1 //===- HexagonSplitDouble.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "hsdr" 11 12 #include "HexagonInstrInfo.h" 13 #include "HexagonRegisterInfo.h" 14 #include "HexagonSubtarget.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineFunctionPass.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Compiler.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <limits> 40 #include <map> 41 #include <set> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 namespace llvm { 48 49 FunctionPass *createHexagonSplitDoubleRegs(); 50 void initializeHexagonSplitDoubleRegsPass(PassRegistry&); 51 52 } // end namespace llvm 53 54 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1), 55 cl::desc("Maximum number of split partitions")); 56 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true), 57 cl::desc("Do not split loads or stores")); 58 59 namespace { 60 61 class HexagonSplitDoubleRegs : public MachineFunctionPass { 62 public: 63 static char ID; 64 65 HexagonSplitDoubleRegs() : MachineFunctionPass(ID) { 66 initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry()); 67 } 68 69 StringRef getPassName() const override { 70 return "Hexagon Split Double Registers"; 71 } 72 73 void getAnalysisUsage(AnalysisUsage &AU) const override { 74 AU.addRequired<MachineLoopInfo>(); 75 AU.addPreserved<MachineLoopInfo>(); 76 MachineFunctionPass::getAnalysisUsage(AU); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 81 private: 82 static const TargetRegisterClass *const DoubleRC; 83 84 const HexagonRegisterInfo *TRI = nullptr; 85 const HexagonInstrInfo *TII = nullptr; 86 const MachineLoopInfo *MLI; 87 MachineRegisterInfo *MRI; 88 89 using USet = std::set<unsigned>; 90 using UUSetMap = std::map<unsigned, USet>; 91 using UUPair = std::pair<unsigned, unsigned>; 92 using UUPairMap = std::map<unsigned, UUPair>; 93 using LoopRegMap = std::map<const MachineLoop *, USet>; 94 95 bool isInduction(unsigned Reg, LoopRegMap &IRM) const; 96 bool isVolatileInstr(const MachineInstr *MI) const; 97 bool isFixedInstr(const MachineInstr *MI) const; 98 void partitionRegisters(UUSetMap &P2Rs); 99 int32_t profit(const MachineInstr *MI) const; 100 bool isProfitable(const USet &Part, LoopRegMap &IRM) const; 101 102 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs); 103 void collectIndRegs(LoopRegMap &IRM); 104 105 void createHalfInstr(unsigned Opc, MachineInstr *MI, 106 const UUPairMap &PairMap, unsigned SubR); 107 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap); 108 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap); 109 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap); 110 void splitExt(MachineInstr *MI, const UUPairMap &PairMap); 111 void splitShift(MachineInstr *MI, const UUPairMap &PairMap); 112 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap); 113 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap); 114 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap); 115 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap); 116 bool splitPartition(const USet &Part); 117 118 static int Counter; 119 120 static void dump_partition(raw_ostream&, const USet&, 121 const TargetRegisterInfo&); 122 }; 123 124 } // end anonymous namespace 125 126 char HexagonSplitDoubleRegs::ID; 127 int HexagonSplitDoubleRegs::Counter = 0; 128 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC = 129 &Hexagon::DoubleRegsRegClass; 130 131 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double", 132 "Hexagon Split Double Registers", false, false) 133 134 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 135 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os, 136 const USet &Part, const TargetRegisterInfo &TRI) { 137 dbgs() << '{'; 138 for (auto I : Part) 139 dbgs() << ' ' << printReg(I, &TRI); 140 dbgs() << " }"; 141 } 142 #endif 143 144 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const { 145 for (auto I : IRM) { 146 const USet &Rs = I.second; 147 if (Rs.find(Reg) != Rs.end()) 148 return true; 149 } 150 return false; 151 } 152 153 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const { 154 for (auto &I : MI->memoperands()) 155 if (I->isVolatile()) 156 return true; 157 return false; 158 } 159 160 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const { 161 if (MI->mayLoad() || MI->mayStore()) 162 if (MemRefsFixed || isVolatileInstr(MI)) 163 return true; 164 if (MI->isDebugValue()) 165 return false; 166 167 unsigned Opc = MI->getOpcode(); 168 switch (Opc) { 169 default: 170 return true; 171 172 case TargetOpcode::PHI: 173 case TargetOpcode::COPY: 174 break; 175 176 case Hexagon::L2_loadrd_io: 177 // Not handling stack stores (only reg-based addresses). 178 if (MI->getOperand(1).isReg()) 179 break; 180 return true; 181 case Hexagon::S2_storerd_io: 182 // Not handling stack stores (only reg-based addresses). 183 if (MI->getOperand(0).isReg()) 184 break; 185 return true; 186 case Hexagon::L2_loadrd_pi: 187 case Hexagon::S2_storerd_pi: 188 189 case Hexagon::A2_tfrpi: 190 case Hexagon::A2_combineii: 191 case Hexagon::A4_combineir: 192 case Hexagon::A4_combineii: 193 case Hexagon::A4_combineri: 194 case Hexagon::A2_combinew: 195 case Hexagon::CONST64: 196 197 case Hexagon::A2_sxtw: 198 199 case Hexagon::A2_andp: 200 case Hexagon::A2_orp: 201 case Hexagon::A2_xorp: 202 case Hexagon::S2_asl_i_p_or: 203 case Hexagon::S2_asl_i_p: 204 case Hexagon::S2_asr_i_p: 205 case Hexagon::S2_lsr_i_p: 206 break; 207 } 208 209 for (auto &Op : MI->operands()) { 210 if (!Op.isReg()) 211 continue; 212 unsigned R = Op.getReg(); 213 if (!TargetRegisterInfo::isVirtualRegister(R)) 214 return true; 215 } 216 return false; 217 } 218 219 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) { 220 using UUMap = std::map<unsigned, unsigned>; 221 using UVect = std::vector<unsigned>; 222 223 unsigned NumRegs = MRI->getNumVirtRegs(); 224 BitVector DoubleRegs(NumRegs); 225 for (unsigned i = 0; i < NumRegs; ++i) { 226 unsigned R = TargetRegisterInfo::index2VirtReg(i); 227 if (MRI->getRegClass(R) == DoubleRC) 228 DoubleRegs.set(i); 229 } 230 231 BitVector FixedRegs(NumRegs); 232 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 233 unsigned R = TargetRegisterInfo::index2VirtReg(x); 234 MachineInstr *DefI = MRI->getVRegDef(R); 235 // In some cases a register may exist, but never be defined or used. 236 // It should never appear anywhere, but mark it as "fixed", just to be 237 // safe. 238 if (!DefI || isFixedInstr(DefI)) 239 FixedRegs.set(x); 240 } 241 242 UUSetMap AssocMap; 243 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 244 if (FixedRegs[x]) 245 continue; 246 unsigned R = TargetRegisterInfo::index2VirtReg(x); 247 DEBUG(dbgs() << printReg(R, TRI) << " ~~"); 248 USet &Asc = AssocMap[R]; 249 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end(); 250 U != Z; ++U) { 251 MachineOperand &Op = *U; 252 MachineInstr *UseI = Op.getParent(); 253 if (isFixedInstr(UseI)) 254 continue; 255 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) { 256 MachineOperand &MO = UseI->getOperand(i); 257 // Skip non-registers or registers with subregisters. 258 if (&MO == &Op || !MO.isReg() || MO.getSubReg()) 259 continue; 260 unsigned T = MO.getReg(); 261 if (!TargetRegisterInfo::isVirtualRegister(T)) { 262 FixedRegs.set(x); 263 continue; 264 } 265 if (MRI->getRegClass(T) != DoubleRC) 266 continue; 267 unsigned u = TargetRegisterInfo::virtReg2Index(T); 268 if (FixedRegs[u]) 269 continue; 270 DEBUG(dbgs() << ' ' << printReg(T, TRI)); 271 Asc.insert(T); 272 // Make it symmetric. 273 AssocMap[T].insert(R); 274 } 275 } 276 DEBUG(dbgs() << '\n'); 277 } 278 279 UUMap R2P; 280 unsigned NextP = 1; 281 USet Visited; 282 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 283 unsigned R = TargetRegisterInfo::index2VirtReg(x); 284 if (Visited.count(R)) 285 continue; 286 // Create a new partition for R. 287 unsigned ThisP = FixedRegs[x] ? 0 : NextP++; 288 UVect WorkQ; 289 WorkQ.push_back(R); 290 for (unsigned i = 0; i < WorkQ.size(); ++i) { 291 unsigned T = WorkQ[i]; 292 if (Visited.count(T)) 293 continue; 294 R2P[T] = ThisP; 295 Visited.insert(T); 296 // Add all registers associated with T. 297 USet &Asc = AssocMap[T]; 298 for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J) 299 WorkQ.push_back(*J); 300 } 301 } 302 303 for (auto I : R2P) 304 P2Rs[I.second].insert(I.first); 305 } 306 307 static inline int32_t profitImm(unsigned Lo, unsigned Hi) { 308 int32_t P = 0; 309 bool LoZ1 = false, HiZ1 = false; 310 if (Lo == 0 || Lo == 0xFFFFFFFF) 311 P += 10, LoZ1 = true; 312 if (Hi == 0 || Hi == 0xFFFFFFFF) 313 P += 10, HiZ1 = true; 314 if (!LoZ1 && !HiZ1 && Lo == Hi) 315 P += 3; 316 return P; 317 } 318 319 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const { 320 unsigned ImmX = 0; 321 unsigned Opc = MI->getOpcode(); 322 switch (Opc) { 323 case TargetOpcode::PHI: 324 for (const auto &Op : MI->operands()) 325 if (!Op.getSubReg()) 326 return 0; 327 return 10; 328 case TargetOpcode::COPY: 329 if (MI->getOperand(1).getSubReg() != 0) 330 return 10; 331 return 0; 332 333 case Hexagon::L2_loadrd_io: 334 case Hexagon::S2_storerd_io: 335 return -1; 336 case Hexagon::L2_loadrd_pi: 337 case Hexagon::S2_storerd_pi: 338 return 2; 339 340 case Hexagon::A2_tfrpi: 341 case Hexagon::CONST64: { 342 uint64_t D = MI->getOperand(1).getImm(); 343 unsigned Lo = D & 0xFFFFFFFFULL; 344 unsigned Hi = D >> 32; 345 return profitImm(Lo, Hi); 346 } 347 case Hexagon::A2_combineii: 348 case Hexagon::A4_combineii: 349 return profitImm(MI->getOperand(1).getImm(), 350 MI->getOperand(2).getImm()); 351 case Hexagon::A4_combineri: 352 ImmX++; 353 // Fall through into A4_combineir. 354 LLVM_FALLTHROUGH; 355 case Hexagon::A4_combineir: { 356 ImmX++; 357 int64_t V = MI->getOperand(ImmX).getImm(); 358 if (V == 0 || V == -1) 359 return 10; 360 // Fall through into A2_combinew. 361 LLVM_FALLTHROUGH; 362 } 363 case Hexagon::A2_combinew: 364 return 2; 365 366 case Hexagon::A2_sxtw: 367 return 3; 368 369 case Hexagon::A2_andp: 370 case Hexagon::A2_orp: 371 case Hexagon::A2_xorp: 372 return 1; 373 374 case Hexagon::S2_asl_i_p_or: { 375 unsigned S = MI->getOperand(3).getImm(); 376 if (S == 0 || S == 32) 377 return 10; 378 return -1; 379 } 380 case Hexagon::S2_asl_i_p: 381 case Hexagon::S2_asr_i_p: 382 case Hexagon::S2_lsr_i_p: 383 unsigned S = MI->getOperand(2).getImm(); 384 if (S == 0 || S == 32) 385 return 10; 386 if (S == 16) 387 return 5; 388 if (S == 48) 389 return 7; 390 return -10; 391 } 392 393 return 0; 394 } 395 396 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM) 397 const { 398 unsigned FixedNum = 0, LoopPhiNum = 0; 399 int32_t TotalP = 0; 400 401 for (unsigned DR : Part) { 402 MachineInstr *DefI = MRI->getVRegDef(DR); 403 int32_t P = profit(DefI); 404 if (P == std::numeric_limits<int>::min()) 405 return false; 406 TotalP += P; 407 // Reduce the profitability of splitting induction registers. 408 if (isInduction(DR, IRM)) 409 TotalP -= 30; 410 411 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 412 U != W; ++U) { 413 MachineInstr *UseI = U->getParent(); 414 if (isFixedInstr(UseI)) { 415 FixedNum++; 416 // Calculate the cost of generating REG_SEQUENCE instructions. 417 for (auto &Op : UseI->operands()) { 418 if (Op.isReg() && Part.count(Op.getReg())) 419 if (Op.getSubReg()) 420 TotalP -= 2; 421 } 422 continue; 423 } 424 // If a register from this partition is used in a fixed instruction, 425 // and there is also a register in this partition that is used in 426 // a loop phi node, then decrease the splitting profit as this can 427 // confuse the modulo scheduler. 428 if (UseI->isPHI()) { 429 const MachineBasicBlock *PB = UseI->getParent(); 430 const MachineLoop *L = MLI->getLoopFor(PB); 431 if (L && L->getHeader() == PB) 432 LoopPhiNum++; 433 } 434 // Splittable instruction. 435 int32_t P = profit(UseI); 436 if (P == std::numeric_limits<int>::min()) 437 return false; 438 TotalP += P; 439 } 440 } 441 442 if (FixedNum > 0 && LoopPhiNum > 0) 443 TotalP -= 20*LoopPhiNum; 444 445 DEBUG(dbgs() << "Partition profit: " << TotalP << '\n'); 446 return TotalP > 0; 447 } 448 449 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L, 450 USet &Rs) { 451 const MachineBasicBlock *HB = L->getHeader(); 452 const MachineBasicBlock *LB = L->getLoopLatch(); 453 if (!HB || !LB) 454 return; 455 456 // Examine the latch branch. Expect it to be a conditional branch to 457 // the header (either "br-cond header" or "br-cond exit; br header"). 458 MachineBasicBlock *TB = nullptr, *FB = nullptr; 459 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB); 460 SmallVector<MachineOperand,2> Cond; 461 bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false); 462 // Only analyzable conditional branches. HII::analyzeBranch will put 463 // the branch opcode as the first element of Cond, and the predicate 464 // operand as the second. 465 if (BadLB || Cond.size() != 2) 466 return; 467 // Only simple jump-conditional (with or without negation). 468 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm())) 469 return; 470 // Must go to the header. 471 if (TB != HB && FB != HB) 472 return; 473 assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch"); 474 // Expect a predicate register. 475 unsigned PR = Cond[1].getReg(); 476 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass); 477 478 // Get the registers on which the loop controlling compare instruction 479 // depends. 480 unsigned CmpR1 = 0, CmpR2 = 0; 481 const MachineInstr *CmpI = MRI->getVRegDef(PR); 482 while (CmpI->getOpcode() == Hexagon::C2_not) 483 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg()); 484 485 int Mask = 0, Val = 0; 486 bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val); 487 if (!OkCI) 488 return; 489 // Eliminate non-double input registers. 490 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC) 491 CmpR1 = 0; 492 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC) 493 CmpR2 = 0; 494 if (!CmpR1 && !CmpR2) 495 return; 496 497 // Now examine the top of the loop: the phi nodes that could poten- 498 // tially define loop induction registers. The registers defined by 499 // such a phi node would be used in a 64-bit add, which then would 500 // be used in the loop compare instruction. 501 502 // Get the set of all double registers defined by phi nodes in the 503 // loop header. 504 using UVect = std::vector<unsigned>; 505 506 UVect DP; 507 for (auto &MI : *HB) { 508 if (!MI.isPHI()) 509 break; 510 const MachineOperand &MD = MI.getOperand(0); 511 unsigned R = MD.getReg(); 512 if (MRI->getRegClass(R) == DoubleRC) 513 DP.push_back(R); 514 } 515 if (DP.empty()) 516 return; 517 518 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool { 519 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end(); 520 I != E; ++I) { 521 const MachineInstr *UseI = I->getParent(); 522 if (UseI->getOpcode() != Hexagon::A2_addp) 523 continue; 524 // Get the output from the add. If it is one of the inputs to the 525 // loop-controlling compare instruction, then R is likely an induc- 526 // tion register. 527 unsigned T = UseI->getOperand(0).getReg(); 528 if (T == CmpR1 || T == CmpR2) 529 return false; 530 } 531 return true; 532 }; 533 UVect::iterator End = llvm::remove_if(DP, NoIndOp); 534 Rs.insert(DP.begin(), End); 535 Rs.insert(CmpR1); 536 Rs.insert(CmpR2); 537 538 DEBUG({ 539 dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: "; 540 dump_partition(dbgs(), Rs, *TRI); 541 dbgs() << '\n'; 542 }); 543 } 544 545 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) { 546 using LoopVector = std::vector<MachineLoop *>; 547 548 LoopVector WorkQ; 549 550 for (auto I : *MLI) 551 WorkQ.push_back(I); 552 for (unsigned i = 0; i < WorkQ.size(); ++i) { 553 for (auto I : *WorkQ[i]) 554 WorkQ.push_back(I); 555 } 556 557 USet Rs; 558 for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) { 559 MachineLoop *L = WorkQ[i]; 560 Rs.clear(); 561 collectIndRegsForLoop(L, Rs); 562 if (!Rs.empty()) 563 IRM.insert(std::make_pair(L, Rs)); 564 } 565 } 566 567 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI, 568 const UUPairMap &PairMap, unsigned SubR) { 569 MachineBasicBlock &B = *MI->getParent(); 570 DebugLoc DL = MI->getDebugLoc(); 571 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc)); 572 573 for (auto &Op : MI->operands()) { 574 if (!Op.isReg()) { 575 NewI->addOperand(Op); 576 continue; 577 } 578 // For register operands, set the subregister. 579 unsigned R = Op.getReg(); 580 unsigned SR = Op.getSubReg(); 581 bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R); 582 bool isKill = Op.isKill(); 583 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) { 584 isKill = false; 585 UUPairMap::const_iterator F = PairMap.find(R); 586 if (F == PairMap.end()) { 587 SR = SubR; 588 } else { 589 const UUPair &P = F->second; 590 R = (SubR == Hexagon::isub_lo) ? P.first : P.second; 591 SR = 0; 592 } 593 } 594 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill, 595 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(), 596 Op.isInternalRead()); 597 NewI->addOperand(CO); 598 } 599 } 600 601 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI, 602 const UUPairMap &PairMap) { 603 bool Load = MI->mayLoad(); 604 unsigned OrigOpc = MI->getOpcode(); 605 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi || 606 OrigOpc == Hexagon::S2_storerd_pi); 607 MachineInstr *LowI, *HighI; 608 MachineBasicBlock &B = *MI->getParent(); 609 DebugLoc DL = MI->getDebugLoc(); 610 611 // Index of the base-address-register operand. 612 unsigned AdrX = PostInc ? (Load ? 2 : 1) 613 : (Load ? 1 : 0); 614 MachineOperand &AdrOp = MI->getOperand(AdrX); 615 unsigned RSA = getRegState(AdrOp); 616 MachineOperand &ValOp = Load ? MI->getOperand(0) 617 : (PostInc ? MI->getOperand(3) 618 : MI->getOperand(2)); 619 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg()); 620 assert(F != PairMap.end()); 621 622 if (Load) { 623 const UUPair &P = F->second; 624 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm(); 625 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first) 626 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 627 .addImm(Off); 628 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second) 629 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 630 .addImm(Off+4); 631 } else { 632 const UUPair &P = F->second; 633 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm(); 634 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) 635 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 636 .addImm(Off) 637 .addReg(P.first); 638 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) 639 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 640 .addImm(Off+4) 641 .addReg(P.second); 642 } 643 644 if (PostInc) { 645 // Create the increment of the address register. 646 int64_t Inc = Load ? MI->getOperand(3).getImm() 647 : MI->getOperand(2).getImm(); 648 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0); 649 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg()); 650 unsigned NewR = MRI->createVirtualRegister(RC); 651 assert(!UpdOp.getSubReg() && "Def operand with subreg"); 652 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR) 653 .addReg(AdrOp.getReg(), RSA) 654 .addImm(Inc); 655 MRI->replaceRegWith(UpdOp.getReg(), NewR); 656 // The original instruction will be deleted later. 657 } 658 659 // Generate a new pair of memory-operands. 660 MachineFunction &MF = *B.getParent(); 661 for (auto &MO : MI->memoperands()) { 662 const MachinePointerInfo &Ptr = MO->getPointerInfo(); 663 MachineMemOperand::Flags F = MO->getFlags(); 664 int A = MO->getAlignment(); 665 666 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A); 667 LowI->addMemOperand(MF, Tmp1); 668 auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4)); 669 HighI->addMemOperand(MF, Tmp2); 670 } 671 } 672 673 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI, 674 const UUPairMap &PairMap) { 675 MachineOperand &Op0 = MI->getOperand(0); 676 MachineOperand &Op1 = MI->getOperand(1); 677 assert(Op0.isReg() && Op1.isImm()); 678 uint64_t V = Op1.getImm(); 679 680 MachineBasicBlock &B = *MI->getParent(); 681 DebugLoc DL = MI->getDebugLoc(); 682 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 683 assert(F != PairMap.end()); 684 const UUPair &P = F->second; 685 686 // The operand to A2_tfrsi can only have 32 significant bits. Immediate 687 // values in MachineOperand are stored as 64-bit integers, and so the 688 // value -1 may be represented either as 64-bit -1, or 4294967295. Both 689 // will have the 32 higher bits truncated in the end, but -1 will remain 690 // as -1, while the latter may appear to be a large unsigned value 691 // requiring a constant extender. The casting to int32_t will select the 692 // former representation. (The same reasoning applies to all 32-bit 693 // values.) 694 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) 695 .addImm(int32_t(V & 0xFFFFFFFFULL)); 696 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) 697 .addImm(int32_t(V >> 32)); 698 } 699 700 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI, 701 const UUPairMap &PairMap) { 702 MachineOperand &Op0 = MI->getOperand(0); 703 MachineOperand &Op1 = MI->getOperand(1); 704 MachineOperand &Op2 = MI->getOperand(2); 705 assert(Op0.isReg()); 706 707 MachineBasicBlock &B = *MI->getParent(); 708 DebugLoc DL = MI->getDebugLoc(); 709 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 710 assert(F != PairMap.end()); 711 const UUPair &P = F->second; 712 713 if (Op1.isImm()) { 714 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) 715 .addImm(Op1.getImm()); 716 } else if (Op1.isReg()) { 717 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second) 718 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg()); 719 } else 720 llvm_unreachable("Unexpected operand"); 721 722 if (Op2.isImm()) { 723 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) 724 .addImm(Op2.getImm()); 725 } else if (Op2.isReg()) { 726 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) 727 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg()); 728 } else 729 llvm_unreachable("Unexpected operand"); 730 } 731 732 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI, 733 const UUPairMap &PairMap) { 734 MachineOperand &Op0 = MI->getOperand(0); 735 MachineOperand &Op1 = MI->getOperand(1); 736 assert(Op0.isReg() && Op1.isReg()); 737 738 MachineBasicBlock &B = *MI->getParent(); 739 DebugLoc DL = MI->getDebugLoc(); 740 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 741 assert(F != PairMap.end()); 742 const UUPair &P = F->second; 743 unsigned RS = getRegState(Op1); 744 745 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) 746 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg()); 747 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second) 748 .addReg(Op1.getReg(), RS, Op1.getSubReg()) 749 .addImm(31); 750 } 751 752 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI, 753 const UUPairMap &PairMap) { 754 using namespace Hexagon; 755 756 MachineOperand &Op0 = MI->getOperand(0); 757 MachineOperand &Op1 = MI->getOperand(1); 758 MachineOperand &Op2 = MI->getOperand(2); 759 assert(Op0.isReg() && Op1.isReg() && Op2.isImm()); 760 int64_t Sh64 = Op2.getImm(); 761 assert(Sh64 >= 0 && Sh64 < 64); 762 unsigned S = Sh64; 763 764 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 765 assert(F != PairMap.end()); 766 const UUPair &P = F->second; 767 unsigned LoR = P.first; 768 unsigned HiR = P.second; 769 770 unsigned Opc = MI->getOpcode(); 771 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p); 772 bool Left = !Right; 773 bool Signed = (Opc == S2_asr_i_p); 774 775 MachineBasicBlock &B = *MI->getParent(); 776 DebugLoc DL = MI->getDebugLoc(); 777 unsigned RS = getRegState(Op1); 778 unsigned ShiftOpc = Left ? S2_asl_i_r 779 : (Signed ? S2_asr_i_r : S2_lsr_i_r); 780 unsigned LoSR = isub_lo; 781 unsigned HiSR = isub_hi; 782 783 if (S == 0) { 784 // No shift, subregister copy. 785 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 786 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 787 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR) 788 .addReg(Op1.getReg(), RS, HiSR); 789 } else if (S < 32) { 790 const TargetRegisterClass *IntRC = &IntRegsRegClass; 791 unsigned TmpR = MRI->createVirtualRegister(IntRC); 792 // Expansion: 793 // Shift left: DR = shl R, #s 794 // LoR = shl R.lo, #s 795 // TmpR = extractu R.lo, #s, #32-s 796 // HiR = or (TmpR, asl(R.hi, #s)) 797 // Shift right: DR = shr R, #s 798 // HiR = shr R.hi, #s 799 // TmpR = shr R.lo, #s 800 // LoR = insert TmpR, R.hi, #s, #32-s 801 802 // Shift left: 803 // LoR = shl R.lo, #s 804 // Shift right: 805 // TmpR = shr R.lo, #s 806 807 // Make a special case for A2_aslh and A2_asrh (they are predicable as 808 // opposed to S2_asl_i_r/S2_asr_i_r). 809 if (S == 16 && Left) 810 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR) 811 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 812 else if (S == 16 && Signed) 813 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR) 814 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 815 else 816 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR)) 817 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) 818 .addImm(S); 819 820 if (Left) { 821 // TmpR = extractu R.lo, #s, #32-s 822 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR) 823 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) 824 .addImm(S) 825 .addImm(32-S); 826 // HiR = or (TmpR, asl(R.hi, #s)) 827 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 828 .addReg(TmpR) 829 .addReg(Op1.getReg(), RS, HiSR) 830 .addImm(S); 831 } else { 832 // HiR = shr R.hi, #s 833 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR) 834 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR) 835 .addImm(S); 836 // LoR = insert TmpR, R.hi, #s, #32-s 837 BuildMI(B, MI, DL, TII->get(S2_insert), LoR) 838 .addReg(TmpR) 839 .addReg(Op1.getReg(), RS, HiSR) 840 .addImm(S) 841 .addImm(32-S); 842 } 843 } else if (S == 32) { 844 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR)) 845 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)); 846 if (!Signed) 847 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) 848 .addImm(0); 849 else // Must be right shift. 850 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) 851 .addReg(Op1.getReg(), RS, HiSR) 852 .addImm(31); 853 } else if (S < 64) { 854 S -= 32; 855 if (S == 16 && Left) 856 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR) 857 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 858 else if (S == 16 && Signed) 859 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR) 860 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR); 861 else 862 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR)) 863 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)) 864 .addImm(S); 865 866 if (Signed) 867 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) 868 .addReg(Op1.getReg(), RS, HiSR) 869 .addImm(31); 870 else 871 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) 872 .addImm(0); 873 } 874 } 875 876 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI, 877 const UUPairMap &PairMap) { 878 using namespace Hexagon; 879 880 MachineOperand &Op0 = MI->getOperand(0); 881 MachineOperand &Op1 = MI->getOperand(1); 882 MachineOperand &Op2 = MI->getOperand(2); 883 MachineOperand &Op3 = MI->getOperand(3); 884 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm()); 885 int64_t Sh64 = Op3.getImm(); 886 assert(Sh64 >= 0 && Sh64 < 64); 887 unsigned S = Sh64; 888 889 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 890 assert(F != PairMap.end()); 891 const UUPair &P = F->second; 892 unsigned LoR = P.first; 893 unsigned HiR = P.second; 894 895 MachineBasicBlock &B = *MI->getParent(); 896 DebugLoc DL = MI->getDebugLoc(); 897 unsigned RS1 = getRegState(Op1); 898 unsigned RS2 = getRegState(Op2); 899 const TargetRegisterClass *IntRC = &IntRegsRegClass; 900 901 unsigned LoSR = isub_lo; 902 unsigned HiSR = isub_hi; 903 904 // Op0 = S2_asl_i_p_or Op1, Op2, Op3 905 // means: Op0 = or (Op1, asl(Op2, Op3)) 906 907 // Expansion of 908 // DR = or (R1, asl(R2, #s)) 909 // 910 // LoR = or (R1.lo, asl(R2.lo, #s)) 911 // Tmp1 = extractu R2.lo, #s, #32-s 912 // Tmp2 = or R1.hi, Tmp1 913 // HiR = or (Tmp2, asl(R2.hi, #s)) 914 915 if (S == 0) { 916 // DR = or (R1, asl(R2, #0)) 917 // -> or (R1, R2) 918 // i.e. LoR = or R1.lo, R2.lo 919 // HiR = or R1.hi, R2.hi 920 BuildMI(B, MI, DL, TII->get(A2_or), LoR) 921 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) 922 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR); 923 BuildMI(B, MI, DL, TII->get(A2_or), HiR) 924 .addReg(Op1.getReg(), RS1, HiSR) 925 .addReg(Op2.getReg(), RS2, HiSR); 926 } else if (S < 32) { 927 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR) 928 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) 929 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) 930 .addImm(S); 931 unsigned TmpR1 = MRI->createVirtualRegister(IntRC); 932 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1) 933 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) 934 .addImm(S) 935 .addImm(32-S); 936 unsigned TmpR2 = MRI->createVirtualRegister(IntRC); 937 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2) 938 .addReg(Op1.getReg(), RS1, HiSR) 939 .addReg(TmpR1); 940 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 941 .addReg(TmpR2) 942 .addReg(Op2.getReg(), RS2, HiSR) 943 .addImm(S); 944 } else if (S == 32) { 945 // DR = or (R1, asl(R2, #32)) 946 // -> or R1, R2.lo 947 // LoR = R1.lo 948 // HiR = or R1.hi, R2.lo 949 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 950 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); 951 BuildMI(B, MI, DL, TII->get(A2_or), HiR) 952 .addReg(Op1.getReg(), RS1, HiSR) 953 .addReg(Op2.getReg(), RS2, LoSR); 954 } else if (S < 64) { 955 // DR = or (R1, asl(R2, #s)) 956 // 957 // LoR = R1:lo 958 // HiR = or (R1:hi, asl(R2:lo, #s-32)) 959 S -= 32; 960 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 961 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); 962 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 963 .addReg(Op1.getReg(), RS1, HiSR) 964 .addReg(Op2.getReg(), RS2, LoSR) 965 .addImm(S); 966 } 967 } 968 969 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI, 970 const UUPairMap &PairMap) { 971 using namespace Hexagon; 972 973 DEBUG(dbgs() << "Splitting: " << *MI); 974 bool Split = false; 975 unsigned Opc = MI->getOpcode(); 976 977 switch (Opc) { 978 case TargetOpcode::PHI: 979 case TargetOpcode::COPY: { 980 unsigned DstR = MI->getOperand(0).getReg(); 981 if (MRI->getRegClass(DstR) == DoubleRC) { 982 createHalfInstr(Opc, MI, PairMap, isub_lo); 983 createHalfInstr(Opc, MI, PairMap, isub_hi); 984 Split = true; 985 } 986 break; 987 } 988 case A2_andp: 989 createHalfInstr(A2_and, MI, PairMap, isub_lo); 990 createHalfInstr(A2_and, MI, PairMap, isub_hi); 991 Split = true; 992 break; 993 case A2_orp: 994 createHalfInstr(A2_or, MI, PairMap, isub_lo); 995 createHalfInstr(A2_or, MI, PairMap, isub_hi); 996 Split = true; 997 break; 998 case A2_xorp: 999 createHalfInstr(A2_xor, MI, PairMap, isub_lo); 1000 createHalfInstr(A2_xor, MI, PairMap, isub_hi); 1001 Split = true; 1002 break; 1003 1004 case L2_loadrd_io: 1005 case L2_loadrd_pi: 1006 case S2_storerd_io: 1007 case S2_storerd_pi: 1008 splitMemRef(MI, PairMap); 1009 Split = true; 1010 break; 1011 1012 case A2_tfrpi: 1013 case CONST64: 1014 splitImmediate(MI, PairMap); 1015 Split = true; 1016 break; 1017 1018 case A2_combineii: 1019 case A4_combineir: 1020 case A4_combineii: 1021 case A4_combineri: 1022 case A2_combinew: 1023 splitCombine(MI, PairMap); 1024 Split = true; 1025 break; 1026 1027 case A2_sxtw: 1028 splitExt(MI, PairMap); 1029 Split = true; 1030 break; 1031 1032 case S2_asl_i_p: 1033 case S2_asr_i_p: 1034 case S2_lsr_i_p: 1035 splitShift(MI, PairMap); 1036 Split = true; 1037 break; 1038 1039 case S2_asl_i_p_or: 1040 splitAslOr(MI, PairMap); 1041 Split = true; 1042 break; 1043 1044 default: 1045 llvm_unreachable("Instruction not splitable"); 1046 return false; 1047 } 1048 1049 return Split; 1050 } 1051 1052 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI, 1053 const UUPairMap &PairMap) { 1054 for (auto &Op : MI->operands()) { 1055 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg()) 1056 continue; 1057 unsigned R = Op.getReg(); 1058 UUPairMap::const_iterator F = PairMap.find(R); 1059 if (F == PairMap.end()) 1060 continue; 1061 const UUPair &P = F->second; 1062 switch (Op.getSubReg()) { 1063 case Hexagon::isub_lo: 1064 Op.setReg(P.first); 1065 break; 1066 case Hexagon::isub_hi: 1067 Op.setReg(P.second); 1068 break; 1069 } 1070 Op.setSubReg(0); 1071 } 1072 } 1073 1074 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI, 1075 const UUPairMap &PairMap) { 1076 MachineBasicBlock &B = *MI->getParent(); 1077 DebugLoc DL = MI->getDebugLoc(); 1078 1079 for (auto &Op : MI->operands()) { 1080 if (!Op.isReg() || !Op.isUse()) 1081 continue; 1082 unsigned R = Op.getReg(); 1083 if (!TargetRegisterInfo::isVirtualRegister(R)) 1084 continue; 1085 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg()) 1086 continue; 1087 UUPairMap::const_iterator F = PairMap.find(R); 1088 if (F == PairMap.end()) 1089 continue; 1090 const UUPair &Pr = F->second; 1091 unsigned NewDR = MRI->createVirtualRegister(DoubleRC); 1092 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR) 1093 .addReg(Pr.first) 1094 .addImm(Hexagon::isub_lo) 1095 .addReg(Pr.second) 1096 .addImm(Hexagon::isub_hi); 1097 Op.setReg(NewDR); 1098 } 1099 } 1100 1101 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) { 1102 using MISet = std::set<MachineInstr *>; 1103 1104 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 1105 bool Changed = false; 1106 1107 DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI); 1108 dbgs() << '\n'); 1109 1110 UUPairMap PairMap; 1111 1112 MISet SplitIns; 1113 for (unsigned DR : Part) { 1114 MachineInstr *DefI = MRI->getVRegDef(DR); 1115 SplitIns.insert(DefI); 1116 1117 // Collect all instructions, including fixed ones. We won't split them, 1118 // but we need to visit them again to insert the REG_SEQUENCE instructions. 1119 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 1120 U != W; ++U) 1121 SplitIns.insert(U->getParent()); 1122 1123 unsigned LoR = MRI->createVirtualRegister(IntRC); 1124 unsigned HiR = MRI->createVirtualRegister(IntRC); 1125 DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> " 1126 << printReg(HiR, TRI) << ':' << printReg(LoR, TRI) << '\n'); 1127 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR))); 1128 } 1129 1130 MISet Erase; 1131 for (auto MI : SplitIns) { 1132 if (isFixedInstr(MI)) { 1133 collapseRegPairs(MI, PairMap); 1134 } else { 1135 bool Done = splitInstr(MI, PairMap); 1136 if (Done) 1137 Erase.insert(MI); 1138 Changed |= Done; 1139 } 1140 } 1141 1142 for (unsigned DR : Part) { 1143 // Before erasing "double" instructions, revisit all uses of the double 1144 // registers in this partition, and replace all uses of them with subre- 1145 // gisters, with the corresponding single registers. 1146 MISet Uses; 1147 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 1148 U != W; ++U) 1149 Uses.insert(U->getParent()); 1150 for (auto M : Uses) 1151 replaceSubregUses(M, PairMap); 1152 } 1153 1154 for (auto MI : Erase) { 1155 MachineBasicBlock *B = MI->getParent(); 1156 B->erase(MI); 1157 } 1158 1159 return Changed; 1160 } 1161 1162 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) { 1163 DEBUG(dbgs() << "Splitting double registers in function: " 1164 << MF.getName() << '\n'); 1165 1166 if (skipFunction(*MF.getFunction())) 1167 return false; 1168 1169 auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1170 TRI = ST.getRegisterInfo(); 1171 TII = ST.getInstrInfo(); 1172 MRI = &MF.getRegInfo(); 1173 MLI = &getAnalysis<MachineLoopInfo>(); 1174 1175 UUSetMap P2Rs; 1176 LoopRegMap IRM; 1177 1178 collectIndRegs(IRM); 1179 partitionRegisters(P2Rs); 1180 1181 DEBUG({ 1182 dbgs() << "Register partitioning: (partition #0 is fixed)\n"; 1183 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { 1184 dbgs() << '#' << I->first << " -> "; 1185 dump_partition(dbgs(), I->second, *TRI); 1186 dbgs() << '\n'; 1187 } 1188 }); 1189 1190 bool Changed = false; 1191 int Limit = MaxHSDR; 1192 1193 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { 1194 if (I->first == 0) 1195 continue; 1196 if (Limit >= 0 && Counter >= Limit) 1197 break; 1198 USet &Part = I->second; 1199 DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n'); 1200 if (!isProfitable(Part, IRM)) 1201 continue; 1202 Counter++; 1203 Changed |= splitPartition(Part); 1204 } 1205 1206 return Changed; 1207 } 1208 1209 FunctionPass *llvm::createHexagonSplitDoubleRegs() { 1210 return new HexagonSplitDoubleRegs(); 1211 } 1212