1 //===-- HexagonVectorCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // HexagonVectorCombine is a utility class implementing a variety of functions 9 // that assist in vector-based optimizations. 10 // 11 // AlignVectors: replace unaligned vector loads and stores with aligned ones. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstSimplifyFolder.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicsHexagon.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 43 #include "HexagonSubtarget.h" 44 #include "HexagonTargetMachine.h" 45 46 #include <algorithm> 47 #include <deque> 48 #include <map> 49 #include <optional> 50 #include <set> 51 #include <utility> 52 #include <vector> 53 54 #define DEBUG_TYPE "hexagon-vc" 55 56 using namespace llvm; 57 58 namespace { 59 class HexagonVectorCombine { 60 public: 61 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, 62 DominatorTree &DT_, TargetLibraryInfo &TLI_, 63 const TargetMachine &TM_) 64 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), 65 TLI(TLI_), 66 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {} 67 68 bool run(); 69 70 // Common integer type. 71 IntegerType *getIntTy(unsigned Width = 32) const; 72 // Byte type: either scalar (when Length = 0), or vector with given 73 // element count. 74 Type *getByteTy(int ElemCount = 0) const; 75 // Boolean type: either scalar (when Length = 0), or vector with given 76 // element count. 77 Type *getBoolTy(int ElemCount = 0) const; 78 // Create a ConstantInt of type returned by getIntTy with the value Val. 79 ConstantInt *getConstInt(int Val, unsigned Width = 32) const; 80 // Get the integer value of V, if it exists. 81 std::optional<APInt> getIntValue(const Value *Val) const; 82 // Is V a constant 0, or a vector of 0s? 83 bool isZero(const Value *Val) const; 84 // Is V an undef value? 85 bool isUndef(const Value *Val) const; 86 87 // Get HVX vector type with the given element type. 88 VectorType *getHvxTy(Type *ElemTy, bool Pair = false) const; 89 90 enum SizeKind { 91 Store, // Store size 92 Alloc, // Alloc size 93 }; 94 int getSizeOf(const Value *Val, SizeKind Kind = Store) const; 95 int getSizeOf(const Type *Ty, SizeKind Kind = Store) const; 96 int getTypeAlignment(Type *Ty) const; 97 size_t length(Value *Val) const; 98 size_t length(Type *Ty) const; 99 100 Constant *getNullValue(Type *Ty) const; 101 Constant *getFullValue(Type *Ty) const; 102 Constant *getConstSplat(Type *Ty, int Val) const; 103 104 Value *simplify(Value *Val) const; 105 106 Value *insertb(IRBuilderBase &Builder, Value *Dest, Value *Src, int Start, 107 int Length, int Where) const; 108 Value *vlalignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 109 Value *Amt) const; 110 Value *vralignb(IRBuilderBase &Builder, Value *Lo, Value *Hi, 111 Value *Amt) const; 112 Value *concat(IRBuilderBase &Builder, ArrayRef<Value *> Vecs) const; 113 Value *vresize(IRBuilderBase &Builder, Value *Val, int NewSize, 114 Value *Pad) const; 115 Value *rescale(IRBuilderBase &Builder, Value *Mask, Type *FromTy, 116 Type *ToTy) const; 117 Value *vlsb(IRBuilderBase &Builder, Value *Val) const; 118 Value *vbytes(IRBuilderBase &Builder, Value *Val) const; 119 Value *subvector(IRBuilderBase &Builder, Value *Val, unsigned Start, 120 unsigned Length) const; 121 Value *sublo(IRBuilderBase &Builder, Value *Val) const; 122 Value *subhi(IRBuilderBase &Builder, Value *Val) const; 123 Value *vdeal(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 124 Value *vshuff(IRBuilderBase &Builder, Value *Val0, Value *Val1) const; 125 126 Value *createHvxIntrinsic(IRBuilderBase &Builder, Intrinsic::ID IntID, 127 Type *RetTy, ArrayRef<Value *> Args, 128 ArrayRef<Type *> ArgTys = std::nullopt) const; 129 SmallVector<Value *> splitVectorElements(IRBuilderBase &Builder, Value *Vec, 130 unsigned ToWidth) const; 131 Value *joinVectorElements(IRBuilderBase &Builder, ArrayRef<Value *> Values, 132 VectorType *ToType) const; 133 134 std::optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; 135 136 unsigned getNumSignificantBits(const Value *V, 137 const Instruction *CtxI = nullptr) const; 138 KnownBits getKnownBits(const Value *V, 139 const Instruction *CtxI = nullptr) const; 140 141 template <typename T = std::vector<Instruction *>> 142 bool isSafeToMoveBeforeInBB(const Instruction &In, 143 BasicBlock::const_iterator To, 144 const T &IgnoreInsts = {}) const; 145 146 // This function is only used for assertions at the moment. 147 [[maybe_unused]] bool isByteVecTy(Type *Ty) const; 148 149 Function &F; 150 const DataLayout &DL; 151 AliasAnalysis &AA; 152 AssumptionCache &AC; 153 DominatorTree &DT; 154 TargetLibraryInfo &TLI; 155 const HexagonSubtarget &HST; 156 157 private: 158 Value *getElementRange(IRBuilderBase &Builder, Value *Lo, Value *Hi, 159 int Start, int Length) const; 160 }; 161 162 class AlignVectors { 163 public: 164 AlignVectors(const HexagonVectorCombine &HVC_) : HVC(HVC_) {} 165 166 bool run(); 167 168 private: 169 using InstList = std::vector<Instruction *>; 170 171 struct Segment { 172 void *Data; 173 int Start; 174 int Size; 175 }; 176 177 struct AddrInfo { 178 AddrInfo(const AddrInfo &) = default; 179 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, 180 Align H) 181 : Inst(I), Addr(A), ValTy(T), HaveAlign(H), 182 NeedAlign(HVC.getTypeAlignment(ValTy)) {} 183 AddrInfo &operator=(const AddrInfo &) = default; 184 185 // XXX: add Size member? 186 Instruction *Inst; 187 Value *Addr; 188 Type *ValTy; 189 Align HaveAlign; 190 Align NeedAlign; 191 int Offset = 0; // Offset (in bytes) from the first member of the 192 // containing AddrList. 193 }; 194 using AddrList = std::vector<AddrInfo>; 195 196 struct InstrLess { 197 bool operator()(const Instruction *A, const Instruction *B) const { 198 return A->comesBefore(B); 199 } 200 }; 201 using DepList = std::set<Instruction *, InstrLess>; 202 203 struct MoveGroup { 204 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) 205 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} 206 Instruction *Base; // Base instruction of the parent address group. 207 InstList Main; // Main group of instructions. 208 InstList Deps; // List of dependencies. 209 bool IsHvx; // Is this group of HVX instructions? 210 bool IsLoad; // Is this a load group? 211 }; 212 using MoveList = std::vector<MoveGroup>; 213 214 struct ByteSpan { 215 struct Segment { 216 // Segment of a Value: 'Len' bytes starting at byte 'Begin'. 217 Segment(Value *Val, int Begin, int Len) 218 : Val(Val), Start(Begin), Size(Len) {} 219 Segment(const Segment &Seg) = default; 220 Segment &operator=(const Segment &Seg) = default; 221 Value *Val; // Value representable as a sequence of bytes. 222 int Start; // First byte of the value that belongs to the segment. 223 int Size; // Number of bytes in the segment. 224 }; 225 226 struct Block { 227 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} 228 Block(Value *Val, int Off, int Len, int Pos) 229 : Seg(Val, Off, Len), Pos(Pos) {} 230 Block(const Block &Blk) = default; 231 Block &operator=(const Block &Blk) = default; 232 Segment Seg; // Value segment. 233 int Pos; // Position (offset) of the segment in the Block. 234 }; 235 236 int extent() const; 237 ByteSpan section(int Start, int Length) const; 238 ByteSpan &shift(int Offset); 239 SmallVector<Value *, 8> values() const; 240 241 int size() const { return Blocks.size(); } 242 Block &operator[](int i) { return Blocks[i]; } 243 244 std::vector<Block> Blocks; 245 246 using iterator = decltype(Blocks)::iterator; 247 iterator begin() { return Blocks.begin(); } 248 iterator end() { return Blocks.end(); } 249 using const_iterator = decltype(Blocks)::const_iterator; 250 const_iterator begin() const { return Blocks.begin(); } 251 const_iterator end() const { return Blocks.end(); } 252 }; 253 254 Align getAlignFromValue(const Value *V) const; 255 std::optional<MemoryLocation> getLocation(const Instruction &In) const; 256 std::optional<AddrInfo> getAddrInfo(Instruction &In) const; 257 bool isHvx(const AddrInfo &AI) const; 258 // This function is only used for assertions at the moment. 259 [[maybe_unused]] bool isSectorTy(Type *Ty) const; 260 261 Value *getPayload(Value *Val) const; 262 Value *getMask(Value *Val) const; 263 Value *getPassThrough(Value *Val) const; 264 265 Value *createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 266 int Adjust) const; 267 Value *createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, Type *ValTy, 268 int Alignment) const; 269 Value *createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, Value *Ptr, 270 int Alignment, Value *Mask, Value *PassThru) const; 271 Value *createAlignedStore(IRBuilderBase &Builder, Value *Val, Value *Ptr, 272 int Alignment, Value *Mask) const; 273 274 DepList getUpwardDeps(Instruction *In, Instruction *Base) const; 275 bool createAddressGroups(); 276 MoveList createLoadGroups(const AddrList &Group) const; 277 MoveList createStoreGroups(const AddrList &Group) const; 278 bool move(const MoveGroup &Move) const; 279 void realignLoadGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 280 int ScLen, Value *AlignVal, Value *AlignAddr) const; 281 void realignStoreGroup(IRBuilderBase &Builder, const ByteSpan &VSpan, 282 int ScLen, Value *AlignVal, Value *AlignAddr) const; 283 bool realignGroup(const MoveGroup &Move) const; 284 285 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); 286 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); 287 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan::Block &B); 288 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); 289 290 std::map<Instruction *, AddrList> AddrGroups; 291 const HexagonVectorCombine &HVC; 292 }; 293 294 LLVM_ATTRIBUTE_UNUSED 295 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { 296 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; 297 OS << "Addr: " << *AI.Addr << '\n'; 298 OS << "Type: " << *AI.ValTy << '\n'; 299 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; 300 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; 301 OS << "Offset: " << AI.Offset; 302 return OS; 303 } 304 305 LLVM_ATTRIBUTE_UNUSED 306 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { 307 OS << "Main\n"; 308 for (Instruction *I : MG.Main) 309 OS << " " << *I << '\n'; 310 OS << "Deps\n"; 311 for (Instruction *I : MG.Deps) 312 OS << " " << *I << '\n'; 313 return OS; 314 } 315 316 LLVM_ATTRIBUTE_UNUSED 317 raw_ostream &operator<<(raw_ostream &OS, 318 const AlignVectors::ByteSpan::Block &B) { 319 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " 320 << *B.Seg.Val; 321 return OS; 322 } 323 324 LLVM_ATTRIBUTE_UNUSED 325 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { 326 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; 327 for (const AlignVectors::ByteSpan::Block &B : BS) 328 OS << B << '\n'; 329 OS << ']'; 330 return OS; 331 } 332 333 class HvxIdioms { 334 public: 335 HvxIdioms(const HexagonVectorCombine &HVC_) : HVC(HVC_) { 336 auto *Int32Ty = HVC.getIntTy(32); 337 HvxI32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/false); 338 HvxP32Ty = HVC.getHvxTy(Int32Ty, /*Pair=*/true); 339 } 340 341 bool run(); 342 343 private: 344 enum Signedness { Positive, Signed, Unsigned }; 345 346 // Value + sign 347 // This is to keep track of whether the value should be treated as signed 348 // or unsigned, or is known to be positive. 349 struct SValue { 350 Value *Val; 351 Signedness Sgn; 352 }; 353 354 struct FxpOp { 355 unsigned Opcode; 356 unsigned Frac; // Number of fraction bits 357 SValue X, Y; 358 // If present, add 1 << RoundAt before shift: 359 std::optional<unsigned> RoundAt; 360 }; 361 362 auto getNumSignificantBits(Value *V, Instruction *In) const 363 -> std::pair<unsigned, Signedness>; 364 auto canonSgn(SValue X, SValue Y) const -> std::pair<SValue, SValue>; 365 366 auto matchFxpMul(Instruction &In) const -> std::optional<FxpOp>; 367 auto processFxpMul(Instruction &In, const FxpOp &Op) const -> Value *; 368 369 auto processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 370 const FxpOp &Op) const -> Value *; 371 auto createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 372 bool Rounding) const -> Value *; 373 auto createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 374 bool Rounding) const -> Value *; 375 // Return {Result, Carry}, where Carry is a vector predicate. 376 auto createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 377 Value *CarryIn = nullptr) const 378 -> std::pair<Value *, Value *>; 379 auto createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const -> Value *; 380 auto createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 381 -> Value *; 382 auto createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 383 -> std::pair<Value *, Value *>; 384 auto createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 385 ArrayRef<Value *> WordY) const -> SmallVector<Value *>; 386 auto createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 387 Signedness SgnX, ArrayRef<Value *> WordY, 388 Signedness SgnY) const -> SmallVector<Value *>; 389 390 VectorType *HvxI32Ty; 391 VectorType *HvxP32Ty; 392 const HexagonVectorCombine &HVC; 393 394 friend raw_ostream &operator<<(raw_ostream &, const FxpOp &); 395 }; 396 397 [[maybe_unused]] raw_ostream &operator<<(raw_ostream &OS, 398 const HvxIdioms::FxpOp &Op) { 399 static const char *SgnNames[] = {"Positive", "Signed", "Unsigned"}; 400 OS << Instruction::getOpcodeName(Op.Opcode) << '.' << Op.Frac; 401 if (Op.RoundAt.has_value()) { 402 if (Op.Frac != 0 && Op.RoundAt.value() == Op.Frac - 1) { 403 OS << ":rnd"; 404 } else { 405 OS << " + 1<<" << Op.RoundAt.value(); 406 } 407 } 408 OS << "\n X:(" << SgnNames[Op.X.Sgn] << ") " << *Op.X.Val << "\n" 409 << " Y:(" << SgnNames[Op.Y.Sgn] << ") " << *Op.Y.Val; 410 return OS; 411 } 412 413 } // namespace 414 415 namespace { 416 417 template <typename T> T *getIfUnordered(T *MaybeT) { 418 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; 419 } 420 template <typename T> T *isCandidate(Instruction *In) { 421 return dyn_cast<T>(In); 422 } 423 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) { 424 return getIfUnordered(dyn_cast<LoadInst>(In)); 425 } 426 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) { 427 return getIfUnordered(dyn_cast<StoreInst>(In)); 428 } 429 430 #if !defined(_MSC_VER) || _MSC_VER >= 1926 431 // VS2017 and some versions of VS2019 have trouble compiling this: 432 // error C2976: 'std::map': too few template arguments 433 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) 434 template <typename Pred, typename... Ts> 435 void erase_if(std::map<Ts...> &map, Pred p) 436 #else 437 template <typename Pred, typename T, typename U> 438 void erase_if(std::map<T, U> &map, Pred p) 439 #endif 440 { 441 for (auto i = map.begin(), e = map.end(); i != e;) { 442 if (p(*i)) 443 i = map.erase(i); 444 else 445 i = std::next(i); 446 } 447 } 448 449 // Forward other erase_ifs to the LLVM implementations. 450 template <typename Pred, typename T> void erase_if(T &&container, Pred p) { 451 llvm::erase_if(std::forward<T>(container), p); 452 } 453 454 } // namespace 455 456 // --- Begin AlignVectors 457 458 auto AlignVectors::ByteSpan::extent() const -> int { 459 if (size() == 0) 460 return 0; 461 int Min = Blocks[0].Pos; 462 int Max = Blocks[0].Pos + Blocks[0].Seg.Size; 463 for (int i = 1, e = size(); i != e; ++i) { 464 Min = std::min(Min, Blocks[i].Pos); 465 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); 466 } 467 return Max - Min; 468 } 469 470 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { 471 ByteSpan Section; 472 for (const ByteSpan::Block &B : Blocks) { 473 int L = std::max(B.Pos, Start); // Left end. 474 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. 475 if (L < R) { 476 // How much to chop off the beginning of the segment: 477 int Off = L > B.Pos ? L - B.Pos : 0; 478 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); 479 } 480 } 481 return Section; 482 } 483 484 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { 485 for (Block &B : Blocks) 486 B.Pos += Offset; 487 return *this; 488 } 489 490 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> { 491 SmallVector<Value *, 8> Values(Blocks.size()); 492 for (int i = 0, e = Blocks.size(); i != e; ++i) 493 Values[i] = Blocks[i].Seg.Val; 494 return Values; 495 } 496 497 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { 498 const auto *C = dyn_cast<ConstantInt>(V); 499 assert(C && "Alignment must be a compile-time constant integer"); 500 return C->getAlignValue(); 501 } 502 503 auto AlignVectors::getAddrInfo(Instruction &In) const 504 -> std::optional<AddrInfo> { 505 if (auto *L = isCandidate<LoadInst>(&In)) 506 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), 507 L->getAlign()); 508 if (auto *S = isCandidate<StoreInst>(&In)) 509 return AddrInfo(HVC, S, S->getPointerOperand(), 510 S->getValueOperand()->getType(), S->getAlign()); 511 if (auto *II = isCandidate<IntrinsicInst>(&In)) { 512 Intrinsic::ID ID = II->getIntrinsicID(); 513 switch (ID) { 514 case Intrinsic::masked_load: 515 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), 516 getAlignFromValue(II->getArgOperand(1))); 517 case Intrinsic::masked_store: 518 return AddrInfo(HVC, II, II->getArgOperand(1), 519 II->getArgOperand(0)->getType(), 520 getAlignFromValue(II->getArgOperand(2))); 521 } 522 } 523 return std::nullopt; 524 } 525 526 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { 527 return HVC.HST.isTypeForHVX(AI.ValTy); 528 } 529 530 auto AlignVectors::getPayload(Value *Val) const -> Value * { 531 if (auto *In = dyn_cast<Instruction>(Val)) { 532 Intrinsic::ID ID = 0; 533 if (auto *II = dyn_cast<IntrinsicInst>(In)) 534 ID = II->getIntrinsicID(); 535 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store) 536 return In->getOperand(0); 537 } 538 return Val; 539 } 540 541 auto AlignVectors::getMask(Value *Val) const -> Value * { 542 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 543 switch (II->getIntrinsicID()) { 544 case Intrinsic::masked_load: 545 return II->getArgOperand(2); 546 case Intrinsic::masked_store: 547 return II->getArgOperand(3); 548 } 549 } 550 551 Type *ValTy = getPayload(Val)->getType(); 552 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) 553 return HVC.getFullValue(HVC.getBoolTy(HVC.length(VecTy))); 554 return HVC.getFullValue(HVC.getBoolTy()); 555 } 556 557 auto AlignVectors::getPassThrough(Value *Val) const -> Value * { 558 if (auto *II = dyn_cast<IntrinsicInst>(Val)) { 559 if (II->getIntrinsicID() == Intrinsic::masked_load) 560 return II->getArgOperand(3); 561 } 562 return UndefValue::get(getPayload(Val)->getType()); 563 } 564 565 auto AlignVectors::createAdjustedPointer(IRBuilderBase &Builder, Value *Ptr, 566 Type *ValTy, int Adjust) const 567 -> Value * { 568 // The adjustment is in bytes, but if it's a multiple of the type size, 569 // we don't need to do pointer casts. 570 auto *PtrTy = cast<PointerType>(Ptr->getType()); 571 if (!PtrTy->isOpaque()) { 572 Type *ElemTy = PtrTy->getNonOpaquePointerElementType(); 573 int ElemSize = HVC.getSizeOf(ElemTy, HVC.Alloc); 574 if (Adjust % ElemSize == 0 && Adjust != 0) { 575 Value *Tmp0 = 576 Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); 577 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); 578 } 579 } 580 581 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); 582 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); 583 Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, 584 HVC.getConstInt(Adjust)); 585 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); 586 } 587 588 auto AlignVectors::createAlignedPointer(IRBuilderBase &Builder, Value *Ptr, 589 Type *ValTy, int Alignment) const 590 -> Value * { 591 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); 592 Value *Mask = HVC.getConstInt(-Alignment); 593 Value *And = Builder.CreateAnd(AsInt, Mask); 594 return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); 595 } 596 597 auto AlignVectors::createAlignedLoad(IRBuilderBase &Builder, Type *ValTy, 598 Value *Ptr, int Alignment, Value *Mask, 599 Value *PassThru) const -> Value * { 600 assert(!HVC.isUndef(Mask)); // Should this be allowed? 601 if (HVC.isZero(Mask)) 602 return PassThru; 603 if (Mask == ConstantInt::getTrue(Mask->getType())) 604 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); 605 return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru); 606 } 607 608 auto AlignVectors::createAlignedStore(IRBuilderBase &Builder, Value *Val, 609 Value *Ptr, int Alignment, 610 Value *Mask) const -> Value * { 611 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) 612 return UndefValue::get(Val->getType()); 613 if (Mask == ConstantInt::getTrue(Mask->getType())) 614 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); 615 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); 616 } 617 618 auto AlignVectors::getUpwardDeps(Instruction *In, Instruction *Base) const 619 -> DepList { 620 BasicBlock *Parent = Base->getParent(); 621 assert(In->getParent() == Parent && 622 "Base and In should be in the same block"); 623 assert(Base->comesBefore(In) && "Base should come before In"); 624 625 DepList Deps; 626 std::deque<Instruction *> WorkQ = {In}; 627 while (!WorkQ.empty()) { 628 Instruction *D = WorkQ.front(); 629 WorkQ.pop_front(); 630 Deps.insert(D); 631 for (Value *Op : D->operands()) { 632 if (auto *I = dyn_cast<Instruction>(Op)) { 633 if (I->getParent() == Parent && Base->comesBefore(I)) 634 WorkQ.push_back(I); 635 } 636 } 637 } 638 return Deps; 639 } 640 641 auto AlignVectors::createAddressGroups() -> bool { 642 // An address group created here may contain instructions spanning 643 // multiple basic blocks. 644 AddrList WorkStack; 645 646 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> { 647 for (AddrInfo &W : WorkStack) { 648 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) 649 return std::make_pair(W.Inst, *D); 650 } 651 return std::make_pair(nullptr, 0); 652 }; 653 654 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { 655 BasicBlock &Block = *DomN->getBlock(); 656 for (Instruction &I : Block) { 657 auto AI = this->getAddrInfo(I); // Use this-> for gcc6. 658 if (!AI) 659 continue; 660 auto F = findBaseAndOffset(*AI); 661 Instruction *GroupInst; 662 if (Instruction *BI = F.first) { 663 AI->Offset = F.second; 664 GroupInst = BI; 665 } else { 666 WorkStack.push_back(*AI); 667 GroupInst = AI->Inst; 668 } 669 AddrGroups[GroupInst].push_back(*AI); 670 } 671 672 for (DomTreeNode *C : DomN->children()) 673 Visit(C, Visit); 674 675 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) 676 WorkStack.pop_back(); 677 }; 678 679 traverseBlock(HVC.DT.getRootNode(), traverseBlock); 680 assert(WorkStack.empty()); 681 682 // AddrGroups are formed. 683 684 // Remove groups of size 1. 685 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); 686 // Remove groups that don't use HVX types. 687 erase_if(AddrGroups, [&](auto &G) { 688 return llvm::none_of( 689 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); 690 }); 691 692 return !AddrGroups.empty(); 693 } 694 695 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { 696 // Form load groups. 697 // To avoid complications with moving code across basic blocks, only form 698 // groups that are contained within a single basic block. 699 700 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 701 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 702 // Don't mix HVX and non-HVX instructions. 703 if (Move.IsHvx != isHvx(Info)) 704 return false; 705 // Leading instruction in the load group. 706 Instruction *Base = Move.Main.front(); 707 if (Base->getParent() != Info.Inst->getParent()) 708 return false; 709 710 auto isSafeToMoveToBase = [&](const Instruction *I) { 711 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); 712 }; 713 DepList Deps = getUpwardDeps(Info.Inst, Base); 714 if (!llvm::all_of(Deps, isSafeToMoveToBase)) 715 return false; 716 717 // The dependencies will be moved together with the load, so make sure 718 // that none of them could be moved independently in another group. 719 Deps.erase(Info.Inst); 720 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; 721 if (llvm::any_of(Deps, inAddrMap)) 722 return false; 723 Move.Main.push_back(Info.Inst); 724 llvm::append_range(Move.Deps, Deps); 725 return true; 726 }; 727 728 MoveList LoadGroups; 729 730 for (const AddrInfo &Info : Group) { 731 if (!Info.Inst->mayReadFromMemory()) 732 continue; 733 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) 734 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); 735 } 736 737 // Erase singleton groups. 738 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 739 return LoadGroups; 740 } 741 742 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { 743 // Form store groups. 744 // To avoid complications with moving code across basic blocks, only form 745 // groups that are contained within a single basic block. 746 747 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { 748 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 749 // For stores with return values we'd have to collect downward depenencies. 750 // There are no such stores that we handle at the moment, so omit that. 751 assert(Info.Inst->getType()->isVoidTy() && 752 "Not handling stores with return values"); 753 // Don't mix HVX and non-HVX instructions. 754 if (Move.IsHvx != isHvx(Info)) 755 return false; 756 // For stores we need to be careful whether it's safe to move them. 757 // Stores that are otherwise safe to move together may not appear safe 758 // to move over one another (i.e. isSafeToMoveBefore may return false). 759 Instruction *Base = Move.Main.front(); 760 if (Base->getParent() != Info.Inst->getParent()) 761 return false; 762 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) 763 return false; 764 Move.Main.push_back(Info.Inst); 765 return true; 766 }; 767 768 MoveList StoreGroups; 769 770 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { 771 const AddrInfo &Info = *I; 772 if (!Info.Inst->mayWriteToMemory()) 773 continue; 774 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) 775 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); 776 } 777 778 // Erase singleton groups. 779 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); 780 return StoreGroups; 781 } 782 783 auto AlignVectors::move(const MoveGroup &Move) const -> bool { 784 assert(!Move.Main.empty() && "Move group should have non-empty Main"); 785 Instruction *Where = Move.Main.front(); 786 787 if (Move.IsLoad) { 788 // Move all deps to before Where, keeping order. 789 for (Instruction *D : Move.Deps) 790 D->moveBefore(Where); 791 // Move all main instructions to after Where, keeping order. 792 ArrayRef<Instruction *> Main(Move.Main); 793 for (Instruction *M : Main.drop_front(1)) { 794 M->moveAfter(Where); 795 Where = M; 796 } 797 } else { 798 // NOTE: Deps are empty for "store" groups. If they need to be 799 // non-empty, decide on the order. 800 assert(Move.Deps.empty()); 801 // Move all main instructions to before Where, inverting order. 802 ArrayRef<Instruction *> Main(Move.Main); 803 for (Instruction *M : Main.drop_front(1)) { 804 M->moveBefore(Where); 805 Where = M; 806 } 807 } 808 809 return Move.Main.size() + Move.Deps.size() > 1; 810 } 811 812 auto AlignVectors::realignLoadGroup(IRBuilderBase &Builder, 813 const ByteSpan &VSpan, int ScLen, 814 Value *AlignVal, Value *AlignAddr) const 815 -> void { 816 Type *SecTy = HVC.getByteTy(ScLen); 817 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 818 bool DoAlign = !HVC.isZero(AlignVal); 819 BasicBlock::iterator BasePos = Builder.GetInsertPoint(); 820 BasicBlock *BaseBlock = Builder.GetInsertBlock(); 821 822 ByteSpan ASpan; 823 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); 824 auto *Undef = UndefValue::get(SecTy); 825 826 SmallVector<Instruction *> Loads(NumSectors + DoAlign, nullptr); 827 828 // We could create all of the aligned loads, and generate the valigns 829 // at the location of the first load, but for large load groups, this 830 // could create highly suboptimal code (there have been groups of 140+ 831 // loads in real code). 832 // Instead, place the loads/valigns as close to the users as possible. 833 // In any case we need to have a mapping from the blocks of VSpan (the 834 // span covered by the pre-existing loads) to ASpan (the span covered 835 // by the aligned loads). There is a small problem, though: ASpan needs 836 // to have pointers to the loads/valigns, but we don't know where to put 837 // them yet. We can't use nullptr, because when we create sections of 838 // ASpan (corresponding to blocks from VSpan), for each block in the 839 // section we need to know which blocks of ASpan they are a part of. 840 // To have 1-1 mapping between blocks of ASpan and the temporary value 841 // pointers, use the addresses of the blocks themselves. 842 843 // Populate the blocks first, to avoid reallocations of the vector 844 // interfering with generating the placeholder addresses. 845 for (int Index = 0; Index != NumSectors; ++Index) 846 ASpan.Blocks.emplace_back(nullptr, ScLen, Index * ScLen); 847 for (int Index = 0; Index != NumSectors; ++Index) { 848 ASpan.Blocks[Index].Seg.Val = 849 reinterpret_cast<Value *>(&ASpan.Blocks[Index]); 850 } 851 852 // Multiple values from VSpan can map to the same value in ASpan. Since we 853 // try to create loads lazily, we need to find the earliest use for each 854 // value from ASpan. 855 DenseMap<void *, Instruction *> EarliestUser; 856 auto isEarlier = [](Instruction *A, Instruction *B) { 857 if (B == nullptr) 858 return true; 859 if (A == nullptr) 860 return false; 861 assert(A->getParent() == B->getParent()); 862 return A->comesBefore(B); 863 }; 864 auto earliestUser = [&](const auto &Uses) { 865 Instruction *User = nullptr; 866 for (const Use &U : Uses) { 867 auto *I = dyn_cast<Instruction>(U.getUser()); 868 assert(I != nullptr && "Load used in a non-instruction?"); 869 // Make sure we only consider at users in this block, but we need 870 // to remember if there were users outside the block too. This is 871 // because if there are no users, aligned loads will not be created. 872 if (I->getParent() == BaseBlock) { 873 if (!isa<PHINode>(I)) 874 User = std::min(User, I, isEarlier); 875 } else { 876 User = std::min(User, BaseBlock->getTerminator(), isEarlier); 877 } 878 } 879 return User; 880 }; 881 882 for (const ByteSpan::Block &B : VSpan) { 883 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size); 884 for (const ByteSpan::Block &S : ASection) { 885 EarliestUser[S.Seg.Val] = std::min( 886 EarliestUser[S.Seg.Val], earliestUser(B.Seg.Val->uses()), isEarlier); 887 } 888 } 889 890 auto createLoad = [&](IRBuilderBase &Builder, const ByteSpan &VSpan, 891 int Index) { 892 Value *Ptr = 893 createAdjustedPointer(Builder, AlignAddr, SecTy, Index * ScLen); 894 // FIXME: generate a predicated load? 895 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); 896 // If vector shifting is potentially needed, accumulate metadata 897 // from source sections of twice the load width. 898 int Start = (Index - DoAlign) * ScLen; 899 int Width = (1 + DoAlign) * ScLen; 900 propagateMetadata(cast<Instruction>(Load), 901 VSpan.section(Start, Width).values()); 902 return cast<Instruction>(Load); 903 }; 904 905 auto moveBefore = [this](Instruction *In, Instruction *To) { 906 // Move In and its upward dependencies to before To. 907 assert(In->getParent() == To->getParent()); 908 DepList Deps = getUpwardDeps(In, To); 909 // DepList is sorted with respect to positions in the basic block. 910 for (Instruction *I : Deps) 911 I->moveBefore(To); 912 }; 913 914 // Generate necessary loads at appropriate locations. 915 for (int Index = 0; Index != NumSectors + 1; ++Index) { 916 // In ASpan, each block will be either a single aligned load, or a 917 // valign of a pair of loads. In the latter case, an aligned load j 918 // will belong to the current valign, and the one in the previous 919 // block (for j > 0). 920 Instruction *PrevAt = 921 DoAlign && Index > 0 ? EarliestUser[&ASpan[Index - 1]] : nullptr; 922 Instruction *ThisAt = 923 Index < NumSectors ? EarliestUser[&ASpan[Index]] : nullptr; 924 if (auto *Where = std::min(PrevAt, ThisAt, isEarlier)) { 925 Builder.SetInsertPoint(Where); 926 Loads[Index] = createLoad(Builder, VSpan, Index); 927 // We know it's safe to put the load at BasePos, so if it's not safe 928 // to move it from this location to BasePos, then the current location 929 // is not valid. 930 // We can't do this check proactively because we need the load to exist 931 // in order to check legality. 932 if (!HVC.isSafeToMoveBeforeInBB(*Loads[Index], BasePos)) 933 moveBefore(Loads[Index], &*BasePos); 934 } 935 } 936 // Generate valigns if needed, and fill in proper values in ASpan 937 for (int Index = 0; Index != NumSectors; ++Index) { 938 ASpan[Index].Seg.Val = nullptr; 939 if (auto *Where = EarliestUser[&ASpan[Index]]) { 940 Builder.SetInsertPoint(Where); 941 Value *Val = Loads[Index]; 942 assert(Val != nullptr); 943 if (DoAlign) { 944 Value *NextLoad = Loads[Index + 1]; 945 assert(NextLoad != nullptr); 946 Val = HVC.vralignb(Builder, Val, NextLoad, AlignVal); 947 } 948 ASpan[Index].Seg.Val = Val; 949 } 950 } 951 952 for (const ByteSpan::Block &B : VSpan) { 953 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); 954 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); 955 Builder.SetInsertPoint(cast<Instruction>(B.Seg.Val)); 956 957 for (ByteSpan::Block &S : ASection) { 958 if (S.Seg.Val == nullptr) 959 continue; 960 // The processing of the data loaded by the aligned loads 961 // needs to be inserted after the data is available. 962 Instruction *SegI = cast<Instruction>(S.Seg.Val); 963 Builder.SetInsertPoint(&*std::next(SegI->getIterator())); 964 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); 965 Accum = HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); 966 } 967 // Instead of casting everything to bytes for the vselect, cast to the 968 // original value type. This will avoid complications with casting masks. 969 // For example, in cases when the original mask applied to i32, it could 970 // be converted to a mask applicable to i8 via pred_typecast intrinsic, 971 // but if the mask is not exactly of HVX length, extra handling would be 972 // needed to make it work. 973 Type *ValTy = getPayload(B.Seg.Val)->getType(); 974 Value *Cast = Builder.CreateBitCast(Accum, ValTy); 975 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, 976 getPassThrough(B.Seg.Val)); 977 B.Seg.Val->replaceAllUsesWith(Sel); 978 } 979 } 980 981 auto AlignVectors::realignStoreGroup(IRBuilderBase &Builder, 982 const ByteSpan &VSpan, int ScLen, 983 Value *AlignVal, Value *AlignAddr) const 984 -> void { 985 Type *SecTy = HVC.getByteTy(ScLen); 986 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; 987 bool DoAlign = !HVC.isZero(AlignVal); 988 989 // Stores. 990 ByteSpan ASpanV, ASpanM; 991 992 // Return a vector value corresponding to the input value Val: 993 // either <1 x Val> for scalar Val, or Val itself for vector Val. 994 auto MakeVec = [](IRBuilderBase &Builder, Value *Val) -> Value * { 995 Type *Ty = Val->getType(); 996 if (Ty->isVectorTy()) 997 return Val; 998 auto *VecTy = VectorType::get(Ty, 1, /*Scalable=*/false); 999 return Builder.CreateBitCast(Val, VecTy); 1000 }; 1001 1002 // Create an extra "undef" sector at the beginning and at the end. 1003 // They will be used as the left/right filler in the vlalign step. 1004 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { 1005 // For stores, the size of each section is an aligned vector length. 1006 // Adjust the store offsets relative to the section start offset. 1007 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); 1008 Value *AccumV = UndefValue::get(SecTy); 1009 Value *AccumM = HVC.getNullValue(SecTy); 1010 for (ByteSpan::Block &S : VSection) { 1011 Value *Pay = getPayload(S.Seg.Val); 1012 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), 1013 Pay->getType(), HVC.getByteTy()); 1014 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), 1015 S.Seg.Start, S.Seg.Size, S.Pos); 1016 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), 1017 S.Seg.Start, S.Seg.Size, S.Pos); 1018 } 1019 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); 1020 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); 1021 } 1022 1023 // vlalign 1024 if (DoAlign) { 1025 for (int j = 1; j != NumSectors + 2; ++j) { 1026 Value *PrevV = ASpanV[j - 1].Seg.Val, *ThisV = ASpanV[j].Seg.Val; 1027 Value *PrevM = ASpanM[j - 1].Seg.Val, *ThisM = ASpanM[j].Seg.Val; 1028 assert(isSectorTy(PrevV->getType()) && isSectorTy(PrevM->getType())); 1029 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevV, ThisV, AlignVal); 1030 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, PrevM, ThisM, AlignVal); 1031 } 1032 } 1033 1034 for (int i = 0; i != NumSectors + DoAlign; ++i) { 1035 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); 1036 Value *Val = ASpanV[i].Seg.Val; 1037 Value *Mask = ASpanM[i].Seg.Val; // bytes 1038 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { 1039 Value *Store = 1040 createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask)); 1041 // If vector shifting is potentially needed, accumulate metadata 1042 // from source sections of twice the store width. 1043 int Start = (i - DoAlign) * ScLen; 1044 int Width = (1 + DoAlign) * ScLen; 1045 propagateMetadata(cast<Instruction>(Store), 1046 VSpan.section(Start, Width).values()); 1047 } 1048 } 1049 } 1050 1051 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { 1052 // TODO: Needs support for masked loads/stores of "scalar" vectors. 1053 if (!Move.IsHvx) 1054 return false; 1055 1056 // Return the element with the maximum alignment from Range, 1057 // where GetValue obtains the value to compare from an element. 1058 auto getMaxOf = [](auto Range, auto GetValue) { 1059 return *std::max_element( 1060 Range.begin(), Range.end(), 1061 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); 1062 }; 1063 1064 const AddrList &BaseInfos = AddrGroups.at(Move.Base); 1065 1066 // Conceptually, there is a vector of N bytes covering the addresses 1067 // starting from the minimum offset (i.e. Base.Addr+Start). This vector 1068 // represents a contiguous memory region that spans all accessed memory 1069 // locations. 1070 // The correspondence between loaded or stored values will be expressed 1071 // in terms of this vector. For example, the 0th element of the vector 1072 // from the Base address info will start at byte Start from the beginning 1073 // of this conceptual vector. 1074 // 1075 // This vector will be loaded/stored starting at the nearest down-aligned 1076 // address and the amount od the down-alignment will be AlignVal: 1077 // valign(load_vector(align_down(Base+Start)), AlignVal) 1078 1079 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end()); 1080 AddrList MoveInfos; 1081 llvm::copy_if( 1082 BaseInfos, std::back_inserter(MoveInfos), 1083 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); 1084 1085 // Maximum alignment present in the whole address group. 1086 const AddrInfo &WithMaxAlign = 1087 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); 1088 Align MaxGiven = WithMaxAlign.HaveAlign; 1089 1090 // Minimum alignment present in the move address group. 1091 const AddrInfo &WithMinOffset = 1092 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); 1093 1094 const AddrInfo &WithMaxNeeded = 1095 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); 1096 Align MinNeeded = WithMaxNeeded.NeedAlign; 1097 1098 // Set the builder's insertion point right before the load group, or 1099 // immediately after the store group. (Instructions in a store group are 1100 // listed in reverse order.) 1101 Instruction *InsertAt = Move.Main.front(); 1102 if (!Move.IsLoad) { 1103 // There should be a terminator (which store isn't, but check anyways). 1104 assert(InsertAt->getIterator() != InsertAt->getParent()->end()); 1105 InsertAt = &*std::next(InsertAt->getIterator()); 1106 } 1107 1108 IRBuilder Builder(InsertAt->getParent(), InsertAt->getIterator(), 1109 InstSimplifyFolder(HVC.DL)); 1110 Value *AlignAddr = nullptr; // Actual aligned address. 1111 Value *AlignVal = nullptr; // Right-shift amount (for valign). 1112 1113 if (MinNeeded <= MaxGiven) { 1114 int Start = WithMinOffset.Offset; 1115 int OffAtMax = WithMaxAlign.Offset; 1116 // Shift the offset of the maximally aligned instruction (OffAtMax) 1117 // back by just enough multiples of the required alignment to cover the 1118 // distance from Start to OffAtMax. 1119 // Calculate the address adjustment amount based on the address with the 1120 // maximum alignment. This is to allow a simple gep instruction instead 1121 // of potential bitcasts to i8*. 1122 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); 1123 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, 1124 WithMaxAlign.ValTy, Adjust); 1125 int Diff = Start - (OffAtMax + Adjust); 1126 AlignVal = HVC.getConstInt(Diff); 1127 assert(Diff >= 0); 1128 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value()); 1129 } else { 1130 // WithMinOffset is the lowest address in the group, 1131 // WithMinOffset.Addr = Base+Start. 1132 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) 1133 // mask off unnecessary bits, so it's ok to just the original pointer as 1134 // the alignment amount. 1135 // Do an explicit down-alignment of the address to avoid creating an 1136 // aligned instruction with an address that is not really aligned. 1137 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, 1138 WithMinOffset.ValTy, MinNeeded.value()); 1139 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); 1140 } 1141 1142 ByteSpan VSpan; 1143 for (const AddrInfo &AI : MoveInfos) { 1144 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), 1145 AI.Offset - WithMinOffset.Offset); 1146 } 1147 1148 // The aligned loads/stores will use blocks that are either scalars, 1149 // or HVX vectors. Let "sector" be the unified term for such a block. 1150 // blend(scalar, vector) -> sector... 1151 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() 1152 : std::max<int>(MinNeeded.value(), 4); 1153 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); 1154 assert(Move.IsHvx || ScLen == 4 || ScLen == 8); 1155 1156 if (Move.IsLoad) 1157 realignLoadGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1158 else 1159 realignStoreGroup(Builder, VSpan, ScLen, AlignVal, AlignAddr); 1160 1161 for (auto *Inst : Move.Main) 1162 Inst->eraseFromParent(); 1163 1164 return true; 1165 } 1166 1167 auto AlignVectors::isSectorTy(Type *Ty) const -> bool { 1168 if (!HVC.isByteVecTy(Ty)) 1169 return false; 1170 int Size = HVC.getSizeOf(Ty); 1171 if (HVC.HST.isTypeForHVX(Ty)) 1172 return Size == static_cast<int>(HVC.HST.getVectorLength()); 1173 return Size == 4 || Size == 8; 1174 } 1175 1176 auto AlignVectors::run() -> bool { 1177 if (!createAddressGroups()) 1178 return false; 1179 1180 bool Changed = false; 1181 MoveList LoadGroups, StoreGroups; 1182 1183 for (auto &G : AddrGroups) { 1184 llvm::append_range(LoadGroups, createLoadGroups(G.second)); 1185 llvm::append_range(StoreGroups, createStoreGroups(G.second)); 1186 } 1187 1188 for (auto &M : LoadGroups) 1189 Changed |= move(M); 1190 for (auto &M : StoreGroups) 1191 Changed |= move(M); 1192 1193 for (auto &M : LoadGroups) 1194 Changed |= realignGroup(M); 1195 for (auto &M : StoreGroups) 1196 Changed |= realignGroup(M); 1197 1198 return Changed; 1199 } 1200 1201 // --- End AlignVectors 1202 1203 // --- Begin HvxIdioms 1204 1205 auto HvxIdioms::getNumSignificantBits(Value *V, Instruction *In) const 1206 -> std::pair<unsigned, Signedness> { 1207 unsigned Bits = HVC.getNumSignificantBits(V, In); 1208 // The significant bits are calculated including the sign bit. This may 1209 // add an extra bit for zero-extended values, e.g. (zext i32 to i64) may 1210 // result in 33 significant bits. To avoid extra words, skip the extra 1211 // sign bit, but keep information that the value is to be treated as 1212 // unsigned. 1213 KnownBits Known = HVC.getKnownBits(V, In); 1214 Signedness Sign = Signed; 1215 unsigned NumToTest = 0; // Number of bits used in test for unsignedness. 1216 if (isPowerOf2_32(Bits)) 1217 NumToTest = Bits; 1218 else if (Bits > 1 && isPowerOf2_32(Bits - 1)) 1219 NumToTest = Bits - 1; 1220 1221 if (NumToTest != 0 && Known.Zero.ashr(NumToTest).isAllOnes()) { 1222 Sign = Unsigned; 1223 Bits = NumToTest; 1224 } 1225 1226 // If the top bit of the nearest power-of-2 is zero, this value is 1227 // positive. It could be treated as either signed or unsigned. 1228 if (unsigned Pow2 = PowerOf2Ceil(Bits); Pow2 != Bits) { 1229 if (Known.Zero.ashr(Pow2 - 1).isAllOnes()) 1230 Sign = Positive; 1231 } 1232 return {Bits, Sign}; 1233 } 1234 1235 auto HvxIdioms::canonSgn(SValue X, SValue Y) const 1236 -> std::pair<SValue, SValue> { 1237 // Canonicalize the signedness of X and Y, so that the result is one of: 1238 // S, S 1239 // U/P, S 1240 // U/P, U/P 1241 if (X.Sgn == Signed && Y.Sgn != Signed) 1242 std::swap(X, Y); 1243 return {X, Y}; 1244 } 1245 1246 // Match 1247 // (X * Y) [>> N], or 1248 // ((X * Y) + (1 << N-1)) >> N 1249 auto HvxIdioms::matchFxpMul(Instruction &In) const -> std::optional<FxpOp> { 1250 using namespace PatternMatch; 1251 auto *Ty = In.getType(); 1252 1253 if (!Ty->isVectorTy() || !Ty->getScalarType()->isIntegerTy()) 1254 return std::nullopt; 1255 1256 unsigned Width = cast<IntegerType>(Ty->getScalarType())->getBitWidth(); 1257 1258 FxpOp Op; 1259 Value *Exp = &In; 1260 1261 // Fixed-point multiplication is always shifted right (except when the 1262 // fraction is 0 bits). 1263 auto m_Shr = [](auto &&V, auto &&S) { 1264 return m_CombineOr(m_LShr(V, S), m_AShr(V, S)); 1265 }; 1266 1267 const APInt *Qn = nullptr; 1268 if (Value * T; match(Exp, m_Shr(m_Value(T), m_APInt(Qn)))) { 1269 Op.Frac = Qn->getZExtValue(); 1270 Exp = T; 1271 } else { 1272 Op.Frac = 0; 1273 } 1274 1275 if (Op.Frac > Width) 1276 return std::nullopt; 1277 1278 // Check if there is rounding added. 1279 const APInt *C = nullptr; 1280 if (Value * T; Op.Frac > 0 && match(Exp, m_Add(m_Value(T), m_APInt(C)))) { 1281 uint64_t CV = C->getZExtValue(); 1282 if (CV != 0 && !isPowerOf2_64(CV)) 1283 return std::nullopt; 1284 if (CV != 0) 1285 Op.RoundAt = Log2_64(CV); 1286 Exp = T; 1287 } 1288 1289 // Check if the rest is a multiplication. 1290 if (match(Exp, m_Mul(m_Value(Op.X.Val), m_Value(Op.Y.Val)))) { 1291 Op.Opcode = Instruction::Mul; 1292 // FIXME: The information below is recomputed. 1293 Op.X.Sgn = getNumSignificantBits(Op.X.Val, &In).second; 1294 Op.Y.Sgn = getNumSignificantBits(Op.Y.Val, &In).second; 1295 return Op; 1296 } 1297 1298 return std::nullopt; 1299 } 1300 1301 auto HvxIdioms::processFxpMul(Instruction &In, const FxpOp &Op) const 1302 -> Value * { 1303 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1304 1305 auto *VecTy = dyn_cast<VectorType>(Op.X.Val->getType()); 1306 if (VecTy == nullptr) 1307 return nullptr; 1308 auto *ElemTy = cast<IntegerType>(VecTy->getElementType()); 1309 unsigned ElemWidth = ElemTy->getBitWidth(); 1310 1311 // TODO: This can be relaxed after legalization is done pre-isel. 1312 if ((HVC.length(VecTy) * ElemWidth) % (8 * HVC.HST.getVectorLength()) != 0) 1313 return nullptr; 1314 1315 // There are no special intrinsics that should be used for multiplying 1316 // signed 8-bit values, so just skip them. Normal codegen should handle 1317 // this just fine. 1318 if (ElemWidth <= 8) 1319 return nullptr; 1320 // Similarly, if this is just a multiplication that can be handled without 1321 // intervention, then leave it alone. 1322 if (ElemWidth <= 32 && Op.Frac == 0) 1323 return nullptr; 1324 1325 auto [BitsX, SignX] = getNumSignificantBits(Op.X.Val, &In); 1326 auto [BitsY, SignY] = getNumSignificantBits(Op.Y.Val, &In); 1327 1328 // TODO: Add multiplication of vectors by scalar registers (up to 4 bytes). 1329 1330 Value *X = Op.X.Val, *Y = Op.Y.Val; 1331 IRBuilder Builder(In.getParent(), In.getIterator(), 1332 InstSimplifyFolder(HVC.DL)); 1333 1334 auto roundUpWidth = [](unsigned Width) -> unsigned { 1335 if (Width <= 32 && !isPowerOf2_32(Width)) { 1336 // If the element width is not a power of 2, round it up 1337 // to the next one. Do this for widths not exceeding 32. 1338 return PowerOf2Ceil(Width); 1339 } 1340 if (Width > 32 && Width % 32 != 0) { 1341 // For wider elements, round it up to the multiple of 32. 1342 return alignTo(Width, 32u); 1343 } 1344 return Width; 1345 }; 1346 1347 BitsX = roundUpWidth(BitsX); 1348 BitsY = roundUpWidth(BitsY); 1349 1350 // For elementwise multiplication vectors must have the same lengths, so 1351 // resize the elements of both inputs to the same width, the max of the 1352 // calculated significant bits. 1353 unsigned Width = std::max(BitsX, BitsY); 1354 1355 auto *ResizeTy = VectorType::get(HVC.getIntTy(Width), VecTy); 1356 if (Width < ElemWidth) { 1357 X = Builder.CreateTrunc(X, ResizeTy); 1358 Y = Builder.CreateTrunc(Y, ResizeTy); 1359 } else if (Width > ElemWidth) { 1360 X = SignX == Signed ? Builder.CreateSExt(X, ResizeTy) 1361 : Builder.CreateZExt(X, ResizeTy); 1362 Y = SignY == Signed ? Builder.CreateSExt(Y, ResizeTy) 1363 : Builder.CreateZExt(Y, ResizeTy); 1364 }; 1365 1366 assert(X->getType() == Y->getType() && X->getType() == ResizeTy); 1367 1368 unsigned VecLen = HVC.length(ResizeTy); 1369 unsigned ChopLen = (8 * HVC.HST.getVectorLength()) / std::min(Width, 32u); 1370 1371 SmallVector<Value *> Results; 1372 FxpOp ChopOp = Op; 1373 1374 for (unsigned V = 0; V != VecLen / ChopLen; ++V) { 1375 ChopOp.X.Val = HVC.subvector(Builder, X, V * ChopLen, ChopLen); 1376 ChopOp.Y.Val = HVC.subvector(Builder, Y, V * ChopLen, ChopLen); 1377 Results.push_back(processFxpMulChopped(Builder, In, ChopOp)); 1378 if (Results.back() == nullptr) 1379 break; 1380 } 1381 1382 if (Results.empty() || Results.back() == nullptr) 1383 return nullptr; 1384 1385 Value *Cat = HVC.concat(Builder, Results); 1386 Value *Ext = SignX == Signed || SignY == Signed 1387 ? Builder.CreateSExt(Cat, VecTy) 1388 : Builder.CreateZExt(Cat, VecTy); 1389 return Ext; 1390 } 1391 1392 auto HvxIdioms::processFxpMulChopped(IRBuilderBase &Builder, Instruction &In, 1393 const FxpOp &Op) const -> Value * { 1394 assert(Op.X.Val->getType() == Op.Y.Val->getType()); 1395 auto *InpTy = cast<VectorType>(Op.X.Val->getType()); 1396 unsigned Width = InpTy->getScalarSizeInBits(); 1397 bool Rounding = Op.RoundAt.has_value(); 1398 1399 if (!Op.RoundAt || *Op.RoundAt == Op.Frac - 1) { 1400 // The fixed-point intrinsics do signed multiplication. 1401 if (Width == Op.Frac + 1 && Op.X.Sgn != Unsigned && Op.Y.Sgn != Unsigned) { 1402 Value *QMul = nullptr; 1403 if (Width == 16) { 1404 QMul = createMulQ15(Builder, Op.X, Op.Y, Rounding); 1405 } else if (Width == 32) { 1406 QMul = createMulQ31(Builder, Op.X, Op.Y, Rounding); 1407 } 1408 if (QMul != nullptr) 1409 return QMul; 1410 } 1411 } 1412 1413 assert(Width >= 32 || isPowerOf2_32(Width)); // Width <= 32 => Width is 2^n 1414 assert(Width < 32 || Width % 32 == 0); // Width > 32 => Width is 32*k 1415 1416 // If Width < 32, then it should really be 16. 1417 if (Width < 32) { 1418 if (Width < 16) 1419 return nullptr; 1420 // Getting here with Op.Frac == 0 isn't wrong, but suboptimal: here we 1421 // generate a full precision products, which is unnecessary if there is 1422 // no shift. 1423 assert(Width == 16); 1424 assert(Op.Frac != 0 && "Unshifted mul should have been skipped"); 1425 if (Op.Frac == 16) { 1426 // Multiply high 1427 if (Value *MulH = createMulH16(Builder, Op.X, Op.Y)) 1428 return MulH; 1429 } 1430 // Do full-precision multiply and shift. 1431 Value *Prod32 = createMul16(Builder, Op.X, Op.Y); 1432 if (Rounding) { 1433 Value *RoundVal = HVC.getConstSplat(Prod32->getType(), 1 << *Op.RoundAt); 1434 Prod32 = Builder.CreateAdd(Prod32, RoundVal); 1435 } 1436 1437 Value *ShiftAmt = HVC.getConstSplat(Prod32->getType(), Op.Frac); 1438 Value *Shifted = Op.X.Sgn == Signed || Op.Y.Sgn == Signed 1439 ? Builder.CreateAShr(Prod32, ShiftAmt) 1440 : Builder.CreateLShr(Prod32, ShiftAmt); 1441 return Builder.CreateTrunc(Shifted, InpTy); 1442 } 1443 1444 // Width >= 32 1445 1446 // Break up the arguments Op.X and Op.Y into vectors of smaller widths 1447 // in preparation of doing the multiplication by 32-bit parts. 1448 auto WordX = HVC.splitVectorElements(Builder, Op.X.Val, /*ToWidth=*/32); 1449 auto WordY = HVC.splitVectorElements(Builder, Op.Y.Val, /*ToWidth=*/32); 1450 auto WordP = createMulLong(Builder, WordX, Op.X.Sgn, WordY, Op.Y.Sgn); 1451 1452 auto *HvxWordTy = cast<VectorType>(WordP.front()->getType()); 1453 1454 // Add the optional rounding to the proper word. 1455 if (Op.RoundAt.has_value()) { 1456 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1457 SmallVector<Value *> RoundV(WordP.size(), Zero); 1458 RoundV[*Op.RoundAt / 32] = 1459 HVC.getConstSplat(HvxWordTy, 1 << (*Op.RoundAt % 32)); 1460 WordP = createAddLong(Builder, WordP, RoundV); 1461 } 1462 1463 // createRightShiftLong? 1464 1465 // Shift all products right by Op.Frac. 1466 unsigned SkipWords = Op.Frac / 32; 1467 Constant *ShiftAmt = HVC.getConstSplat(HvxWordTy, Op.Frac % 32); 1468 1469 for (int Dst = 0, End = WordP.size() - SkipWords; Dst != End; ++Dst) { 1470 int Src = Dst + SkipWords; 1471 Value *Lo = WordP[Src]; 1472 if (Src + 1 < End) { 1473 Value *Hi = WordP[Src + 1]; 1474 WordP[Dst] = Builder.CreateIntrinsic(HvxWordTy, Intrinsic::fshr, 1475 {Hi, Lo, ShiftAmt}); 1476 } else { 1477 // The shift of the most significant word. 1478 WordP[Dst] = Builder.CreateAShr(Lo, ShiftAmt); 1479 } 1480 } 1481 if (SkipWords != 0) 1482 WordP.resize(WordP.size() - SkipWords); 1483 1484 return HVC.joinVectorElements(Builder, WordP, InpTy); 1485 } 1486 1487 auto HvxIdioms::createMulQ15(IRBuilderBase &Builder, SValue X, SValue Y, 1488 bool Rounding) const -> Value * { 1489 assert(X.Val->getType() == Y.Val->getType()); 1490 assert(X.Val->getType()->getScalarType() == HVC.getIntTy(16)); 1491 assert(HVC.HST.isHVXVectorType(EVT::getEVT(X.Val->getType(), false))); 1492 1493 // There is no non-rounding intrinsic for i16. 1494 if (!Rounding || X.Sgn == Unsigned || Y.Sgn == Unsigned) 1495 return nullptr; 1496 1497 auto V6_vmpyhvsrs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhvsrs); 1498 return HVC.createHvxIntrinsic(Builder, V6_vmpyhvsrs, X.Val->getType(), 1499 {X.Val, Y.Val}); 1500 } 1501 1502 auto HvxIdioms::createMulQ31(IRBuilderBase &Builder, SValue X, SValue Y, 1503 bool Rounding) const -> Value * { 1504 Type *InpTy = X.Val->getType(); 1505 assert(InpTy == Y.Val->getType()); 1506 assert(InpTy->getScalarType() == HVC.getIntTy(32)); 1507 assert(HVC.HST.isHVXVectorType(EVT::getEVT(InpTy, false))); 1508 1509 if (X.Sgn == Unsigned || Y.Sgn == Unsigned) 1510 return nullptr; 1511 1512 auto V6_vmpyewuh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyewuh); 1513 auto V6_vmpyo_acc = Rounding 1514 ? HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_rnd_sacc) 1515 : HVC.HST.getIntrinsicId(Hexagon::V6_vmpyowh_sacc); 1516 Value *V1 = 1517 HVC.createHvxIntrinsic(Builder, V6_vmpyewuh, InpTy, {X.Val, Y.Val}); 1518 return HVC.createHvxIntrinsic(Builder, V6_vmpyo_acc, InpTy, 1519 {V1, X.Val, Y.Val}); 1520 } 1521 1522 auto HvxIdioms::createAddCarry(IRBuilderBase &Builder, Value *X, Value *Y, 1523 Value *CarryIn) const 1524 -> std::pair<Value *, Value *> { 1525 assert(X->getType() == Y->getType()); 1526 auto VecTy = cast<VectorType>(X->getType()); 1527 if (VecTy == HvxI32Ty && HVC.HST.useHVXV62Ops()) { 1528 SmallVector<Value *> Args = {X, Y}; 1529 Intrinsic::ID AddCarry; 1530 if (CarryIn == nullptr && HVC.HST.useHVXV66Ops()) { 1531 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarryo); 1532 } else { 1533 AddCarry = HVC.HST.getIntrinsicId(Hexagon::V6_vaddcarry); 1534 if (CarryIn == nullptr) 1535 CarryIn = HVC.getNullValue(HVC.getBoolTy(HVC.length(VecTy))); 1536 Args.push_back(CarryIn); 1537 } 1538 Value *Ret = HVC.createHvxIntrinsic(Builder, AddCarry, 1539 /*RetTy=*/nullptr, Args); 1540 Value *Result = Builder.CreateExtractValue(Ret, {0}); 1541 Value *CarryOut = Builder.CreateExtractValue(Ret, {1}); 1542 return {Result, CarryOut}; 1543 } 1544 1545 // In other cases, do a regular add, and unsigned compare-less-than. 1546 // The carry-out can originate in two places: adding the carry-in or adding 1547 // the two input values. 1548 Value *Result1 = X; // Result1 = X + CarryIn 1549 if (CarryIn != nullptr) { 1550 unsigned Width = VecTy->getScalarSizeInBits(); 1551 uint32_t Mask = 1; 1552 if (Width < 32) { 1553 for (unsigned i = 0, e = 32 / Width; i != e; ++i) 1554 Mask = (Mask << Width) | 1; 1555 } 1556 auto V6_vandqrt = HVC.HST.getIntrinsicId(Hexagon::V6_vandqrt); 1557 Value *ValueIn = 1558 HVC.createHvxIntrinsic(Builder, V6_vandqrt, /*RetTy=*/nullptr, 1559 {CarryIn, HVC.getConstInt(Mask)}); 1560 Result1 = Builder.CreateAdd(X, ValueIn); 1561 } 1562 1563 Value *CarryOut1 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result1, X); 1564 Value *Result2 = Builder.CreateAdd(Result1, Y); 1565 Value *CarryOut2 = Builder.CreateCmp(CmpInst::ICMP_ULT, Result2, Y); 1566 return {Result2, Builder.CreateOr(CarryOut1, CarryOut2)}; 1567 } 1568 1569 auto HvxIdioms::createMul16(IRBuilderBase &Builder, SValue X, SValue Y) const 1570 -> Value * { 1571 Intrinsic::ID V6_vmpyh = 0; 1572 std::tie(X, Y) = canonSgn(X, Y); 1573 1574 if (X.Sgn == Signed) { 1575 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhv); 1576 } else if (Y.Sgn == Signed) { 1577 // In vmpyhus the second operand is unsigned 1578 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyhus); 1579 } else { 1580 V6_vmpyh = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhv); 1581 } 1582 1583 // i16*i16 -> i32 / interleaved 1584 Value *P = 1585 HVC.createHvxIntrinsic(Builder, V6_vmpyh, HvxP32Ty, {Y.Val, X.Val}); 1586 // Deinterleave 1587 return HVC.vshuff(Builder, HVC.sublo(Builder, P), HVC.subhi(Builder, P)); 1588 } 1589 1590 auto HvxIdioms::createMulH16(IRBuilderBase &Builder, SValue X, SValue Y) const 1591 -> Value * { 1592 Type *HvxI16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/false); 1593 1594 if (HVC.HST.useHVXV69Ops()) { 1595 if (X.Sgn != Signed && Y.Sgn != Signed) { 1596 auto V6_vmpyuhvs = HVC.HST.getIntrinsicId(Hexagon::V6_vmpyuhvs); 1597 return HVC.createHvxIntrinsic(Builder, V6_vmpyuhvs, HvxI16Ty, 1598 {X.Val, Y.Val}); 1599 } 1600 } 1601 1602 Type *HvxP16Ty = HVC.getHvxTy(HVC.getIntTy(16), /*Pair=*/true); 1603 Value *Pair16 = Builder.CreateBitCast(createMul16(Builder, X, Y), HvxP16Ty); 1604 unsigned Len = HVC.length(HvxP16Ty) / 2; 1605 1606 SmallVector<int, 128> PickOdd(Len); 1607 for (int i = 0; i != static_cast<int>(Len); ++i) 1608 PickOdd[i] = 2 * i + 1; 1609 1610 return Builder.CreateShuffleVector(HVC.sublo(Builder, Pair16), 1611 HVC.subhi(Builder, Pair16), PickOdd); 1612 } 1613 1614 auto HvxIdioms::createMul32(IRBuilderBase &Builder, SValue X, SValue Y) const 1615 -> std::pair<Value *, Value *> { 1616 assert(X.Val->getType() == Y.Val->getType()); 1617 assert(X.Val->getType() == HvxI32Ty); 1618 1619 Intrinsic::ID V6_vmpy_parts; 1620 std::tie(X, Y) = canonSgn(X, Y); 1621 1622 if (X.Sgn == Signed) { 1623 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyss_parts; 1624 } else if (Y.Sgn == Signed) { 1625 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyus_parts; 1626 } else { 1627 V6_vmpy_parts = Intrinsic::hexagon_V6_vmpyuu_parts; 1628 } 1629 1630 Value *Parts = HVC.createHvxIntrinsic(Builder, V6_vmpy_parts, nullptr, 1631 {X.Val, Y.Val}, {HvxI32Ty}); 1632 Value *Hi = Builder.CreateExtractValue(Parts, {0}); 1633 Value *Lo = Builder.CreateExtractValue(Parts, {1}); 1634 return {Lo, Hi}; 1635 } 1636 1637 auto HvxIdioms::createAddLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1638 ArrayRef<Value *> WordY) const 1639 -> SmallVector<Value *> { 1640 assert(WordX.size() == WordY.size()); 1641 unsigned Idx = 0, Length = WordX.size(); 1642 SmallVector<Value *> Sum(Length); 1643 1644 while (Idx != Length) { 1645 if (HVC.isZero(WordX[Idx])) 1646 Sum[Idx] = WordY[Idx]; 1647 else if (HVC.isZero(WordY[Idx])) 1648 Sum[Idx] = WordX[Idx]; 1649 else 1650 break; 1651 ++Idx; 1652 } 1653 1654 Value *Carry = nullptr; 1655 for (; Idx != Length; ++Idx) { 1656 std::tie(Sum[Idx], Carry) = 1657 createAddCarry(Builder, WordX[Idx], WordY[Idx], Carry); 1658 } 1659 1660 // This drops the final carry beyond the highest word. 1661 return Sum; 1662 } 1663 1664 auto HvxIdioms::createMulLong(IRBuilderBase &Builder, ArrayRef<Value *> WordX, 1665 Signedness SgnX, ArrayRef<Value *> WordY, 1666 Signedness SgnY) const -> SmallVector<Value *> { 1667 SmallVector<SmallVector<Value *>> Products(WordX.size() + WordY.size()); 1668 1669 // WordX[i] * WordY[j] produces words i+j and i+j+1 of the results, 1670 // that is halves 2(i+j), 2(i+j)+1, 2(i+j)+2, 2(i+j)+3. 1671 for (int i = 0, e = WordX.size(); i != e; ++i) { 1672 for (int j = 0, f = WordY.size(); j != f; ++j) { 1673 // Check the 4 halves that this multiplication can generate. 1674 Signedness SX = (i + 1 == e) ? SgnX : Unsigned; 1675 Signedness SY = (j + 1 == f) ? SgnY : Unsigned; 1676 auto [Lo, Hi] = createMul32(Builder, {WordX[i], SX}, {WordY[j], SY}); 1677 Products[i + j + 0].push_back(Lo); 1678 Products[i + j + 1].push_back(Hi); 1679 } 1680 } 1681 1682 Value *Zero = HVC.getNullValue(WordX[0]->getType()); 1683 1684 auto pop_back_or_zero = [Zero](auto &Vector) -> Value * { 1685 if (Vector.empty()) 1686 return Zero; 1687 auto Last = Vector.back(); 1688 Vector.pop_back(); 1689 return Last; 1690 }; 1691 1692 for (int i = 0, e = Products.size(); i != e; ++i) { 1693 while (Products[i].size() > 1) { 1694 Value *Carry = nullptr; // no carry-in 1695 for (int j = i; j != e; ++j) { 1696 auto &ProdJ = Products[j]; 1697 auto [Sum, CarryOut] = createAddCarry(Builder, pop_back_or_zero(ProdJ), 1698 pop_back_or_zero(ProdJ), Carry); 1699 ProdJ.insert(ProdJ.begin(), Sum); 1700 Carry = CarryOut; 1701 } 1702 } 1703 } 1704 1705 SmallVector<Value *> WordP; 1706 for (auto &P : Products) { 1707 assert(P.size() == 1 && "Should have been added together"); 1708 WordP.push_back(P.front()); 1709 } 1710 1711 return WordP; 1712 } 1713 1714 auto HvxIdioms::run() -> bool { 1715 bool Changed = false; 1716 1717 for (BasicBlock &B : HVC.F) { 1718 for (auto It = B.rbegin(); It != B.rend(); ++It) { 1719 if (auto Fxm = matchFxpMul(*It)) { 1720 Value *New = processFxpMul(*It, *Fxm); 1721 // Always report "changed" for now. 1722 Changed = true; 1723 if (!New) 1724 continue; 1725 bool StartOver = !isa<Instruction>(New); 1726 It->replaceAllUsesWith(New); 1727 RecursivelyDeleteTriviallyDeadInstructions(&*It, &HVC.TLI); 1728 It = StartOver ? B.rbegin() 1729 : cast<Instruction>(New)->getReverseIterator(); 1730 Changed = true; 1731 } 1732 } 1733 } 1734 1735 return Changed; 1736 } 1737 1738 // --- End HvxIdioms 1739 1740 auto HexagonVectorCombine::run() -> bool { 1741 if (!HST.useHVXOps()) 1742 return false; 1743 1744 bool Changed = false; 1745 Changed |= AlignVectors(*this).run(); 1746 Changed |= HvxIdioms(*this).run(); 1747 1748 return Changed; 1749 } 1750 1751 auto HexagonVectorCombine::getIntTy(unsigned Width) const -> IntegerType * { 1752 return IntegerType::get(F.getContext(), Width); 1753 } 1754 1755 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { 1756 assert(ElemCount >= 0); 1757 IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); 1758 if (ElemCount == 0) 1759 return ByteTy; 1760 return VectorType::get(ByteTy, ElemCount, /*Scalable=*/false); 1761 } 1762 1763 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { 1764 assert(ElemCount >= 0); 1765 IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); 1766 if (ElemCount == 0) 1767 return BoolTy; 1768 return VectorType::get(BoolTy, ElemCount, /*Scalable=*/false); 1769 } 1770 1771 auto HexagonVectorCombine::getConstInt(int Val, unsigned Width) const 1772 -> ConstantInt * { 1773 return ConstantInt::getSigned(getIntTy(Width), Val); 1774 } 1775 1776 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { 1777 if (auto *C = dyn_cast<Constant>(Val)) 1778 return C->isZeroValue(); 1779 return false; 1780 } 1781 1782 auto HexagonVectorCombine::getIntValue(const Value *Val) const 1783 -> std::optional<APInt> { 1784 if (auto *CI = dyn_cast<ConstantInt>(Val)) 1785 return CI->getValue(); 1786 return std::nullopt; 1787 } 1788 1789 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { 1790 return isa<UndefValue>(Val); 1791 } 1792 1793 auto HexagonVectorCombine::getHvxTy(Type *ElemTy, bool Pair) const 1794 -> VectorType * { 1795 EVT ETy = EVT::getEVT(ElemTy, false); 1796 assert(ETy.isSimple() && "Invalid HVX element type"); 1797 // Do not allow boolean types here: they don't have a fixed length. 1798 assert(HST.isHVXElementType(ETy.getSimpleVT(), /*IncludeBool=*/false) && 1799 "Invalid HVX element type"); 1800 unsigned HwLen = HST.getVectorLength(); 1801 unsigned NumElems = (8 * HwLen) / ETy.getSizeInBits(); 1802 return VectorType::get(ElemTy, Pair ? 2 * NumElems : NumElems, 1803 /*Scalable=*/false); 1804 } 1805 1806 auto HexagonVectorCombine::getSizeOf(const Value *Val, SizeKind Kind) const 1807 -> int { 1808 return getSizeOf(Val->getType(), Kind); 1809 } 1810 1811 auto HexagonVectorCombine::getSizeOf(const Type *Ty, SizeKind Kind) const 1812 -> int { 1813 auto *NcTy = const_cast<Type *>(Ty); 1814 switch (Kind) { 1815 case Store: 1816 return DL.getTypeStoreSize(NcTy).getFixedValue(); 1817 case Alloc: 1818 return DL.getTypeAllocSize(NcTy).getFixedValue(); 1819 } 1820 llvm_unreachable("Unhandled SizeKind enum"); 1821 } 1822 1823 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { 1824 // The actual type may be shorter than the HVX vector, so determine 1825 // the alignment based on subtarget info. 1826 if (HST.isTypeForHVX(Ty)) 1827 return HST.getVectorLength(); 1828 return DL.getABITypeAlign(Ty).value(); 1829 } 1830 1831 auto HexagonVectorCombine::length(Value *Val) const -> size_t { 1832 return length(Val->getType()); 1833 } 1834 1835 auto HexagonVectorCombine::length(Type *Ty) const -> size_t { 1836 auto *VecTy = dyn_cast<VectorType>(Ty); 1837 assert(VecTy && "Must be a vector type"); 1838 return VecTy->getElementCount().getFixedValue(); 1839 } 1840 1841 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { 1842 assert(Ty->isIntOrIntVectorTy()); 1843 auto Zero = ConstantInt::get(Ty->getScalarType(), 0); 1844 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1845 return ConstantVector::getSplat(VecTy->getElementCount(), Zero); 1846 return Zero; 1847 } 1848 1849 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { 1850 assert(Ty->isIntOrIntVectorTy()); 1851 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); 1852 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1853 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); 1854 return Minus1; 1855 } 1856 1857 auto HexagonVectorCombine::getConstSplat(Type *Ty, int Val) const 1858 -> Constant * { 1859 assert(Ty->isVectorTy()); 1860 auto VecTy = cast<VectorType>(Ty); 1861 Type *ElemTy = VecTy->getElementType(); 1862 // Add support for floats if needed. 1863 auto *Splat = ConstantVector::getSplat(VecTy->getElementCount(), 1864 ConstantInt::get(ElemTy, Val)); 1865 return Splat; 1866 } 1867 1868 auto HexagonVectorCombine::simplify(Value *V) const -> Value * { 1869 if (auto *In = dyn_cast<Instruction>(V)) { 1870 SimplifyQuery Q(DL, &TLI, &DT, &AC, In); 1871 return simplifyInstruction(In, Q); 1872 } 1873 return nullptr; 1874 } 1875 1876 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. 1877 auto HexagonVectorCombine::insertb(IRBuilderBase &Builder, Value *Dst, 1878 Value *Src, int Start, int Length, 1879 int Where) const -> Value * { 1880 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); 1881 int SrcLen = getSizeOf(Src); 1882 int DstLen = getSizeOf(Dst); 1883 assert(0 <= Start && Start + Length <= SrcLen); 1884 assert(0 <= Where && Where + Length <= DstLen); 1885 1886 int P2Len = PowerOf2Ceil(SrcLen | DstLen); 1887 auto *Undef = UndefValue::get(getByteTy()); 1888 Value *P2Src = vresize(Builder, Src, P2Len, Undef); 1889 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); 1890 1891 SmallVector<int, 256> SMask(P2Len); 1892 for (int i = 0; i != P2Len; ++i) { 1893 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. 1894 // Otherwise, pick Dst[i]; 1895 SMask[i] = 1896 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; 1897 } 1898 1899 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); 1900 return vresize(Builder, P2Insert, DstLen, Undef); 1901 } 1902 1903 auto HexagonVectorCombine::vlalignb(IRBuilderBase &Builder, Value *Lo, 1904 Value *Hi, Value *Amt) const -> Value * { 1905 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1906 if (isZero(Amt)) 1907 return Hi; 1908 int VecLen = getSizeOf(Hi); 1909 if (auto IntAmt = getIntValue(Amt)) 1910 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), 1911 VecLen); 1912 1913 if (HST.isTypeForHVX(Hi->getType())) { 1914 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1915 "Expecting an exact HVX type"); 1916 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_vlalignb), 1917 Hi->getType(), {Hi, Lo, Amt}); 1918 } 1919 1920 if (VecLen == 4) { 1921 Value *Pair = concat(Builder, {Lo, Hi}); 1922 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); 1923 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1924 return Builder.CreateBitCast(Trunc, Hi->getType()); 1925 } 1926 if (VecLen == 8) { 1927 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); 1928 return vralignb(Builder, Lo, Hi, Sub); 1929 } 1930 llvm_unreachable("Unexpected vector length"); 1931 } 1932 1933 auto HexagonVectorCombine::vralignb(IRBuilderBase &Builder, Value *Lo, 1934 Value *Hi, Value *Amt) const -> Value * { 1935 assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); 1936 if (isZero(Amt)) 1937 return Lo; 1938 int VecLen = getSizeOf(Lo); 1939 if (auto IntAmt = getIntValue(Amt)) 1940 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); 1941 1942 if (HST.isTypeForHVX(Lo->getType())) { 1943 assert(static_cast<unsigned>(VecLen) == HST.getVectorLength() && 1944 "Expecting an exact HVX type"); 1945 return createHvxIntrinsic(Builder, HST.getIntrinsicId(Hexagon::V6_valignb), 1946 Lo->getType(), {Hi, Lo, Amt}); 1947 } 1948 1949 if (VecLen == 4) { 1950 Value *Pair = concat(Builder, {Lo, Hi}); 1951 Value *Shift = Builder.CreateLShr(Pair, Amt); 1952 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); 1953 return Builder.CreateBitCast(Trunc, Lo->getType()); 1954 } 1955 if (VecLen == 8) { 1956 Type *Int64Ty = Type::getInt64Ty(F.getContext()); 1957 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); 1958 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); 1959 Function *FI = Intrinsic::getDeclaration(F.getParent(), 1960 Intrinsic::hexagon_S2_valignrb); 1961 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); 1962 return Builder.CreateBitCast(Call, Lo->getType()); 1963 } 1964 llvm_unreachable("Unexpected vector length"); 1965 } 1966 1967 // Concatenates a sequence of vectors of the same type. 1968 auto HexagonVectorCombine::concat(IRBuilderBase &Builder, 1969 ArrayRef<Value *> Vecs) const -> Value * { 1970 assert(!Vecs.empty()); 1971 SmallVector<int, 256> SMask; 1972 std::vector<Value *> Work[2]; 1973 int ThisW = 0, OtherW = 1; 1974 1975 Work[ThisW].assign(Vecs.begin(), Vecs.end()); 1976 while (Work[ThisW].size() > 1) { 1977 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType()); 1978 SMask.resize(length(Ty) * 2); 1979 std::iota(SMask.begin(), SMask.end(), 0); 1980 1981 Work[OtherW].clear(); 1982 if (Work[ThisW].size() % 2 != 0) 1983 Work[ThisW].push_back(UndefValue::get(Ty)); 1984 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { 1985 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], 1986 Work[ThisW][i + 1], SMask); 1987 Work[OtherW].push_back(Joined); 1988 } 1989 std::swap(ThisW, OtherW); 1990 } 1991 1992 // Since there may have been some undefs appended to make shuffle operands 1993 // have the same type, perform the last shuffle to only pick the original 1994 // elements. 1995 SMask.resize(Vecs.size() * length(Vecs.front()->getType())); 1996 std::iota(SMask.begin(), SMask.end(), 0); 1997 Value *Total = Work[ThisW].front(); 1998 return Builder.CreateShuffleVector(Total, SMask); 1999 } 2000 2001 auto HexagonVectorCombine::vresize(IRBuilderBase &Builder, Value *Val, 2002 int NewSize, Value *Pad) const -> Value * { 2003 assert(isa<VectorType>(Val->getType())); 2004 auto *ValTy = cast<VectorType>(Val->getType()); 2005 assert(ValTy->getElementType() == Pad->getType()); 2006 2007 int CurSize = length(ValTy); 2008 if (CurSize == NewSize) 2009 return Val; 2010 // Truncate? 2011 if (CurSize > NewSize) 2012 return getElementRange(Builder, Val, /*Ignored*/ Val, 0, NewSize); 2013 // Extend. 2014 SmallVector<int, 128> SMask(NewSize); 2015 std::iota(SMask.begin(), SMask.begin() + CurSize, 0); 2016 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); 2017 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); 2018 return Builder.CreateShuffleVector(Val, PadVec, SMask); 2019 } 2020 2021 auto HexagonVectorCombine::rescale(IRBuilderBase &Builder, Value *Mask, 2022 Type *FromTy, Type *ToTy) const -> Value * { 2023 // Mask is a vector <N x i1>, where each element corresponds to an 2024 // element of FromTy. Remap it so that each element will correspond 2025 // to an element of ToTy. 2026 assert(isa<VectorType>(Mask->getType())); 2027 2028 Type *FromSTy = FromTy->getScalarType(); 2029 Type *ToSTy = ToTy->getScalarType(); 2030 if (FromSTy == ToSTy) 2031 return Mask; 2032 2033 int FromSize = getSizeOf(FromSTy); 2034 int ToSize = getSizeOf(ToSTy); 2035 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); 2036 2037 auto *MaskTy = cast<VectorType>(Mask->getType()); 2038 int FromCount = length(MaskTy); 2039 int ToCount = (FromCount * FromSize) / ToSize; 2040 assert((FromCount * FromSize) % ToSize == 0); 2041 2042 auto *FromITy = getIntTy(FromSize * 8); 2043 auto *ToITy = getIntTy(ToSize * 8); 2044 2045 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> -> 2046 // -> trunc to <M x i1>. 2047 Value *Ext = Builder.CreateSExt( 2048 Mask, VectorType::get(FromITy, FromCount, /*Scalable=*/false)); 2049 Value *Cast = Builder.CreateBitCast( 2050 Ext, VectorType::get(ToITy, ToCount, /*Scalable=*/false)); 2051 return Builder.CreateTrunc( 2052 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable=*/false)); 2053 } 2054 2055 // Bitcast to bytes, and return least significant bits. 2056 auto HexagonVectorCombine::vlsb(IRBuilderBase &Builder, Value *Val) const 2057 -> Value * { 2058 Type *ScalarTy = Val->getType()->getScalarType(); 2059 if (ScalarTy == getBoolTy()) 2060 return Val; 2061 2062 Value *Bytes = vbytes(Builder, Val); 2063 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType())) 2064 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); 2065 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not 2066 // <1 x i1>. 2067 return Builder.CreateTrunc(Bytes, getBoolTy()); 2068 } 2069 2070 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. 2071 auto HexagonVectorCombine::vbytes(IRBuilderBase &Builder, Value *Val) const 2072 -> Value * { 2073 Type *ScalarTy = Val->getType()->getScalarType(); 2074 if (ScalarTy == getByteTy()) 2075 return Val; 2076 2077 if (ScalarTy != getBoolTy()) 2078 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); 2079 // For bool, return a sext from i1 to i8. 2080 if (auto *VecTy = dyn_cast<VectorType>(Val->getType())) 2081 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); 2082 return Builder.CreateSExt(Val, getByteTy()); 2083 } 2084 2085 auto HexagonVectorCombine::subvector(IRBuilderBase &Builder, Value *Val, 2086 unsigned Start, unsigned Length) const 2087 -> Value * { 2088 assert(Start + Length <= length(Val)); 2089 return getElementRange(Builder, Val, /*Ignored*/ Val, Start, Length); 2090 } 2091 2092 auto HexagonVectorCombine::sublo(IRBuilderBase &Builder, Value *Val) const 2093 -> Value * { 2094 size_t Len = length(Val); 2095 assert(Len % 2 == 0 && "Length should be even"); 2096 return subvector(Builder, Val, 0, Len / 2); 2097 } 2098 2099 auto HexagonVectorCombine::subhi(IRBuilderBase &Builder, Value *Val) const 2100 -> Value * { 2101 size_t Len = length(Val); 2102 assert(Len % 2 == 0 && "Length should be even"); 2103 return subvector(Builder, Val, Len / 2, Len / 2); 2104 } 2105 2106 auto HexagonVectorCombine::vdeal(IRBuilderBase &Builder, Value *Val0, 2107 Value *Val1) const -> Value * { 2108 assert(Val0->getType() == Val1->getType()); 2109 int Len = length(Val0); 2110 SmallVector<int, 128> Mask(2 * Len); 2111 2112 for (int i = 0; i != Len; ++i) { 2113 Mask[i] = 2 * i; // Even 2114 Mask[i + Len] = 2 * i + 1; // Odd 2115 } 2116 return Builder.CreateShuffleVector(Val0, Val1, Mask); 2117 } 2118 2119 auto HexagonVectorCombine::vshuff(IRBuilderBase &Builder, Value *Val0, 2120 Value *Val1) const -> Value * { // 2121 assert(Val0->getType() == Val1->getType()); 2122 int Len = length(Val0); 2123 SmallVector<int, 128> Mask(2 * Len); 2124 2125 for (int i = 0; i != Len; ++i) { 2126 Mask[2 * i + 0] = i; // Val0 2127 Mask[2 * i + 1] = i + Len; // Val1 2128 } 2129 return Builder.CreateShuffleVector(Val0, Val1, Mask); 2130 } 2131 2132 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilderBase &Builder, 2133 Intrinsic::ID IntID, Type *RetTy, 2134 ArrayRef<Value *> Args, 2135 ArrayRef<Type *> ArgTys) const 2136 -> Value * { 2137 auto getCast = [&](IRBuilderBase &Builder, Value *Val, 2138 Type *DestTy) -> Value * { 2139 Type *SrcTy = Val->getType(); 2140 if (SrcTy == DestTy) 2141 return Val; 2142 2143 // Non-HVX type. It should be a scalar, and it should already have 2144 // a valid type. 2145 assert(HST.isTypeForHVX(SrcTy, /*IncludeBool=*/true)); 2146 2147 Type *BoolTy = Type::getInt1Ty(F.getContext()); 2148 if (cast<VectorType>(SrcTy)->getElementType() != BoolTy) 2149 return Builder.CreateBitCast(Val, DestTy); 2150 2151 // Predicate HVX vector. 2152 unsigned HwLen = HST.getVectorLength(); 2153 Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast 2154 : Intrinsic::hexagon_V6_pred_typecast_128B; 2155 Function *FI = 2156 Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); 2157 return Builder.CreateCall(FI, {Val}); 2158 }; 2159 2160 Function *IntrFn = Intrinsic::getDeclaration(F.getParent(), IntID, ArgTys); 2161 FunctionType *IntrTy = IntrFn->getFunctionType(); 2162 2163 SmallVector<Value *, 4> IntrArgs; 2164 for (int i = 0, e = Args.size(); i != e; ++i) { 2165 Value *A = Args[i]; 2166 Type *T = IntrTy->getParamType(i); 2167 if (A->getType() != T) { 2168 IntrArgs.push_back(getCast(Builder, A, T)); 2169 } else { 2170 IntrArgs.push_back(A); 2171 } 2172 } 2173 Value *Call = Builder.CreateCall(IntrFn, IntrArgs); 2174 2175 Type *CallTy = Call->getType(); 2176 if (RetTy == nullptr || CallTy == RetTy) 2177 return Call; 2178 // Scalar types should have RetTy matching the call return type. 2179 assert(HST.isTypeForHVX(CallTy, /*IncludeBool=*/true)); 2180 return getCast(Builder, Call, RetTy); 2181 } 2182 2183 auto HexagonVectorCombine::splitVectorElements(IRBuilderBase &Builder, 2184 Value *Vec, 2185 unsigned ToWidth) const 2186 -> SmallVector<Value *> { 2187 // Break a vector of wide elements into a series of vectors with narrow 2188 // elements: 2189 // (...c0:b0:a0, ...c1:b1:a1, ...c2:b2:a2, ...) 2190 // --> 2191 // (a0, a1, a2, ...) // lowest "ToWidth" bits 2192 // (b0, b1, b2, ...) // the next lowest... 2193 // (c0, c1, c2, ...) // ... 2194 // ... 2195 // 2196 // The number of elements in each resulting vector is the same as 2197 // in the original vector. 2198 2199 auto *VecTy = cast<VectorType>(Vec->getType()); 2200 assert(VecTy->getElementType()->isIntegerTy()); 2201 unsigned FromWidth = VecTy->getScalarSizeInBits(); 2202 assert(isPowerOf2_32(ToWidth) && isPowerOf2_32(FromWidth)); 2203 assert(ToWidth <= FromWidth && "Breaking up into wider elements?"); 2204 unsigned NumResults = FromWidth / ToWidth; 2205 2206 SmallVector<Value *> Results(NumResults); 2207 Results[0] = Vec; 2208 unsigned Length = length(VecTy); 2209 2210 // Do it by splitting in half, since those operations correspond to deal 2211 // instructions. 2212 auto splitInHalf = [&](unsigned Begin, unsigned End, auto splitFunc) -> void { 2213 // Take V = Results[Begin], split it in L, H. 2214 // Store Results[Begin] = L, Results[(Begin+End)/2] = H 2215 // Call itself recursively split(Begin, Half), split(Half+1, End) 2216 if (Begin + 1 == End) 2217 return; 2218 2219 Value *Val = Results[Begin]; 2220 unsigned Width = Val->getType()->getScalarSizeInBits(); 2221 2222 auto *VTy = VectorType::get(getIntTy(Width / 2), 2 * Length, false); 2223 Value *VVal = Builder.CreateBitCast(Val, VTy); 2224 2225 Value *Res = vdeal(Builder, sublo(Builder, VVal), subhi(Builder, VVal)); 2226 2227 unsigned Half = (Begin + End) / 2; 2228 Results[Begin] = sublo(Builder, Res); 2229 Results[Half] = subhi(Builder, Res); 2230 2231 splitFunc(Begin, Half, splitFunc); 2232 splitFunc(Half, End, splitFunc); 2233 }; 2234 2235 splitInHalf(0, NumResults, splitInHalf); 2236 return Results; 2237 } 2238 2239 auto HexagonVectorCombine::joinVectorElements(IRBuilderBase &Builder, 2240 ArrayRef<Value *> Values, 2241 VectorType *ToType) const 2242 -> Value * { 2243 assert(ToType->getElementType()->isIntegerTy()); 2244 2245 // If the list of values does not have power-of-2 elements, append copies 2246 // of the sign bit to it, to make the size be 2^n. 2247 // The reason for this is that the values will be joined in pairs, because 2248 // otherwise the shuffles will result in convoluted code. With pairwise 2249 // joins, the shuffles will hopefully be folded into a perfect shuffle. 2250 // The output will need to be sign-extended to a type with element width 2251 // being a power-of-2 anyways. 2252 SmallVector<Value *> Inputs(Values.begin(), Values.end()); 2253 2254 unsigned ToWidth = ToType->getScalarSizeInBits(); 2255 unsigned Width = Inputs.front()->getType()->getScalarSizeInBits(); 2256 assert(Width <= ToWidth); 2257 assert(isPowerOf2_32(Width) && isPowerOf2_32(ToWidth)); 2258 unsigned Length = length(Inputs.front()->getType()); 2259 2260 unsigned NeedInputs = ToWidth / Width; 2261 if (Inputs.size() != NeedInputs) { 2262 Value *Last = Inputs.back(); 2263 Value *Sign = 2264 Builder.CreateAShr(Last, getConstSplat(Last->getType(), Width - 1)); 2265 Inputs.resize(NeedInputs, Sign); 2266 } 2267 2268 while (Inputs.size() > 1) { 2269 Width *= 2; 2270 auto *VTy = VectorType::get(getIntTy(Width), Length, false); 2271 for (int i = 0, e = Inputs.size(); i < e; i += 2) { 2272 Value *Res = vshuff(Builder, Inputs[i], Inputs[i + 1]); 2273 Inputs[i / 2] = Builder.CreateBitCast(Res, VTy); 2274 } 2275 Inputs.resize(Inputs.size() / 2); 2276 } 2277 2278 assert(Inputs.front()->getType() == ToType); 2279 return Inputs.front(); 2280 } 2281 2282 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, 2283 Value *Ptr1) const 2284 -> std::optional<int> { 2285 struct Builder : IRBuilder<> { 2286 Builder(BasicBlock *B) : IRBuilder<>(B->getTerminator()) {} 2287 ~Builder() { 2288 for (Instruction *I : llvm::reverse(ToErase)) 2289 I->eraseFromParent(); 2290 } 2291 SmallVector<Instruction *, 8> ToErase; 2292 }; 2293 2294 #define CallBuilder(B, F) \ 2295 [&](auto &B_) { \ 2296 Value *V = B_.F; \ 2297 if (auto *I = dyn_cast<Instruction>(V)) \ 2298 B_.ToErase.push_back(I); \ 2299 return V; \ 2300 }(B) 2301 2302 auto Simplify = [this](Value *V) { 2303 if (Value *S = simplify(V)) 2304 return S; 2305 return V; 2306 }; 2307 2308 auto StripBitCast = [](Value *V) { 2309 while (auto *C = dyn_cast<BitCastInst>(V)) 2310 V = C->getOperand(0); 2311 return V; 2312 }; 2313 2314 Ptr0 = StripBitCast(Ptr0); 2315 Ptr1 = StripBitCast(Ptr1); 2316 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1)) 2317 return std::nullopt; 2318 2319 auto *Gep0 = cast<GetElementPtrInst>(Ptr0); 2320 auto *Gep1 = cast<GetElementPtrInst>(Ptr1); 2321 if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) 2322 return std::nullopt; 2323 if (Gep0->getSourceElementType() != Gep1->getSourceElementType()) 2324 return std::nullopt; 2325 2326 Builder B(Gep0->getParent()); 2327 int Scale = getSizeOf(Gep0->getSourceElementType(), Alloc); 2328 2329 // FIXME: for now only check GEPs with a single index. 2330 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) 2331 return std::nullopt; 2332 2333 Value *Idx0 = Gep0->getOperand(1); 2334 Value *Idx1 = Gep1->getOperand(1); 2335 2336 // First, try to simplify the subtraction directly. 2337 if (auto *Diff = dyn_cast<ConstantInt>( 2338 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) 2339 return Diff->getSExtValue() * Scale; 2340 2341 KnownBits Known0 = getKnownBits(Idx0, Gep0); 2342 KnownBits Known1 = getKnownBits(Idx1, Gep1); 2343 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); 2344 if (Unknown.isAllOnes()) 2345 return std::nullopt; 2346 2347 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); 2348 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); 2349 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); 2350 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); 2351 int Diff0 = 0; 2352 if (auto *C = dyn_cast<ConstantInt>(SubU)) { 2353 Diff0 = C->getSExtValue(); 2354 } else { 2355 return std::nullopt; 2356 } 2357 2358 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); 2359 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); 2360 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); 2361 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); 2362 int Diff1 = 0; 2363 if (auto *C = dyn_cast<ConstantInt>(SubK)) { 2364 Diff1 = C->getSExtValue(); 2365 } else { 2366 return std::nullopt; 2367 } 2368 2369 return (Diff0 + Diff1) * Scale; 2370 2371 #undef CallBuilder 2372 } 2373 2374 auto HexagonVectorCombine::getNumSignificantBits(const Value *V, 2375 const Instruction *CtxI) const 2376 -> unsigned { 2377 return ComputeMaxSignificantBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT); 2378 } 2379 2380 auto HexagonVectorCombine::getKnownBits(const Value *V, 2381 const Instruction *CtxI) const 2382 -> KnownBits { 2383 return computeKnownBits(V, DL, /*Depth=*/0, &AC, CtxI, &DT, /*ORE=*/nullptr, 2384 /*UseInstrInfo=*/true); 2385 } 2386 2387 template <typename T> 2388 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, 2389 BasicBlock::const_iterator To, 2390 const T &IgnoreInsts) const 2391 -> bool { 2392 auto getLocOrNone = 2393 [this](const Instruction &I) -> std::optional<MemoryLocation> { 2394 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { 2395 switch (II->getIntrinsicID()) { 2396 case Intrinsic::masked_load: 2397 return MemoryLocation::getForArgument(II, 0, TLI); 2398 case Intrinsic::masked_store: 2399 return MemoryLocation::getForArgument(II, 1, TLI); 2400 } 2401 } 2402 return MemoryLocation::getOrNone(&I); 2403 }; 2404 2405 // The source and the destination must be in the same basic block. 2406 const BasicBlock &Block = *In.getParent(); 2407 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); 2408 // No PHIs. 2409 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To))) 2410 return false; 2411 2412 if (!mayHaveNonDefUseDependency(In)) 2413 return true; 2414 bool MayWrite = In.mayWriteToMemory(); 2415 auto MaybeLoc = getLocOrNone(In); 2416 2417 auto From = In.getIterator(); 2418 if (From == To) 2419 return true; 2420 bool MoveUp = (To != Block.end() && To->comesBefore(&In)); 2421 auto Range = 2422 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); 2423 for (auto It = Range.first; It != Range.second; ++It) { 2424 const Instruction &I = *It; 2425 if (llvm::is_contained(IgnoreInsts, &I)) 2426 continue; 2427 // assume intrinsic can be ignored 2428 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 2429 if (II->getIntrinsicID() == Intrinsic::assume) 2430 continue; 2431 } 2432 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. 2433 if (I.mayThrow()) 2434 return false; 2435 if (auto *CB = dyn_cast<CallBase>(&I)) { 2436 if (!CB->hasFnAttr(Attribute::WillReturn)) 2437 return false; 2438 if (!CB->hasFnAttr(Attribute::NoSync)) 2439 return false; 2440 } 2441 if (I.mayReadOrWriteMemory()) { 2442 auto MaybeLocI = getLocOrNone(I); 2443 if (MayWrite || I.mayWriteToMemory()) { 2444 if (!MaybeLoc || !MaybeLocI) 2445 return false; 2446 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) 2447 return false; 2448 } 2449 } 2450 } 2451 return true; 2452 } 2453 2454 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { 2455 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 2456 return VecTy->getElementType() == getByteTy(); 2457 return false; 2458 } 2459 2460 auto HexagonVectorCombine::getElementRange(IRBuilderBase &Builder, Value *Lo, 2461 Value *Hi, int Start, 2462 int Length) const -> Value * { 2463 assert(0 <= Start && size_t(Start + Length) < length(Lo) + length(Hi)); 2464 SmallVector<int, 128> SMask(Length); 2465 std::iota(SMask.begin(), SMask.end(), Start); 2466 return Builder.CreateShuffleVector(Lo, Hi, SMask); 2467 } 2468 2469 // Pass management. 2470 2471 namespace llvm { 2472 void initializeHexagonVectorCombineLegacyPass(PassRegistry &); 2473 FunctionPass *createHexagonVectorCombineLegacyPass(); 2474 } // namespace llvm 2475 2476 namespace { 2477 class HexagonVectorCombineLegacy : public FunctionPass { 2478 public: 2479 static char ID; 2480 2481 HexagonVectorCombineLegacy() : FunctionPass(ID) {} 2482 2483 StringRef getPassName() const override { return "Hexagon Vector Combine"; } 2484 2485 void getAnalysisUsage(AnalysisUsage &AU) const override { 2486 AU.setPreservesCFG(); 2487 AU.addRequired<AAResultsWrapperPass>(); 2488 AU.addRequired<AssumptionCacheTracker>(); 2489 AU.addRequired<DominatorTreeWrapperPass>(); 2490 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2491 AU.addRequired<TargetPassConfig>(); 2492 FunctionPass::getAnalysisUsage(AU); 2493 } 2494 2495 bool runOnFunction(Function &F) override { 2496 if (skipFunction(F)) 2497 return false; 2498 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2499 AssumptionCache &AC = 2500 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2501 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2502 TargetLibraryInfo &TLI = 2503 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2504 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>(); 2505 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); 2506 return HVC.run(); 2507 } 2508 }; 2509 } // namespace 2510 2511 char HexagonVectorCombineLegacy::ID = 0; 2512 2513 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, 2514 "Hexagon Vector Combine", false, false) 2515 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2516 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2517 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2518 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2519 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 2520 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, 2521 "Hexagon Vector Combine", false, false) 2522 2523 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { 2524 return new HexagonVectorCombineLegacy(); 2525 } 2526