddr << "\n";
1198     dbgs() << "VSpan:\n" << VSpan << '\n';
1199   });
1200 
1201   if (Move.IsLoad)
1202     realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1203   else
1204     realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr);
1205 
1206   for (auto *Inst : Move.Main)
1207     Inst->eraseFromParent();
1208 
1209   return true;
1210 }
1211 
1212 auto AlignVectors::isSectorTy(Type *Ty) const -> bool {
1213   if (!HVC.isByteVecTy(Ty))
1214     return false;
1215   int Size = HVC.getSizeOf(Ty);
1216   if (HVC.HST.isTypeForHVX(Ty))
1217     return Size == static_cast<int>(HVC.HST.getVectorLength());
1218   return Size == 4 || Size == 8;
1219 }
1220 
1221 auto AlignVectors::run() -> bool {
1222   LLVM_DEBUG(dbgs() << "Running HVC::AlignVectors\n");
1223   if (!createAddressGroups())
1224     return false;
1225 
1226   LLVM_DEBUG({
1227     dbgs() << "Address groups(" << AddrGroups.size() << "):\n";
1228     for (auto &[In, AL] : AddrGroups) {
1229       for (const AddrInfo &AI : AL)
1230         dbgs() << "---\n" << AI << '\n';
1231     }
1232   });
1233 
1234   bool Changed = false;
1235   MoveList LoadGroups, StoreGroups;
1236 
1237   for (auto &G : AddrGroups) {
1238     llvm::append_range(LoadGroups, createLoadGroups(G.second));
1239     llvm::append_range(StoreGroups, createStoreGroups(G.second));
1240   }
1241 
1242   LLVM_DEBUG({
1243     dbgs() << "\nLoad groups(" << LoadGroups.size() << "):\n";
1244     for (const MoveGroup &G : LoadGroups)
1245       dbgs() << G << "\n";
1246     dbgs() << "Store groups(" << StoreGroups.size() << "):\n";
1247     for (const MoveGroup &G : StoreGroups)
1248       dbgs() << G << "\n";
1249   });
1250 
1251   for (auto &M : LoadGroups)
1252     Changed |= move(M);
1253   for (auto &M : StoreGroups)
1254     Changed |= move(M);
1255 
1256   LLVM_DEBUG(dbgs() << "After move:\n" << HVC.F);
1257 
1258   for (auto &M : LoadGroups)
1259     Changed |= realignGroup(M);
1260   for (auto &M : StoreGroups)
1261     Changed |= realignGroup(M);
1262 
1263   return Changed;
1264 }
1265 
1266 // --- End AlignVectors
1267 
1268 // --- Begin HvxIdioms
1269 
1270 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const
1271     -> std::pair<unsigned, Signedness> {
1272   unsigned Bits = HVC.getNumSignificantBits(V, In);
1273   // The significant bits are calculated including the sign bit. This may
1274   // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may
1275   // result in 33 significant bits. To avoid extra words, skip the extra
1276   // sign bit, but keep information that the value is to be treated as
1277   // unsigned.
1278   KnownBits Known = HVC.getKnownBits(V, In);
1279   Signedness Sign = Signed;
1280   unsigned NumToTest = 0; // Number of bits used in test for unsignedness.
1281   if (isPowerOf2_32(Bits))
1282     NumToTest = Bits;
1283   else if (Bits > 1 && isPowerOf2_32(Bits - 1))
1284     NumToTest = Bits - 1;
1285 
1286   if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) {
1287     Sign = Unsigned;
1288     Bits = NumToTest;
1289   }
1290 
1291   // If the top bit of the nearest power-of-2 is zero, this value is
1292   // positive. It could be treated as either signed or unsigned.
1293   if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) {
1294     if (Known.Zero.ashr(Pow2 - 1).isAllOnes())
1295       Sign = Positive;
1296   }
1297   return {Bits, Sign};
1298 }
1299 
1300 auto HvxIdioms::canonSgn(SValue X, SValue Y) const
1301     -> std::pair<SValue, SValue> {
1302   // Canonicalize the signedness of X and Y, so that the result is one of:
1303   //   S, S
1304   //   U/P, S
1305   //   U/P, U/P
1306   if (X.Sgn == Signed && Y.Sgn != Signed)
1307     std::swap(X, Y);
1308   return {X, Y};
1309 }
1310 
1311 // Match
1312 //   (X * Y) [>> N], or
1313 //   ((X * Y) + (1 << M)) >> N
1314 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> {
1315   using namespace PatternMatch;
1316   auto *Ty = In.getType();
1317 
1318   if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy())
1319     return std::nullopt;
1320 
1321   unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth();
1322 
1323   FxpOp Op;
1324   Value *Exp = &In;
1325 
1326   // Fixed-point multiplication is always shifted right (except when the
1327   // fraction is 0 bits).
1328   auto m_Shr = [](auto &&V, auto &&S) {
1329     return m_CombineOr(m_LShr(V, S), m_AShr(V, S));
1330   };
1331 
1332   const APInt *Qn = nullptr;
1333   if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) {
1334     Op.Frac = Qn->getZExtValue();
1335     Exp = T;
1336   } else {
1337     Op.Frac = 0;
1338   }
1339 
1340   if (Op.Frac > Width)
1341     return std::nullopt;
1342 
1343   // Check if there is rounding added.
1344   const APInt *C = nullptr;
1345   if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) {
1346     uint64_t CV = C->getZExtValue();
1347     if (CV != 0 && !isPowerOf2_64(CV))
1348       return std::nullopt;
1349     if (CV != 0)
1350       Op.RoundAt = Log2_64(CV);
1351     Exp = T;
1352   }
1353 
1354   // Check if the rest is a multiplication.
1355   if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) {
1356     Op.Opcode = Instruction::Mul;
1357     // FIXME: The information below is recomputed.
1358     Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second;
1359     Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second;
1360     Op.ResTy = cast<VectorType>(Ty);
1361     return Op;
1362   }
1363 
1364   return std::nullopt;
1365 }
1366 
1367 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const
1368     -> Value * {
1369   assert(Op.X.Val->getType() == Op.Y.Val->getType());
1370 
1371   auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType());
1372   if (VecTy == nullptr)
1373     return nullptr;
1374   auto *ElemTy = cast<IntegerType>(VecTy->getElementType());
1375   unsigned ElemWidth = ElemTy->getBitWidth();
1376 
1377   // TODO: This can be relaxed after legalization is done pre-isel.
1378   if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0)
1379     return nullptr;
1380 
1381   // There are no special intrinsics that should be used for multiplying
1382   // signed 8-bit values, so just skip them. Normal codegen should handle
1383   // this just fine.
1384   if (ElemWidth <= 8)
1385     return nullptr;
1386   // Similarly, if this is just a multiplication that can be handled without
1387   // intervention, then leave it alone.
1388   if (ElemWidth <= 32 && Op.Frac == 0)
1389     return nullptr;
1390 
1391   auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In);
1392   auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In);
1393 
1394   // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes).
1395 
1396   Value *X = Op.X.Val, *Y = Op.Y.Val;
1397   IRBuilder Builder(In.getParent(), In.getIterator(),
1398                     InstSimplifyFolder(HVC.DL));
1399 
1400   auto roundUpWidth = [](unsigned Width) -> unsigned {
1401     if (Width <= 32 && !isPowerOf2_32(Width)) {
1402       // If the element width is not a power of 2, round it up
1403       // to the next one. Do this for widths not exceeding 32.
1404       return PowerOf2Ceil(Width);
1405     }
1406     if (Width > 32 && Width % 32 != 0) {
1407       // For wider elements, round it up to the multiple of 32.
1408       return alignTo(Width, 32u);
1409     }
1410     return Width;
1411   };
1412 
1413   BitsX = roundUpWidth(BitsX);
1414   BitsY = roundUpWidth(BitsY);
1415 
1416   // For elementwise multiplication vectors must have the same lengths, so
1417   // resize the elements of both inputs to the same width, the max of the
1418   // calculated significant bits.
1419   unsigned Width = std::max(BitsX, BitsY);
1420 
1421   auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy);
1422   if (Width < ElemWidth) {
1423     X = Builder.CreateTrunc(X, ResizeTy, "trn");
1424     Y = Builder.CreateTrunc(Y, ResizeTy, "trn");
1425   } else if (Width > ElemWidth) {
1426     X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy, "sxt")
1427                         : Builder.CreateZExt(X, ResizeTy, "zxt");
1428     Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy, "sxt")
1429                         : Builder.CreateZExt(Y, ResizeTy, "zxt");
1430   };
1431 
1432   assert(X->getType() == Y->getType() && X->getType() == ResizeTy);
1433 
1434   unsigned VecLen = HVC.length(ResizeTy);
1435   unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u);
1436 
1437   SmallVector<Value *> Results;
1438   FxpOp ChopOp = Op;
1439   ChopOp.ResTy = VectorType::get(Op.ResTy->getElementType(), ChopLen, false);
1440 
1441   for (unsigned V = 0; V != VecLen / ChopLen; ++V) {
1442     ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen);
1443     ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen);
1444     Results.push_back(processFxpMulChopped(Builder, In, ChopOp));
1445     if (Results.back() == nullptr)
1446       break;
1447   }
1448 
1449   if (Results.empty() || Results.back() == nullptr)
1450     return nullptr;
1451 
1452   Value *Cat = HVC.concat(Builder, Results);
1453   Value *Ext = SignX == Signed || SignY == Signed
1454                    ? Builder.CreateSExt(Cat, VecTy, "sxt")
1455                    : Builder.CreateZExt(Cat, VecTy, "zxt");
1456   return Ext;
1457 }
1458 
1459 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In,
1460                                      const FxpOp &Op) const -> Value * {
1461   assert(Op.X.Val->getType() == Op.Y.Val->getType());
1462   auto *InpTy = cast<VectorType>(Op.X.Val->getType());
1463   unsigned Width = InpTy->getScalarSizeInBits();
1464   bool Rounding = Op.RoundAt.has_value();
1465 
1466   if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) {
1467     // The fixed-point intrinsics do signed multiplication.
1468     if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) {
1469       Value *QMul = nullptr;
1470       if (Width == 16) {
1471         QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding);
1472       } else if (Width == 32) {
1473         QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding);
1474       }
1475       if (QMul != nullptr)
1476         return QMul;
1477     }
1478   }
1479 
1480   assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n
1481   assert(Width < 32 || Width % 32 == 0);       // Width > 32 => Width is 32*k
1482 
1483   // If Width < 32, then it should really be 16.
1484   if (Width < 32) {
1485     if (Width < 16)
1486       return nullptr;
1487     // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we
1488     // generate a full precision products, which is unnecessary if there is
1489     // no shift.
1490     assert(Width == 16);
1491     assert(Op.Frac != 0 && "Unshifted mul should have been skipped");
1492     if (Op.Frac == 16) {
1493       // Multiply high
1494       if (Value *MulH = createMulH16(Builder, Op.X, Op.Y))
1495         return MulH;
1496     }
1497     // Do full-precision multiply and shift.
1498     Value *Prod32 = createMul16(Builder, Op.X, Op.Y);
1499     if (Rounding) {
1500       Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt);
1501       Prod32 = Builder.CreateAdd(Prod32, RoundVal, "add");
1502     }
1503 
1504     Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac);
1505     Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed
1506                          ? Builder.CreateAShr(Prod32, ShiftAmt, "asr")
1507                          : Builder.CreateLShr(Prod32, ShiftAmt, "lsr");
1508     return Builder.CreateTrunc(Shifted, InpTy, "trn");
1509   }
1510 
1511   // Width >= 32
1512 
1513   // Break up the arguments Op.X and Op.Y into vectors of smaller widths
1514   // in preparation of doing the multiplication by 32-bit parts.
1515   auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32);
1516   auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32);
1517   auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn);
1518 
1519   auto *HvxWordTy = cast<VectorType>(WordP.front()->getType());
1520 
1521   // Add the optional rounding to the proper word.
1522   if (Op.RoundAt.has_value()) {
1523     Value *Zero = HVC.getNullValue(WordX[0]->getType());
1524     SmallVector<Value *> RoundV(WordP.size(), Zero);
1525     RoundV[*Op.RoundAt / 32] =
1526         HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32));
1527     WordP = createAddLong(Builder, WordP, RoundV);
1528   }
1529 
1530   // createRightShiftLong?
1531 
1532   // Shift all products right by Op.Frac.
1533   unsigned SkipWords = Op.Frac / 32;
1534   Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32);
1535 
1536   for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) {
1537     int Src = Dst + SkipWords;
1538     Value *Lo = WordP[Src];
1539     if (Src + 1 < End) {
1540       Value *Hi = WordP[Src + 1];
1541       WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr,
1542                                            {Hi, Lo, ShiftAmt},
1543                                            /*FMFSource*/ nullptr, "int");
1544     } else {
1545       // The shift of the most significant word.
1546       WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt, "asr");
1547     }
1548   }
1549   if (SkipWords != 0)
1550     WordP.resize(WordP.size() - SkipWords);
1551 
1552   return HVC.joinVectorElements(Builder, WordP, Op.ResTy);
1553 }
1554 
1555 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y,
1556                              bool Rounding) const -> Value * {
1557   assert(X.Val->getType() == Y.Val->getType());
1558   assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16));
1559   assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false)));
1560 
1561   // There is no non-rounding intrinsic for i16.
1562   if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned)
1563     return nullptr;
1564 
1565   auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs);
1566   return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(),
1567                                 {X.Val, Y.Val});
1568 }
1569 
1570 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y,
1571                              bool Rounding) const -> Value * {
1572   Type *InpTy = X.Val->getType();
1573   assert(InpTy == Y.Val->getType());
1574   assert(InpTy->getScalarType() == HVC.getIntTy(32));
1575   assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false)));
1576 
1577   if (X.Sgn == Unsigned || Y.Sgn == Unsigned)
1578     return nullptr;
1579 
1580   auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh);
1581   auto V6_vmpyo_acc = Rounding
1582                           ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc)
1583                           : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc);
1584   Value *V1 =
1585       HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val});
1586   return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy,
1587                                 {V1, X.Val, Y.Val});
1588 }
1589 
1590 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y,
1591                                Value *CarryIn) const
1592     -> std::pair<Value *, Value *> {
1593   assert(X->getType() == Y->getType());
1594   auto VecTy = cast<VectorType>(X->getType());
1595   if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) {
1596     SmallVector<Value *> Args = {X, Y};
1597     Intrinsic::ID AddCarry;
1598     if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) {
1599       AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo);
1600     } else {
1601       AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry);
1602       if (CarryIn == nullptr)
1603         CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy)));
1604       Args.push_back(CarryIn);
1605     }
1606     Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry,
1607                                         /*RetTy=*/nullptr, Args);
1608     Value *Result = Builder.CreateExtractValue(Ret, {0}, "ext");
1609     Value *CarryOut = Builder.CreateExtractValue(Ret, {1}, "ext");
1610     return {Result, CarryOut};
1611   }
1612 
1613   // In other cases, do a regular add, and unsigned compare-less-than.
1614   // The carry-out can originate in two places: adding the carry-in or adding
1615   // the two input values.
1616   Value *Result1 = X; // Result1 = X + CarryIn
1617   if (CarryIn != nullptr) {
1618     unsigned Width = VecTy->getScalarSizeInBits();
1619     uint32_t Mask = 1;
1620     if (Width < 32) {
1621       for (unsigned i = 0, e = 32 / Width; i != e; ++i)
1622         Mask = (Mask << Width) | 1;
1623     }
1624     auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt);
1625     Value *ValueIn =
1626         HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr,
1627                                {CarryIn, HVC.getConstInt(Mask)});
1628     Result1 = Builder.CreateAdd(X, ValueIn, "add");
1629   }
1630 
1631   Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X, "cmp");
1632   Value *Result2 = Builder.CreateAdd(Result1, Y, "add");
1633   Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y, "cmp");
1634   return {Result2, Builder.CreateOr(CarryOut1, CarryOut2, "orb")};
1635 }
1636 
1637 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const
1638     -> Value * {
1639   Intrinsic::ID V6_vmpyh = 0;
1640   std::tie(X, Y) = canonSgn(X, Y);
1641 
1642   if (X.Sgn == Signed) {
1643     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv);
1644   } else if (Y.Sgn == Signed) {
1645     // In vmpyhus the second operand is unsigned
1646     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus);
1647   } else {
1648     V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv);
1649   }
1650 
1651   // i16*i16 -> i32 / interleaved
1652   Value *P =
1653       HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val});
1654   // Deinterleave
1655   return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P));
1656 }
1657 
1658 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const
1659     -> Value * {
1660   Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false);
1661 
1662   if (HVC.HST.useHVXV69Ops()) {
1663     if (X.Sgn != Signed && Y.Sgn != Signed) {
1664       auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs);
1665       return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty,
1666                                     {X.Val, Y.Val});
1667     }
1668   }
1669 
1670   Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true);
1671   Value *Pair16 =
1672       Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty, "cst");
1673   unsigned Len = HVC.length(HvxP16Ty) / 2;
1674 
1675   SmallVector<int, 128> PickOdd(Len);
1676   for (int i = 0; i != static_cast<int>(Len); ++i)
1677     PickOdd[i] = 2 * i + 1;
1678 
1679   return Builder.CreateShuffleVector(
1680       HVC.sublo(Builder, Pair16), HVC.subhi(Builder, Pair16), PickOdd, "shf");
1681 }
1682 
1683 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const
1684     -> std::pair<Value *, Value *> {
1685   assert(X.Val->getType() == Y.Val->getType());
1686   assert(X.Val->getType() == HvxI32Ty);
1687 
1688   Intrinsic::ID V6_vmpy_parts;
1689   std::tie(X, Y) = canonSgn(X, Y);
1690 
1691   if (X.Sgn == Signed) {
1692     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts;
1693   } else if (Y.Sgn == Signed) {
1694     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts;
1695   } else {
1696     V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts;
1697   }
1698 
1699   Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr,
1700                                         {X.Val, Y.Val}, {HvxI32Ty});
1701   Value *Hi = Builder.CreateExtractValue(Parts, {0}, "ext");
1702   Value *Lo = Builder.CreateExtractValue(Parts, {1}, "ext");
1703   return {Lo, Hi};
1704 }
1705 
1706 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
1707                               ArrayRef<Value *> WordY) const
1708     -> SmallVector<Value *> {
1709   assert(WordX.size() == WordY.size());
1710   unsigned Idx = 0, Length = WordX.size();
1711   SmallVector<Value *> Sum(Length);
1712 
1713   while (Idx != Length) {
1714     if (HVC.isZero(WordX[Idx]))
1715       Sum[Idx] = WordY[Idx];
1716     else if (HVC.isZero(WordY[Idx]))
1717       Sum[Idx] = WordX[Idx];
1718     else
1719       break;
1720     ++Idx;
1721   }
1722 
1723   Value *Carry = nullptr;
1724   for (; Idx != Length; ++Idx) {
1725     std::tie(Sum[Idx], Carry) =
1726         createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry);
1727   }
1728 
1729   // This drops the final carry beyond the highest word.
1730   return Sum;
1731 }
1732 
1733 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX,
1734                               Signedness SgnX, ArrayRef<Value *> WordY,
1735                               Signedness SgnY) const -> SmallVector<Value *> {
1736   SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size());
1737 
1738   // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results,
1739   // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3.
1740   for (int i = 0, e = WordX.size(); i != e; ++i) {
1741     for (int j = 0, f = WordY.size(); j != f; ++j) {
1742       // Check the 4 halves that this multiplication can generate.
1743       Signedness SX = (i + 1 == e) ? SgnX : Unsigned;
1744       Signedness SY = (j + 1 == f) ? SgnY : Unsigned;
1745       auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY});
1746       Products[i + j + 0].push_back(Lo);
1747       Products[i + j + 1].push_back(Hi);
1748     }
1749   }
1750 
1751   Value *Zero = HVC.getNullValue(WordX[0]->getType());
1752 
1753   auto pop_back_or_zero = [Zero](auto &Vector) -> Value * {
1754     if (Vector.empty())
1755       return Zero;
1756     auto Last = Vector.back();
1757     Vector.pop_back();
1758     return Last;
1759   };
1760 
1761   for (int i = 0, e = Products.size(); i != e; ++i) {
1762     while (Products[i].size() > 1) {
1763       Value *Carry = nullptr; // no carry-in
1764       for (int j = i; j != e; ++j) {
1765         auto &ProdJ = Products[j];
1766         auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ),
1767                                               pop_back_or_zero(ProdJ), Carry);
1768         ProdJ.insert(ProdJ.begin(), Sum);
1769         Carry = CarryOut;
1770       }
1771     }
1772   }
1773 
1774   SmallVector<Value *> WordP;
1775   for (auto &P : Products) {
1776     assert(P.size() == 1 && "Should have been added together");
1777     WordP.push_back(P.front());
1778   }
1779 
1780   return WordP;
1781 }
1782 
1783 auto HvxIdioms::run() -> bool {
1784   bool Changed = false;
1785 
1786   for (BasicBlock &B : HVC.F) {
1787     for (auto It = B.rbegin(); It != B.rend(); ++It) {
1788       if (auto Fxm = matchFxpMul(*It)) {
1789         Value *New = processFxpMul(*It, *Fxm);
1790         // Always report "changed" for now.
1791         Changed = true;
1792         if (!New)
1793           continue;
1794         bool StartOver = !isa<Instruction>(New);
1795         It->replaceAllUsesWith(New);
1796         RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI);
1797         It = StartOver ? B.rbegin()
1798                        : cast<Instruction>(New)->getReverseIterator();
1799         Changed = true;
1800       }
1801     }
1802   }
1803 
1804   return Changed;
1805 }
1806 
1807 // --- End HvxIdioms
1808 
1809 auto HexagonVectorCombine::run() -> bool {
1810   if (!HST.useHVXOps())
1811     return false;
1812 
1813   bool Changed = false;
1814   Changed |= AlignVectors(*this).run();
1815   Changed |= HvxIdioms(*this).run();
1816 
1817   return Changed;
1818 }
1819 
1820 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * {
1821   return IntegerType::get(F.getContext(), Width);
1822 }
1823 
1824 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
1825   assert(ElemCount >= 0);
1826   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
1827   if (ElemCount == 0)
1828     return ByteTy;
1829   return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false);
1830 }
1831 
1832 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
1833   assert(ElemCount >= 0);
1834   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
1835   if (ElemCount == 0)
1836     return BoolTy;
1837   return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false);
1838 }
1839 
1840 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const
1841     -> ConstantInt * {
1842   return ConstantInt::getSigned(getIntTy(Width), Val);
1843 }
1844 
1845 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
1846   if (auto *C = dyn_cast<Constant>(Val))
1847     return C->isZeroValue();
1848   return false;
1849 }
1850 
1851 auto HexagonVectorCombine::getIntValue(const Value *Val) const
1852     -> std::optional<APInt> {
1853   if (auto *CI = dyn_cast<ConstantInt>(Val))
1854     return CI->getValue();
1855   return std::nullopt;
1856 }
1857 
1858 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
1859   return isa<UndefValue>(Val);
1860 }
1861 
1862 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const
1863     -> VectorType * {
1864   EVT ETy = EVT::getEVT(ElemTy, false);
1865   assert(ETy.isSimple() && "Invalid HVX element type");
1866   // Do not allow boolean types here: they don't have a fixed length.
1867   assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) &&
1868          "Invalid HVX element type");
1869   unsigned HwLen = HST.getVectorLength();
1870   unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits();
1871   return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems,
1872                          /*Scalable=*/false);
1873 }
1874 
1875 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const
1876     -> int {
1877   return getSizeOf(Val->getType(), Kind);
1878 }
1879 
1880 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const
1881     -> int {
1882   auto *NcTy = const_cast<Type *>(Ty);
1883   switch (Kind) {
1884   case Store:
1885     return DL.getTypeStoreSize(NcTy).getFixedValue();
1886   case Alloc:
1887     return DL.getTypeAllocSize(NcTy).getFixedValue();
1888   }
1889   llvm_unreachable("Unhandled SizeKind enum");
1890 }
1891 
1892 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
1893   // The actual type may be shorter than the HVX vector, so determine
1894   // the alignment based on subtarget info.
1895   if (HST.isTypeForHVX(Ty))
1896     return HST.getVectorLength();
1897   return DL.getABITypeAlign(Ty).value();
1898 }
1899 
1900 auto HexagonVectorCombine::length(Value *Val) const -> size_t {
1901   return length(Val->getType());
1902 }
1903 
1904 auto HexagonVectorCombine::length(Type *Ty) const -> size_t {
1905   auto *VecTy = dyn_cast<VectorType>(Ty);
1906   assert(VecTy && "Must be a vector type");
1907   return VecTy->getElementCount().getFixedValue();
1908 }
1909 
1910 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
1911   assert(Ty->isIntOrIntVectorTy());
1912   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
1913   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1914     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
1915   return Zero;
1916 }
1917 
1918 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
1919   assert(Ty->isIntOrIntVectorTy());
1920   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
1921   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1922     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
1923   return Minus1;
1924 }
1925 
1926 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const
1927     -> Constant * {
1928   assert(Ty->isVectorTy());
1929   auto VecTy = cast<VectorType>(Ty);
1930   Type *ElemTy = VecTy->getElementType();
1931   // Add support for floats if needed.
1932   auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(),
1933                                          ConstantInt::get(ElemTy, Val));
1934   return Splat;
1935 }
1936 
1937 auto HexagonVectorCombine::simplify(Value *V) const -> Value * {
1938   if (auto *In = dyn_cast<Instruction>(V)) {
1939     SimplifyQuery Q(DL, &TLI, &DT, &AC, In);
1940     return simplifyInstruction(In, Q);
1941   }
1942   return nullptr;
1943 }
1944 
1945 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
1946 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst,
1947                                    Value *Src, int Start, int Length,
1948                                    int Where) const -> Value * {
1949   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1950   int SrcLen = getSizeOf(Src);
1951   int DstLen = getSizeOf(Dst);
1952   assert(0 <= Start && Start + Length <= SrcLen);
1953   assert(0 <= Where && Where + Length <= DstLen);
1954 
1955   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1956   auto *Undef = UndefValue::get(getByteTy());
1957   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1958   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1959 
1960   SmallVector<int, 256> SMask(P2Len);
1961   for (int i = 0; i != P2Len; ++i) {
1962     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1963     // Otherwise, pick Dst[i];
1964     SMask[i] =
1965         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1966   }
1967 
1968   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask, "shf");
1969   return vresize(Builder, P2Insert, DstLen, Undef);
1970 }
1971 
1972 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo,
1973                                     Value *Hi, Value *Amt) const -> Value * {
1974   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1975   if (isZero(Amt))
1976     return Hi;
1977   int VecLen = getSizeOf(Hi);
1978   if (auto IntAmt = getIntValue(Amt))
1979     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1980                            VecLen);
1981 
1982   if (HST.isTypeForHVX(Hi->getType())) {
1983     assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
1984            "Expecting an exact HVX type");
1985     return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb),
1986                               Hi->getType(), {Hi, Lo, Amt});
1987   }
1988 
1989   if (VecLen == 4) {
1990     Value *Pair = concat(Builder, {Lo, Hi});
1991     Value *Shift =
1992         Builder.CreateLShr(Builder.CreateShl(Pair, Amt, "shl"), 32, "lsr");
1993     Value *Trunc =
1994         Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
1995     return Builder.CreateBitCast(Trunc, Hi->getType(), "cst");
1996   }
1997   if (VecLen == 8) {
1998     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt, "sub");
1999     return vralignb(Builder, Lo, Hi, Sub);
2000   }
2001   llvm_unreachable("Unexpected vector length");
2002 }
2003 
2004 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo,
2005                                     Value *Hi, Value *Amt) const -> Value * {
2006   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
2007   if (isZero(Amt))
2008     return Lo;
2009   int VecLen = getSizeOf(Lo);
2010   if (auto IntAmt = getIntValue(Amt))
2011     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
2012 
2013   if (HST.isTypeForHVX(Lo->getType())) {
2014     assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() &&
2015            "Expecting an exact HVX type");
2016     return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb),
2017                               Lo->getType(), {Hi, Lo, Amt});
2018   }
2019 
2020   if (VecLen == 4) {
2021     Value *Pair = concat(Builder, {Lo, Hi});
2022     Value *Shift = Builder.CreateLShr(Pair, Amt, "lsr");
2023     Value *Trunc =
2024         Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()), "trn");
2025     return Builder.CreateBitCast(Trunc, Lo->getType(), "cst");
2026   }
2027   if (VecLen == 8) {
2028     Type *Int64Ty = Type::getInt64Ty(F.getContext());
2029     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty, "cst");
2030     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty, "cst");
2031     Function *FI = Intrinsic::getDeclaration(F.getParent(),
2032                                              Intrinsic::hexagon_S2_valignrb);
2033     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}, "cup");
2034     return Builder.CreateBitCast(Call, Lo->getType(), "cst");
2035   }
2036   llvm_unreachable("Unexpected vector length");
2037 }
2038 
2039 // Concatenates a sequence of vectors of the same type.
2040 auto HexagonVectorCombine::concat(IRBuilderBase &Builder,
2041                                   ArrayRef<Value *> Vecs) const -> Value * {
2042   assert(!Vecs.empty());
2043   SmallVector<int, 256> SMask;
2044   std::vector<Value *> Work[2];
2045   int ThisW = 0, OtherW = 1;
2046 
2047   Work[ThisW].assign(Vecs.begin(), Vecs.end());
2048   while (Work[ThisW].size() > 1) {
2049     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
2050     SMask.resize(length(Ty) * 2);
2051     std::iota(SMask.begin(), SMask.end(), 0);
2052 
2053     Work[OtherW].clear();
2054     if (Work[ThisW].size() % 2 != 0)
2055       Work[ThisW].push_back(UndefValue::get(Ty));
2056     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
2057       Value *Joined = Builder.CreateShuffleVector(
2058           Work[ThisW][i], Work[ThisW][i + 1], SMask, "shf");
2059       Work[OtherW].push_back(Joined);
2060     }
2061     std::swap(ThisW, OtherW);
2062   }
2063 
2064   // Since there may have been some undefs appended to make shuffle operands
2065   // have the same type, perform the last shuffle to only pick the original
2066   // elements.
2067   SMask.resize(Vecs.size() * length(Vecs.front()->getType()));
2068   std::iota(SMask.begin(), SMask.end(), 0);
2069   Value *Total = Work[ThisW].front();
2070   return Builder.CreateShuffleVector(Total, SMask, "shf");
2071 }
2072 
2073 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val,
2074                                    int NewSize, Value *Pad) const -> Value * {
2075   assert(isa<VectorType>(Val->getType()));
2076   auto *ValTy = cast<VectorType>(Val->getType());
2077   assert(ValTy->getElementType() == Pad->getType());
2078 
2079   int CurSize = length(ValTy);
2080   if (CurSize == NewSize)
2081     return Val;
2082   // Truncate?
2083   if (CurSize > NewSize)
2084     return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize);
2085   // Extend.
2086   SmallVector<int, 128> SMask(NewSize);
2087   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
2088   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
2089   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad, "spt");
2090   return Builder.CreateShuffleVector(Val, PadVec, SMask, "shf");
2091 }
2092 
2093 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask,
2094                                    Type *FromTy, Type *ToTy) const -> Value * {
2095   // Mask is a vector <N x i1>, where each element corresponds to an
2096   // element of FromTy. Remap it so that each element will correspond
2097   // to an element of ToTy.
2098   assert(isa<VectorType>(Mask->getType()));
2099 
2100   Type *FromSTy = FromTy->getScalarType();
2101   Type *ToSTy = ToTy->getScalarType();
2102   if (FromSTy == ToSTy)
2103     return Mask;
2104 
2105   int FromSize = getSizeOf(FromSTy);
2106   int ToSize = getSizeOf(ToSTy);
2107   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
2108 
2109   auto *MaskTy = cast<VectorType>(Mask->getType());
2110   int FromCount = length(MaskTy);
2111   int ToCount = (FromCount * FromSize) / ToSize;
2112   assert((FromCount * FromSize) % ToSize == 0);
2113 
2114   auto *FromITy = getIntTy(FromSize * 8);
2115   auto *ToITy = getIntTy(ToSize * 8);
2116 
2117   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
2118   // -> trunc to <M x i1>.
2119   Value *Ext = Builder.CreateSExt(
2120       Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false), "sxt");
2121   Value *Cast = Builder.CreateBitCast(
2122       Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false), "cst");
2123   return Builder.CreateTrunc(
2124       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false), "trn");
2125 }
2126 
2127 // Bitcast to bytes, and return least significant bits.
2128 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const
2129     -> Value * {
2130   Type *ScalarTy = Val->getType()->getScalarType();
2131   if (ScalarTy == getBoolTy())
2132     return Val;
2133 
2134   Value *Bytes = vbytes(Builder, Val);
2135   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
2136     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)), "trn");
2137   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
2138   // <1 x i1>.
2139   return Builder.CreateTrunc(Bytes, getBoolTy(), "trn");
2140 }
2141 
2142 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
2143 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const
2144     -> Value * {
2145   Type *ScalarTy = Val->getType()->getScalarType();
2146   if (ScalarTy == getByteTy())
2147     return Val;
2148 
2149   if (ScalarTy != getBoolTy())
2150     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)), "cst");
2151   // For bool, return a sext from i1 to i8.
2152   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
2153     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy), "sxt");
2154   return Builder.CreateSExt(Val, getByteTy(), "sxt");
2155 }
2156 
2157 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val,
2158                                      unsigned Start, unsigned Length) const
2159     -> Value * {
2160   assert(Start + Length <= length(Val));
2161   return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length);
2162 }
2163 
2164 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const
2165     -> Value * {
2166   size_t Len = length(Val);
2167   assert(Len % 2 == 0 && "Length should be even");
2168   return subvector(Builder, Val, 0, Len / 2);
2169 }
2170 
2171 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const
2172     -> Value * {
2173   size_t Len = length(Val);
2174   assert(Len % 2 == 0 && "Length should be even");
2175   return subvector(Builder, Val, Len / 2, Len / 2);
2176 }
2177 
2178 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0,
2179                                  Value *Val1) const -> Value * {
2180   assert(Val0->getType() == Val1->getType());
2181   int Len = length(Val0);
2182   SmallVector<int, 128> Mask(2 * Len);
2183 
2184   for (int i = 0; i != Len; ++i) {
2185     Mask[i] = 2 * i;           // Even
2186     Mask[i + Len] = 2 * i + 1; // Odd
2187   }
2188   return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
2189 }
2190 
2191 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0,
2192                                   Value *Val1) const -> Value * { //
2193   assert(Val0->getType() == Val1->getType());
2194   int Len = length(Val0);
2195   SmallVector<int, 128> Mask(2 * Len);
2196 
2197   for (int i = 0; i != Len; ++i) {
2198     Mask[2 * i + 0] = i;       // Val0
2199     Mask[2 * i + 1] = i + Len; // Val1
2200   }
2201   return Builder.CreateShuffleVector(Val0, Val1, Mask, "shf");
2202 }
2203 
2204 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder,
2205                                               Intrinsic::ID IntID, Type *RetTy,
2206                                               ArrayRef<Value *> Args,
2207                                               ArrayRef<Type *> ArgTys) const
2208     -> Value * {
2209   auto getCast = [&](IRBuilderBase &Builder, Value *Val,
2210                      Type *DestTy) -> Value * {
2211     Type *SrcTy = Val->getType();
2212     if (SrcTy == DestTy)
2213       return Val;
2214 
2215     // Non-HVX type. It should be a scalar, and it should already have
2216     // a valid type.
2217     assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true));
2218 
2219     Type *BoolTy = Type::getInt1Ty(F.getContext());
2220     if (cast<VectorType>(SrcTy)->getElementType() != BoolTy)
2221       return Builder.CreateBitCast(Val, DestTy, "cst");
2222 
2223     // Predicate HVX vector.
2224     unsigned HwLen = HST.getVectorLength();
2225     Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast
2226                                    : Intrinsic::hexagon_V6_pred_typecast_128B;
2227     Function *FI =
2228         Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()});
2229     return Builder.CreateCall(FI, {Val}, "cup");
2230   };
2231 
2232   Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys);
2233   FunctionType *IntrTy = IntrFn->getFunctionType();
2234 
2235   SmallVector<Value *, 4> IntrArgs;
2236   for (int i = 0, e = Args.size(); i != e; ++i) {
2237     Value *A = Args[i];
2238     Type *T = IntrTy->getParamType(i);
2239     if (A->getType() != T) {
2240       IntrArgs.push_back(getCast(Builder, A, T));
2241     } else {
2242       IntrArgs.push_back(A);
2243     }
2244   }
2245   Value *Call = Builder.CreateCall(IntrFn, IntrArgs, "cup");
2246 
2247   Type *CallTy = Call->getType();
2248   if (RetTy == nullptr || CallTy == RetTy)
2249     return Call;
2250   // Scalar types should have RetTy matching the call return type.
2251   assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true));
2252   return getCast(Builder, Call, RetTy);
2253 }
2254 
2255 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder,
2256                                                Value *Vec,
2257                                                unsigned ToWidth) const
2258     -> SmallVector<Value *> {
2259   // Break a vector of wide elements into a series of vectors with narrow
2260   // elements:
2261   //   (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...)
2262   // -->
2263   //   (a0, a1, a2, ...)    // lowest "ToWidth" bits
2264   //   (b0, b1, b2, ...)    // the next lowest...
2265   //   (c0, c1, c2, ...)    // ...
2266   //   ...
2267   //
2268   // The number of elements in each resulting vector is the same as
2269   // in the original vector.
2270 
2271   auto *VecTy = cast<VectorType>(Vec->getType());
2272   assert(VecTy->getElementType()->isIntegerTy());
2273   unsigned FromWidth = VecTy->getScalarSizeInBits();
2274   assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth));
2275   assert(ToWidth <= FromWidth && "Breaking up into wider elements?");
2276   unsigned NumResults = FromWidth / ToWidth;
2277 
2278   SmallVector<Value *> Results(NumResults);
2279   Results[0] = Vec;
2280   unsigned Length = length(VecTy);
2281 
2282   // Do it by splitting in half, since those operations correspond to deal
2283   // instructions.
2284   auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void {
2285     // Take V = Results[Begin], split it in L, H.
2286     // Store Results[Begin] = L, Results[(Begin+End)/2] = H
2287     // Call itself recursively split(Begin, Half), split(Half+1, End)
2288     if (Begin + 1 == End)
2289       return;
2290 
2291     Value *Val = Results[Begin];
2292     unsigned Width = Val->getType()->getScalarSizeInBits();
2293 
2294     auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false);
2295     Value *VVal = Builder.CreateBitCast(Val, VTy, "cst");
2296 
2297     Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal));
2298 
2299     unsigned Half = (Begin + End) / 2;
2300     Results[Begin] = sublo(Builder, Res);
2301     Results[Half] = subhi(Builder, Res);
2302 
2303     splitFunc(Begin, Half, splitFunc);
2304     splitFunc(Half, End, splitFunc);
2305   };
2306 
2307   splitInHalf(0, NumResults, splitInHalf);
2308   return Results;
2309 }
2310 
2311 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder,
2312                                               ArrayRef<Value *> Values,
2313                                               VectorType *ToType) const
2314     -> Value * {
2315   assert(ToType->getElementType()->isIntegerTy());
2316 
2317   // If the list of values does not have power-of-2 elements, append copies
2318   // of the sign bit to it, to make the size be 2^n.
2319   // The reason for this is that the values will be joined in pairs, because
2320   // otherwise the shuffles will result in convoluted code. With pairwise
2321   // joins, the shuffles will hopefully be folded into a perfect shuffle.
2322   // The output will need to be sign-extended to a type with element width
2323   // being a power-of-2 anyways.
2324   SmallVector<Value *> Inputs(Values.begin(), Values.end());
2325 
2326   unsigned ToWidth = ToType->getScalarSizeInBits();
2327   unsigned Width = Inputs.front()->getType()->getScalarSizeInBits();
2328   assert(Width <= ToWidth);
2329   assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth));
2330   unsigned Length = length(Inputs.front()->getType());
2331 
2332   unsigned NeedInputs = ToWidth / Width;
2333   if (Inputs.size() != NeedInputs) {
2334     // Having too many inputs is ok: drop the high bits (usual wrap-around).
2335     // If there are too few, fill them with the sign bit.
2336     Value *Last = Inputs.back();
2337     Value *Sign = Builder.CreateAShr(
2338         Last, getConstSplat(Last->getType(), Width - 1), "asr");
2339     Inputs.resize(NeedInputs, Sign);
2340   }
2341 
2342   while (Inputs.size() > 1) {
2343     Width *= 2;
2344     auto *VTy = VectorType::get(getIntTy(Width), Length, false);
2345     for (int i = 0, e = Inputs.size(); i < e; i += 2) {
2346       Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]);
2347       Inputs[i / 2] = Builder.CreateBitCast(Res, VTy, "cst");
2348     }
2349     Inputs.resize(Inputs.size() / 2);
2350   }
2351 
2352   assert(Inputs.front()->getType() == ToType);
2353   return Inputs.front();
2354 }
2355 
2356 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
2357                                                       Value *Ptr1) const
2358     -> std::optional<int> {
2359   struct Builder : IRBuilder<> {
2360     Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {}
2361     ~Builder() {
2362       for (Instruction *I : llvm::reverse(ToErase))
2363         I->eraseFromParent();
2364     }
2365     SmallVector<Instruction *, 8> ToErase;
2366   };
2367 
2368 #define CallBuilder(B, F)                                                      \
2369   [&](auto &B_) {                                                              \
2370     Value *V = B_.F;                                                           \
2371     if (auto *I = dyn_cast<Instruction>(V))                                    \
2372       B_.ToErase.push_back(I);                                                 \
2373     return V;                                                                  \
2374   }(B)
2375 
2376   auto Simplify = [this](Value *V) {
2377     if (Value *S = simplify(V))
2378       return S;
2379     return V;
2380   };
2381 
2382   auto StripBitCast = [](Value *V) {
2383     while (auto *C = dyn_cast<BitCastInst>(V))
2384       V = C->getOperand(0);
2385     return V;
2386   };
2387 
2388   Ptr0 = StripBitCast(Ptr0);
2389   Ptr1 = StripBitCast(Ptr1);
2390   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
2391     return std::nullopt;
2392 
2393   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
2394   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
2395   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
2396     return std::nullopt;
2397   if (Gep0->getSourceElementType() != Gep1->getSourceElementType())
2398     return std::nullopt;
2399 
2400   Builder B(Gep0->getParent());
2401   int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc);
2402 
2403   // FIXME: for now only check GEPs with a single index.
2404   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
2405     return std::nullopt;
2406 
2407   Value *Idx0 = Gep0->getOperand(1);
2408   Value *Idx1 = Gep1->getOperand(1);
2409 
2410   // First, try to simplify the subtraction directly.
2411   if (auto *Diff = dyn_cast<ConstantInt>(
2412           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
2413     return Diff->getSExtValue() * Scale;
2414 
2415   KnownBits Known0 = getKnownBits(Idx0, Gep0);
2416   KnownBits Known1 = getKnownBits(Idx1, Gep1);
2417   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
2418   if (Unknown.isAllOnes())
2419     return std::nullopt;
2420 
2421   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
2422   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
2423   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
2424   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
2425   int Diff0 = 0;
2426   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
2427     Diff0 = C->getSExtValue();
2428   } else {
2429     return std::nullopt;
2430   }
2431 
2432   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
2433   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
2434   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
2435   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
2436   int Diff1 = 0;
2437   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
2438     Diff1 = C->getSExtValue();
2439   } else {
2440     return std::nullopt;
2441   }
2442 
2443   return (Diff0 + Diff1) * Scale;
2444 
2445 #undef CallBuilder
2446 }
2447 
2448 auto HexagonVectorCombine::getNumSignificantBits(const Value *V,
2449                                                  const Instruction *CtxI) const
2450     -> unsigned {
2451   return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT);
2452 }
2453 
2454 auto HexagonVectorCombine::getKnownBits(const Value *V,
2455                                         const Instruction *CtxI) const
2456     -> KnownBits {
2457   return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr,
2458                           /*UseInstrInfo=*/true);
2459 }
2460 
2461 template <typename T>
2462 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
2463                                                   BasicBlock::const_iterator To,
2464                                                   const T &IgnoreInsts) const
2465     -> bool {
2466   auto getLocOrNone =
2467       [this](const Instruction &I) -> std::optional<MemoryLocation> {
2468     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
2469       switch (II->getIntrinsicID()) {
2470       case Intrinsic::masked_load:
2471         return MemoryLocation::getForArgument(II, 0, TLI);
2472       case Intrinsic::masked_store:
2473         return MemoryLocation::getForArgument(II, 1, TLI);
2474       }
2475     }
2476     return MemoryLocation::getOrNone(&I);
2477   };
2478 
2479   // The source and the destination must be in the same basic block.
2480   const BasicBlock &Block = *In.getParent();
2481   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
2482   // No PHIs.
2483   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
2484     return false;
2485 
2486   if (!mayHaveNonDefUseDependency(In))
2487     return true;
2488   bool MayWrite = In.mayWriteToMemory();
2489   auto MaybeLoc = getLocOrNone(In);
2490 
2491   auto From = In.getIterator();
2492   if (From == To)
2493     return true;
2494   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
2495   auto Range =
2496       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
2497   for (auto It = Range.first; It != Range.second; ++It) {
2498     const Instruction &I = *It;
2499     if (llvm::is_contained(IgnoreInsts, &I))
2500       continue;
2501     // assume intrinsic can be ignored
2502     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2503       if (II->getIntrinsicID() == Intrinsic::assume)
2504         continue;
2505     }
2506     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
2507     if (I.mayThrow())
2508       return false;
2509     if (auto *CB = dyn_cast<CallBase>(&I)) {
2510       if (!CB->hasFnAttr(Attribute::WillReturn))
2511         return false;
2512       if (!CB->hasFnAttr(Attribute::NoSync))
2513         return false;
2514     }
2515     if (I.mayReadOrWriteMemory()) {
2516       auto MaybeLocI = getLocOrNone(I);
2517       if (MayWrite || I.mayWriteToMemory()) {
2518         if (!MaybeLoc || !MaybeLocI)
2519           return false;
2520         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
2521           return false;
2522       }
2523     }
2524   }
2525   return true;
2526 }
2527 
2528 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
2529   if (auto *VecTy = dyn_cast<VectorType>(Ty))
2530     return VecTy->getElementType() == getByteTy();
2531   return false;
2532 }
2533 
2534 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo,
2535                                            Value *Hi, int Start,
2536                                            int Length) const -> Value * {
2537   assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi));
2538   SmallVector<int, 128> SMask(Length);
2539   std::iota(SMask.begin(), SMask.end(), Start);
2540   return Builder.CreateShuffleVector(Lo, Hi, SMask, "shf");
2541 }
2542 
2543 // Pass management.
2544 
2545 namespace llvm {
2546 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
2547 FunctionPass *createHexagonVectorCombineLegacyPass();
2548 } // namespace llvm
2549 
2550 namespace {
2551 class HexagonVectorCombineLegacy : public FunctionPass {
2552 public:
2553   static char ID;
2554 
2555   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
2556 
2557   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
2558 
2559   void getAnalysisUsage(AnalysisUsage &AU) const override {
2560     AU.setPreservesCFG();
2561     AU.addRequired<AAResultsWrapperPass>();
2562     AU.addRequired<AssumptionCacheTracker>();
2563     AU.addRequired<DominatorTreeWrapperPass>();
2564     AU.addRequired<TargetLibraryInfoWrapperPass>();
2565     AU.addRequired<TargetPassConfig>();
2566     FunctionPass::getAnalysisUsage(AU);
2567   }
2568 
2569   bool runOnFunction(Function &F) override {
2570     if (skipFunction(F))
2571       return false;
2572     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2573     AssumptionCache &AC =
2574         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2575     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2576     TargetLibraryInfo &TLI =
2577         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2578     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
2579     HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
2580     return HVC.run();
2581   }
2582 };
2583 } // namespace
2584 
2585 char HexagonVectorCombineLegacy::ID = 0;
2586 
2587 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
2588                       "Hexagon Vector Combine", false, false)
2589 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2590 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2591 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2592 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2593 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
2594 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
2595                     "Hexagon Vector Combine", false, false)
2596 
2597 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
2598   return new HexagonVectorCombineLegacy();
2599 }
2600