1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "HexagonInstrInfo.h" 29 #include "HexagonSubtarget.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineLoopInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include <cassert> 53 #include <cstdint> 54 #include <cstdlib> 55 #include <iterator> 56 #include <map> 57 #include <set> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "hwloops" 64 65 #ifndef NDEBUG 66 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 67 68 // Option to create preheader only for a specific function. 69 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 70 cl::init("")); 71 #endif 72 73 // Option to create a preheader if one doesn't exist. 74 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 75 cl::Hidden, cl::init(true), 76 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 77 78 // Turn it off by default. If a preheader block is not created here, the 79 // software pipeliner may be unable to find a block suitable to serve as 80 // a preheader. In that case SWP will not run. 81 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 82 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 83 "instructions")); 84 85 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 86 87 namespace llvm { 88 89 FunctionPass *createHexagonHardwareLoops(); 90 void initializeHexagonHardwareLoopsPass(PassRegistry&); 91 92 } // end namespace llvm 93 94 namespace { 95 96 class CountValue; 97 98 struct HexagonHardwareLoops : public MachineFunctionPass { 99 MachineLoopInfo *MLI; 100 MachineRegisterInfo *MRI; 101 MachineDominatorTree *MDT; 102 const HexagonInstrInfo *TII; 103 const HexagonRegisterInfo *TRI; 104 #ifndef NDEBUG 105 static int Counter; 106 #endif 107 108 public: 109 static char ID; 110 111 HexagonHardwareLoops() : MachineFunctionPass(ID) { 112 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 113 } 114 115 bool runOnMachineFunction(MachineFunction &MF) override; 116 117 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 118 119 void getAnalysisUsage(AnalysisUsage &AU) const override { 120 AU.addRequired<MachineDominatorTree>(); 121 AU.addRequired<MachineLoopInfo>(); 122 MachineFunctionPass::getAnalysisUsage(AU); 123 } 124 125 private: 126 typedef std::map<unsigned, MachineInstr *> LoopFeederMap; 127 128 /// Kinds of comparisons in the compare instructions. 129 struct Comparison { 130 enum Kind { 131 EQ = 0x01, 132 NE = 0x02, 133 L = 0x04, 134 G = 0x08, 135 U = 0x40, 136 LTs = L, 137 LEs = L | EQ, 138 GTs = G, 139 GEs = G | EQ, 140 LTu = L | U, 141 LEu = L | EQ | U, 142 GTu = G | U, 143 GEu = G | EQ | U 144 }; 145 146 static Kind getSwappedComparison(Kind Cmp) { 147 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 148 if ((Cmp & L) || (Cmp & G)) 149 return (Kind)(Cmp ^ (L|G)); 150 return Cmp; 151 } 152 153 static Kind getNegatedComparison(Kind Cmp) { 154 if ((Cmp & L) || (Cmp & G)) 155 return (Kind)((Cmp ^ (L | G)) ^ EQ); 156 if ((Cmp & NE) || (Cmp & EQ)) 157 return (Kind)(Cmp ^ (EQ | NE)); 158 return (Kind)0; 159 } 160 161 static bool isSigned(Kind Cmp) { 162 return (Cmp & (L | G) && !(Cmp & U)); 163 } 164 165 static bool isUnsigned(Kind Cmp) { 166 return (Cmp & U); 167 } 168 }; 169 170 /// \brief Find the register that contains the loop controlling 171 /// induction variable. 172 /// If successful, it will return true and set the \p Reg, \p IVBump 173 /// and \p IVOp arguments. Otherwise it will return false. 174 /// The returned induction register is the register R that follows the 175 /// following induction pattern: 176 /// loop: 177 /// R = phi ..., [ R.next, LatchBlock ] 178 /// R.next = R + #bump 179 /// if (R.next < #N) goto loop 180 /// IVBump is the immediate value added to R, and IVOp is the instruction 181 /// "R.next = R + #bump". 182 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 183 int64_t &IVBump, MachineInstr *&IVOp) const; 184 185 /// \brief Return the comparison kind for the specified opcode. 186 Comparison::Kind getComparisonKind(unsigned CondOpc, 187 MachineOperand *InitialValue, 188 const MachineOperand *Endvalue, 189 int64_t IVBump) const; 190 191 /// \brief Analyze the statements in a loop to determine if the loop 192 /// has a computable trip count and, if so, return a value that represents 193 /// the trip count expression. 194 CountValue *getLoopTripCount(MachineLoop *L, 195 SmallVectorImpl<MachineInstr *> &OldInsts); 196 197 /// \brief Return the expression that represents the number of times 198 /// a loop iterates. The function takes the operands that represent the 199 /// loop start value, loop end value, and induction value. Based upon 200 /// these operands, the function attempts to compute the trip count. 201 /// If the trip count is not directly available (as an immediate value, 202 /// or a register), the function will attempt to insert computation of it 203 /// to the loop's preheader. 204 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 205 const MachineOperand *End, unsigned IVReg, 206 int64_t IVBump, Comparison::Kind Cmp) const; 207 208 /// \brief Return true if the instruction is not valid within a hardware 209 /// loop. 210 bool isInvalidLoopOperation(const MachineInstr *MI, 211 bool IsInnerHWLoop) const; 212 213 /// \brief Return true if the loop contains an instruction that inhibits 214 /// using the hardware loop. 215 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 216 217 /// \brief Given a loop, check if we can convert it to a hardware loop. 218 /// If so, then perform the conversion and return true. 219 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 220 221 /// \brief Return true if the instruction is now dead. 222 bool isDead(const MachineInstr *MI, 223 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 224 225 /// \brief Remove the instruction if it is now dead. 226 void removeIfDead(MachineInstr *MI); 227 228 /// \brief Make sure that the "bump" instruction executes before the 229 /// compare. We need that for the IV fixup, so that the compare 230 /// instruction would not use a bumped value that has not yet been 231 /// defined. If the instructions are out of order, try to reorder them. 232 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 233 234 /// \brief Return true if MO and MI pair is visited only once. If visited 235 /// more than once, this indicates there is recursion. In such a case, 236 /// return false. 237 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 238 const MachineOperand *MO, 239 LoopFeederMap &LoopFeederPhi) const; 240 241 /// \brief Return true if the Phi may generate a value that may underflow, 242 /// or may wrap. 243 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 244 MachineBasicBlock *MBB, MachineLoop *L, 245 LoopFeederMap &LoopFeederPhi) const; 246 247 /// \brief Return true if the induction variable may underflow an unsigned 248 /// value in the first iteration. 249 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 250 const MachineOperand *EndVal, 251 MachineBasicBlock *MBB, MachineLoop *L, 252 LoopFeederMap &LoopFeederPhi) const; 253 254 /// \brief Check if the given operand has a compile-time known constant 255 /// value. Return true if yes, and false otherwise. When returning true, set 256 /// Val to the corresponding constant value. 257 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 258 259 /// \brief Check if the operand has a compile-time known constant value. 260 bool isImmediate(const MachineOperand &MO) const { 261 int64_t V; 262 return checkForImmediate(MO, V); 263 } 264 265 /// \brief Return the immediate for the specified operand. 266 int64_t getImmediate(const MachineOperand &MO) const { 267 int64_t V; 268 if (!checkForImmediate(MO, V)) 269 llvm_unreachable("Invalid operand"); 270 return V; 271 } 272 273 /// \brief Reset the given machine operand to now refer to a new immediate 274 /// value. Assumes that the operand was already referencing an immediate 275 /// value, either directly, or via a register. 276 void setImmediate(MachineOperand &MO, int64_t Val); 277 278 /// \brief Fix the data flow of the induction varible. 279 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 280 /// | 281 /// +-> back to phi 282 /// where "bump" is the increment of the induction variable: 283 /// iv = iv + #const. 284 /// Due to some prior code transformations, the actual flow may look 285 /// like this: 286 /// phi -+-> bump ---> back to phi 287 /// | 288 /// +-> comparison-in-latch (against upper_bound-bump), 289 /// i.e. the comparison that controls the loop execution may be using 290 /// the value of the induction variable from before the increment. 291 /// 292 /// Return true if the loop's flow is the desired one (i.e. it's 293 /// either been fixed, or no fixing was necessary). 294 /// Otherwise, return false. This can happen if the induction variable 295 /// couldn't be identified, or if the value in the latch's comparison 296 /// cannot be adjusted to reflect the post-bump value. 297 bool fixupInductionVariable(MachineLoop *L); 298 299 /// \brief Given a loop, if it does not have a preheader, create one. 300 /// Return the block that is the preheader. 301 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 302 }; 303 304 char HexagonHardwareLoops::ID = 0; 305 #ifndef NDEBUG 306 int HexagonHardwareLoops::Counter = 0; 307 #endif 308 309 /// \brief Abstraction for a trip count of a loop. A smaller version 310 /// of the MachineOperand class without the concerns of changing the 311 /// operand representation. 312 class CountValue { 313 public: 314 enum CountValueType { 315 CV_Register, 316 CV_Immediate 317 }; 318 319 private: 320 CountValueType Kind; 321 union Values { 322 struct { 323 unsigned Reg; 324 unsigned Sub; 325 } R; 326 unsigned ImmVal; 327 } Contents; 328 329 public: 330 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 331 Kind = t; 332 if (Kind == CV_Register) { 333 Contents.R.Reg = v; 334 Contents.R.Sub = u; 335 } else { 336 Contents.ImmVal = v; 337 } 338 } 339 340 bool isReg() const { return Kind == CV_Register; } 341 bool isImm() const { return Kind == CV_Immediate; } 342 343 unsigned getReg() const { 344 assert(isReg() && "Wrong CountValue accessor"); 345 return Contents.R.Reg; 346 } 347 unsigned getSubReg() const { 348 assert(isReg() && "Wrong CountValue accessor"); 349 return Contents.R.Sub; 350 } 351 unsigned getImm() const { 352 assert(isImm() && "Wrong CountValue accessor"); 353 return Contents.ImmVal; 354 } 355 356 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 357 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 358 if (isImm()) { OS << Contents.ImmVal; } 359 } 360 }; 361 362 } // end anonymous namespace 363 364 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 365 "Hexagon Hardware Loops", false, false) 366 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 367 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 368 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 369 "Hexagon Hardware Loops", false, false) 370 371 FunctionPass *llvm::createHexagonHardwareLoops() { 372 return new HexagonHardwareLoops(); 373 } 374 375 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 376 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 377 if (skipFunction(*MF.getFunction())) 378 return false; 379 380 bool Changed = false; 381 382 MLI = &getAnalysis<MachineLoopInfo>(); 383 MRI = &MF.getRegInfo(); 384 MDT = &getAnalysis<MachineDominatorTree>(); 385 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 386 TII = HST.getInstrInfo(); 387 TRI = HST.getRegisterInfo(); 388 389 for (auto &L : *MLI) 390 if (!L->getParentLoop()) { 391 bool L0Used = false; 392 bool L1Used = false; 393 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 394 } 395 396 return Changed; 397 } 398 399 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 400 unsigned &Reg, 401 int64_t &IVBump, 402 MachineInstr *&IVOp 403 ) const { 404 MachineBasicBlock *Header = L->getHeader(); 405 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 406 MachineBasicBlock *Latch = L->getLoopLatch(); 407 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 408 if (!Header || !Preheader || !Latch || !ExitingBlock) 409 return false; 410 411 // This pair represents an induction register together with an immediate 412 // value that will be added to it in each loop iteration. 413 typedef std::pair<unsigned,int64_t> RegisterBump; 414 415 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 416 // from an induction operation 417 // R.next = R + bump 418 // where bump is an immediate value. 419 typedef std::map<unsigned,RegisterBump> InductionMap; 420 421 InductionMap IndMap; 422 423 typedef MachineBasicBlock::instr_iterator instr_iterator; 424 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 425 I != E && I->isPHI(); ++I) { 426 MachineInstr *Phi = &*I; 427 428 // Have a PHI instruction. Get the operand that corresponds to the 429 // latch block, and see if is a result of an addition of form "reg+imm", 430 // where the "reg" is defined by the PHI node we are looking at. 431 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 432 if (Phi->getOperand(i+1).getMBB() != Latch) 433 continue; 434 435 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 436 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 437 438 if (DI->getDesc().isAdd()) { 439 // If the register operand to the add is the PHI we're looking at, this 440 // meets the induction pattern. 441 unsigned IndReg = DI->getOperand(1).getReg(); 442 MachineOperand &Opnd2 = DI->getOperand(2); 443 int64_t V; 444 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 445 unsigned UpdReg = DI->getOperand(0).getReg(); 446 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 447 } 448 } 449 } // for (i) 450 } // for (instr) 451 452 SmallVector<MachineOperand,2> Cond; 453 MachineBasicBlock *TB = nullptr, *FB = nullptr; 454 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 455 if (NotAnalyzed) 456 return false; 457 458 unsigned PredR, PredPos, PredRegFlags; 459 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 460 return false; 461 462 MachineInstr *PredI = MRI->getVRegDef(PredR); 463 if (!PredI->isCompare()) 464 return false; 465 466 unsigned CmpReg1 = 0, CmpReg2 = 0; 467 int CmpImm = 0, CmpMask = 0; 468 bool CmpAnalyzed = 469 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 470 // Fail if the compare was not analyzed, or it's not comparing a register 471 // with an immediate value. Not checking the mask here, since we handle 472 // the individual compare opcodes (including A4_cmpb*) later on. 473 if (!CmpAnalyzed) 474 return false; 475 476 // Exactly one of the input registers to the comparison should be among 477 // the induction registers. 478 InductionMap::iterator IndMapEnd = IndMap.end(); 479 InductionMap::iterator F = IndMapEnd; 480 if (CmpReg1 != 0) { 481 InductionMap::iterator F1 = IndMap.find(CmpReg1); 482 if (F1 != IndMapEnd) 483 F = F1; 484 } 485 if (CmpReg2 != 0) { 486 InductionMap::iterator F2 = IndMap.find(CmpReg2); 487 if (F2 != IndMapEnd) { 488 if (F != IndMapEnd) 489 return false; 490 F = F2; 491 } 492 } 493 if (F == IndMapEnd) 494 return false; 495 496 Reg = F->second.first; 497 IVBump = F->second.second; 498 IVOp = MRI->getVRegDef(F->first); 499 return true; 500 } 501 502 // Return the comparison kind for the specified opcode. 503 HexagonHardwareLoops::Comparison::Kind 504 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 505 MachineOperand *InitialValue, 506 const MachineOperand *EndValue, 507 int64_t IVBump) const { 508 Comparison::Kind Cmp = (Comparison::Kind)0; 509 switch (CondOpc) { 510 case Hexagon::C2_cmpeqi: 511 case Hexagon::C2_cmpeq: 512 case Hexagon::C2_cmpeqp: 513 Cmp = Comparison::EQ; 514 break; 515 case Hexagon::C4_cmpneq: 516 case Hexagon::C4_cmpneqi: 517 Cmp = Comparison::NE; 518 break; 519 case Hexagon::C4_cmplte: 520 Cmp = Comparison::LEs; 521 break; 522 case Hexagon::C4_cmplteu: 523 Cmp = Comparison::LEu; 524 break; 525 case Hexagon::C2_cmpgtui: 526 case Hexagon::C2_cmpgtu: 527 case Hexagon::C2_cmpgtup: 528 Cmp = Comparison::GTu; 529 break; 530 case Hexagon::C2_cmpgti: 531 case Hexagon::C2_cmpgt: 532 case Hexagon::C2_cmpgtp: 533 Cmp = Comparison::GTs; 534 break; 535 default: 536 return (Comparison::Kind)0; 537 } 538 return Cmp; 539 } 540 541 /// \brief Analyze the statements in a loop to determine if the loop has 542 /// a computable trip count and, if so, return a value that represents 543 /// the trip count expression. 544 /// 545 /// This function iterates over the phi nodes in the loop to check for 546 /// induction variable patterns that are used in the calculation for 547 /// the number of time the loop is executed. 548 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 549 SmallVectorImpl<MachineInstr *> &OldInsts) { 550 MachineBasicBlock *TopMBB = L->getTopBlock(); 551 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 552 assert(PI != TopMBB->pred_end() && 553 "Loop must have more than one incoming edge!"); 554 MachineBasicBlock *Backedge = *PI++; 555 if (PI == TopMBB->pred_end()) // dead loop? 556 return nullptr; 557 MachineBasicBlock *Incoming = *PI++; 558 if (PI != TopMBB->pred_end()) // multiple backedges? 559 return nullptr; 560 561 // Make sure there is one incoming and one backedge and determine which 562 // is which. 563 if (L->contains(Incoming)) { 564 if (L->contains(Backedge)) 565 return nullptr; 566 std::swap(Incoming, Backedge); 567 } else if (!L->contains(Backedge)) 568 return nullptr; 569 570 // Look for the cmp instruction to determine if we can get a useful trip 571 // count. The trip count can be either a register or an immediate. The 572 // location of the value depends upon the type (reg or imm). 573 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 574 if (!ExitingBlock) 575 return nullptr; 576 577 unsigned IVReg = 0; 578 int64_t IVBump = 0; 579 MachineInstr *IVOp; 580 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 581 if (!FoundIV) 582 return nullptr; 583 584 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 585 586 MachineOperand *InitialValue = nullptr; 587 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 588 MachineBasicBlock *Latch = L->getLoopLatch(); 589 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 590 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 591 if (MBB == Preheader) 592 InitialValue = &IV_Phi->getOperand(i); 593 else if (MBB == Latch) 594 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 595 } 596 if (!InitialValue) 597 return nullptr; 598 599 SmallVector<MachineOperand,2> Cond; 600 MachineBasicBlock *TB = nullptr, *FB = nullptr; 601 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 602 if (NotAnalyzed) 603 return nullptr; 604 605 MachineBasicBlock *Header = L->getHeader(); 606 // TB must be non-null. If FB is also non-null, one of them must be 607 // the header. Otherwise, branch to TB could be exiting the loop, and 608 // the fall through can go to the header. 609 assert (TB && "Exit block without a branch?"); 610 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 611 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 612 SmallVector<MachineOperand,2> LCond; 613 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 614 if (NotAnalyzed) 615 return nullptr; 616 if (TB == Latch) 617 TB = (LTB == Header) ? LTB : LFB; 618 else 619 FB = (LTB == Header) ? LTB: LFB; 620 } 621 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 622 if (!TB || (FB && TB != Header && FB != Header)) 623 return nullptr; 624 625 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 626 // to put imm(0), followed by P in the vector Cond. 627 // If TB is not the header, it means that the "not-taken" path must lead 628 // to the header. 629 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 630 unsigned PredReg, PredPos, PredRegFlags; 631 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 632 return nullptr; 633 MachineInstr *CondI = MRI->getVRegDef(PredReg); 634 unsigned CondOpc = CondI->getOpcode(); 635 636 unsigned CmpReg1 = 0, CmpReg2 = 0; 637 int Mask = 0, ImmValue = 0; 638 bool AnalyzedCmp = 639 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 640 if (!AnalyzedCmp) 641 return nullptr; 642 643 // The comparison operator type determines how we compute the loop 644 // trip count. 645 OldInsts.push_back(CondI); 646 OldInsts.push_back(IVOp); 647 648 // Sadly, the following code gets information based on the position 649 // of the operands in the compare instruction. This has to be done 650 // this way, because the comparisons check for a specific relationship 651 // between the operands (e.g. is-less-than), rather than to find out 652 // what relationship the operands are in (as on PPC). 653 Comparison::Kind Cmp; 654 bool isSwapped = false; 655 const MachineOperand &Op1 = CondI->getOperand(1); 656 const MachineOperand &Op2 = CondI->getOperand(2); 657 const MachineOperand *EndValue = nullptr; 658 659 if (Op1.isReg()) { 660 if (Op2.isImm() || Op1.getReg() == IVReg) 661 EndValue = &Op2; 662 else { 663 EndValue = &Op1; 664 isSwapped = true; 665 } 666 } 667 668 if (!EndValue) 669 return nullptr; 670 671 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 672 if (!Cmp) 673 return nullptr; 674 if (Negated) 675 Cmp = Comparison::getNegatedComparison(Cmp); 676 if (isSwapped) 677 Cmp = Comparison::getSwappedComparison(Cmp); 678 679 if (InitialValue->isReg()) { 680 unsigned R = InitialValue->getReg(); 681 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 682 if (!MDT->properlyDominates(DefBB, Header)) 683 return nullptr; 684 OldInsts.push_back(MRI->getVRegDef(R)); 685 } 686 if (EndValue->isReg()) { 687 unsigned R = EndValue->getReg(); 688 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 689 if (!MDT->properlyDominates(DefBB, Header)) 690 return nullptr; 691 OldInsts.push_back(MRI->getVRegDef(R)); 692 } 693 694 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 695 } 696 697 /// \brief Helper function that returns the expression that represents the 698 /// number of times a loop iterates. The function takes the operands that 699 /// represent the loop start value, loop end value, and induction value. 700 /// Based upon these operands, the function attempts to compute the trip count. 701 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 702 const MachineOperand *Start, 703 const MachineOperand *End, 704 unsigned IVReg, 705 int64_t IVBump, 706 Comparison::Kind Cmp) const { 707 // Cannot handle comparison EQ, i.e. while (A == B). 708 if (Cmp == Comparison::EQ) 709 return nullptr; 710 711 // Check if either the start or end values are an assignment of an immediate. 712 // If so, use the immediate value rather than the register. 713 if (Start->isReg()) { 714 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 715 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 716 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 717 Start = &StartValInstr->getOperand(1); 718 } 719 if (End->isReg()) { 720 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 721 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 722 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 723 End = &EndValInstr->getOperand(1); 724 } 725 726 if (!Start->isReg() && !Start->isImm()) 727 return nullptr; 728 if (!End->isReg() && !End->isImm()) 729 return nullptr; 730 731 bool CmpLess = Cmp & Comparison::L; 732 bool CmpGreater = Cmp & Comparison::G; 733 bool CmpHasEqual = Cmp & Comparison::EQ; 734 735 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 736 if (CmpLess && IVBump < 0) 737 // Loop going while iv is "less" with the iv value going down. Must wrap. 738 return nullptr; 739 740 if (CmpGreater && IVBump > 0) 741 // Loop going while iv is "greater" with the iv value going up. Must wrap. 742 return nullptr; 743 744 // Phis that may feed into the loop. 745 LoopFeederMap LoopFeederPhi; 746 747 // Check if the initial value may be zero and can be decremented in the first 748 // iteration. If the value is zero, the endloop instruction will not decrement 749 // the loop counter, so we shouldn't generate a hardware loop in this case. 750 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 751 LoopFeederPhi)) 752 return nullptr; 753 754 if (Start->isImm() && End->isImm()) { 755 // Both, start and end are immediates. 756 int64_t StartV = Start->getImm(); 757 int64_t EndV = End->getImm(); 758 int64_t Dist = EndV - StartV; 759 if (Dist == 0) 760 return nullptr; 761 762 bool Exact = (Dist % IVBump) == 0; 763 764 if (Cmp == Comparison::NE) { 765 if (!Exact) 766 return nullptr; 767 if ((Dist < 0) ^ (IVBump < 0)) 768 return nullptr; 769 } 770 771 // For comparisons that include the final value (i.e. include equality 772 // with the final value), we need to increase the distance by 1. 773 if (CmpHasEqual) 774 Dist = Dist > 0 ? Dist+1 : Dist-1; 775 776 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 777 // CmpGreater should imply Dist < 0. These conditions could actually 778 // fail, for example, in unreachable code (which may still appear to be 779 // reachable in the CFG). 780 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 781 return nullptr; 782 783 // "Normalized" distance, i.e. with the bump set to +-1. 784 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 785 : (-Dist + (-IVBump - 1)) / (-IVBump); 786 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 787 788 uint64_t Count = Dist1; 789 790 if (Count > 0xFFFFFFFFULL) 791 return nullptr; 792 793 return new CountValue(CountValue::CV_Immediate, Count); 794 } 795 796 // A general case: Start and End are some values, but the actual 797 // iteration count may not be available. If it is not, insert 798 // a computation of it into the preheader. 799 800 // If the induction variable bump is not a power of 2, quit. 801 // Othwerise we'd need a general integer division. 802 if (!isPowerOf2_64(std::abs(IVBump))) 803 return nullptr; 804 805 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 806 assert (PH && "Should have a preheader by now"); 807 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 808 DebugLoc DL; 809 if (InsertPos != PH->end()) 810 DL = InsertPos->getDebugLoc(); 811 812 // If Start is an immediate and End is a register, the trip count 813 // will be "reg - imm". Hexagon's "subtract immediate" instruction 814 // is actually "reg + -imm". 815 816 // If the loop IV is going downwards, i.e. if the bump is negative, 817 // then the iteration count (computed as End-Start) will need to be 818 // negated. To avoid the negation, just swap Start and End. 819 if (IVBump < 0) { 820 std::swap(Start, End); 821 IVBump = -IVBump; 822 } 823 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 824 // Signedness, and "including equality" are preserved. 825 826 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 827 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 828 829 int64_t StartV = 0, EndV = 0; 830 if (Start->isImm()) 831 StartV = Start->getImm(); 832 if (End->isImm()) 833 EndV = End->getImm(); 834 835 int64_t AdjV = 0; 836 // To compute the iteration count, we would need this computation: 837 // Count = (End - Start + (IVBump-1)) / IVBump 838 // or, when CmpHasEqual: 839 // Count = (End - Start + (IVBump-1)+1) / IVBump 840 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 841 // generating an instruction specifically to add it if we can adjust 842 // the immediate values for Start or End. 843 844 if (CmpHasEqual) { 845 // Need to add 1 to the total iteration count. 846 if (Start->isImm()) 847 StartV--; 848 else if (End->isImm()) 849 EndV++; 850 else 851 AdjV += 1; 852 } 853 854 if (Cmp != Comparison::NE) { 855 if (Start->isImm()) 856 StartV -= (IVBump-1); 857 else if (End->isImm()) 858 EndV += (IVBump-1); 859 else 860 AdjV += (IVBump-1); 861 } 862 863 unsigned R = 0, SR = 0; 864 if (Start->isReg()) { 865 R = Start->getReg(); 866 SR = Start->getSubReg(); 867 } else { 868 R = End->getReg(); 869 SR = End->getSubReg(); 870 } 871 const TargetRegisterClass *RC = MRI->getRegClass(R); 872 // Hardware loops cannot handle 64-bit registers. If it's a double 873 // register, it has to have a subregister. 874 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 875 return nullptr; 876 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 877 878 // Compute DistR (register with the distance between Start and End). 879 unsigned DistR, DistSR; 880 881 // Avoid special case, where the start value is an imm(0). 882 if (Start->isImm() && StartV == 0) { 883 DistR = End->getReg(); 884 DistSR = End->getSubReg(); 885 } else { 886 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 887 (RegToImm ? TII->get(Hexagon::A2_subri) : 888 TII->get(Hexagon::A2_addi)); 889 if (RegToReg || RegToImm) { 890 unsigned SubR = MRI->createVirtualRegister(IntRC); 891 MachineInstrBuilder SubIB = 892 BuildMI(*PH, InsertPos, DL, SubD, SubR); 893 894 if (RegToReg) 895 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 896 .addReg(Start->getReg(), 0, Start->getSubReg()); 897 else 898 SubIB.addImm(EndV) 899 .addReg(Start->getReg(), 0, Start->getSubReg()); 900 DistR = SubR; 901 } else { 902 // If the loop has been unrolled, we should use the original loop count 903 // instead of recalculating the value. This will avoid additional 904 // 'Add' instruction. 905 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 906 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 907 EndValInstr->getOperand(2).getImm() == StartV) { 908 DistR = EndValInstr->getOperand(1).getReg(); 909 } else { 910 unsigned SubR = MRI->createVirtualRegister(IntRC); 911 MachineInstrBuilder SubIB = 912 BuildMI(*PH, InsertPos, DL, SubD, SubR); 913 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 914 .addImm(-StartV); 915 DistR = SubR; 916 } 917 } 918 DistSR = 0; 919 } 920 921 // From DistR, compute AdjR (register with the adjusted distance). 922 unsigned AdjR, AdjSR; 923 924 if (AdjV == 0) { 925 AdjR = DistR; 926 AdjSR = DistSR; 927 } else { 928 // Generate CountR = ADD DistR, AdjVal 929 unsigned AddR = MRI->createVirtualRegister(IntRC); 930 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 931 BuildMI(*PH, InsertPos, DL, AddD, AddR) 932 .addReg(DistR, 0, DistSR) 933 .addImm(AdjV); 934 935 AdjR = AddR; 936 AdjSR = 0; 937 } 938 939 // From AdjR, compute CountR (register with the final count). 940 unsigned CountR, CountSR; 941 942 if (IVBump == 1) { 943 CountR = AdjR; 944 CountSR = AdjSR; 945 } else { 946 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 947 unsigned Shift = Log2_32(IVBump); 948 949 // Generate NormR = LSR DistR, Shift. 950 unsigned LsrR = MRI->createVirtualRegister(IntRC); 951 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 952 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 953 .addReg(AdjR, 0, AdjSR) 954 .addImm(Shift); 955 956 CountR = LsrR; 957 CountSR = 0; 958 } 959 960 return new CountValue(CountValue::CV_Register, CountR, CountSR); 961 } 962 963 /// \brief Return true if the operation is invalid within hardware loop. 964 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 965 bool IsInnerHWLoop) const { 966 967 // Call is not allowed because the callee may use a hardware loop except for 968 // the case when the call never returns. 969 if (MI->getDesc().isCall()) 970 return !TII->doesNotReturn(*MI); 971 972 // Check if the instruction defines a hardware loop register. 973 using namespace Hexagon; 974 ArrayRef<unsigned> Regs01 = { Hexagon::LC0, Hexagon::SA0, 975 Hexagon::LC1, Hexagon::SA1 }; 976 ArrayRef<unsigned> Regs1 = { Hexagon::LC1, Hexagon::SA1 }; 977 for (unsigned R : IsInnerHWLoop ? Regs01 : Regs1) 978 if (MI->modifiesRegister(R, TRI)) 979 return true; 980 981 return false; 982 } 983 984 /// \brief Return true if the loop contains an instruction that inhibits 985 /// the use of the hardware loop instruction. 986 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 987 bool IsInnerHWLoop) const { 988 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 989 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 990 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 991 MachineBasicBlock *MBB = Blocks[i]; 992 for (MachineBasicBlock::iterator 993 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 994 const MachineInstr *MI = &*MII; 995 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 996 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 997 return true; 998 } 999 } 1000 } 1001 return false; 1002 } 1003 1004 /// \brief Returns true if the instruction is dead. This was essentially 1005 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1006 /// for inline asm, physical registers and instructions with side effects 1007 /// removed. 1008 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1009 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1010 // Examine each operand. 1011 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1012 const MachineOperand &MO = MI->getOperand(i); 1013 if (!MO.isReg() || !MO.isDef()) 1014 continue; 1015 1016 unsigned Reg = MO.getReg(); 1017 if (MRI->use_nodbg_empty(Reg)) 1018 continue; 1019 1020 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 1021 1022 // This instruction has users, but if the only user is the phi node for the 1023 // parent block, and the only use of that phi node is this instruction, then 1024 // this instruction is dead: both it (and the phi node) can be removed. 1025 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1026 use_nodbg_iterator End = MRI->use_nodbg_end(); 1027 if (std::next(I) != End || !I->getParent()->isPHI()) 1028 return false; 1029 1030 MachineInstr *OnePhi = I->getParent(); 1031 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1032 const MachineOperand &OPO = OnePhi->getOperand(j); 1033 if (!OPO.isReg() || !OPO.isDef()) 1034 continue; 1035 1036 unsigned OPReg = OPO.getReg(); 1037 use_nodbg_iterator nextJ; 1038 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1039 J != End; J = nextJ) { 1040 nextJ = std::next(J); 1041 MachineOperand &Use = *J; 1042 MachineInstr *UseMI = Use.getParent(); 1043 1044 // If the phi node has a user that is not MI, bail. 1045 if (MI != UseMI) 1046 return false; 1047 } 1048 } 1049 DeadPhis.push_back(OnePhi); 1050 } 1051 1052 // If there are no defs with uses, the instruction is dead. 1053 return true; 1054 } 1055 1056 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1057 // This procedure was essentially copied from DeadMachineInstructionElim. 1058 1059 SmallVector<MachineInstr*, 1> DeadPhis; 1060 if (isDead(MI, DeadPhis)) { 1061 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1062 1063 // It is possible that some DBG_VALUE instructions refer to this 1064 // instruction. Examine each def operand for such references; 1065 // if found, mark the DBG_VALUE as undef (but don't delete it). 1066 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1067 const MachineOperand &MO = MI->getOperand(i); 1068 if (!MO.isReg() || !MO.isDef()) 1069 continue; 1070 unsigned Reg = MO.getReg(); 1071 MachineRegisterInfo::use_iterator nextI; 1072 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1073 E = MRI->use_end(); I != E; I = nextI) { 1074 nextI = std::next(I); // I is invalidated by the setReg 1075 MachineOperand &Use = *I; 1076 MachineInstr *UseMI = I->getParent(); 1077 if (UseMI == MI) 1078 continue; 1079 if (Use.isDebug()) 1080 UseMI->getOperand(0).setReg(0U); 1081 } 1082 } 1083 1084 MI->eraseFromParent(); 1085 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1086 DeadPhis[i]->eraseFromParent(); 1087 } 1088 } 1089 1090 /// \brief Check if the loop is a candidate for converting to a hardware 1091 /// loop. If so, then perform the transformation. 1092 /// 1093 /// This function works on innermost loops first. A loop can be converted 1094 /// if it is a counting loop; either a register value or an immediate. 1095 /// 1096 /// The code makes several assumptions about the representation of the loop 1097 /// in llvm. 1098 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1099 bool &RecL0used, 1100 bool &RecL1used) { 1101 // This is just for sanity. 1102 assert(L->getHeader() && "Loop without a header?"); 1103 1104 bool Changed = false; 1105 bool L0Used = false; 1106 bool L1Used = false; 1107 1108 // Process nested loops first. 1109 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1110 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1111 L0Used |= RecL0used; 1112 L1Used |= RecL1used; 1113 } 1114 1115 // If a nested loop has been converted, then we can't convert this loop. 1116 if (Changed && L0Used && L1Used) 1117 return Changed; 1118 1119 unsigned LOOP_i; 1120 unsigned LOOP_r; 1121 unsigned ENDLOOP; 1122 1123 // Flag used to track loopN instruction: 1124 // 1 - Hardware loop is being generated for the inner most loop. 1125 // 0 - Hardware loop is being generated for the outer loop. 1126 unsigned IsInnerHWLoop = 1; 1127 1128 if (L0Used) { 1129 LOOP_i = Hexagon::J2_loop1i; 1130 LOOP_r = Hexagon::J2_loop1r; 1131 ENDLOOP = Hexagon::ENDLOOP1; 1132 IsInnerHWLoop = 0; 1133 } else { 1134 LOOP_i = Hexagon::J2_loop0i; 1135 LOOP_r = Hexagon::J2_loop0r; 1136 ENDLOOP = Hexagon::ENDLOOP0; 1137 } 1138 1139 #ifndef NDEBUG 1140 // Stop trying after reaching the limit (if any). 1141 int Limit = HWLoopLimit; 1142 if (Limit >= 0) { 1143 if (Counter >= HWLoopLimit) 1144 return false; 1145 Counter++; 1146 } 1147 #endif 1148 1149 // Does the loop contain any invalid instructions? 1150 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1151 return false; 1152 1153 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1154 // Don't generate hw loop if the loop has more than one exit. 1155 if (!LastMBB) 1156 return false; 1157 1158 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1159 if (LastI == LastMBB->end()) 1160 return false; 1161 1162 // Is the induction variable bump feeding the latch condition? 1163 if (!fixupInductionVariable(L)) 1164 return false; 1165 1166 // Ensure the loop has a preheader: the loop instruction will be 1167 // placed there. 1168 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1169 if (!Preheader) { 1170 Preheader = createPreheaderForLoop(L); 1171 if (!Preheader) 1172 return false; 1173 } 1174 1175 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1176 1177 SmallVector<MachineInstr*, 2> OldInsts; 1178 // Are we able to determine the trip count for the loop? 1179 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1180 if (!TripCount) 1181 return false; 1182 1183 // Is the trip count available in the preheader? 1184 if (TripCount->isReg()) { 1185 // There will be a use of the register inserted into the preheader, 1186 // so make sure that the register is actually defined at that point. 1187 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1188 MachineBasicBlock *BBDef = TCDef->getParent(); 1189 if (!MDT->dominates(BBDef, Preheader)) 1190 return false; 1191 } 1192 1193 // Determine the loop start. 1194 MachineBasicBlock *TopBlock = L->getTopBlock(); 1195 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1196 MachineBasicBlock *LoopStart = nullptr; 1197 if (ExitingBlock != L->getLoopLatch()) { 1198 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1199 SmallVector<MachineOperand, 2> Cond; 1200 1201 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1202 return false; 1203 1204 if (L->contains(TB)) 1205 LoopStart = TB; 1206 else if (L->contains(FB)) 1207 LoopStart = FB; 1208 else 1209 return false; 1210 } 1211 else 1212 LoopStart = TopBlock; 1213 1214 // Convert the loop to a hardware loop. 1215 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1216 DebugLoc DL; 1217 if (InsertPos != Preheader->end()) 1218 DL = InsertPos->getDebugLoc(); 1219 1220 if (TripCount->isReg()) { 1221 // Create a copy of the loop count register. 1222 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1223 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1224 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1225 // Add the Loop instruction to the beginning of the loop. 1226 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1227 .addReg(CountReg); 1228 } else { 1229 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1230 // Add the Loop immediate instruction to the beginning of the loop, 1231 // if the immediate fits in the instructions. Otherwise, we need to 1232 // create a new virtual register. 1233 int64_t CountImm = TripCount->getImm(); 1234 if (!TII->isValidOffset(LOOP_i, CountImm)) { 1235 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1236 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1237 .addImm(CountImm); 1238 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1239 .addMBB(LoopStart).addReg(CountReg); 1240 } else 1241 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1242 .addMBB(LoopStart).addImm(CountImm); 1243 } 1244 1245 // Make sure the loop start always has a reference in the CFG. We need 1246 // to create a BlockAddress operand to get this mechanism to work both the 1247 // MachineBasicBlock and BasicBlock objects need the flag set. 1248 LoopStart->setHasAddressTaken(); 1249 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1250 // object. 1251 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1252 1253 // Replace the loop branch with an endloop instruction. 1254 DebugLoc LastIDL = LastI->getDebugLoc(); 1255 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1256 1257 // The loop ends with either: 1258 // - a conditional branch followed by an unconditional branch, or 1259 // - a conditional branch to the loop start. 1260 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1261 LastI->getOpcode() == Hexagon::J2_jumpf) { 1262 // Delete one and change/add an uncond. branch to out of the loop. 1263 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1264 LastI = LastMBB->erase(LastI); 1265 if (!L->contains(BranchTarget)) { 1266 if (LastI != LastMBB->end()) 1267 LastI = LastMBB->erase(LastI); 1268 SmallVector<MachineOperand, 0> Cond; 1269 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1270 } 1271 } else { 1272 // Conditional branch to loop start; just delete it. 1273 LastMBB->erase(LastI); 1274 } 1275 delete TripCount; 1276 1277 // The induction operation and the comparison may now be 1278 // unneeded. If these are unneeded, then remove them. 1279 for (unsigned i = 0; i < OldInsts.size(); ++i) 1280 removeIfDead(OldInsts[i]); 1281 1282 ++NumHWLoops; 1283 1284 // Set RecL1used and RecL0used only after hardware loop has been 1285 // successfully generated. Doing it earlier can cause wrong loop instruction 1286 // to be used. 1287 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1288 RecL1used = true; 1289 else 1290 RecL0used = true; 1291 1292 return true; 1293 } 1294 1295 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1296 MachineInstr *CmpI) { 1297 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1298 1299 MachineBasicBlock *BB = BumpI->getParent(); 1300 if (CmpI->getParent() != BB) 1301 return false; 1302 1303 typedef MachineBasicBlock::instr_iterator instr_iterator; 1304 // Check if things are in order to begin with. 1305 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1306 if (&*I == CmpI) 1307 return true; 1308 1309 // Out of order. 1310 unsigned PredR = CmpI->getOperand(0).getReg(); 1311 bool FoundBump = false; 1312 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1313 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1314 MachineInstr *In = &*I; 1315 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1316 MachineOperand &MO = In->getOperand(i); 1317 if (MO.isReg() && MO.isUse()) { 1318 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1319 return false; 1320 } 1321 } 1322 1323 if (In == BumpI) { 1324 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1325 FoundBump = true; 1326 break; 1327 } 1328 } 1329 assert (FoundBump && "Cannot determine instruction order"); 1330 return FoundBump; 1331 } 1332 1333 /// This function is required to break recursion. Visiting phis in a loop may 1334 /// result in recursion during compilation. We break the recursion by making 1335 /// sure that we visit a MachineOperand and its definition in a 1336 /// MachineInstruction only once. If we attempt to visit more than once, then 1337 /// there is recursion, and will return false. 1338 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1339 MachineInstr *MI, 1340 const MachineOperand *MO, 1341 LoopFeederMap &LoopFeederPhi) const { 1342 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1343 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1344 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1345 // Ignore all BBs that form Loop. 1346 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1347 MachineBasicBlock *MBB = Blocks[i]; 1348 if (A == MBB) 1349 return false; 1350 } 1351 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1352 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1353 return true; 1354 } else 1355 // Already visited node. 1356 return false; 1357 } 1358 1359 /// Return true if a Phi may generate a value that can underflow. 1360 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1361 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1362 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1363 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1364 assert(Phi->isPHI() && "Expecting a Phi."); 1365 // Walk through each Phi, and its used operands. Make sure that 1366 // if there is recursion in Phi, we won't generate hardware loops. 1367 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1368 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1369 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1370 Phi->getParent(), L, LoopFeederPhi)) 1371 return true; 1372 return false; 1373 } 1374 1375 /// Return true if the induction variable can underflow in the first iteration. 1376 /// An example, is an initial unsigned value that is 0 and is decrement in the 1377 /// first itertion of a do-while loop. In this case, we cannot generate a 1378 /// hardware loop because the endloop instruction does not decrement the loop 1379 /// counter if it is <= 1. We only need to perform this analysis if the 1380 /// initial value is a register. 1381 /// 1382 /// This function assumes the initial value may underfow unless proven 1383 /// otherwise. If the type is signed, then we don't care because signed 1384 /// underflow is undefined. We attempt to prove the initial value is not 1385 /// zero by perfoming a crude analysis of the loop counter. This function 1386 /// checks if the initial value is used in any comparison prior to the loop 1387 /// and, if so, assumes the comparison is a range check. This is inexact, 1388 /// but will catch the simple cases. 1389 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1390 const MachineOperand *InitVal, const MachineOperand *EndVal, 1391 MachineBasicBlock *MBB, MachineLoop *L, 1392 LoopFeederMap &LoopFeederPhi) const { 1393 // Only check register values since they are unknown. 1394 if (!InitVal->isReg()) 1395 return false; 1396 1397 if (!EndVal->isImm()) 1398 return false; 1399 1400 // A register value that is assigned an immediate is a known value, and it 1401 // won't underflow in the first iteration. 1402 int64_t Imm; 1403 if (checkForImmediate(*InitVal, Imm)) 1404 return (EndVal->getImm() == Imm); 1405 1406 unsigned Reg = InitVal->getReg(); 1407 1408 // We don't know the value of a physical register. 1409 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1410 return true; 1411 1412 MachineInstr *Def = MRI->getVRegDef(Reg); 1413 if (!Def) 1414 return true; 1415 1416 // If the initial value is a Phi or copy and the operands may not underflow, 1417 // then the definition cannot be underflow either. 1418 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1419 L, LoopFeederPhi)) 1420 return false; 1421 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1422 EndVal, Def->getParent(), 1423 L, LoopFeederPhi)) 1424 return false; 1425 1426 // Iterate over the uses of the initial value. If the initial value is used 1427 // in a compare, then we assume this is a range check that ensures the loop 1428 // doesn't underflow. This is not an exact test and should be improved. 1429 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1430 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1431 MachineInstr *MI = &*I; 1432 unsigned CmpReg1 = 0, CmpReg2 = 0; 1433 int CmpMask = 0, CmpValue = 0; 1434 1435 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1436 continue; 1437 1438 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1439 SmallVector<MachineOperand, 2> Cond; 1440 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1441 continue; 1442 1443 Comparison::Kind Cmp = 1444 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1445 if (Cmp == 0) 1446 continue; 1447 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1448 Cmp = Comparison::getNegatedComparison(Cmp); 1449 if (CmpReg2 != 0 && CmpReg2 == Reg) 1450 Cmp = Comparison::getSwappedComparison(Cmp); 1451 1452 // Signed underflow is undefined. 1453 if (Comparison::isSigned(Cmp)) 1454 return false; 1455 1456 // Check if there is a comparison of the initial value. If the initial value 1457 // is greater than or not equal to another value, then assume this is a 1458 // range check. 1459 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1460 return false; 1461 } 1462 1463 // OK - this is a hack that needs to be improved. We really need to analyze 1464 // the instructions performed on the initial value. This works on the simplest 1465 // cases only. 1466 if (!Def->isCopy() && !Def->isPHI()) 1467 return false; 1468 1469 return true; 1470 } 1471 1472 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1473 int64_t &Val) const { 1474 if (MO.isImm()) { 1475 Val = MO.getImm(); 1476 return true; 1477 } 1478 if (!MO.isReg()) 1479 return false; 1480 1481 // MO is a register. Check whether it is defined as an immediate value, 1482 // and if so, get the value of it in TV. That value will then need to be 1483 // processed to handle potential subregisters in MO. 1484 int64_t TV; 1485 1486 unsigned R = MO.getReg(); 1487 if (!TargetRegisterInfo::isVirtualRegister(R)) 1488 return false; 1489 MachineInstr *DI = MRI->getVRegDef(R); 1490 unsigned DOpc = DI->getOpcode(); 1491 switch (DOpc) { 1492 case TargetOpcode::COPY: 1493 case Hexagon::A2_tfrsi: 1494 case Hexagon::A2_tfrpi: 1495 case Hexagon::CONST32: 1496 case Hexagon::CONST64: { 1497 // Call recursively to avoid an extra check whether operand(1) is 1498 // indeed an immediate (it could be a global address, for example), 1499 // plus we can handle COPY at the same time. 1500 if (!checkForImmediate(DI->getOperand(1), TV)) 1501 return false; 1502 break; 1503 } 1504 case Hexagon::A2_combineii: 1505 case Hexagon::A4_combineir: 1506 case Hexagon::A4_combineii: 1507 case Hexagon::A4_combineri: 1508 case Hexagon::A2_combinew: { 1509 const MachineOperand &S1 = DI->getOperand(1); 1510 const MachineOperand &S2 = DI->getOperand(2); 1511 int64_t V1, V2; 1512 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1513 return false; 1514 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1515 break; 1516 } 1517 case TargetOpcode::REG_SEQUENCE: { 1518 const MachineOperand &S1 = DI->getOperand(1); 1519 const MachineOperand &S3 = DI->getOperand(3); 1520 int64_t V1, V3; 1521 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1522 return false; 1523 unsigned Sub2 = DI->getOperand(2).getImm(); 1524 unsigned Sub4 = DI->getOperand(4).getImm(); 1525 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1526 TV = V1 | (V3 << 32); 1527 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1528 TV = V3 | (V1 << 32); 1529 else 1530 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1531 break; 1532 } 1533 1534 default: 1535 return false; 1536 } 1537 1538 // By now, we should have successfully obtained the immediate value defining 1539 // the register referenced in MO. Handle a potential use of a subregister. 1540 switch (MO.getSubReg()) { 1541 case Hexagon::isub_lo: 1542 Val = TV & 0xFFFFFFFFULL; 1543 break; 1544 case Hexagon::isub_hi: 1545 Val = (TV >> 32) & 0xFFFFFFFFULL; 1546 break; 1547 default: 1548 Val = TV; 1549 break; 1550 } 1551 return true; 1552 } 1553 1554 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1555 if (MO.isImm()) { 1556 MO.setImm(Val); 1557 return; 1558 } 1559 1560 assert(MO.isReg()); 1561 unsigned R = MO.getReg(); 1562 MachineInstr *DI = MRI->getVRegDef(R); 1563 1564 const TargetRegisterClass *RC = MRI->getRegClass(R); 1565 unsigned NewR = MRI->createVirtualRegister(RC); 1566 MachineBasicBlock &B = *DI->getParent(); 1567 DebugLoc DL = DI->getDebugLoc(); 1568 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1569 MO.setReg(NewR); 1570 } 1571 1572 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1573 // These two instructions are not extendable. 1574 if (CmpOpc == Hexagon::A4_cmpbeqi) 1575 return isUInt<8>(Imm); 1576 if (CmpOpc == Hexagon::A4_cmpbgti) 1577 return isInt<8>(Imm); 1578 // The rest of the comparison-with-immediate instructions are extendable. 1579 return true; 1580 } 1581 1582 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1583 MachineBasicBlock *Header = L->getHeader(); 1584 MachineBasicBlock *Latch = L->getLoopLatch(); 1585 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1586 1587 if (!(Header && Latch && ExitingBlock)) 1588 return false; 1589 1590 // These data structures follow the same concept as the corresponding 1591 // ones in findInductionRegister (where some comments are). 1592 typedef std::pair<unsigned,int64_t> RegisterBump; 1593 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1594 typedef std::set<RegisterInduction> RegisterInductionSet; 1595 1596 // Register candidates for induction variables, with their associated bumps. 1597 RegisterInductionSet IndRegs; 1598 1599 // Look for induction patterns: 1600 // vreg1 = PHI ..., [ latch, vreg2 ] 1601 // vreg2 = ADD vreg1, imm 1602 typedef MachineBasicBlock::instr_iterator instr_iterator; 1603 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1604 I != E && I->isPHI(); ++I) { 1605 MachineInstr *Phi = &*I; 1606 1607 // Have a PHI instruction. 1608 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1609 if (Phi->getOperand(i+1).getMBB() != Latch) 1610 continue; 1611 1612 unsigned PhiReg = Phi->getOperand(i).getReg(); 1613 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1614 1615 if (DI->getDesc().isAdd()) { 1616 // If the register operand to the add/sub is the PHI we are looking 1617 // at, this meets the induction pattern. 1618 unsigned IndReg = DI->getOperand(1).getReg(); 1619 MachineOperand &Opnd2 = DI->getOperand(2); 1620 int64_t V; 1621 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1622 unsigned UpdReg = DI->getOperand(0).getReg(); 1623 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1624 } 1625 } 1626 } // for (i) 1627 } // for (instr) 1628 1629 if (IndRegs.empty()) 1630 return false; 1631 1632 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1633 SmallVector<MachineOperand,2> Cond; 1634 // AnalyzeBranch returns true if it fails to analyze branch. 1635 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1636 if (NotAnalyzed || Cond.empty()) 1637 return false; 1638 1639 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1640 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1641 SmallVector<MachineOperand,2> LCond; 1642 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1643 if (NotAnalyzed) 1644 return false; 1645 1646 // Since latch is not the exiting block, the latch branch should be an 1647 // unconditional branch to the loop header. 1648 if (TB == Latch) 1649 TB = (LTB == Header) ? LTB : LFB; 1650 else 1651 FB = (LTB == Header) ? LTB : LFB; 1652 } 1653 if (TB != Header) { 1654 if (FB != Header) { 1655 // The latch/exit block does not go back to the header. 1656 return false; 1657 } 1658 // FB is the header (i.e., uncond. jump to branch header) 1659 // In this case, the LoopBody -> TB should not be a back edge otherwise 1660 // it could result in an infinite loop after conversion to hw_loop. 1661 // This case can happen when the Latch has two jumps like this: 1662 // Jmp_c OuterLoopHeader <-- TB 1663 // Jmp InnerLoopHeader <-- FB 1664 if (MDT->dominates(TB, FB)) 1665 return false; 1666 } 1667 1668 // Expecting a predicate register as a condition. It won't be a hardware 1669 // predicate register at this point yet, just a vreg. 1670 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1671 // into Cond, followed by the predicate register. For non-negated branches 1672 // it's just the register. 1673 unsigned CSz = Cond.size(); 1674 if (CSz != 1 && CSz != 2) 1675 return false; 1676 1677 if (!Cond[CSz-1].isReg()) 1678 return false; 1679 1680 unsigned P = Cond[CSz-1].getReg(); 1681 MachineInstr *PredDef = MRI->getVRegDef(P); 1682 1683 if (!PredDef->isCompare()) 1684 return false; 1685 1686 SmallSet<unsigned,2> CmpRegs; 1687 MachineOperand *CmpImmOp = nullptr; 1688 1689 // Go over all operands to the compare and look for immediate and register 1690 // operands. Assume that if the compare has a single register use and a 1691 // single immediate operand, then the register is being compared with the 1692 // immediate value. 1693 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1694 MachineOperand &MO = PredDef->getOperand(i); 1695 if (MO.isReg()) { 1696 // Skip all implicit references. In one case there was: 1697 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1698 if (MO.isImplicit()) 1699 continue; 1700 if (MO.isUse()) { 1701 if (!isImmediate(MO)) { 1702 CmpRegs.insert(MO.getReg()); 1703 continue; 1704 } 1705 // Consider the register to be the "immediate" operand. 1706 if (CmpImmOp) 1707 return false; 1708 CmpImmOp = &MO; 1709 } 1710 } else if (MO.isImm()) { 1711 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1712 return false; 1713 CmpImmOp = &MO; 1714 } 1715 } 1716 1717 if (CmpRegs.empty()) 1718 return false; 1719 1720 // Check if the compared register follows the order we want. Fix if needed. 1721 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1722 I != E; ++I) { 1723 // This is a success. If the register used in the comparison is one that 1724 // we have identified as a bumped (updated) induction register, there is 1725 // nothing to do. 1726 if (CmpRegs.count(I->first)) 1727 return true; 1728 1729 // Otherwise, if the register being compared comes out of a PHI node, 1730 // and has been recognized as following the induction pattern, and is 1731 // compared against an immediate, we can fix it. 1732 const RegisterBump &RB = I->second; 1733 if (CmpRegs.count(RB.first)) { 1734 if (!CmpImmOp) { 1735 // If both operands to the compare instruction are registers, see if 1736 // it can be changed to use induction register as one of the operands. 1737 MachineInstr *IndI = nullptr; 1738 MachineInstr *nonIndI = nullptr; 1739 MachineOperand *IndMO = nullptr; 1740 MachineOperand *nonIndMO = nullptr; 1741 1742 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1743 MachineOperand &MO = PredDef->getOperand(i); 1744 if (MO.isReg() && MO.getReg() == RB.first) { 1745 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1746 << *(MRI->getVRegDef(I->first))); 1747 if (IndI) 1748 return false; 1749 1750 IndI = MRI->getVRegDef(I->first); 1751 IndMO = &MO; 1752 } else if (MO.isReg()) { 1753 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1754 << *(MRI->getVRegDef(MO.getReg()))); 1755 if (nonIndI) 1756 return false; 1757 1758 nonIndI = MRI->getVRegDef(MO.getReg()); 1759 nonIndMO = &MO; 1760 } 1761 } 1762 if (IndI && nonIndI && 1763 nonIndI->getOpcode() == Hexagon::A2_addi && 1764 nonIndI->getOperand(2).isImm() && 1765 nonIndI->getOperand(2).getImm() == - RB.second) { 1766 bool Order = orderBumpCompare(IndI, PredDef); 1767 if (Order) { 1768 IndMO->setReg(I->first); 1769 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1770 return true; 1771 } 1772 } 1773 return false; 1774 } 1775 1776 // It is not valid to do this transformation on an unsigned comparison 1777 // because it may underflow. 1778 Comparison::Kind Cmp = 1779 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1780 if (!Cmp || Comparison::isUnsigned(Cmp)) 1781 return false; 1782 1783 // If the register is being compared against an immediate, try changing 1784 // the compare instruction to use induction register and adjust the 1785 // immediate operand. 1786 int64_t CmpImm = getImmediate(*CmpImmOp); 1787 int64_t V = RB.second; 1788 // Handle Overflow (64-bit). 1789 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1790 ((V < 0) && (CmpImm < INT64_MIN - V))) 1791 return false; 1792 CmpImm += V; 1793 // Most comparisons of register against an immediate value allow 1794 // the immediate to be constant-extended. There are some exceptions 1795 // though. Make sure the new combination will work. 1796 if (CmpImmOp->isImm()) 1797 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1798 return false; 1799 1800 // Make sure that the compare happens after the bump. Otherwise, 1801 // after the fixup, the compare would use a yet-undefined register. 1802 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1803 bool Order = orderBumpCompare(BumpI, PredDef); 1804 if (!Order) 1805 return false; 1806 1807 // Finally, fix the compare instruction. 1808 setImmediate(*CmpImmOp, CmpImm); 1809 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1810 MachineOperand &MO = PredDef->getOperand(i); 1811 if (MO.isReg() && MO.getReg() == RB.first) { 1812 MO.setReg(I->first); 1813 return true; 1814 } 1815 } 1816 } 1817 } 1818 1819 return false; 1820 } 1821 1822 /// createPreheaderForLoop - Create a preheader for a given loop. 1823 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1824 MachineLoop *L) { 1825 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1826 return TmpPH; 1827 if (!HWCreatePreheader) 1828 return nullptr; 1829 1830 MachineBasicBlock *Header = L->getHeader(); 1831 MachineBasicBlock *Latch = L->getLoopLatch(); 1832 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1833 MachineFunction *MF = Header->getParent(); 1834 DebugLoc DL; 1835 1836 #ifndef NDEBUG 1837 if ((PHFn != "") && (PHFn != MF->getName())) 1838 return nullptr; 1839 #endif 1840 1841 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1842 return nullptr; 1843 1844 typedef MachineBasicBlock::instr_iterator instr_iterator; 1845 1846 // Verify that all existing predecessors have analyzable branches 1847 // (or no branches at all). 1848 typedef std::vector<MachineBasicBlock*> MBBVector; 1849 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1850 SmallVector<MachineOperand,2> Tmp1; 1851 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1852 1853 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1854 return nullptr; 1855 1856 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1857 MachineBasicBlock *PB = *I; 1858 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1859 if (NotAnalyzed) 1860 return nullptr; 1861 } 1862 1863 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1864 MF->insert(Header->getIterator(), NewPH); 1865 1866 if (Header->pred_size() > 2) { 1867 // Ensure that the header has only two predecessors: the preheader and 1868 // the loop latch. Any additional predecessors of the header should 1869 // join at the newly created preheader. Inspect all PHI nodes from the 1870 // header and create appropriate corresponding PHI nodes in the preheader. 1871 1872 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1873 I != E && I->isPHI(); ++I) { 1874 MachineInstr *PN = &*I; 1875 1876 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1877 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1878 NewPH->insert(NewPH->end(), NewPN); 1879 1880 unsigned PR = PN->getOperand(0).getReg(); 1881 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1882 unsigned NewPR = MRI->createVirtualRegister(RC); 1883 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1884 1885 // Copy all non-latch operands of a header's PHI node to the newly 1886 // created PHI node in the preheader. 1887 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1888 unsigned PredR = PN->getOperand(i).getReg(); 1889 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1890 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1891 if (PredB == Latch) 1892 continue; 1893 1894 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1895 MO.setSubReg(PredRSub); 1896 NewPN->addOperand(MO); 1897 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1898 } 1899 1900 // Remove copied operands from the old PHI node and add the value 1901 // coming from the preheader's PHI. 1902 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1903 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1904 if (PredB != Latch) { 1905 PN->RemoveOperand(i+1); 1906 PN->RemoveOperand(i); 1907 } 1908 } 1909 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1910 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1911 } 1912 } else { 1913 assert(Header->pred_size() == 2); 1914 1915 // The header has only two predecessors, but the non-latch predecessor 1916 // is not a preheader (e.g. it has other successors, etc.) 1917 // In such a case we don't need any extra PHI nodes in the new preheader, 1918 // all we need is to adjust existing PHIs in the header to now refer to 1919 // the new preheader. 1920 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1921 I != E && I->isPHI(); ++I) { 1922 MachineInstr *PN = &*I; 1923 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1924 MachineOperand &MO = PN->getOperand(i+1); 1925 if (MO.getMBB() != Latch) 1926 MO.setMBB(NewPH); 1927 } 1928 } 1929 } 1930 1931 // "Reroute" the CFG edges to link in the new preheader. 1932 // If any of the predecessors falls through to the header, insert a branch 1933 // to the new preheader in that place. 1934 SmallVector<MachineOperand,1> Tmp2; 1935 SmallVector<MachineOperand,1> EmptyCond; 1936 1937 TB = FB = nullptr; 1938 1939 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1940 MachineBasicBlock *PB = *I; 1941 if (PB != Latch) { 1942 Tmp2.clear(); 1943 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1944 (void)NotAnalyzed; // suppress compiler warning 1945 assert (!NotAnalyzed && "Should be analyzable!"); 1946 if (TB != Header && (Tmp2.empty() || FB != Header)) 1947 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1948 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1949 } 1950 } 1951 1952 // It can happen that the latch block will fall through into the header. 1953 // Insert an unconditional branch to the header. 1954 TB = FB = nullptr; 1955 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1956 (void)LatchNotAnalyzed; // suppress compiler warning 1957 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1958 if (!TB && !FB) 1959 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1960 1961 // Finally, the branch from the preheader to the header. 1962 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1963 NewPH->addSuccessor(Header); 1964 1965 MachineLoop *ParentLoop = L->getParentLoop(); 1966 if (ParentLoop) 1967 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1968 1969 // Update the dominator information with the new preheader. 1970 if (MDT) { 1971 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1972 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1973 MDT->addNewBlock(NewPH, DHN->getBlock()); 1974 MDT->changeImmediateDominator(Header, NewPH); 1975 } 1976 } 1977 } 1978 1979 return NewPH; 1980 } 1981