1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsHexagon.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetMachine.h" 39 40 #include "HexagonSubtarget.h" 41 #include "HexagonTargetMachine.h" 42 43 #include <algorithm> 44 #include <deque> 45 #include <map> 46 #include <set> 47 #include <utility> 48 #include <vector> 49 50 #define DEBUG_TYPE "hexagon-vc" 51 52 using namespace llvm; 53 54 namespace { 55 class HexagonVectorCombine { 56 public: 57 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 58 DominatorTree &DT_, TargetLibraryInfo &TLI_, 59 const TargetMachine &TM_) 60 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 61 TLI(TLI_), 62 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 63 64 bool run(); 65 66 // Common integer type. 67 IntegerType *getIntTy() const; 68 // Byte type: either scalar (when Length = 0), or vector with given 69 // element count. 70 Type *getByteTy(int ElemCount = 0) const; 71 // Boolean type: either scalar (when Length = 0), or vector with given 72 // element count. 73 Type *getBoolTy(int ElemCount = 0) const; 74 // Create a ConstantInt of type returned by getIntTy with the value Val. 75 ConstantInt *getConstInt(int Val) const; 76 // Get the integer value of V, if it exists. 77 Optional<APInt> getIntValue(const Value *Val) const; 78 // Is V a constant 0, or a vector of 0s? 79 bool isZero(const Value *Val) const; 80 // Is V an undef value? 81 bool isUndef(const Value *Val) const; 82 83 int getSizeOf(const Value *Val) const; 84 int getSizeOf(const Type *Ty) const; 85 int getTypeAlignment(Type *Ty) const; 86 87 VectorType *getByteVectorTy(int ScLen) const; 88 Constant *getNullValue(Type *Ty) const; 89 Constant *getFullValue(Type *Ty) const; 90 91 Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start, 92 int Length, int Where) const; 93 Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 94 Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; 95 Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const; 96 Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize, 97 Value *Pad) const; 98 Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy, 99 Type *ToTy) const; 100 Value *vlsb(IRBuilder<> &Builder, Value *Val) const; 101 Value *vbytes(IRBuilder<> &Builder, Value *Val) const; 102 103 Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID, 104 Type *RetTy, ArrayRef<Value *> Args) const; 105 106 Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 107 108 template <typename T = std::vector<Instruction *>> 109 bool isSafeToMoveBeforeInBB(const Instruction &In, 110 BasicBlock::const_iterator To, 111 const T &Ignore = {}) const; 112 113 Function &F; 114 const DataLayout &DL; 115 AliasAnalysis &AA; 116 AssumptionCache &AC; 117 DominatorTree &DT; 118 TargetLibraryInfo &TLI; 119 const HexagonSubtarget &HST; 120 121 private: 122 #ifndef NDEBUG 123 // These two functions are only used for assertions at the moment. 124 bool isByteVecTy(Type *Ty) const; 125 bool isSectorTy(Type *Ty) const; 126 #endif 127 Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start, 128 int Length) const; 129 }; 130 131 class AlignVectors { 132 public: 133 AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {} 134 135 bool run(); 136 137 private: 138 using InstList = std::vector<Instruction *>; 139 140 struct Segment { 141 void *Data; 142 int Start; 143 int Size; 144 }; 145 146 struct AddrInfo { 147 AddrInfo(const AddrInfo &) = default; 148 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 149 Align H) 150 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 151 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 152 153 // XXX: add Size member? 154 Instruction *Inst; 155 Value *Addr; 156 Type *ValTy; 157 Align HaveAlign; 158 Align NeedAlign; 159 int Offset = 0; // Offset (in bytes) from the first member of the 160 // containing AddrList. 161 }; 162 using AddrList = std::vector<AddrInfo>; 163 164 struct InstrLess { 165 bool operator()(const Instruction *A, const Instruction *B) const { 166 return A->comesBefore(B); 167 } 168 }; 169 using DepList = std::set<Instruction *, InstrLess>; 170 171 struct MoveGroup { 172 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 173 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 174 Instruction *Base; // Base instruction of the parent address group. 175 InstList Main; // Main group of instructions. 176 InstList Deps; // List of dependencies. 177 bool IsHvx; // Is this group of HVX instructions? 178 bool IsLoad; // Is this a load group? 179 }; 180 using MoveList = std::vector<MoveGroup>; 181 182 struct ByteSpan { 183 struct Segment { 184 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 185 Segment(Value *Val, int Begin, int Len) 186 : Val(Val), Start(Begin), Size(Len) {} 187 Segment(const Segment &Seg) = default; 188 Value *Val; // Value representable as a sequence of bytes. 189 int Start; // First byte of the value that belongs to the segment. 190 int Size; // Number of bytes in the segment. 191 }; 192 193 struct Block { 194 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 195 Block(Value *Val, int Off, int Len, int Pos) 196 : Seg(Val, Off, Len), Pos(Pos) {} 197 Block(const Block &Blk) = default; 198 Segment Seg; // Value segment. 199 int Pos; // Position (offset) of the segment in the Block. 200 }; 201 202 int extent() const; 203 ByteSpan section(int Start, int Length) const; 204 ByteSpan &shift(int Offset); 205 SmallVector<Value *, 8> values() const; 206 207 int size() const { return Blocks.size(); } 208 Block &operator[](int i) { return Blocks[i]; } 209 210 std::vector<Block> Blocks; 211 212 using iterator = decltype(Blocks)::iterator; 213 iterator begin() { return Blocks.begin(); } 214 iterator end() { return Blocks.end(); } 215 using const_iterator = decltype(Blocks)::const_iterator; 216 const_iterator begin() const { return Blocks.begin(); } 217 const_iterator end() const { return Blocks.end(); } 218 }; 219 220 Align getAlignFromValue(const Value *V) const; 221 Optional<MemoryLocation> getLocation(const Instruction &In) const; 222 Optional<AddrInfo> getAddrInfo(Instruction &In) const; 223 bool isHvx(const AddrInfo &AI) const; 224 225 Value *getPayload(Value *Val) const; 226 Value *getMask(Value *Val) const; 227 Value *getPassThrough(Value *Val) const; 228 229 Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 230 int Adjust) const; 231 Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, 232 int Alignment) const; 233 Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr, 234 int Alignment, Value *Mask, Value *PassThru) const; 235 Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr, 236 int Alignment, Value *Mask) const; 237 238 bool createAddressGroups(); 239 MoveList createLoadGroups(const AddrList &Group) const; 240 MoveList createStoreGroups(const AddrList &Group) const; 241 bool move(const MoveGroup &Move) const; 242 bool realignGroup(const MoveGroup &Move) const; 243 244 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 245 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 246 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 247 248 std::map<Instruction *, AddrList> AddrGroups; 249 HexagonVectorCombine &HVC; 250 }; 251 252 LLVM_ATTRIBUTE_UNUSED 253 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 254 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 255 OS << "Addr: " << *AI.Addr << '\n'; 256 OS << "Type: " << *AI.ValTy << '\n'; 257 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 258 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 259 OS << "Offset: " << AI.Offset; 260 return OS; 261 } 262 263 LLVM_ATTRIBUTE_UNUSED 264 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 265 OS << "Main\n"; 266 for (Instruction *I : MG.Main) 267 OS << " " << *I << '\n'; 268 OS << "Deps\n"; 269 for (Instruction *I : MG.Deps) 270 OS << " " << *I << '\n'; 271 return OS; 272 } 273 274 LLVM_ATTRIBUTE_UNUSED 275 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 276 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 277 for (const AlignVectors::ByteSpan::Block &B : BS) { 278 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 279 << *B.Seg.Val << '\n'; 280 } 281 OS << ']'; 282 return OS; 283 } 284 285 } // namespace 286 287 namespace { 288 289 template <typename T> T *getIfUnordered(T *MaybeT) { 290 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 291 } 292 template <typename T> T *isCandidate(Instruction *In) { 293 return dyn_cast<T>(In); 294 } 295 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 296 return getIfUnordered(dyn_cast<LoadInst>(In)); 297 } 298 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 299 return getIfUnordered(dyn_cast<StoreInst>(In)); 300 } 301 302 #if !defined(_MSC_VER) || _MSC_VER >= 1926 303 // VS2017 and some versions of VS2019 have trouble compiling this: 304 // error C2976: 'std::map': too few template arguments 305 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 306 template <typename Pred, typename... Ts> 307 void erase_if(std::map<Ts...> &map, Pred p) 308 #else 309 template <typename Pred, typename T, typename U> 310 void erase_if(std::map<T, U> &map, Pred p) 311 #endif 312 { 313 for (auto i = map.begin(), e = map.end(); i != e;) { 314 if (p(*i)) 315 i = map.erase(i); 316 else 317 i = std::next(i); 318 } 319 } 320 321 // Forward other erase_ifs to the LLVM implementations. 322 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 323 llvm::erase_if(std::forward<T>(container), p); 324 } 325 326 } // namespace 327 328 // --- Begin AlignVectors 329 330 auto AlignVectors::ByteSpan::extent() const -> int { 331 if (size() == 0) 332 return 0; 333 int Min = Blocks[0].Pos; 334 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 335 for (int i = 1, e = size(); i != e; ++i) { 336 Min = std::min(Min, Blocks[i].Pos); 337 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 338 } 339 return Max - Min; 340 } 341 342 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 343 ByteSpan Section; 344 for (const ByteSpan::Block &B : Blocks) { 345 int L = std::max(B.Pos, Start); // Left end. 346 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 347 if (L < R) { 348 // How much to chop off the beginning of the segment: 349 int Off = L > B.Pos ? L - B.Pos : 0; 350 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 351 } 352 } 353 return Section; 354 } 355 356 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 357 for (Block &B : Blocks) 358 B.Pos += Offset; 359 return *this; 360 } 361 362 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 363 SmallVector<Value *, 8> Values(Blocks.size()); 364 for (int i = 0, e = Blocks.size(); i != e; ++i) 365 Values[i] = Blocks[i].Seg.Val; 366 return Values; 367 } 368 369 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 370 const auto *C = dyn_cast<ConstantInt>(V); 371 assert(C && "Alignment must be a compile-time constant integer"); 372 return C->getAlignValue(); 373 } 374 375 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> { 376 if (auto *L = isCandidate<LoadInst>(&In)) 377 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 378 L->getAlign()); 379 if (auto *S = isCandidate<StoreInst>(&In)) 380 return AddrInfo(HVC, S, S->getPointerOperand(), 381 S->getValueOperand()->getType(), S->getAlign()); 382 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 383 Intrinsic::ID ID = II->getIntrinsicID(); 384 switch (ID) { 385 case Intrinsic::masked_load: 386 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 387 getAlignFromValue(II->getArgOperand(1))); 388 case Intrinsic::masked_store: 389 return AddrInfo(HVC, II, II->getArgOperand(1), 390 II->getArgOperand(0)->getType(), 391 getAlignFromValue(II->getArgOperand(2))); 392 } 393 } 394 return Optional<AddrInfo>(); 395 } 396 397 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 398 return HVC.HST.isTypeForHVX(AI.ValTy); 399 } 400 401 auto AlignVectors::getPayload(Value *Val) const -> Value * { 402 if (auto *In = dyn_cast<Instruction>(Val)) { 403 Intrinsic::ID ID = 0; 404 if (auto *II = dyn_cast<IntrinsicInst>(In)) 405 ID = II->getIntrinsicID(); 406 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 407 return In->getOperand(0); 408 } 409 return Val; 410 } 411 412 auto AlignVectors::getMask(Value *Val) const -> Value * { 413 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 414 switch (II->getIntrinsicID()) { 415 case Intrinsic::masked_load: 416 return II->getArgOperand(2); 417 case Intrinsic::masked_store: 418 return II->getArgOperand(3); 419 } 420 } 421 422 Type *ValTy = getPayload(Val)->getType(); 423 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) { 424 int ElemCount = VecTy->getElementCount().getFixedValue(); 425 return HVC.getFullValue(HVC.getBoolTy(ElemCount)); 426 } 427 return HVC.getFullValue(HVC.getBoolTy()); 428 } 429 430 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 431 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 432 if (II->getIntrinsicID() == Intrinsic::masked_load) 433 return II->getArgOperand(3); 434 } 435 return UndefValue::get(getPayload(Val)->getType()); 436 } 437 438 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, 439 Type *ValTy, int Adjust) const 440 -> Value * { 441 // The adjustment is in bytes, but if it's a multiple of the type size, 442 // we don't need to do pointer casts. 443 Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType(); 444 int ElemSize = HVC.getSizeOf(ElemTy); 445 if (Adjust % ElemSize == 0) { 446 Value *Tmp0 = 447 Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); 448 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 449 } 450 451 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 452 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 453 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 454 HVC.getConstInt(Adjust)); 455 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 456 } 457 458 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, 459 Type *ValTy, int Alignment) const 460 -> Value * { 461 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 462 Value *Mask = HVC.getConstInt(-Alignment); 463 Value *And = Builder.CreateAnd(AsInt, Mask); 464 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 465 } 466 467 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, 468 Value *Ptr, int Alignment, Value *Mask, 469 Value *PassThru) const -> Value * { 470 assert(!HVC.isUndef(Mask)); // Should this be allowed? 471 if (HVC.isZero(Mask)) 472 return PassThru; 473 if (Mask == ConstantInt::getTrue(Mask->getType())) 474 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 475 return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru); 476 } 477 478 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val, 479 Value *Ptr, int Alignment, 480 Value *Mask) const -> Value * { 481 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 482 return UndefValue::get(Val->getType()); 483 if (Mask == ConstantInt::getTrue(Mask->getType())) 484 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 485 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 486 } 487 488 auto AlignVectors::createAddressGroups() -> bool { 489 // An address group created here may contain instructions spanning 490 // multiple basic blocks. 491 AddrList WorkStack; 492 493 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 494 for (AddrInfo &W : WorkStack) { 495 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 496 return std::make_pair(W.Inst, *D); 497 } 498 return std::make_pair(nullptr, 0); 499 }; 500 501 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 502 BasicBlock &Block = *DomN->getBlock(); 503 for (Instruction &I : Block) { 504 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 505 if (!AI) 506 continue; 507 auto F = findBaseAndOffset(*AI); 508 Instruction *GroupInst; 509 if (Instruction *BI = F.first) { 510 AI->Offset = F.second; 511 GroupInst = BI; 512 } else { 513 WorkStack.push_back(*AI); 514 GroupInst = AI->Inst; 515 } 516 AddrGroups[GroupInst].push_back(*AI); 517 } 518 519 for (DomTreeNode *C : DomN->children()) 520 Visit(C, Visit); 521 522 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 523 WorkStack.pop_back(); 524 }; 525 526 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 527 assert(WorkStack.empty()); 528 529 // AddrGroups are formed. 530 531 // Remove groups of size 1. 532 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 533 // Remove groups that don't use HVX types. 534 erase_if(AddrGroups, [&](auto &G) { 535 return !llvm::any_of( 536 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 537 }); 538 539 return !AddrGroups.empty(); 540 } 541 542 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 543 // Form load groups. 544 // To avoid complications with moving code across basic blocks, only form 545 // groups that are contained within a single basic block. 546 547 auto getUpwardDeps = [](Instruction *In, Instruction *Base) { 548 BasicBlock *Parent = Base->getParent(); 549 assert(In->getParent() == Parent && 550 "Base and In should be in the same block"); 551 assert(Base->comesBefore(In) && "Base should come before In"); 552 553 DepList Deps; 554 std::deque<Instruction *> WorkQ = {In}; 555 while (!WorkQ.empty()) { 556 Instruction *D = WorkQ.front(); 557 WorkQ.pop_front(); 558 Deps.insert(D); 559 for (Value *Op : D->operands()) { 560 if (auto *I = dyn_cast<Instruction>(Op)) { 561 if (I->getParent() == Parent && Base->comesBefore(I)) 562 WorkQ.push_back(I); 563 } 564 } 565 } 566 return Deps; 567 }; 568 569 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 570 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 571 // Don't mix HVX and non-HVX instructions. 572 if (Move.IsHvx != isHvx(Info)) 573 return false; 574 // Leading instruction in the load group. 575 Instruction *Base = Move.Main.front(); 576 if (Base->getParent() != Info.Inst->getParent()) 577 return false; 578 579 auto isSafeToMoveToBase = [&](const Instruction *I) { 580 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 581 }; 582 DepList Deps = getUpwardDeps(Info.Inst, Base); 583 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 584 return false; 585 586 // The dependencies will be moved together with the load, so make sure 587 // that none of them could be moved independently in another group. 588 Deps.erase(Info.Inst); 589 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 590 if (llvm::any_of(Deps, inAddrMap)) 591 return false; 592 Move.Main.push_back(Info.Inst); 593 llvm::append_range(Move.Deps, Deps); 594 return true; 595 }; 596 597 MoveList LoadGroups; 598 599 for (const AddrInfo &Info : Group) { 600 if (!Info.Inst->mayReadFromMemory()) 601 continue; 602 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 603 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 604 } 605 606 // Erase singleton groups. 607 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 608 return LoadGroups; 609 } 610 611 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 612 // Form store groups. 613 // To avoid complications with moving code across basic blocks, only form 614 // groups that are contained within a single basic block. 615 616 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 617 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 618 // For stores with return values we'd have to collect downward depenencies. 619 // There are no such stores that we handle at the moment, so omit that. 620 assert(Info.Inst->getType()->isVoidTy() && 621 "Not handling stores with return values"); 622 // Don't mix HVX and non-HVX instructions. 623 if (Move.IsHvx != isHvx(Info)) 624 return false; 625 // For stores we need to be careful whether it's safe to move them. 626 // Stores that are otherwise safe to move together may not appear safe 627 // to move over one another (i.e. isSafeToMoveBefore may return false). 628 Instruction *Base = Move.Main.front(); 629 if (Base->getParent() != Info.Inst->getParent()) 630 return false; 631 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 632 return false; 633 Move.Main.push_back(Info.Inst); 634 return true; 635 }; 636 637 MoveList StoreGroups; 638 639 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 640 const AddrInfo &Info = *I; 641 if (!Info.Inst->mayWriteToMemory()) 642 continue; 643 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 644 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 645 } 646 647 // Erase singleton groups. 648 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 649 return StoreGroups; 650 } 651 652 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 653 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 654 Instruction *Where = Move.Main.front(); 655 656 if (Move.IsLoad) { 657 // Move all deps to before Where, keeping order. 658 for (Instruction *D : Move.Deps) 659 D->moveBefore(Where); 660 // Move all main instructions to after Where, keeping order. 661 ArrayRef<Instruction *> Main(Move.Main); 662 for (Instruction *M : Main.drop_front(1)) { 663 M->moveAfter(Where); 664 Where = M; 665 } 666 } else { 667 // NOTE: Deps are empty for "store" groups. If they need to be 668 // non-empty, decide on the order. 669 assert(Move.Deps.empty()); 670 // Move all main instructions to before Where, inverting order. 671 ArrayRef<Instruction *> Main(Move.Main); 672 for (Instruction *M : Main.drop_front(1)) { 673 M->moveBefore(Where); 674 Where = M; 675 } 676 } 677 678 return Move.Main.size() + Move.Deps.size() > 1; 679 } 680 681 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 682 // TODO: Needs support for masked loads/stores of "scalar" vectors. 683 if (!Move.IsHvx) 684 return false; 685 686 // Return the element with the maximum alignment from Range, 687 // where GetValue obtains the value to compare from an element. 688 auto getMaxOf = [](auto Range, auto GetValue) { 689 return *std::max_element( 690 Range.begin(), Range.end(), 691 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 692 }; 693 694 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 695 696 // Conceptually, there is a vector of N bytes covering the addresses 697 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 698 // represents a contiguous memory region that spans all accessed memory 699 // locations. 700 // The correspondence between loaded or stored values will be expressed 701 // in terms of this vector. For example, the 0th element of the vector 702 // from the Base address info will start at byte Start from the beginning 703 // of this conceptual vector. 704 // 705 // This vector will be loaded/stored starting at the nearest down-aligned 706 // address and the amount od the down-alignment will be AlignVal: 707 // valign(load_vector(align_down(Base+Start)), AlignVal) 708 709 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 710 AddrList MoveInfos; 711 llvm::copy_if( 712 BaseInfos, std::back_inserter(MoveInfos), 713 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 714 715 // Maximum alignment present in the whole address group. 716 const AddrInfo &WithMaxAlign = 717 getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 718 Align MaxGiven = WithMaxAlign.HaveAlign; 719 720 // Minimum alignment present in the move address group. 721 const AddrInfo &WithMinOffset = 722 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 723 724 const AddrInfo &WithMaxNeeded = 725 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 726 Align MinNeeded = WithMaxNeeded.NeedAlign; 727 728 // Set the builder at the top instruction in the move group. 729 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back(); 730 IRBuilder<> Builder(TopIn); 731 Value *AlignAddr = nullptr; // Actual aligned address. 732 Value *AlignVal = nullptr; // Right-shift amount (for valign). 733 734 if (MinNeeded <= MaxGiven) { 735 int Start = WithMinOffset.Offset; 736 int OffAtMax = WithMaxAlign.Offset; 737 // Shift the offset of the maximally aligned instruction (OffAtMax) 738 // back by just enough multiples of the required alignment to cover the 739 // distance from Start to OffAtMax. 740 // Calculate the address adjustment amount based on the address with the 741 // maximum alignment. This is to allow a simple gep instruction instead 742 // of potential bitcasts to i8*. 743 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 744 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 745 WithMaxAlign.ValTy, Adjust); 746 int Diff = Start - (OffAtMax + Adjust); 747 AlignVal = HVC.getConstInt(Diff); 748 // Sanity. 749 assert(Diff >= 0); 750 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 751 } else { 752 // WithMinOffset is the lowest address in the group, 753 // WithMinOffset.Addr = Base+Start. 754 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 755 // mask off unnecessary bits, so it's ok to just the original pointer as 756 // the alignment amount. 757 // Do an explicit down-alignment of the address to avoid creating an 758 // aligned instruction with an address that is not really aligned. 759 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 760 WithMinOffset.ValTy, MinNeeded.value()); 761 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 762 } 763 764 ByteSpan VSpan; 765 for (const AddrInfo &AI : MoveInfos) { 766 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 767 AI.Offset - WithMinOffset.Offset); 768 } 769 770 // The aligned loads/stores will use blocks that are either scalars, 771 // or HVX vectors. Let "sector" be the unified term for such a block. 772 // blend(scalar, vector) -> sector... 773 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 774 : std::max<int>(MinNeeded.value(), 4); 775 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 776 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 777 778 Type *SecTy = HVC.getByteTy(ScLen); 779 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 780 bool DoAlign = !HVC.isZero(AlignVal); 781 782 if (Move.IsLoad) { 783 ByteSpan ASpan; 784 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 785 auto *Undef = UndefValue::get(SecTy); 786 787 for (int i = 0; i != NumSectors + DoAlign; ++i) { 788 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 789 // FIXME: generate a predicated load? 790 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 791 // If vector shifting is potentially needed, accumulate metadata 792 // from source sections of twice the load width. 793 int Start = (i - DoAlign) * ScLen; 794 int Width = (1 + DoAlign) * ScLen; 795 propagateMetadata(cast<Instruction>(Load), 796 VSpan.section(Start, Width).values()); 797 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen); 798 } 799 800 if (DoAlign) { 801 for (int j = 0; j != NumSectors; ++j) { 802 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val, 803 ASpan[j + 1].Seg.Val, AlignVal); 804 } 805 } 806 807 for (ByteSpan::Block &B : VSpan) { 808 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 809 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 810 for (ByteSpan::Block &S : ASection) { 811 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 812 Accum = 813 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 814 } 815 // Instead of casting everything to bytes for the vselect, cast to the 816 // original value type. This will avoid complications with casting masks. 817 // For example, in cases when the original mask applied to i32, it could 818 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 819 // but if the mask is not exactly of HVX length, extra handling would be 820 // needed to make it work. 821 Type *ValTy = getPayload(B.Seg.Val)->getType(); 822 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 823 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 824 getPassThrough(B.Seg.Val)); 825 B.Seg.Val->replaceAllUsesWith(Sel); 826 } 827 } else { 828 // Stores. 829 ByteSpan ASpanV, ASpanM; 830 831 // Return a vector value corresponding to the input value Val: 832 // either <1 x Val> for scalar Val, or Val itself for vector Val. 833 auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * { 834 Type *Ty = Val->getType(); 835 if (Ty->isVectorTy()) 836 return Val; 837 auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false); 838 return Builder.CreateBitCast(Val, VecTy); 839 }; 840 841 // Create an extra "undef" sector at the beginning and at the end. 842 // They will be used as the left/right filler in the vlalign step. 843 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { 844 // For stores, the size of each section is an aligned vector length. 845 // Adjust the store offsets relative to the section start offset. 846 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); 847 Value *AccumV = UndefValue::get(SecTy); 848 Value *AccumM = HVC.getNullValue(SecTy); 849 for (ByteSpan::Block &S : VSection) { 850 Value *Pay = getPayload(S.Seg.Val); 851 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 852 Pay->getType(), HVC.getByteTy()); 853 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 854 S.Seg.Start, S.Seg.Size, S.Pos); 855 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 856 S.Seg.Start, S.Seg.Size, S.Pos); 857 } 858 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 859 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 860 } 861 862 // vlalign 863 if (DoAlign) { 864 for (int j = 1; j != NumSectors + 2; ++j) { 865 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val, 866 ASpanV[j].Seg.Val, AlignVal); 867 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val, 868 ASpanM[j].Seg.Val, AlignVal); 869 } 870 } 871 872 for (int i = 0; i != NumSectors + DoAlign; ++i) { 873 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 874 Value *Val = ASpanV[i].Seg.Val; 875 Value *Mask = ASpanM[i].Seg.Val; // bytes 876 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { 877 Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen, 878 HVC.vlsb(Builder, Mask)); 879 // If vector shifting is potentially needed, accumulate metadata 880 // from source sections of twice the store width. 881 int Start = (i - DoAlign) * ScLen; 882 int Width = (1 + DoAlign) * ScLen; 883 propagateMetadata(cast<Instruction>(Store), 884 VSpan.section(Start, Width).values()); 885 } 886 } 887 } 888 889 for (auto *Inst : Move.Main) 890 Inst->eraseFromParent(); 891 892 return true; 893 } 894 895 auto AlignVectors::run() -> bool { 896 if (!createAddressGroups()) 897 return false; 898 899 bool Changed = false; 900 MoveList LoadGroups, StoreGroups; 901 902 for (auto &G : AddrGroups) { 903 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 904 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 905 } 906 907 for (auto &M : LoadGroups) 908 Changed |= move(M); 909 for (auto &M : StoreGroups) 910 Changed |= move(M); 911 912 for (auto &M : LoadGroups) 913 Changed |= realignGroup(M); 914 for (auto &M : StoreGroups) 915 Changed |= realignGroup(M); 916 917 return Changed; 918 } 919 920 // --- End AlignVectors 921 922 auto HexagonVectorCombine::run() -> bool { 923 if (!HST.useHVXOps()) 924 return false; 925 926 bool Changed = AlignVectors(*this).run(); 927 return Changed; 928 } 929 930 auto HexagonVectorCombine::getIntTy() const -> IntegerType * { 931 return Type::getInt32Ty(F.getContext()); 932 } 933 934 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 935 assert(ElemCount >= 0); 936 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 937 if (ElemCount == 0) 938 return ByteTy; 939 return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false); 940 } 941 942 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 943 assert(ElemCount >= 0); 944 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 945 if (ElemCount == 0) 946 return BoolTy; 947 return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false); 948 } 949 950 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * { 951 return ConstantInt::getSigned(getIntTy(), Val); 952 } 953 954 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 955 if (auto *C = dyn_cast<Constant>(Val)) 956 return C->isZeroValue(); 957 return false; 958 } 959 960 auto HexagonVectorCombine::getIntValue(const Value *Val) const 961 -> Optional<APInt> { 962 if (auto *CI = dyn_cast<ConstantInt>(Val)) 963 return CI->getValue(); 964 return None; 965 } 966 967 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 968 return isa<UndefValue>(Val); 969 } 970 971 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int { 972 return getSizeOf(Val->getType()); 973 } 974 975 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int { 976 return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue(); 977 } 978 979 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 980 // The actual type may be shorter than the HVX vector, so determine 981 // the alignment based on subtarget info. 982 if (HST.isTypeForHVX(Ty)) 983 return HST.getVectorLength(); 984 return DL.getABITypeAlign(Ty).value(); 985 } 986 987 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 988 assert(Ty->isIntOrIntVectorTy()); 989 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 990 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 991 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 992 return Zero; 993 } 994 995 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 996 assert(Ty->isIntOrIntVectorTy()); 997 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 998 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 999 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 1000 return Minus1; 1001 } 1002 1003 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 1004 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src, 1005 int Start, int Length, int Where) const 1006 -> Value * { 1007 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 1008 int SrcLen = getSizeOf(Src); 1009 int DstLen = getSizeOf(Dst); 1010 assert(0 <= Start && Start + Length <= SrcLen); 1011 assert(0 <= Where && Where + Length <= DstLen); 1012 1013 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 1014 auto *Undef = UndefValue::get(getByteTy()); 1015 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 1016 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 1017 1018 SmallVector<int, 256> SMask(P2Len); 1019 for (int i = 0; i != P2Len; ++i) { 1020 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 1021 // Otherwise, pick Dst[i]; 1022 SMask[i] = 1023 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 1024 } 1025 1026 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1027 return vresize(Builder, P2Insert, DstLen, Undef); 1028 } 1029 1030 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1031 Value *Amt) const -> Value * { 1032 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1033 assert(isSectorTy(Hi->getType())); 1034 if (isZero(Amt)) 1035 return Hi; 1036 int VecLen = getSizeOf(Hi); 1037 if (auto IntAmt = getIntValue(Amt)) 1038 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1039 VecLen); 1040 1041 if (HST.isTypeForHVX(Hi->getType())) { 1042 int HwLen = HST.getVectorLength(); 1043 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1044 Intrinsic::ID V6_vlalignb = HwLen == 64 1045 ? Intrinsic::hexagon_V6_vlalignb 1046 : Intrinsic::hexagon_V6_vlalignb_128B; 1047 return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(), 1048 {Hi, Lo, Amt}); 1049 } 1050 1051 if (VecLen == 4) { 1052 Value *Pair = concat(Builder, {Lo, Hi}); 1053 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1054 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1055 return Builder.CreateBitCast(Trunc, Hi->getType()); 1056 } 1057 if (VecLen == 8) { 1058 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1059 return vralignb(Builder, Lo, Hi, Sub); 1060 } 1061 llvm_unreachable("Unexpected vector length"); 1062 } 1063 1064 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, 1065 Value *Amt) const -> Value * { 1066 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1067 assert(isSectorTy(Lo->getType())); 1068 if (isZero(Amt)) 1069 return Lo; 1070 int VecLen = getSizeOf(Lo); 1071 if (auto IntAmt = getIntValue(Amt)) 1072 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1073 1074 if (HST.isTypeForHVX(Lo->getType())) { 1075 int HwLen = HST.getVectorLength(); 1076 assert(VecLen == HwLen && "Expecting an exact HVX type"); 1077 Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb 1078 : Intrinsic::hexagon_V6_valignb_128B; 1079 return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(), 1080 {Hi, Lo, Amt}); 1081 } 1082 1083 if (VecLen == 4) { 1084 Value *Pair = concat(Builder, {Lo, Hi}); 1085 Value *Shift = Builder.CreateLShr(Pair, Amt); 1086 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1087 return Builder.CreateBitCast(Trunc, Lo->getType()); 1088 } 1089 if (VecLen == 8) { 1090 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1091 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1092 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1093 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1094 Intrinsic::hexagon_S2_valignrb); 1095 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1096 return Builder.CreateBitCast(Call, Lo->getType()); 1097 } 1098 llvm_unreachable("Unexpected vector length"); 1099 } 1100 1101 // Concatenates a sequence of vectors of the same type. 1102 auto HexagonVectorCombine::concat(IRBuilder<> &Builder, 1103 ArrayRef<Value *> Vecs) const -> Value * { 1104 assert(!Vecs.empty()); 1105 SmallVector<int, 256> SMask; 1106 std::vector<Value *> Work[2]; 1107 int ThisW = 0, OtherW = 1; 1108 1109 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1110 while (Work[ThisW].size() > 1) { 1111 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1112 int ElemCount = Ty->getElementCount().getFixedValue(); 1113 SMask.resize(ElemCount * 2); 1114 std::iota(SMask.begin(), SMask.end(), 0); 1115 1116 Work[OtherW].clear(); 1117 if (Work[ThisW].size() % 2 != 0) 1118 Work[ThisW].push_back(UndefValue::get(Ty)); 1119 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1120 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1121 Work[ThisW][i + 1], SMask); 1122 Work[OtherW].push_back(Joined); 1123 } 1124 std::swap(ThisW, OtherW); 1125 } 1126 1127 // Since there may have been some undefs appended to make shuffle operands 1128 // have the same type, perform the last shuffle to only pick the original 1129 // elements. 1130 SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType())); 1131 std::iota(SMask.begin(), SMask.end(), 0); 1132 Value *Total = Work[OtherW].front(); 1133 return Builder.CreateShuffleVector(Total, SMask); 1134 } 1135 1136 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val, 1137 int NewSize, Value *Pad) const -> Value * { 1138 assert(isa<VectorType>(Val->getType())); 1139 auto *ValTy = cast<VectorType>(Val->getType()); 1140 assert(ValTy->getElementType() == Pad->getType()); 1141 1142 int CurSize = ValTy->getElementCount().getFixedValue(); 1143 if (CurSize == NewSize) 1144 return Val; 1145 // Truncate? 1146 if (CurSize > NewSize) 1147 return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize); 1148 // Extend. 1149 SmallVector<int, 128> SMask(NewSize); 1150 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 1151 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 1152 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 1153 return Builder.CreateShuffleVector(Val, PadVec, SMask); 1154 } 1155 1156 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask, 1157 Type *FromTy, Type *ToTy) const -> Value * { 1158 // Mask is a vector <N x i1>, where each element corresponds to an 1159 // element of FromTy. Remap it so that each element will correspond 1160 // to an element of ToTy. 1161 assert(isa<VectorType>(Mask->getType())); 1162 1163 Type *FromSTy = FromTy->getScalarType(); 1164 Type *ToSTy = ToTy->getScalarType(); 1165 if (FromSTy == ToSTy) 1166 return Mask; 1167 1168 int FromSize = getSizeOf(FromSTy); 1169 int ToSize = getSizeOf(ToSTy); 1170 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 1171 1172 auto *MaskTy = cast<VectorType>(Mask->getType()); 1173 int FromCount = MaskTy->getElementCount().getFixedValue(); 1174 int ToCount = (FromCount * FromSize) / ToSize; 1175 assert((FromCount * FromSize) % ToSize == 0); 1176 1177 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 1178 // -> trunc to <M x i1>. 1179 Value *Ext = Builder.CreateSExt( 1180 Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false)); 1181 Value *Cast = Builder.CreateBitCast( 1182 Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false)); 1183 return Builder.CreateTrunc( 1184 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false)); 1185 } 1186 1187 // Bitcast to bytes, and return least significant bits. 1188 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const 1189 -> Value * { 1190 Type *ScalarTy = Val->getType()->getScalarType(); 1191 if (ScalarTy == getBoolTy()) 1192 return Val; 1193 1194 Value *Bytes = vbytes(Builder, Val); 1195 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 1196 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 1197 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 1198 // <1 x i1>. 1199 return Builder.CreateTrunc(Bytes, getBoolTy()); 1200 } 1201 1202 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 1203 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const 1204 -> Value * { 1205 Type *ScalarTy = Val->getType()->getScalarType(); 1206 if (ScalarTy == getByteTy()) 1207 return Val; 1208 1209 if (ScalarTy != getBoolTy()) 1210 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 1211 // For bool, return a sext from i1 to i8. 1212 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 1213 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 1214 return Builder.CreateSExt(Val, getByteTy()); 1215 } 1216 1217 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder, 1218 Intrinsic::ID IntID, Type *RetTy, 1219 ArrayRef<Value *> Args) const 1220 -> Value * { 1221 int HwLen = HST.getVectorLength(); 1222 Type *BoolTy = Type::getInt1Ty(F.getContext()); 1223 Type *Int32Ty = Type::getInt32Ty(F.getContext()); 1224 // HVX vector -> v16i32/v32i32 1225 // HVX vector predicate -> v512i1/v1024i1 1226 auto getTypeForIntrin = [&](Type *Ty) -> Type * { 1227 if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) { 1228 Type *ElemTy = cast<VectorType>(Ty)->getElementType(); 1229 if (ElemTy == Int32Ty) 1230 return Ty; 1231 if (ElemTy == BoolTy) 1232 return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false); 1233 return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false); 1234 } 1235 // Non-HVX type. It should be a scalar. 1236 assert(Ty == Int32Ty || Ty->isIntegerTy(64)); 1237 return Ty; 1238 }; 1239 1240 auto getCast = [&](IRBuilder<> &Builder, Value *Val, 1241 Type *DestTy) -> Value * { 1242 Type *SrcTy = Val->getType(); 1243 if (SrcTy == DestTy) 1244 return Val; 1245 if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) { 1246 if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) { 1247 // This should take care of casts the other way too, for example 1248 // v1024i1 -> v32i1. 1249 Intrinsic::ID TC = HwLen == 64 1250 ? Intrinsic::hexagon_V6_pred_typecast 1251 : Intrinsic::hexagon_V6_pred_typecast_128B; 1252 Function *FI = Intrinsic::getDeclaration(F.getParent(), TC, 1253 {DestTy, Val->getType()}); 1254 return Builder.CreateCall(FI, {Val}); 1255 } 1256 // Non-predicate HVX vector. 1257 return Builder.CreateBitCast(Val, DestTy); 1258 } 1259 // Non-HVX type. It should be a scalar, and it should already have 1260 // a valid type. 1261 llvm_unreachable("Unexpected type"); 1262 }; 1263 1264 SmallVector<Value *, 4> IntOps; 1265 for (Value *A : Args) 1266 IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType()))); 1267 Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID); 1268 Value *Call = Builder.CreateCall(FI, IntOps); 1269 1270 Type *CallTy = Call->getType(); 1271 if (CallTy == RetTy) 1272 return Call; 1273 // Scalar types should have RetTy matching the call return type. 1274 assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true)); 1275 if (cast<VectorType>(CallTy)->getElementType() == BoolTy) 1276 return getCast(Builder, Call, RetTy); 1277 return Builder.CreateBitCast(Call, RetTy); 1278 } 1279 1280 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 1281 Value *Ptr1) const 1282 -> Optional<int> { 1283 struct Builder : IRBuilder<> { 1284 Builder(BasicBlock *B) : IRBuilder<>(B) {} 1285 ~Builder() { 1286 for (Instruction *I : llvm::reverse(ToErase)) 1287 I->eraseFromParent(); 1288 } 1289 SmallVector<Instruction *, 8> ToErase; 1290 }; 1291 1292 #define CallBuilder(B, F) \ 1293 [&](auto &B_) { \ 1294 Value *V = B_.F; \ 1295 if (auto *I = dyn_cast<Instruction>(V)) \ 1296 B_.ToErase.push_back(I); \ 1297 return V; \ 1298 }(B) 1299 1300 auto Simplify = [&](Value *V) { 1301 if (auto *I = dyn_cast<Instruction>(V)) { 1302 SimplifyQuery Q(DL, &TLI, &DT, &AC, I); 1303 if (Value *S = SimplifyInstruction(I, Q)) 1304 return S; 1305 } 1306 return V; 1307 }; 1308 1309 auto StripBitCast = [](Value *V) { 1310 while (auto *C = dyn_cast<BitCastInst>(V)) 1311 V = C->getOperand(0); 1312 return V; 1313 }; 1314 1315 Ptr0 = StripBitCast(Ptr0); 1316 Ptr1 = StripBitCast(Ptr1); 1317 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 1318 return None; 1319 1320 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 1321 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 1322 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 1323 return None; 1324 1325 Builder B(Gep0->getParent()); 1326 int Scale = DL.getTypeStoreSize(Gep0->getSourceElementType()); 1327 1328 // FIXME: for now only check GEPs with a single index. 1329 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 1330 return None; 1331 1332 Value *Idx0 = Gep0->getOperand(1); 1333 Value *Idx1 = Gep1->getOperand(1); 1334 1335 // First, try to simplify the subtraction directly. 1336 if (auto *Diff = dyn_cast<ConstantInt>( 1337 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 1338 return Diff->getSExtValue() * Scale; 1339 1340 KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT); 1341 KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT); 1342 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 1343 if (Unknown.isAllOnesValue()) 1344 return None; 1345 1346 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 1347 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 1348 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 1349 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 1350 int Diff0 = 0; 1351 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 1352 Diff0 = C->getSExtValue(); 1353 } else { 1354 return None; 1355 } 1356 1357 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 1358 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 1359 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 1360 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 1361 int Diff1 = 0; 1362 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 1363 Diff1 = C->getSExtValue(); 1364 } else { 1365 return None; 1366 } 1367 1368 return (Diff0 + Diff1) * Scale; 1369 1370 #undef CallBuilder 1371 } 1372 1373 template <typename T> 1374 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 1375 BasicBlock::const_iterator To, 1376 const T &Ignore) const 1377 -> bool { 1378 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> { 1379 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 1380 switch (II->getIntrinsicID()) { 1381 case Intrinsic::masked_load: 1382 return MemoryLocation::getForArgument(II, 0, TLI); 1383 case Intrinsic::masked_store: 1384 return MemoryLocation::getForArgument(II, 1, TLI); 1385 } 1386 } 1387 return MemoryLocation::getOrNone(&I); 1388 }; 1389 1390 // The source and the destination must be in the same basic block. 1391 const BasicBlock &Block = *In.getParent(); 1392 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 1393 // No PHIs. 1394 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 1395 return false; 1396 1397 if (!mayBeMemoryDependent(In)) 1398 return true; 1399 bool MayWrite = In.mayWriteToMemory(); 1400 auto MaybeLoc = getLocOrNone(In); 1401 1402 auto From = In.getIterator(); 1403 if (From == To) 1404 return true; 1405 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 1406 auto Range = 1407 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 1408 for (auto It = Range.first; It != Range.second; ++It) { 1409 const Instruction &I = *It; 1410 if (llvm::is_contained(Ignore, &I)) 1411 continue; 1412 // assume intrinsic can be ignored 1413 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1414 if (II->getIntrinsicID() == Intrinsic::assume) 1415 continue; 1416 } 1417 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 1418 if (I.mayThrow()) 1419 return false; 1420 if (auto *CB = dyn_cast<CallBase>(&I)) { 1421 if (!CB->hasFnAttr(Attribute::WillReturn)) 1422 return false; 1423 if (!CB->hasFnAttr(Attribute::NoSync)) 1424 return false; 1425 } 1426 if (I.mayReadOrWriteMemory()) { 1427 auto MaybeLocI = getLocOrNone(I); 1428 if (MayWrite || I.mayWriteToMemory()) { 1429 if (!MaybeLoc || !MaybeLocI) 1430 return false; 1431 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 1432 return false; 1433 } 1434 } 1435 } 1436 return true; 1437 } 1438 1439 #ifndef NDEBUG 1440 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 1441 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1442 return VecTy->getElementType() == getByteTy(); 1443 return false; 1444 } 1445 1446 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool { 1447 if (!isByteVecTy(Ty)) 1448 return false; 1449 int Size = getSizeOf(Ty); 1450 if (HST.isTypeForHVX(Ty)) 1451 return Size == static_cast<int>(HST.getVectorLength()); 1452 return Size == 4 || Size == 8; 1453 } 1454 #endif 1455 1456 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo, 1457 Value *Hi, int Start, 1458 int Length) const -> Value * { 1459 assert(0 <= Start && Start < Length); 1460 SmallVector<int, 128> SMask(Length); 1461 std::iota(SMask.begin(), SMask.end(), Start); 1462 return Builder.CreateShuffleVector(Lo, Hi, SMask); 1463 } 1464 1465 // Pass management. 1466 1467 namespace llvm { 1468 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 1469 FunctionPass *createHexagonVectorCombineLegacyPass(); 1470 } // namespace llvm 1471 1472 namespace { 1473 class HexagonVectorCombineLegacy : public FunctionPass { 1474 public: 1475 static char ID; 1476 1477 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 1478 1479 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 1480 1481 void getAnalysisUsage(AnalysisUsage &AU) const override { 1482 AU.setPreservesCFG(); 1483 AU.addRequired<AAResultsWrapperPass>(); 1484 AU.addRequired<AssumptionCacheTracker>(); 1485 AU.addRequired<DominatorTreeWrapperPass>(); 1486 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1487 AU.addRequired<TargetPassConfig>(); 1488 FunctionPass::getAnalysisUsage(AU); 1489 } 1490 1491 bool runOnFunction(Function &F) override { 1492 if (skipFunction(F)) 1493 return false; 1494 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1495 AssumptionCache &AC = 1496 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1497 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1498 TargetLibraryInfo &TLI = 1499 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1500 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 1501 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 1502 return HVC.run(); 1503 } 1504 }; 1505 } // namespace 1506 1507 char HexagonVectorCombineLegacy::ID = 0; 1508 1509 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 1510 "Hexagon Vector Combine", false, false) 1511 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1512 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1513 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1514 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1515 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 1516 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 1517 "Hexagon Vector Combine", false, false) 1518 1519 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 1520 return new HexagonVectorCombineLegacy(); 1521 } 1522