1 //===--- HexagonSplitDouble.cpp -------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "hsdr" 11 12 #include "HexagonInstrInfo.h" 13 #include "HexagonRegisterInfo.h" 14 #include "HexagonSubtarget.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineFunctionPass.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Compiler.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include <algorithm> 37 #include <cassert> 38 #include <cstdint> 39 #include <limits> 40 #include <map> 41 #include <set> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 namespace llvm { 48 49 FunctionPass *createHexagonSplitDoubleRegs(); 50 void initializeHexagonSplitDoubleRegsPass(PassRegistry&); 51 52 } // end namespace llvm 53 54 namespace { 55 56 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1), 57 cl::desc("Maximum number of split partitions")); 58 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true), 59 cl::desc("Do not split loads or stores")); 60 61 class HexagonSplitDoubleRegs : public MachineFunctionPass { 62 public: 63 static char ID; 64 65 HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr), 66 TII(nullptr) { 67 initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry()); 68 } 69 70 StringRef getPassName() const override { 71 return "Hexagon Split Double Registers"; 72 } 73 74 void getAnalysisUsage(AnalysisUsage &AU) const override { 75 AU.addRequired<MachineLoopInfo>(); 76 AU.addPreserved<MachineLoopInfo>(); 77 MachineFunctionPass::getAnalysisUsage(AU); 78 } 79 80 bool runOnMachineFunction(MachineFunction &MF) override; 81 82 private: 83 static const TargetRegisterClass *const DoubleRC; 84 85 const HexagonRegisterInfo *TRI; 86 const HexagonInstrInfo *TII; 87 const MachineLoopInfo *MLI; 88 MachineRegisterInfo *MRI; 89 90 typedef std::set<unsigned> USet; 91 typedef std::map<unsigned,USet> UUSetMap; 92 typedef std::pair<unsigned,unsigned> UUPair; 93 typedef std::map<unsigned,UUPair> UUPairMap; 94 typedef std::map<const MachineLoop*,USet> LoopRegMap; 95 96 bool isInduction(unsigned Reg, LoopRegMap &IRM) const; 97 bool isVolatileInstr(const MachineInstr *MI) const; 98 bool isFixedInstr(const MachineInstr *MI) const; 99 void partitionRegisters(UUSetMap &P2Rs); 100 int32_t profit(const MachineInstr *MI) const; 101 bool isProfitable(const USet &Part, LoopRegMap &IRM) const; 102 103 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs); 104 void collectIndRegs(LoopRegMap &IRM); 105 106 void createHalfInstr(unsigned Opc, MachineInstr *MI, 107 const UUPairMap &PairMap, unsigned SubR); 108 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap); 109 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap); 110 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap); 111 void splitExt(MachineInstr *MI, const UUPairMap &PairMap); 112 void splitShift(MachineInstr *MI, const UUPairMap &PairMap); 113 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap); 114 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap); 115 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap); 116 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap); 117 bool splitPartition(const USet &Part); 118 119 static int Counter; 120 static void dump_partition(raw_ostream&, const USet&, 121 const TargetRegisterInfo&); 122 }; 123 124 char HexagonSplitDoubleRegs::ID; 125 int HexagonSplitDoubleRegs::Counter = 0; 126 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC 127 = &Hexagon::DoubleRegsRegClass; 128 129 } // end anonymous namespace 130 131 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double", 132 "Hexagon Split Double Registers", false, false) 133 134 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 135 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os, 136 const USet &Part, const TargetRegisterInfo &TRI) { 137 dbgs() << '{'; 138 for (auto I : Part) 139 dbgs() << ' ' << PrintReg(I, &TRI); 140 dbgs() << " }"; 141 } 142 #endif 143 144 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const { 145 for (auto I : IRM) { 146 const USet &Rs = I.second; 147 if (Rs.find(Reg) != Rs.end()) 148 return true; 149 } 150 return false; 151 } 152 153 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const { 154 for (auto &I : MI->memoperands()) 155 if (I->isVolatile()) 156 return true; 157 return false; 158 } 159 160 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const { 161 if (MI->mayLoad() || MI->mayStore()) 162 if (MemRefsFixed || isVolatileInstr(MI)) 163 return true; 164 if (MI->isDebugValue()) 165 return false; 166 167 unsigned Opc = MI->getOpcode(); 168 switch (Opc) { 169 default: 170 return true; 171 172 case TargetOpcode::PHI: 173 case TargetOpcode::COPY: 174 break; 175 176 case Hexagon::L2_loadrd_io: 177 // Not handling stack stores (only reg-based addresses). 178 if (MI->getOperand(1).isReg()) 179 break; 180 return true; 181 case Hexagon::S2_storerd_io: 182 // Not handling stack stores (only reg-based addresses). 183 if (MI->getOperand(0).isReg()) 184 break; 185 return true; 186 case Hexagon::L2_loadrd_pi: 187 case Hexagon::S2_storerd_pi: 188 189 case Hexagon::A2_tfrpi: 190 case Hexagon::A2_combineii: 191 case Hexagon::A4_combineir: 192 case Hexagon::A4_combineii: 193 case Hexagon::A4_combineri: 194 case Hexagon::A2_combinew: 195 case Hexagon::CONST64: 196 197 case Hexagon::A2_sxtw: 198 199 case Hexagon::A2_andp: 200 case Hexagon::A2_orp: 201 case Hexagon::A2_xorp: 202 case Hexagon::S2_asl_i_p_or: 203 case Hexagon::S2_asl_i_p: 204 case Hexagon::S2_asr_i_p: 205 case Hexagon::S2_lsr_i_p: 206 break; 207 } 208 209 for (auto &Op : MI->operands()) { 210 if (!Op.isReg()) 211 continue; 212 unsigned R = Op.getReg(); 213 if (!TargetRegisterInfo::isVirtualRegister(R)) 214 return true; 215 } 216 return false; 217 } 218 219 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) { 220 typedef std::map<unsigned,unsigned> UUMap; 221 typedef std::vector<unsigned> UVect; 222 223 unsigned NumRegs = MRI->getNumVirtRegs(); 224 BitVector DoubleRegs(NumRegs); 225 for (unsigned i = 0; i < NumRegs; ++i) { 226 unsigned R = TargetRegisterInfo::index2VirtReg(i); 227 if (MRI->getRegClass(R) == DoubleRC) 228 DoubleRegs.set(i); 229 } 230 231 BitVector FixedRegs(NumRegs); 232 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 233 unsigned R = TargetRegisterInfo::index2VirtReg(x); 234 MachineInstr *DefI = MRI->getVRegDef(R); 235 // In some cases a register may exist, but never be defined or used. 236 // It should never appear anywhere, but mark it as "fixed", just to be 237 // safe. 238 if (!DefI || isFixedInstr(DefI)) 239 FixedRegs.set(x); 240 } 241 242 UUSetMap AssocMap; 243 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 244 if (FixedRegs[x]) 245 continue; 246 unsigned R = TargetRegisterInfo::index2VirtReg(x); 247 DEBUG(dbgs() << PrintReg(R, TRI) << " ~~"); 248 USet &Asc = AssocMap[R]; 249 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end(); 250 U != Z; ++U) { 251 MachineOperand &Op = *U; 252 MachineInstr *UseI = Op.getParent(); 253 if (isFixedInstr(UseI)) 254 continue; 255 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) { 256 MachineOperand &MO = UseI->getOperand(i); 257 // Skip non-registers or registers with subregisters. 258 if (&MO == &Op || !MO.isReg() || MO.getSubReg()) 259 continue; 260 unsigned T = MO.getReg(); 261 if (!TargetRegisterInfo::isVirtualRegister(T)) { 262 FixedRegs.set(x); 263 continue; 264 } 265 if (MRI->getRegClass(T) != DoubleRC) 266 continue; 267 unsigned u = TargetRegisterInfo::virtReg2Index(T); 268 if (FixedRegs[u]) 269 continue; 270 DEBUG(dbgs() << ' ' << PrintReg(T, TRI)); 271 Asc.insert(T); 272 // Make it symmetric. 273 AssocMap[T].insert(R); 274 } 275 } 276 DEBUG(dbgs() << '\n'); 277 } 278 279 UUMap R2P; 280 unsigned NextP = 1; 281 USet Visited; 282 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { 283 unsigned R = TargetRegisterInfo::index2VirtReg(x); 284 if (Visited.count(R)) 285 continue; 286 // Create a new partition for R. 287 unsigned ThisP = FixedRegs[x] ? 0 : NextP++; 288 UVect WorkQ; 289 WorkQ.push_back(R); 290 for (unsigned i = 0; i < WorkQ.size(); ++i) { 291 unsigned T = WorkQ[i]; 292 if (Visited.count(T)) 293 continue; 294 R2P[T] = ThisP; 295 Visited.insert(T); 296 // Add all registers associated with T. 297 USet &Asc = AssocMap[T]; 298 for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J) 299 WorkQ.push_back(*J); 300 } 301 } 302 303 for (auto I : R2P) 304 P2Rs[I.second].insert(I.first); 305 } 306 307 static inline int32_t profitImm(unsigned Lo, unsigned Hi) { 308 int32_t P = 0; 309 bool LoZ1 = false, HiZ1 = false; 310 if (Lo == 0 || Lo == 0xFFFFFFFF) 311 P += 10, LoZ1 = true; 312 if (Hi == 0 || Hi == 0xFFFFFFFF) 313 P += 10, HiZ1 = true; 314 if (!LoZ1 && !HiZ1 && Lo == Hi) 315 P += 3; 316 return P; 317 } 318 319 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const { 320 unsigned ImmX = 0; 321 unsigned Opc = MI->getOpcode(); 322 switch (Opc) { 323 case TargetOpcode::PHI: 324 for (const auto &Op : MI->operands()) 325 if (!Op.getSubReg()) 326 return 0; 327 return 10; 328 case TargetOpcode::COPY: 329 if (MI->getOperand(1).getSubReg() != 0) 330 return 10; 331 return 0; 332 333 case Hexagon::L2_loadrd_io: 334 case Hexagon::S2_storerd_io: 335 return -1; 336 case Hexagon::L2_loadrd_pi: 337 case Hexagon::S2_storerd_pi: 338 return 2; 339 340 case Hexagon::A2_tfrpi: 341 case Hexagon::CONST64: { 342 uint64_t D = MI->getOperand(1).getImm(); 343 unsigned Lo = D & 0xFFFFFFFFULL; 344 unsigned Hi = D >> 32; 345 return profitImm(Lo, Hi); 346 } 347 case Hexagon::A2_combineii: 348 case Hexagon::A4_combineii: 349 return profitImm(MI->getOperand(1).getImm(), 350 MI->getOperand(2).getImm()); 351 case Hexagon::A4_combineri: 352 ImmX++; 353 case Hexagon::A4_combineir: { 354 ImmX++; 355 int64_t V = MI->getOperand(ImmX).getImm(); 356 if (V == 0 || V == -1) 357 return 10; 358 // Fall through into A2_combinew. 359 LLVM_FALLTHROUGH; 360 } 361 case Hexagon::A2_combinew: 362 return 2; 363 364 case Hexagon::A2_sxtw: 365 return 3; 366 367 case Hexagon::A2_andp: 368 case Hexagon::A2_orp: 369 case Hexagon::A2_xorp: 370 return 1; 371 372 case Hexagon::S2_asl_i_p_or: { 373 unsigned S = MI->getOperand(3).getImm(); 374 if (S == 0 || S == 32) 375 return 10; 376 return -1; 377 } 378 case Hexagon::S2_asl_i_p: 379 case Hexagon::S2_asr_i_p: 380 case Hexagon::S2_lsr_i_p: 381 unsigned S = MI->getOperand(2).getImm(); 382 if (S == 0 || S == 32) 383 return 10; 384 if (S == 16) 385 return 5; 386 if (S == 48) 387 return 7; 388 return -10; 389 } 390 391 return 0; 392 } 393 394 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM) 395 const { 396 unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0; 397 int32_t TotalP = 0; 398 399 for (unsigned DR : Part) { 400 MachineInstr *DefI = MRI->getVRegDef(DR); 401 int32_t P = profit(DefI); 402 if (P == std::numeric_limits<int>::min()) 403 return false; 404 TotalP += P; 405 // Reduce the profitability of splitting induction registers. 406 if (isInduction(DR, IRM)) 407 TotalP -= 30; 408 409 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 410 U != W; ++U) { 411 MachineInstr *UseI = U->getParent(); 412 if (isFixedInstr(UseI)) { 413 FixedNum++; 414 // Calculate the cost of generating REG_SEQUENCE instructions. 415 for (auto &Op : UseI->operands()) { 416 if (Op.isReg() && Part.count(Op.getReg())) 417 if (Op.getSubReg()) 418 TotalP -= 2; 419 } 420 continue; 421 } 422 // If a register from this partition is used in a fixed instruction, 423 // and there is also a register in this partition that is used in 424 // a loop phi node, then decrease the splitting profit as this can 425 // confuse the modulo scheduler. 426 if (UseI->isPHI()) { 427 const MachineBasicBlock *PB = UseI->getParent(); 428 const MachineLoop *L = MLI->getLoopFor(PB); 429 if (L && L->getHeader() == PB) 430 LoopPhiNum++; 431 } 432 // Splittable instruction. 433 SplitNum++; 434 int32_t P = profit(UseI); 435 if (P == std::numeric_limits<int>::min()) 436 return false; 437 TotalP += P; 438 } 439 } 440 441 if (FixedNum > 0 && LoopPhiNum > 0) 442 TotalP -= 20*LoopPhiNum; 443 444 DEBUG(dbgs() << "Partition profit: " << TotalP << '\n'); 445 return TotalP > 0; 446 } 447 448 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L, 449 USet &Rs) { 450 const MachineBasicBlock *HB = L->getHeader(); 451 const MachineBasicBlock *LB = L->getLoopLatch(); 452 if (!HB || !LB) 453 return; 454 455 // Examine the latch branch. Expect it to be a conditional branch to 456 // the header (either "br-cond header" or "br-cond exit; br header"). 457 MachineBasicBlock *TB = nullptr, *FB = nullptr; 458 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB); 459 SmallVector<MachineOperand,2> Cond; 460 bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false); 461 // Only analyzable conditional branches. HII::analyzeBranch will put 462 // the branch opcode as the first element of Cond, and the predicate 463 // operand as the second. 464 if (BadLB || Cond.size() != 2) 465 return; 466 // Only simple jump-conditional (with or without negation). 467 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm())) 468 return; 469 // Must go to the header. 470 if (TB != HB && FB != HB) 471 return; 472 assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch"); 473 // Expect a predicate register. 474 unsigned PR = Cond[1].getReg(); 475 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass); 476 477 // Get the registers on which the loop controlling compare instruction 478 // depends. 479 unsigned CmpR1 = 0, CmpR2 = 0; 480 const MachineInstr *CmpI = MRI->getVRegDef(PR); 481 while (CmpI->getOpcode() == Hexagon::C2_not) 482 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg()); 483 484 int Mask = 0, Val = 0; 485 bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val); 486 if (!OkCI) 487 return; 488 // Eliminate non-double input registers. 489 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC) 490 CmpR1 = 0; 491 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC) 492 CmpR2 = 0; 493 if (!CmpR1 && !CmpR2) 494 return; 495 496 // Now examine the top of the loop: the phi nodes that could poten- 497 // tially define loop induction registers. The registers defined by 498 // such a phi node would be used in a 64-bit add, which then would 499 // be used in the loop compare instruction. 500 501 // Get the set of all double registers defined by phi nodes in the 502 // loop header. 503 typedef std::vector<unsigned> UVect; 504 UVect DP; 505 for (auto &MI : *HB) { 506 if (!MI.isPHI()) 507 break; 508 const MachineOperand &MD = MI.getOperand(0); 509 unsigned R = MD.getReg(); 510 if (MRI->getRegClass(R) == DoubleRC) 511 DP.push_back(R); 512 } 513 if (DP.empty()) 514 return; 515 516 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool { 517 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end(); 518 I != E; ++I) { 519 const MachineInstr *UseI = I->getParent(); 520 if (UseI->getOpcode() != Hexagon::A2_addp) 521 continue; 522 // Get the output from the add. If it is one of the inputs to the 523 // loop-controlling compare instruction, then R is likely an induc- 524 // tion register. 525 unsigned T = UseI->getOperand(0).getReg(); 526 if (T == CmpR1 || T == CmpR2) 527 return false; 528 } 529 return true; 530 }; 531 UVect::iterator End = llvm::remove_if(DP, NoIndOp); 532 Rs.insert(DP.begin(), End); 533 Rs.insert(CmpR1); 534 Rs.insert(CmpR2); 535 536 DEBUG({ 537 dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: "; 538 dump_partition(dbgs(), Rs, *TRI); 539 dbgs() << '\n'; 540 }); 541 } 542 543 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) { 544 typedef std::vector<MachineLoop*> LoopVector; 545 LoopVector WorkQ; 546 547 for (auto I : *MLI) 548 WorkQ.push_back(I); 549 for (unsigned i = 0; i < WorkQ.size(); ++i) { 550 for (auto I : *WorkQ[i]) 551 WorkQ.push_back(I); 552 } 553 554 USet Rs; 555 for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) { 556 MachineLoop *L = WorkQ[i]; 557 Rs.clear(); 558 collectIndRegsForLoop(L, Rs); 559 if (!Rs.empty()) 560 IRM.insert(std::make_pair(L, Rs)); 561 } 562 } 563 564 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI, 565 const UUPairMap &PairMap, unsigned SubR) { 566 MachineBasicBlock &B = *MI->getParent(); 567 DebugLoc DL = MI->getDebugLoc(); 568 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc)); 569 570 for (auto &Op : MI->operands()) { 571 if (!Op.isReg()) { 572 NewI->addOperand(Op); 573 continue; 574 } 575 // For register operands, set the subregister. 576 unsigned R = Op.getReg(); 577 unsigned SR = Op.getSubReg(); 578 bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R); 579 bool isKill = Op.isKill(); 580 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) { 581 isKill = false; 582 UUPairMap::const_iterator F = PairMap.find(R); 583 if (F == PairMap.end()) { 584 SR = SubR; 585 } else { 586 const UUPair &P = F->second; 587 R = (SubR == Hexagon::isub_lo) ? P.first : P.second; 588 SR = 0; 589 } 590 } 591 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill, 592 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(), 593 Op.isInternalRead()); 594 NewI->addOperand(CO); 595 } 596 } 597 598 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI, 599 const UUPairMap &PairMap) { 600 bool Load = MI->mayLoad(); 601 unsigned OrigOpc = MI->getOpcode(); 602 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi || 603 OrigOpc == Hexagon::S2_storerd_pi); 604 MachineInstr *LowI, *HighI; 605 MachineBasicBlock &B = *MI->getParent(); 606 DebugLoc DL = MI->getDebugLoc(); 607 608 // Index of the base-address-register operand. 609 unsigned AdrX = PostInc ? (Load ? 2 : 1) 610 : (Load ? 1 : 0); 611 MachineOperand &AdrOp = MI->getOperand(AdrX); 612 unsigned RSA = getRegState(AdrOp); 613 MachineOperand &ValOp = Load ? MI->getOperand(0) 614 : (PostInc ? MI->getOperand(3) 615 : MI->getOperand(2)); 616 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg()); 617 assert(F != PairMap.end()); 618 619 if (Load) { 620 const UUPair &P = F->second; 621 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm(); 622 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first) 623 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 624 .addImm(Off); 625 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second) 626 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 627 .addImm(Off+4); 628 } else { 629 const UUPair &P = F->second; 630 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm(); 631 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) 632 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 633 .addImm(Off) 634 .addReg(P.first); 635 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) 636 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) 637 .addImm(Off+4) 638 .addReg(P.second); 639 } 640 641 if (PostInc) { 642 // Create the increment of the address register. 643 int64_t Inc = Load ? MI->getOperand(3).getImm() 644 : MI->getOperand(2).getImm(); 645 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0); 646 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg()); 647 unsigned NewR = MRI->createVirtualRegister(RC); 648 assert(!UpdOp.getSubReg() && "Def operand with subreg"); 649 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR) 650 .addReg(AdrOp.getReg(), RSA) 651 .addImm(Inc); 652 MRI->replaceRegWith(UpdOp.getReg(), NewR); 653 // The original instruction will be deleted later. 654 } 655 656 // Generate a new pair of memory-operands. 657 MachineFunction &MF = *B.getParent(); 658 for (auto &MO : MI->memoperands()) { 659 const MachinePointerInfo &Ptr = MO->getPointerInfo(); 660 MachineMemOperand::Flags F = MO->getFlags(); 661 int A = MO->getAlignment(); 662 663 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A); 664 LowI->addMemOperand(MF, Tmp1); 665 auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4)); 666 HighI->addMemOperand(MF, Tmp2); 667 } 668 } 669 670 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI, 671 const UUPairMap &PairMap) { 672 MachineOperand &Op0 = MI->getOperand(0); 673 MachineOperand &Op1 = MI->getOperand(1); 674 assert(Op0.isReg() && Op1.isImm()); 675 uint64_t V = Op1.getImm(); 676 677 MachineBasicBlock &B = *MI->getParent(); 678 DebugLoc DL = MI->getDebugLoc(); 679 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 680 assert(F != PairMap.end()); 681 const UUPair &P = F->second; 682 683 // The operand to A2_tfrsi can only have 32 significant bits. Immediate 684 // values in MachineOperand are stored as 64-bit integers, and so the 685 // value -1 may be represented either as 64-bit -1, or 4294967295. Both 686 // will have the 32 higher bits truncated in the end, but -1 will remain 687 // as -1, while the latter may appear to be a large unsigned value 688 // requiring a constant extender. The casting to int32_t will select the 689 // former representation. (The same reasoning applies to all 32-bit 690 // values.) 691 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) 692 .addImm(int32_t(V & 0xFFFFFFFFULL)); 693 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) 694 .addImm(int32_t(V >> 32)); 695 } 696 697 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI, 698 const UUPairMap &PairMap) { 699 MachineOperand &Op0 = MI->getOperand(0); 700 MachineOperand &Op1 = MI->getOperand(1); 701 MachineOperand &Op2 = MI->getOperand(2); 702 assert(Op0.isReg()); 703 704 MachineBasicBlock &B = *MI->getParent(); 705 DebugLoc DL = MI->getDebugLoc(); 706 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 707 assert(F != PairMap.end()); 708 const UUPair &P = F->second; 709 710 if (Op1.isImm()) { 711 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) 712 .addImm(Op1.getImm()); 713 } else if (Op1.isReg()) { 714 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second) 715 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg()); 716 } else 717 llvm_unreachable("Unexpected operand"); 718 719 if (Op2.isImm()) { 720 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) 721 .addImm(Op2.getImm()); 722 } else if (Op2.isReg()) { 723 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) 724 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg()); 725 } else 726 llvm_unreachable("Unexpected operand"); 727 } 728 729 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI, 730 const UUPairMap &PairMap) { 731 MachineOperand &Op0 = MI->getOperand(0); 732 MachineOperand &Op1 = MI->getOperand(1); 733 assert(Op0.isReg() && Op1.isReg()); 734 735 MachineBasicBlock &B = *MI->getParent(); 736 DebugLoc DL = MI->getDebugLoc(); 737 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 738 assert(F != PairMap.end()); 739 const UUPair &P = F->second; 740 unsigned RS = getRegState(Op1); 741 742 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) 743 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg()); 744 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second) 745 .addReg(Op1.getReg(), RS, Op1.getSubReg()) 746 .addImm(31); 747 } 748 749 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI, 750 const UUPairMap &PairMap) { 751 using namespace Hexagon; 752 753 MachineOperand &Op0 = MI->getOperand(0); 754 MachineOperand &Op1 = MI->getOperand(1); 755 MachineOperand &Op2 = MI->getOperand(2); 756 assert(Op0.isReg() && Op1.isReg() && Op2.isImm()); 757 int64_t Sh64 = Op2.getImm(); 758 assert(Sh64 >= 0 && Sh64 < 64); 759 unsigned S = Sh64; 760 761 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 762 assert(F != PairMap.end()); 763 const UUPair &P = F->second; 764 unsigned LoR = P.first; 765 unsigned HiR = P.second; 766 767 unsigned Opc = MI->getOpcode(); 768 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p); 769 bool Left = !Right; 770 bool Signed = (Opc == S2_asr_i_p); 771 772 MachineBasicBlock &B = *MI->getParent(); 773 DebugLoc DL = MI->getDebugLoc(); 774 unsigned RS = getRegState(Op1); 775 unsigned ShiftOpc = Left ? S2_asl_i_r 776 : (Signed ? S2_asr_i_r : S2_lsr_i_r); 777 unsigned LoSR = isub_lo; 778 unsigned HiSR = isub_hi; 779 780 if (S == 0) { 781 // No shift, subregister copy. 782 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 783 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 784 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR) 785 .addReg(Op1.getReg(), RS, HiSR); 786 } else if (S < 32) { 787 const TargetRegisterClass *IntRC = &IntRegsRegClass; 788 unsigned TmpR = MRI->createVirtualRegister(IntRC); 789 // Expansion: 790 // Shift left: DR = shl R, #s 791 // LoR = shl R.lo, #s 792 // TmpR = extractu R.lo, #s, #32-s 793 // HiR = or (TmpR, asl(R.hi, #s)) 794 // Shift right: DR = shr R, #s 795 // HiR = shr R.hi, #s 796 // TmpR = shr R.lo, #s 797 // LoR = insert TmpR, R.hi, #s, #32-s 798 799 // Shift left: 800 // LoR = shl R.lo, #s 801 // Shift right: 802 // TmpR = shr R.lo, #s 803 804 // Make a special case for A2_aslh and A2_asrh (they are predicable as 805 // opposed to S2_asl_i_r/S2_asr_i_r). 806 if (S == 16 && Left) 807 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR) 808 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 809 else if (S == 16 && Signed) 810 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR) 811 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 812 else 813 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR)) 814 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) 815 .addImm(S); 816 817 if (Left) { 818 // TmpR = extractu R.lo, #s, #32-s 819 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR) 820 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) 821 .addImm(S) 822 .addImm(32-S); 823 // HiR = or (TmpR, asl(R.hi, #s)) 824 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 825 .addReg(TmpR) 826 .addReg(Op1.getReg(), RS, HiSR) 827 .addImm(S); 828 } else { 829 // HiR = shr R.hi, #s 830 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR) 831 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR) 832 .addImm(S); 833 // LoR = insert TmpR, R.hi, #s, #32-s 834 BuildMI(B, MI, DL, TII->get(S2_insert), LoR) 835 .addReg(TmpR) 836 .addReg(Op1.getReg(), RS, HiSR) 837 .addImm(S) 838 .addImm(32-S); 839 } 840 } else if (S == 32) { 841 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR)) 842 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)); 843 if (!Signed) 844 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) 845 .addImm(0); 846 else // Must be right shift. 847 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) 848 .addReg(Op1.getReg(), RS, HiSR) 849 .addImm(31); 850 } else if (S < 64) { 851 S -= 32; 852 if (S == 16 && Left) 853 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR) 854 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); 855 else if (S == 16 && Signed) 856 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR) 857 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR); 858 else 859 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR)) 860 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)) 861 .addImm(S); 862 863 if (Signed) 864 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) 865 .addReg(Op1.getReg(), RS, HiSR) 866 .addImm(31); 867 else 868 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) 869 .addImm(0); 870 } 871 } 872 873 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI, 874 const UUPairMap &PairMap) { 875 using namespace Hexagon; 876 877 MachineOperand &Op0 = MI->getOperand(0); 878 MachineOperand &Op1 = MI->getOperand(1); 879 MachineOperand &Op2 = MI->getOperand(2); 880 MachineOperand &Op3 = MI->getOperand(3); 881 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm()); 882 int64_t Sh64 = Op3.getImm(); 883 assert(Sh64 >= 0 && Sh64 < 64); 884 unsigned S = Sh64; 885 886 UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); 887 assert(F != PairMap.end()); 888 const UUPair &P = F->second; 889 unsigned LoR = P.first; 890 unsigned HiR = P.second; 891 892 MachineBasicBlock &B = *MI->getParent(); 893 DebugLoc DL = MI->getDebugLoc(); 894 unsigned RS1 = getRegState(Op1); 895 unsigned RS2 = getRegState(Op2); 896 const TargetRegisterClass *IntRC = &IntRegsRegClass; 897 898 unsigned LoSR = isub_lo; 899 unsigned HiSR = isub_hi; 900 901 // Op0 = S2_asl_i_p_or Op1, Op2, Op3 902 // means: Op0 = or (Op1, asl(Op2, Op3)) 903 904 // Expansion of 905 // DR = or (R1, asl(R2, #s)) 906 // 907 // LoR = or (R1.lo, asl(R2.lo, #s)) 908 // Tmp1 = extractu R2.lo, #s, #32-s 909 // Tmp2 = or R1.hi, Tmp1 910 // HiR = or (Tmp2, asl(R2.hi, #s)) 911 912 if (S == 0) { 913 // DR = or (R1, asl(R2, #0)) 914 // -> or (R1, R2) 915 // i.e. LoR = or R1.lo, R2.lo 916 // HiR = or R1.hi, R2.hi 917 BuildMI(B, MI, DL, TII->get(A2_or), LoR) 918 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) 919 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR); 920 BuildMI(B, MI, DL, TII->get(A2_or), HiR) 921 .addReg(Op1.getReg(), RS1, HiSR) 922 .addReg(Op2.getReg(), RS2, HiSR); 923 } else if (S < 32) { 924 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR) 925 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) 926 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) 927 .addImm(S); 928 unsigned TmpR1 = MRI->createVirtualRegister(IntRC); 929 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1) 930 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) 931 .addImm(S) 932 .addImm(32-S); 933 unsigned TmpR2 = MRI->createVirtualRegister(IntRC); 934 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2) 935 .addReg(Op1.getReg(), RS1, HiSR) 936 .addReg(TmpR1); 937 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 938 .addReg(TmpR2) 939 .addReg(Op2.getReg(), RS2, HiSR) 940 .addImm(S); 941 } else if (S == 32) { 942 // DR = or (R1, asl(R2, #32)) 943 // -> or R1, R2.lo 944 // LoR = R1.lo 945 // HiR = or R1.hi, R2.lo 946 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 947 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); 948 BuildMI(B, MI, DL, TII->get(A2_or), HiR) 949 .addReg(Op1.getReg(), RS1, HiSR) 950 .addReg(Op2.getReg(), RS2, LoSR); 951 } else if (S < 64) { 952 // DR = or (R1, asl(R2, #s)) 953 // 954 // LoR = R1:lo 955 // HiR = or (R1:hi, asl(R2:lo, #s-32)) 956 S -= 32; 957 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) 958 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); 959 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) 960 .addReg(Op1.getReg(), RS1, HiSR) 961 .addReg(Op2.getReg(), RS2, LoSR) 962 .addImm(S); 963 } 964 } 965 966 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI, 967 const UUPairMap &PairMap) { 968 using namespace Hexagon; 969 970 DEBUG(dbgs() << "Splitting: " << *MI); 971 bool Split = false; 972 unsigned Opc = MI->getOpcode(); 973 974 switch (Opc) { 975 case TargetOpcode::PHI: 976 case TargetOpcode::COPY: { 977 unsigned DstR = MI->getOperand(0).getReg(); 978 if (MRI->getRegClass(DstR) == DoubleRC) { 979 createHalfInstr(Opc, MI, PairMap, isub_lo); 980 createHalfInstr(Opc, MI, PairMap, isub_hi); 981 Split = true; 982 } 983 break; 984 } 985 case A2_andp: 986 createHalfInstr(A2_and, MI, PairMap, isub_lo); 987 createHalfInstr(A2_and, MI, PairMap, isub_hi); 988 Split = true; 989 break; 990 case A2_orp: 991 createHalfInstr(A2_or, MI, PairMap, isub_lo); 992 createHalfInstr(A2_or, MI, PairMap, isub_hi); 993 Split = true; 994 break; 995 case A2_xorp: 996 createHalfInstr(A2_xor, MI, PairMap, isub_lo); 997 createHalfInstr(A2_xor, MI, PairMap, isub_hi); 998 Split = true; 999 break; 1000 1001 case L2_loadrd_io: 1002 case L2_loadrd_pi: 1003 case S2_storerd_io: 1004 case S2_storerd_pi: 1005 splitMemRef(MI, PairMap); 1006 Split = true; 1007 break; 1008 1009 case A2_tfrpi: 1010 case CONST64: 1011 splitImmediate(MI, PairMap); 1012 Split = true; 1013 break; 1014 1015 case A2_combineii: 1016 case A4_combineir: 1017 case A4_combineii: 1018 case A4_combineri: 1019 case A2_combinew: 1020 splitCombine(MI, PairMap); 1021 Split = true; 1022 break; 1023 1024 case A2_sxtw: 1025 splitExt(MI, PairMap); 1026 Split = true; 1027 break; 1028 1029 case S2_asl_i_p: 1030 case S2_asr_i_p: 1031 case S2_lsr_i_p: 1032 splitShift(MI, PairMap); 1033 Split = true; 1034 break; 1035 1036 case S2_asl_i_p_or: 1037 splitAslOr(MI, PairMap); 1038 Split = true; 1039 break; 1040 1041 default: 1042 llvm_unreachable("Instruction not splitable"); 1043 return false; 1044 } 1045 1046 return Split; 1047 } 1048 1049 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI, 1050 const UUPairMap &PairMap) { 1051 for (auto &Op : MI->operands()) { 1052 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg()) 1053 continue; 1054 unsigned R = Op.getReg(); 1055 UUPairMap::const_iterator F = PairMap.find(R); 1056 if (F == PairMap.end()) 1057 continue; 1058 const UUPair &P = F->second; 1059 switch (Op.getSubReg()) { 1060 case Hexagon::isub_lo: 1061 Op.setReg(P.first); 1062 break; 1063 case Hexagon::isub_hi: 1064 Op.setReg(P.second); 1065 break; 1066 } 1067 Op.setSubReg(0); 1068 } 1069 } 1070 1071 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI, 1072 const UUPairMap &PairMap) { 1073 MachineBasicBlock &B = *MI->getParent(); 1074 DebugLoc DL = MI->getDebugLoc(); 1075 1076 for (auto &Op : MI->operands()) { 1077 if (!Op.isReg() || !Op.isUse()) 1078 continue; 1079 unsigned R = Op.getReg(); 1080 if (!TargetRegisterInfo::isVirtualRegister(R)) 1081 continue; 1082 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg()) 1083 continue; 1084 UUPairMap::const_iterator F = PairMap.find(R); 1085 if (F == PairMap.end()) 1086 continue; 1087 const UUPair &Pr = F->second; 1088 unsigned NewDR = MRI->createVirtualRegister(DoubleRC); 1089 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR) 1090 .addReg(Pr.first) 1091 .addImm(Hexagon::isub_lo) 1092 .addReg(Pr.second) 1093 .addImm(Hexagon::isub_hi); 1094 Op.setReg(NewDR); 1095 } 1096 } 1097 1098 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) { 1099 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 1100 typedef std::set<MachineInstr*> MISet; 1101 bool Changed = false; 1102 1103 DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI); 1104 dbgs() << '\n'); 1105 1106 UUPairMap PairMap; 1107 1108 MISet SplitIns; 1109 for (unsigned DR : Part) { 1110 MachineInstr *DefI = MRI->getVRegDef(DR); 1111 SplitIns.insert(DefI); 1112 1113 // Collect all instructions, including fixed ones. We won't split them, 1114 // but we need to visit them again to insert the REG_SEQUENCE instructions. 1115 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 1116 U != W; ++U) 1117 SplitIns.insert(U->getParent()); 1118 1119 unsigned LoR = MRI->createVirtualRegister(IntRC); 1120 unsigned HiR = MRI->createVirtualRegister(IntRC); 1121 DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> " 1122 << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n'); 1123 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR))); 1124 } 1125 1126 MISet Erase; 1127 for (auto MI : SplitIns) { 1128 if (isFixedInstr(MI)) { 1129 collapseRegPairs(MI, PairMap); 1130 } else { 1131 bool Done = splitInstr(MI, PairMap); 1132 if (Done) 1133 Erase.insert(MI); 1134 Changed |= Done; 1135 } 1136 } 1137 1138 for (unsigned DR : Part) { 1139 // Before erasing "double" instructions, revisit all uses of the double 1140 // registers in this partition, and replace all uses of them with subre- 1141 // gisters, with the corresponding single registers. 1142 MISet Uses; 1143 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); 1144 U != W; ++U) 1145 Uses.insert(U->getParent()); 1146 for (auto M : Uses) 1147 replaceSubregUses(M, PairMap); 1148 } 1149 1150 for (auto MI : Erase) { 1151 MachineBasicBlock *B = MI->getParent(); 1152 B->erase(MI); 1153 } 1154 1155 return Changed; 1156 } 1157 1158 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) { 1159 DEBUG(dbgs() << "Splitting double registers in function: " 1160 << MF.getName() << '\n'); 1161 1162 if (skipFunction(*MF.getFunction())) 1163 return false; 1164 1165 auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1166 TRI = ST.getRegisterInfo(); 1167 TII = ST.getInstrInfo(); 1168 MRI = &MF.getRegInfo(); 1169 MLI = &getAnalysis<MachineLoopInfo>(); 1170 1171 UUSetMap P2Rs; 1172 LoopRegMap IRM; 1173 1174 collectIndRegs(IRM); 1175 partitionRegisters(P2Rs); 1176 1177 DEBUG({ 1178 dbgs() << "Register partitioning: (partition #0 is fixed)\n"; 1179 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { 1180 dbgs() << '#' << I->first << " -> "; 1181 dump_partition(dbgs(), I->second, *TRI); 1182 dbgs() << '\n'; 1183 } 1184 }); 1185 1186 bool Changed = false; 1187 int Limit = MaxHSDR; 1188 1189 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { 1190 if (I->first == 0) 1191 continue; 1192 if (Limit >= 0 && Counter >= Limit) 1193 break; 1194 USet &Part = I->second; 1195 DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n'); 1196 if (!isProfitable(Part, IRM)) 1197 continue; 1198 Counter++; 1199 Changed |= splitPartition(Part); 1200 } 1201 1202 return Changed; 1203 } 1204 1205 FunctionPass *llvm::createHexagonSplitDoubleRegs() { 1206 return new HexagonSplitDoubleRegs(); 1207 } 1208