1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No nested hardware loops. 25 // - No function calls in loops. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/SmallSet.h" 30 #include "Hexagon.h" 31 #include "HexagonTargetMachine.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/PassSupport.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include <algorithm> 45 #include <vector> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "hwloops" 50 51 #ifndef NDEBUG 52 static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); 53 #endif 54 55 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 56 57 namespace llvm { 58 void initializeHexagonHardwareLoopsPass(PassRegistry&); 59 } 60 61 namespace { 62 class CountValue; 63 struct HexagonHardwareLoops : public MachineFunctionPass { 64 MachineLoopInfo *MLI; 65 MachineRegisterInfo *MRI; 66 MachineDominatorTree *MDT; 67 const HexagonTargetMachine *TM; 68 const HexagonInstrInfo *TII; 69 const HexagonRegisterInfo *TRI; 70 #ifndef NDEBUG 71 static int Counter; 72 #endif 73 74 public: 75 static char ID; 76 77 HexagonHardwareLoops() : MachineFunctionPass(ID) { 78 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 79 } 80 81 bool runOnMachineFunction(MachineFunction &MF) override; 82 83 const char *getPassName() const override { return "Hexagon Hardware Loops"; } 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequired<MachineLoopInfo>(); 88 MachineFunctionPass::getAnalysisUsage(AU); 89 } 90 91 private: 92 /// Kinds of comparisons in the compare instructions. 93 struct Comparison { 94 enum Kind { 95 EQ = 0x01, 96 NE = 0x02, 97 L = 0x04, // Less-than property. 98 G = 0x08, // Greater-than property. 99 U = 0x40, // Unsigned property. 100 LTs = L, 101 LEs = L | EQ, 102 GTs = G, 103 GEs = G | EQ, 104 LTu = L | U, 105 LEu = L | EQ | U, 106 GTu = G | U, 107 GEu = G | EQ | U 108 }; 109 110 static Kind getSwappedComparison(Kind Cmp) { 111 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 112 if ((Cmp & L) || (Cmp & G)) 113 return (Kind)(Cmp ^ (L|G)); 114 return Cmp; 115 } 116 }; 117 118 /// \brief Find the register that contains the loop controlling 119 /// induction variable. 120 /// If successful, it will return true and set the \p Reg, \p IVBump 121 /// and \p IVOp arguments. Otherwise it will return false. 122 /// The returned induction register is the register R that follows the 123 /// following induction pattern: 124 /// loop: 125 /// R = phi ..., [ R.next, LatchBlock ] 126 /// R.next = R + #bump 127 /// if (R.next < #N) goto loop 128 /// IVBump is the immediate value added to R, and IVOp is the instruction 129 /// "R.next = R + #bump". 130 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 131 int64_t &IVBump, MachineInstr *&IVOp) const; 132 133 /// \brief Analyze the statements in a loop to determine if the loop 134 /// has a computable trip count and, if so, return a value that represents 135 /// the trip count expression. 136 CountValue *getLoopTripCount(MachineLoop *L, 137 SmallVectorImpl<MachineInstr *> &OldInsts); 138 139 /// \brief Return the expression that represents the number of times 140 /// a loop iterates. The function takes the operands that represent the 141 /// loop start value, loop end value, and induction value. Based upon 142 /// these operands, the function attempts to compute the trip count. 143 /// If the trip count is not directly available (as an immediate value, 144 /// or a register), the function will attempt to insert computation of it 145 /// to the loop's preheader. 146 CountValue *computeCount(MachineLoop *Loop, 147 const MachineOperand *Start, 148 const MachineOperand *End, 149 unsigned IVReg, 150 int64_t IVBump, 151 Comparison::Kind Cmp) const; 152 153 /// \brief Return true if the instruction is not valid within a hardware 154 /// loop. 155 bool isInvalidLoopOperation(const MachineInstr *MI) const; 156 157 /// \brief Return true if the loop contains an instruction that inhibits 158 /// using the hardware loop. 159 bool containsInvalidInstruction(MachineLoop *L) const; 160 161 /// \brief Given a loop, check if we can convert it to a hardware loop. 162 /// If so, then perform the conversion and return true. 163 bool convertToHardwareLoop(MachineLoop *L); 164 165 /// \brief Return true if the instruction is now dead. 166 bool isDead(const MachineInstr *MI, 167 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 168 169 /// \brief Remove the instruction if it is now dead. 170 void removeIfDead(MachineInstr *MI); 171 172 /// \brief Make sure that the "bump" instruction executes before the 173 /// compare. We need that for the IV fixup, so that the compare 174 /// instruction would not use a bumped value that has not yet been 175 /// defined. If the instructions are out of order, try to reorder them. 176 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 177 178 /// \brief Get the instruction that loads an immediate value into \p R, 179 /// or 0 if such an instruction does not exist. 180 MachineInstr *defWithImmediate(unsigned R); 181 182 /// \brief Get the immediate value referenced to by \p MO, either for 183 /// immediate operands, or for register operands, where the register 184 /// was defined with an immediate value. 185 int64_t getImmediate(MachineOperand &MO); 186 187 /// \brief Reset the given machine operand to now refer to a new immediate 188 /// value. Assumes that the operand was already referencing an immediate 189 /// value, either directly, or via a register. 190 void setImmediate(MachineOperand &MO, int64_t Val); 191 192 /// \brief Fix the data flow of the induction varible. 193 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 194 /// | 195 /// +-> back to phi 196 /// where "bump" is the increment of the induction variable: 197 /// iv = iv + #const. 198 /// Due to some prior code transformations, the actual flow may look 199 /// like this: 200 /// phi -+-> bump ---> back to phi 201 /// | 202 /// +-> comparison-in-latch (against upper_bound-bump), 203 /// i.e. the comparison that controls the loop execution may be using 204 /// the value of the induction variable from before the increment. 205 /// 206 /// Return true if the loop's flow is the desired one (i.e. it's 207 /// either been fixed, or no fixing was necessary). 208 /// Otherwise, return false. This can happen if the induction variable 209 /// couldn't be identified, or if the value in the latch's comparison 210 /// cannot be adjusted to reflect the post-bump value. 211 bool fixupInductionVariable(MachineLoop *L); 212 213 /// \brief Given a loop, if it does not have a preheader, create one. 214 /// Return the block that is the preheader. 215 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 216 }; 217 218 char HexagonHardwareLoops::ID = 0; 219 #ifndef NDEBUG 220 int HexagonHardwareLoops::Counter = 0; 221 #endif 222 223 /// \brief Abstraction for a trip count of a loop. A smaller version 224 /// of the MachineOperand class without the concerns of changing the 225 /// operand representation. 226 class CountValue { 227 public: 228 enum CountValueType { 229 CV_Register, 230 CV_Immediate 231 }; 232 private: 233 CountValueType Kind; 234 union Values { 235 struct { 236 unsigned Reg; 237 unsigned Sub; 238 } R; 239 unsigned ImmVal; 240 } Contents; 241 242 public: 243 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 244 Kind = t; 245 if (Kind == CV_Register) { 246 Contents.R.Reg = v; 247 Contents.R.Sub = u; 248 } else { 249 Contents.ImmVal = v; 250 } 251 } 252 bool isReg() const { return Kind == CV_Register; } 253 bool isImm() const { return Kind == CV_Immediate; } 254 255 unsigned getReg() const { 256 assert(isReg() && "Wrong CountValue accessor"); 257 return Contents.R.Reg; 258 } 259 unsigned getSubReg() const { 260 assert(isReg() && "Wrong CountValue accessor"); 261 return Contents.R.Sub; 262 } 263 unsigned getImm() const { 264 assert(isImm() && "Wrong CountValue accessor"); 265 return Contents.ImmVal; 266 } 267 268 void print(raw_ostream &OS, const TargetMachine *TM = nullptr) const { 269 const TargetRegisterInfo *TRI = 270 TM ? TM->getSubtargetImpl()->getRegisterInfo() : nullptr; 271 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 272 if (isImm()) { OS << Contents.ImmVal; } 273 } 274 }; 275 } // end anonymous namespace 276 277 278 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 279 "Hexagon Hardware Loops", false, false) 280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 281 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 282 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 283 "Hexagon Hardware Loops", false, false) 284 285 286 /// \brief Returns true if the instruction is a hardware loop instruction. 287 static bool isHardwareLoop(const MachineInstr *MI) { 288 return MI->getOpcode() == Hexagon::LOOP0_r || 289 MI->getOpcode() == Hexagon::LOOP0_i; 290 } 291 292 FunctionPass *llvm::createHexagonHardwareLoops() { 293 return new HexagonHardwareLoops(); 294 } 295 296 297 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 298 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 299 300 bool Changed = false; 301 302 MLI = &getAnalysis<MachineLoopInfo>(); 303 MRI = &MF.getRegInfo(); 304 MDT = &getAnalysis<MachineDominatorTree>(); 305 TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget()); 306 TII = static_cast<const HexagonInstrInfo *>( 307 TM->getSubtargetImpl()->getInstrInfo()); 308 TRI = static_cast<const HexagonRegisterInfo *>( 309 TM->getSubtargetImpl()->getRegisterInfo()); 310 311 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); 312 I != E; ++I) { 313 MachineLoop *L = *I; 314 if (!L->getParentLoop()) 315 Changed |= convertToHardwareLoop(L); 316 } 317 318 return Changed; 319 } 320 321 322 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 323 unsigned &Reg, 324 int64_t &IVBump, 325 MachineInstr *&IVOp 326 ) const { 327 MachineBasicBlock *Header = L->getHeader(); 328 MachineBasicBlock *Preheader = L->getLoopPreheader(); 329 MachineBasicBlock *Latch = L->getLoopLatch(); 330 if (!Header || !Preheader || !Latch) 331 return false; 332 333 // This pair represents an induction register together with an immediate 334 // value that will be added to it in each loop iteration. 335 typedef std::pair<unsigned,int64_t> RegisterBump; 336 337 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 338 // from an induction operation 339 // R.next = R + bump 340 // where bump is an immediate value. 341 typedef std::map<unsigned,RegisterBump> InductionMap; 342 343 InductionMap IndMap; 344 345 typedef MachineBasicBlock::instr_iterator instr_iterator; 346 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 347 I != E && I->isPHI(); ++I) { 348 MachineInstr *Phi = &*I; 349 350 // Have a PHI instruction. Get the operand that corresponds to the 351 // latch block, and see if is a result of an addition of form "reg+imm", 352 // where the "reg" is defined by the PHI node we are looking at. 353 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 354 if (Phi->getOperand(i+1).getMBB() != Latch) 355 continue; 356 357 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 358 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 359 unsigned UpdOpc = DI->getOpcode(); 360 bool isAdd = (UpdOpc == Hexagon::ADD_ri); 361 362 if (isAdd) { 363 // If the register operand to the add is the PHI we're 364 // looking at, this meets the induction pattern. 365 unsigned IndReg = DI->getOperand(1).getReg(); 366 if (MRI->getVRegDef(IndReg) == Phi) { 367 unsigned UpdReg = DI->getOperand(0).getReg(); 368 int64_t V = DI->getOperand(2).getImm(); 369 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 370 } 371 } 372 } // for (i) 373 } // for (instr) 374 375 SmallVector<MachineOperand,2> Cond; 376 MachineBasicBlock *TB = nullptr, *FB = nullptr; 377 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 378 if (NotAnalyzed) 379 return false; 380 381 unsigned CSz = Cond.size(); 382 assert (CSz == 1 || CSz == 2); 383 unsigned PredR = Cond[CSz-1].getReg(); 384 385 MachineInstr *PredI = MRI->getVRegDef(PredR); 386 if (!PredI->isCompare()) 387 return false; 388 389 unsigned CmpReg1 = 0, CmpReg2 = 0; 390 int CmpImm = 0, CmpMask = 0; 391 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, 392 CmpMask, CmpImm); 393 // Fail if the compare was not analyzed, or it's not comparing a register 394 // with an immediate value. Not checking the mask here, since we handle 395 // the individual compare opcodes (including CMPb) later on. 396 if (!CmpAnalyzed) 397 return false; 398 399 // Exactly one of the input registers to the comparison should be among 400 // the induction registers. 401 InductionMap::iterator IndMapEnd = IndMap.end(); 402 InductionMap::iterator F = IndMapEnd; 403 if (CmpReg1 != 0) { 404 InductionMap::iterator F1 = IndMap.find(CmpReg1); 405 if (F1 != IndMapEnd) 406 F = F1; 407 } 408 if (CmpReg2 != 0) { 409 InductionMap::iterator F2 = IndMap.find(CmpReg2); 410 if (F2 != IndMapEnd) { 411 if (F != IndMapEnd) 412 return false; 413 F = F2; 414 } 415 } 416 if (F == IndMapEnd) 417 return false; 418 419 Reg = F->second.first; 420 IVBump = F->second.second; 421 IVOp = MRI->getVRegDef(F->first); 422 return true; 423 } 424 425 426 /// \brief Analyze the statements in a loop to determine if the loop has 427 /// a computable trip count and, if so, return a value that represents 428 /// the trip count expression. 429 /// 430 /// This function iterates over the phi nodes in the loop to check for 431 /// induction variable patterns that are used in the calculation for 432 /// the number of time the loop is executed. 433 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 434 SmallVectorImpl<MachineInstr *> &OldInsts) { 435 MachineBasicBlock *TopMBB = L->getTopBlock(); 436 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 437 assert(PI != TopMBB->pred_end() && 438 "Loop must have more than one incoming edge!"); 439 MachineBasicBlock *Backedge = *PI++; 440 if (PI == TopMBB->pred_end()) // dead loop? 441 return nullptr; 442 MachineBasicBlock *Incoming = *PI++; 443 if (PI != TopMBB->pred_end()) // multiple backedges? 444 return nullptr; 445 446 // Make sure there is one incoming and one backedge and determine which 447 // is which. 448 if (L->contains(Incoming)) { 449 if (L->contains(Backedge)) 450 return nullptr; 451 std::swap(Incoming, Backedge); 452 } else if (!L->contains(Backedge)) 453 return nullptr; 454 455 // Look for the cmp instruction to determine if we can get a useful trip 456 // count. The trip count can be either a register or an immediate. The 457 // location of the value depends upon the type (reg or imm). 458 MachineBasicBlock *Latch = L->getLoopLatch(); 459 if (!Latch) 460 return nullptr; 461 462 unsigned IVReg = 0; 463 int64_t IVBump = 0; 464 MachineInstr *IVOp; 465 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 466 if (!FoundIV) 467 return nullptr; 468 469 MachineBasicBlock *Preheader = L->getLoopPreheader(); 470 471 MachineOperand *InitialValue = nullptr; 472 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 473 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 474 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 475 if (MBB == Preheader) 476 InitialValue = &IV_Phi->getOperand(i); 477 else if (MBB == Latch) 478 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 479 } 480 if (!InitialValue) 481 return nullptr; 482 483 SmallVector<MachineOperand,2> Cond; 484 MachineBasicBlock *TB = nullptr, *FB = nullptr; 485 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 486 if (NotAnalyzed) 487 return nullptr; 488 489 MachineBasicBlock *Header = L->getHeader(); 490 // TB must be non-null. If FB is also non-null, one of them must be 491 // the header. Otherwise, branch to TB could be exiting the loop, and 492 // the fall through can go to the header. 493 assert (TB && "Latch block without a branch?"); 494 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 495 if (!TB || (FB && TB != Header && FB != Header)) 496 return nullptr; 497 498 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 499 // to put imm(0), followed by P in the vector Cond. 500 // If TB is not the header, it means that the "not-taken" path must lead 501 // to the header. 502 bool Negated = (Cond.size() > 1) ^ (TB != Header); 503 unsigned PredReg = Cond[Cond.size()-1].getReg(); 504 MachineInstr *CondI = MRI->getVRegDef(PredReg); 505 unsigned CondOpc = CondI->getOpcode(); 506 507 unsigned CmpReg1 = 0, CmpReg2 = 0; 508 int Mask = 0, ImmValue = 0; 509 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, 510 Mask, ImmValue); 511 if (!AnalyzedCmp) 512 return nullptr; 513 514 // The comparison operator type determines how we compute the loop 515 // trip count. 516 OldInsts.push_back(CondI); 517 OldInsts.push_back(IVOp); 518 519 // Sadly, the following code gets information based on the position 520 // of the operands in the compare instruction. This has to be done 521 // this way, because the comparisons check for a specific relationship 522 // between the operands (e.g. is-less-than), rather than to find out 523 // what relationship the operands are in (as on PPC). 524 Comparison::Kind Cmp; 525 bool isSwapped = false; 526 const MachineOperand &Op1 = CondI->getOperand(1); 527 const MachineOperand &Op2 = CondI->getOperand(2); 528 const MachineOperand *EndValue = nullptr; 529 530 if (Op1.isReg()) { 531 if (Op2.isImm() || Op1.getReg() == IVReg) 532 EndValue = &Op2; 533 else { 534 EndValue = &Op1; 535 isSwapped = true; 536 } 537 } 538 539 if (!EndValue) 540 return nullptr; 541 542 switch (CondOpc) { 543 case Hexagon::CMPEQri: 544 case Hexagon::CMPEQrr: 545 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 546 break; 547 case Hexagon::CMPGTUri: 548 case Hexagon::CMPGTUrr: 549 Cmp = !Negated ? Comparison::GTu : Comparison::LEu; 550 break; 551 case Hexagon::CMPGTri: 552 case Hexagon::CMPGTrr: 553 Cmp = !Negated ? Comparison::GTs : Comparison::LEs; 554 break; 555 // Very limited support for byte/halfword compares. 556 case Hexagon::CMPbEQri_V4: 557 case Hexagon::CMPhEQri_V4: { 558 if (IVBump != 1) 559 return nullptr; 560 561 int64_t InitV, EndV; 562 // Since the comparisons are "ri", the EndValue should be an 563 // immediate. Check it just in case. 564 assert(EndValue->isImm() && "Unrecognized latch comparison"); 565 EndV = EndValue->getImm(); 566 // Allow InitialValue to be a register defined with an immediate. 567 if (InitialValue->isReg()) { 568 if (!defWithImmediate(InitialValue->getReg())) 569 return nullptr; 570 InitV = getImmediate(*InitialValue); 571 } else { 572 assert(InitialValue->isImm()); 573 InitV = InitialValue->getImm(); 574 } 575 if (InitV >= EndV) 576 return nullptr; 577 if (CondOpc == Hexagon::CMPbEQri_V4) { 578 if (!isInt<8>(InitV) || !isInt<8>(EndV)) 579 return nullptr; 580 } else { // Hexagon::CMPhEQri_V4 581 if (!isInt<16>(InitV) || !isInt<16>(EndV)) 582 return nullptr; 583 } 584 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 585 break; 586 } 587 default: 588 return nullptr; 589 } 590 591 if (isSwapped) 592 Cmp = Comparison::getSwappedComparison(Cmp); 593 594 if (InitialValue->isReg()) { 595 unsigned R = InitialValue->getReg(); 596 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 597 if (!MDT->properlyDominates(DefBB, Header)) 598 return nullptr; 599 OldInsts.push_back(MRI->getVRegDef(R)); 600 } 601 if (EndValue->isReg()) { 602 unsigned R = EndValue->getReg(); 603 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 604 if (!MDT->properlyDominates(DefBB, Header)) 605 return nullptr; 606 } 607 608 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 609 } 610 611 /// \brief Helper function that returns the expression that represents the 612 /// number of times a loop iterates. The function takes the operands that 613 /// represent the loop start value, loop end value, and induction value. 614 /// Based upon these operands, the function attempts to compute the trip count. 615 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 616 const MachineOperand *Start, 617 const MachineOperand *End, 618 unsigned IVReg, 619 int64_t IVBump, 620 Comparison::Kind Cmp) const { 621 // Cannot handle comparison EQ, i.e. while (A == B). 622 if (Cmp == Comparison::EQ) 623 return nullptr; 624 625 // Check if either the start or end values are an assignment of an immediate. 626 // If so, use the immediate value rather than the register. 627 if (Start->isReg()) { 628 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 629 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI) 630 Start = &StartValInstr->getOperand(1); 631 } 632 if (End->isReg()) { 633 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 634 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI) 635 End = &EndValInstr->getOperand(1); 636 } 637 638 assert (Start->isReg() || Start->isImm()); 639 assert (End->isReg() || End->isImm()); 640 641 bool CmpLess = Cmp & Comparison::L; 642 bool CmpGreater = Cmp & Comparison::G; 643 bool CmpHasEqual = Cmp & Comparison::EQ; 644 645 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 646 // If loop executes while iv is "less" with the iv value going down, then 647 // the iv must wrap. 648 if (CmpLess && IVBump < 0) 649 return nullptr; 650 // If loop executes while iv is "greater" with the iv value going up, then 651 // the iv must wrap. 652 if (CmpGreater && IVBump > 0) 653 return nullptr; 654 655 if (Start->isImm() && End->isImm()) { 656 // Both, start and end are immediates. 657 int64_t StartV = Start->getImm(); 658 int64_t EndV = End->getImm(); 659 int64_t Dist = EndV - StartV; 660 if (Dist == 0) 661 return nullptr; 662 663 bool Exact = (Dist % IVBump) == 0; 664 665 if (Cmp == Comparison::NE) { 666 if (!Exact) 667 return nullptr; 668 if ((Dist < 0) ^ (IVBump < 0)) 669 return nullptr; 670 } 671 672 // For comparisons that include the final value (i.e. include equality 673 // with the final value), we need to increase the distance by 1. 674 if (CmpHasEqual) 675 Dist = Dist > 0 ? Dist+1 : Dist-1; 676 677 // assert (CmpLess => Dist > 0); 678 assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); 679 // assert (CmpGreater => Dist < 0); 680 assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); 681 682 // "Normalized" distance, i.e. with the bump set to +-1. 683 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump 684 : (-Dist + (-IVBump-1)) / (-IVBump); 685 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 686 687 uint64_t Count = Dist1; 688 689 if (Count > 0xFFFFFFFFULL) 690 return nullptr; 691 692 return new CountValue(CountValue::CV_Immediate, Count); 693 } 694 695 // A general case: Start and End are some values, but the actual 696 // iteration count may not be available. If it is not, insert 697 // a computation of it into the preheader. 698 699 // If the induction variable bump is not a power of 2, quit. 700 // Othwerise we'd need a general integer division. 701 if (!isPowerOf2_64(abs64(IVBump))) 702 return nullptr; 703 704 MachineBasicBlock *PH = Loop->getLoopPreheader(); 705 assert (PH && "Should have a preheader by now"); 706 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 707 DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() 708 : DebugLoc(); 709 710 // If Start is an immediate and End is a register, the trip count 711 // will be "reg - imm". Hexagon's "subtract immediate" instruction 712 // is actually "reg + -imm". 713 714 // If the loop IV is going downwards, i.e. if the bump is negative, 715 // then the iteration count (computed as End-Start) will need to be 716 // negated. To avoid the negation, just swap Start and End. 717 if (IVBump < 0) { 718 std::swap(Start, End); 719 IVBump = -IVBump; 720 } 721 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 722 // Signedness, and "including equality" are preserved. 723 724 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 725 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 726 727 int64_t StartV = 0, EndV = 0; 728 if (Start->isImm()) 729 StartV = Start->getImm(); 730 if (End->isImm()) 731 EndV = End->getImm(); 732 733 int64_t AdjV = 0; 734 // To compute the iteration count, we would need this computation: 735 // Count = (End - Start + (IVBump-1)) / IVBump 736 // or, when CmpHasEqual: 737 // Count = (End - Start + (IVBump-1)+1) / IVBump 738 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 739 // generating an instruction specifically to add it if we can adjust 740 // the immediate values for Start or End. 741 742 if (CmpHasEqual) { 743 // Need to add 1 to the total iteration count. 744 if (Start->isImm()) 745 StartV--; 746 else if (End->isImm()) 747 EndV++; 748 else 749 AdjV += 1; 750 } 751 752 if (Cmp != Comparison::NE) { 753 if (Start->isImm()) 754 StartV -= (IVBump-1); 755 else if (End->isImm()) 756 EndV += (IVBump-1); 757 else 758 AdjV += (IVBump-1); 759 } 760 761 unsigned R = 0, SR = 0; 762 if (Start->isReg()) { 763 R = Start->getReg(); 764 SR = Start->getSubReg(); 765 } else { 766 R = End->getReg(); 767 SR = End->getSubReg(); 768 } 769 const TargetRegisterClass *RC = MRI->getRegClass(R); 770 // Hardware loops cannot handle 64-bit registers. If it's a double 771 // register, it has to have a subregister. 772 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 773 return nullptr; 774 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 775 776 // Compute DistR (register with the distance between Start and End). 777 unsigned DistR, DistSR; 778 779 // Avoid special case, where the start value is an imm(0). 780 if (Start->isImm() && StartV == 0) { 781 DistR = End->getReg(); 782 DistSR = End->getSubReg(); 783 } else { 784 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 785 (RegToImm ? TII->get(Hexagon::SUB_ri) : 786 TII->get(Hexagon::ADD_ri)); 787 unsigned SubR = MRI->createVirtualRegister(IntRC); 788 MachineInstrBuilder SubIB = 789 BuildMI(*PH, InsertPos, DL, SubD, SubR); 790 791 if (RegToReg) { 792 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 793 .addReg(Start->getReg(), 0, Start->getSubReg()); 794 } else if (RegToImm) { 795 SubIB.addImm(EndV) 796 .addReg(Start->getReg(), 0, Start->getSubReg()); 797 } else { // ImmToReg 798 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 799 .addImm(-StartV); 800 } 801 DistR = SubR; 802 DistSR = 0; 803 } 804 805 // From DistR, compute AdjR (register with the adjusted distance). 806 unsigned AdjR, AdjSR; 807 808 if (AdjV == 0) { 809 AdjR = DistR; 810 AdjSR = DistSR; 811 } else { 812 // Generate CountR = ADD DistR, AdjVal 813 unsigned AddR = MRI->createVirtualRegister(IntRC); 814 const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri); 815 BuildMI(*PH, InsertPos, DL, AddD, AddR) 816 .addReg(DistR, 0, DistSR) 817 .addImm(AdjV); 818 819 AdjR = AddR; 820 AdjSR = 0; 821 } 822 823 // From AdjR, compute CountR (register with the final count). 824 unsigned CountR, CountSR; 825 826 if (IVBump == 1) { 827 CountR = AdjR; 828 CountSR = AdjSR; 829 } else { 830 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 831 unsigned Shift = Log2_32(IVBump); 832 833 // Generate NormR = LSR DistR, Shift. 834 unsigned LsrR = MRI->createVirtualRegister(IntRC); 835 const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri); 836 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 837 .addReg(AdjR, 0, AdjSR) 838 .addImm(Shift); 839 840 CountR = LsrR; 841 CountSR = 0; 842 } 843 844 return new CountValue(CountValue::CV_Register, CountR, CountSR); 845 } 846 847 848 /// \brief Return true if the operation is invalid within hardware loop. 849 bool HexagonHardwareLoops::isInvalidLoopOperation( 850 const MachineInstr *MI) const { 851 852 // call is not allowed because the callee may use a hardware loop 853 if (MI->getDesc().isCall()) 854 return true; 855 856 // do not allow nested hardware loops 857 if (isHardwareLoop(MI)) 858 return true; 859 860 // check if the instruction defines a hardware loop register 861 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 862 const MachineOperand &MO = MI->getOperand(i); 863 if (!MO.isReg() || !MO.isDef()) 864 continue; 865 unsigned R = MO.getReg(); 866 if (R == Hexagon::LC0 || R == Hexagon::LC1 || 867 R == Hexagon::SA0 || R == Hexagon::SA1) 868 return true; 869 } 870 return false; 871 } 872 873 874 /// \brief - Return true if the loop contains an instruction that inhibits 875 /// the use of the hardware loop function. 876 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { 877 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 878 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 879 MachineBasicBlock *MBB = Blocks[i]; 880 for (MachineBasicBlock::iterator 881 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 882 const MachineInstr *MI = &*MII; 883 if (isInvalidLoopOperation(MI)) 884 return true; 885 } 886 } 887 return false; 888 } 889 890 891 /// \brief Returns true if the instruction is dead. This was essentially 892 /// copied from DeadMachineInstructionElim::isDead, but with special cases 893 /// for inline asm, physical registers and instructions with side effects 894 /// removed. 895 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 896 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 897 // Examine each operand. 898 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 899 const MachineOperand &MO = MI->getOperand(i); 900 if (!MO.isReg() || !MO.isDef()) 901 continue; 902 903 unsigned Reg = MO.getReg(); 904 if (MRI->use_nodbg_empty(Reg)) 905 continue; 906 907 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 908 909 // This instruction has users, but if the only user is the phi node for the 910 // parent block, and the only use of that phi node is this instruction, then 911 // this instruction is dead: both it (and the phi node) can be removed. 912 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 913 use_nodbg_iterator End = MRI->use_nodbg_end(); 914 if (std::next(I) != End || !I->getParent()->isPHI()) 915 return false; 916 917 MachineInstr *OnePhi = I->getParent(); 918 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 919 const MachineOperand &OPO = OnePhi->getOperand(j); 920 if (!OPO.isReg() || !OPO.isDef()) 921 continue; 922 923 unsigned OPReg = OPO.getReg(); 924 use_nodbg_iterator nextJ; 925 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 926 J != End; J = nextJ) { 927 nextJ = std::next(J); 928 MachineOperand &Use = *J; 929 MachineInstr *UseMI = Use.getParent(); 930 931 // If the phi node has a user that is not MI, bail... 932 if (MI != UseMI) 933 return false; 934 } 935 } 936 DeadPhis.push_back(OnePhi); 937 } 938 939 // If there are no defs with uses, the instruction is dead. 940 return true; 941 } 942 943 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 944 // This procedure was essentially copied from DeadMachineInstructionElim. 945 946 SmallVector<MachineInstr*, 1> DeadPhis; 947 if (isDead(MI, DeadPhis)) { 948 DEBUG(dbgs() << "HW looping will remove: " << *MI); 949 950 // It is possible that some DBG_VALUE instructions refer to this 951 // instruction. Examine each def operand for such references; 952 // if found, mark the DBG_VALUE as undef (but don't delete it). 953 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 954 const MachineOperand &MO = MI->getOperand(i); 955 if (!MO.isReg() || !MO.isDef()) 956 continue; 957 unsigned Reg = MO.getReg(); 958 MachineRegisterInfo::use_iterator nextI; 959 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 960 E = MRI->use_end(); I != E; I = nextI) { 961 nextI = std::next(I); // I is invalidated by the setReg 962 MachineOperand &Use = *I; 963 MachineInstr *UseMI = I->getParent(); 964 if (UseMI == MI) 965 continue; 966 if (Use.isDebug()) 967 UseMI->getOperand(0).setReg(0U); 968 // This may also be a "instr -> phi -> instr" case which can 969 // be removed too. 970 } 971 } 972 973 MI->eraseFromParent(); 974 for (unsigned i = 0; i < DeadPhis.size(); ++i) 975 DeadPhis[i]->eraseFromParent(); 976 } 977 } 978 979 /// \brief Check if the loop is a candidate for converting to a hardware 980 /// loop. If so, then perform the transformation. 981 /// 982 /// This function works on innermost loops first. A loop can be converted 983 /// if it is a counting loop; either a register value or an immediate. 984 /// 985 /// The code makes several assumptions about the representation of the loop 986 /// in llvm. 987 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { 988 // This is just for sanity. 989 assert(L->getHeader() && "Loop without a header?"); 990 991 bool Changed = false; 992 // Process nested loops first. 993 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 994 Changed |= convertToHardwareLoop(*I); 995 996 // If a nested loop has been converted, then we can't convert this loop. 997 if (Changed) 998 return Changed; 999 1000 #ifndef NDEBUG 1001 // Stop trying after reaching the limit (if any). 1002 int Limit = HWLoopLimit; 1003 if (Limit >= 0) { 1004 if (Counter >= HWLoopLimit) 1005 return false; 1006 Counter++; 1007 } 1008 #endif 1009 1010 // Does the loop contain any invalid instructions? 1011 if (containsInvalidInstruction(L)) 1012 return false; 1013 1014 // Is the induction variable bump feeding the latch condition? 1015 if (!fixupInductionVariable(L)) 1016 return false; 1017 1018 MachineBasicBlock *LastMBB = L->getExitingBlock(); 1019 // Don't generate hw loop if the loop has more than one exit. 1020 if (!LastMBB) 1021 return false; 1022 1023 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1024 if (LastI == LastMBB->end()) 1025 return false; 1026 1027 // Ensure the loop has a preheader: the loop instruction will be 1028 // placed there. 1029 bool NewPreheader = false; 1030 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1031 if (!Preheader) { 1032 Preheader = createPreheaderForLoop(L); 1033 if (!Preheader) 1034 return false; 1035 NewPreheader = true; 1036 } 1037 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1038 1039 SmallVector<MachineInstr*, 2> OldInsts; 1040 // Are we able to determine the trip count for the loop? 1041 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1042 if (!TripCount) 1043 return false; 1044 1045 // Is the trip count available in the preheader? 1046 if (TripCount->isReg()) { 1047 // There will be a use of the register inserted into the preheader, 1048 // so make sure that the register is actually defined at that point. 1049 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1050 MachineBasicBlock *BBDef = TCDef->getParent(); 1051 if (!NewPreheader) { 1052 if (!MDT->dominates(BBDef, Preheader)) 1053 return false; 1054 } else { 1055 // If we have just created a preheader, the dominator tree won't be 1056 // aware of it. Check if the definition of the register dominates 1057 // the header, but is not the header itself. 1058 if (!MDT->properlyDominates(BBDef, L->getHeader())) 1059 return false; 1060 } 1061 } 1062 1063 // Determine the loop start. 1064 MachineBasicBlock *LoopStart = L->getTopBlock(); 1065 if (L->getLoopLatch() != LastMBB) { 1066 // When the exit and latch are not the same, use the latch block as the 1067 // start. 1068 // The loop start address is used only after the 1st iteration, and the 1069 // loop latch may contains instrs. that need to be executed after the 1070 // first iteration. 1071 LoopStart = L->getLoopLatch(); 1072 // Make sure the latch is a successor of the exit, otherwise it won't work. 1073 if (!LastMBB->isSuccessor(LoopStart)) 1074 return false; 1075 } 1076 1077 // Convert the loop to a hardware loop. 1078 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1079 DebugLoc DL; 1080 if (InsertPos != Preheader->end()) 1081 DL = InsertPos->getDebugLoc(); 1082 1083 if (TripCount->isReg()) { 1084 // Create a copy of the loop count register. 1085 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1086 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1087 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1088 // Add the Loop instruction to the beginning of the loop. 1089 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) 1090 .addMBB(LoopStart) 1091 .addReg(CountReg); 1092 } else { 1093 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1094 // Add the Loop immediate instruction to the beginning of the loop, 1095 // if the immediate fits in the instructions. Otherwise, we need to 1096 // create a new virtual register. 1097 int64_t CountImm = TripCount->getImm(); 1098 if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) { 1099 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1100 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg) 1101 .addImm(CountImm); 1102 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) 1103 .addMBB(LoopStart).addReg(CountReg); 1104 } else 1105 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i)) 1106 .addMBB(LoopStart).addImm(CountImm); 1107 } 1108 1109 // Make sure the loop start always has a reference in the CFG. We need 1110 // to create a BlockAddress operand to get this mechanism to work both the 1111 // MachineBasicBlock and BasicBlock objects need the flag set. 1112 LoopStart->setHasAddressTaken(); 1113 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1114 // object. 1115 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1116 1117 // Replace the loop branch with an endloop instruction. 1118 DebugLoc LastIDL = LastI->getDebugLoc(); 1119 BuildMI(*LastMBB, LastI, LastIDL, 1120 TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); 1121 1122 // The loop ends with either: 1123 // - a conditional branch followed by an unconditional branch, or 1124 // - a conditional branch to the loop start. 1125 if (LastI->getOpcode() == Hexagon::JMP_t || 1126 LastI->getOpcode() == Hexagon::JMP_f) { 1127 // Delete one and change/add an uncond. branch to out of the loop. 1128 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1129 LastI = LastMBB->erase(LastI); 1130 if (!L->contains(BranchTarget)) { 1131 if (LastI != LastMBB->end()) 1132 LastI = LastMBB->erase(LastI); 1133 SmallVector<MachineOperand, 0> Cond; 1134 TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1135 } 1136 } else { 1137 // Conditional branch to loop start; just delete it. 1138 LastMBB->erase(LastI); 1139 } 1140 delete TripCount; 1141 1142 // The induction operation and the comparison may now be 1143 // unneeded. If these are unneeded, then remove them. 1144 for (unsigned i = 0; i < OldInsts.size(); ++i) 1145 removeIfDead(OldInsts[i]); 1146 1147 ++NumHWLoops; 1148 return true; 1149 } 1150 1151 1152 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1153 MachineInstr *CmpI) { 1154 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1155 1156 MachineBasicBlock *BB = BumpI->getParent(); 1157 if (CmpI->getParent() != BB) 1158 return false; 1159 1160 typedef MachineBasicBlock::instr_iterator instr_iterator; 1161 // Check if things are in order to begin with. 1162 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) 1163 if (&*I == CmpI) 1164 return true; 1165 1166 // Out of order. 1167 unsigned PredR = CmpI->getOperand(0).getReg(); 1168 bool FoundBump = false; 1169 instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt); 1170 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1171 MachineInstr *In = &*I; 1172 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1173 MachineOperand &MO = In->getOperand(i); 1174 if (MO.isReg() && MO.isUse()) { 1175 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1176 return false; 1177 } 1178 } 1179 1180 if (In == BumpI) { 1181 instr_iterator After = BumpI; 1182 instr_iterator From = CmpI; 1183 BB->splice(std::next(After), BB, From); 1184 FoundBump = true; 1185 break; 1186 } 1187 } 1188 assert (FoundBump && "Cannot determine instruction order"); 1189 return FoundBump; 1190 } 1191 1192 1193 MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { 1194 MachineInstr *DI = MRI->getVRegDef(R); 1195 unsigned DOpc = DI->getOpcode(); 1196 switch (DOpc) { 1197 case Hexagon::TFRI: 1198 case Hexagon::TFRI64: 1199 case Hexagon::CONST32_Int_Real: 1200 case Hexagon::CONST64_Int_Real: 1201 return DI; 1202 } 1203 return nullptr; 1204 } 1205 1206 1207 int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { 1208 if (MO.isImm()) 1209 return MO.getImm(); 1210 assert(MO.isReg()); 1211 unsigned R = MO.getReg(); 1212 MachineInstr *DI = defWithImmediate(R); 1213 assert(DI && "Need an immediate operand"); 1214 // All currently supported "define-with-immediate" instructions have the 1215 // actual immediate value in the operand(1). 1216 int64_t v = DI->getOperand(1).getImm(); 1217 return v; 1218 } 1219 1220 1221 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1222 if (MO.isImm()) { 1223 MO.setImm(Val); 1224 return; 1225 } 1226 1227 assert(MO.isReg()); 1228 unsigned R = MO.getReg(); 1229 MachineInstr *DI = defWithImmediate(R); 1230 if (MRI->hasOneNonDBGUse(R)) { 1231 // If R has only one use, then just change its defining instruction to 1232 // the new immediate value. 1233 DI->getOperand(1).setImm(Val); 1234 return; 1235 } 1236 1237 const TargetRegisterClass *RC = MRI->getRegClass(R); 1238 unsigned NewR = MRI->createVirtualRegister(RC); 1239 MachineBasicBlock &B = *DI->getParent(); 1240 DebugLoc DL = DI->getDebugLoc(); 1241 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) 1242 .addImm(Val); 1243 MO.setReg(NewR); 1244 } 1245 1246 1247 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1248 MachineBasicBlock *Header = L->getHeader(); 1249 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1250 MachineBasicBlock *Latch = L->getLoopLatch(); 1251 1252 if (!Header || !Preheader || !Latch) 1253 return false; 1254 1255 // These data structures follow the same concept as the corresponding 1256 // ones in findInductionRegister (where some comments are). 1257 typedef std::pair<unsigned,int64_t> RegisterBump; 1258 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1259 typedef std::set<RegisterInduction> RegisterInductionSet; 1260 1261 // Register candidates for induction variables, with their associated bumps. 1262 RegisterInductionSet IndRegs; 1263 1264 // Look for induction patterns: 1265 // vreg1 = PHI ..., [ latch, vreg2 ] 1266 // vreg2 = ADD vreg1, imm 1267 typedef MachineBasicBlock::instr_iterator instr_iterator; 1268 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1269 I != E && I->isPHI(); ++I) { 1270 MachineInstr *Phi = &*I; 1271 1272 // Have a PHI instruction. 1273 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1274 if (Phi->getOperand(i+1).getMBB() != Latch) 1275 continue; 1276 1277 unsigned PhiReg = Phi->getOperand(i).getReg(); 1278 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1279 unsigned UpdOpc = DI->getOpcode(); 1280 bool isAdd = (UpdOpc == Hexagon::ADD_ri); 1281 1282 if (isAdd) { 1283 // If the register operand to the add/sub is the PHI we are looking 1284 // at, this meets the induction pattern. 1285 unsigned IndReg = DI->getOperand(1).getReg(); 1286 if (MRI->getVRegDef(IndReg) == Phi) { 1287 unsigned UpdReg = DI->getOperand(0).getReg(); 1288 int64_t V = DI->getOperand(2).getImm(); 1289 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1290 } 1291 } 1292 } // for (i) 1293 } // for (instr) 1294 1295 if (IndRegs.empty()) 1296 return false; 1297 1298 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1299 SmallVector<MachineOperand,2> Cond; 1300 // AnalyzeBranch returns true if it fails to analyze branch. 1301 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 1302 if (NotAnalyzed) 1303 return false; 1304 1305 // Check if the latch branch is unconditional. 1306 if (Cond.empty()) 1307 return false; 1308 1309 if (TB != Header && FB != Header) 1310 // The latch does not go back to the header. Not a latch we know and love. 1311 return false; 1312 1313 // Expecting a predicate register as a condition. It won't be a hardware 1314 // predicate register at this point yet, just a vreg. 1315 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1316 // into Cond, followed by the predicate register. For non-negated branches 1317 // it's just the register. 1318 unsigned CSz = Cond.size(); 1319 if (CSz != 1 && CSz != 2) 1320 return false; 1321 1322 unsigned P = Cond[CSz-1].getReg(); 1323 MachineInstr *PredDef = MRI->getVRegDef(P); 1324 1325 if (!PredDef->isCompare()) 1326 return false; 1327 1328 SmallSet<unsigned,2> CmpRegs; 1329 MachineOperand *CmpImmOp = nullptr; 1330 1331 // Go over all operands to the compare and look for immediate and register 1332 // operands. Assume that if the compare has a single register use and a 1333 // single immediate operand, then the register is being compared with the 1334 // immediate value. 1335 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1336 MachineOperand &MO = PredDef->getOperand(i); 1337 if (MO.isReg()) { 1338 // Skip all implicit references. In one case there was: 1339 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1340 if (MO.isImplicit()) 1341 continue; 1342 if (MO.isUse()) { 1343 unsigned R = MO.getReg(); 1344 if (!defWithImmediate(R)) { 1345 CmpRegs.insert(MO.getReg()); 1346 continue; 1347 } 1348 // Consider the register to be the "immediate" operand. 1349 if (CmpImmOp) 1350 return false; 1351 CmpImmOp = &MO; 1352 } 1353 } else if (MO.isImm()) { 1354 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1355 return false; 1356 CmpImmOp = &MO; 1357 } 1358 } 1359 1360 if (CmpRegs.empty()) 1361 return false; 1362 1363 // Check if the compared register follows the order we want. Fix if needed. 1364 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1365 I != E; ++I) { 1366 // This is a success. If the register used in the comparison is one that 1367 // we have identified as a bumped (updated) induction register, there is 1368 // nothing to do. 1369 if (CmpRegs.count(I->first)) 1370 return true; 1371 1372 // Otherwise, if the register being compared comes out of a PHI node, 1373 // and has been recognized as following the induction pattern, and is 1374 // compared against an immediate, we can fix it. 1375 const RegisterBump &RB = I->second; 1376 if (CmpRegs.count(RB.first)) { 1377 if (!CmpImmOp) 1378 return false; 1379 1380 int64_t CmpImm = getImmediate(*CmpImmOp); 1381 int64_t V = RB.second; 1382 if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). 1383 return false; 1384 if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). 1385 return false; 1386 CmpImm += V; 1387 // Some forms of cmp-immediate allow u9 and s10. Assume the worst case 1388 // scenario, i.e. an 8-bit value. 1389 if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) 1390 return false; 1391 1392 // Make sure that the compare happens after the bump. Otherwise, 1393 // after the fixup, the compare would use a yet-undefined register. 1394 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1395 bool Order = orderBumpCompare(BumpI, PredDef); 1396 if (!Order) 1397 return false; 1398 1399 // Finally, fix the compare instruction. 1400 setImmediate(*CmpImmOp, CmpImm); 1401 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1402 MachineOperand &MO = PredDef->getOperand(i); 1403 if (MO.isReg() && MO.getReg() == RB.first) { 1404 MO.setReg(I->first); 1405 return true; 1406 } 1407 } 1408 } 1409 } 1410 1411 return false; 1412 } 1413 1414 1415 /// \brief Create a preheader for a given loop. 1416 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1417 MachineLoop *L) { 1418 if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) 1419 return TmpPH; 1420 1421 MachineBasicBlock *Header = L->getHeader(); 1422 MachineBasicBlock *Latch = L->getLoopLatch(); 1423 MachineFunction *MF = Header->getParent(); 1424 DebugLoc DL; 1425 1426 if (!Latch || Header->hasAddressTaken()) 1427 return nullptr; 1428 1429 typedef MachineBasicBlock::instr_iterator instr_iterator; 1430 1431 // Verify that all existing predecessors have analyzable branches 1432 // (or no branches at all). 1433 typedef std::vector<MachineBasicBlock*> MBBVector; 1434 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1435 SmallVector<MachineOperand,2> Tmp1; 1436 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1437 1438 if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) 1439 return nullptr; 1440 1441 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1442 MachineBasicBlock *PB = *I; 1443 if (PB != Latch) { 1444 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); 1445 if (NotAnalyzed) 1446 return nullptr; 1447 } 1448 } 1449 1450 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1451 MF->insert(Header, NewPH); 1452 1453 if (Header->pred_size() > 2) { 1454 // Ensure that the header has only two predecessors: the preheader and 1455 // the loop latch. Any additional predecessors of the header should 1456 // join at the newly created preheader. Inspect all PHI nodes from the 1457 // header and create appropriate corresponding PHI nodes in the preheader. 1458 1459 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1460 I != E && I->isPHI(); ++I) { 1461 MachineInstr *PN = &*I; 1462 1463 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1464 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1465 NewPH->insert(NewPH->end(), NewPN); 1466 1467 unsigned PR = PN->getOperand(0).getReg(); 1468 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1469 unsigned NewPR = MRI->createVirtualRegister(RC); 1470 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1471 1472 // Copy all non-latch operands of a header's PHI node to the newly 1473 // created PHI node in the preheader. 1474 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1475 unsigned PredR = PN->getOperand(i).getReg(); 1476 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1477 if (PredB == Latch) 1478 continue; 1479 1480 NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); 1481 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1482 } 1483 1484 // Remove copied operands from the old PHI node and add the value 1485 // coming from the preheader's PHI. 1486 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1487 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1488 if (PredB != Latch) { 1489 PN->RemoveOperand(i+1); 1490 PN->RemoveOperand(i); 1491 } 1492 } 1493 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1494 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1495 } 1496 1497 } else { 1498 assert(Header->pred_size() == 2); 1499 1500 // The header has only two predecessors, but the non-latch predecessor 1501 // is not a preheader (e.g. it has other successors, etc.) 1502 // In such a case we don't need any extra PHI nodes in the new preheader, 1503 // all we need is to adjust existing PHIs in the header to now refer to 1504 // the new preheader. 1505 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1506 I != E && I->isPHI(); ++I) { 1507 MachineInstr *PN = &*I; 1508 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1509 MachineOperand &MO = PN->getOperand(i+1); 1510 if (MO.getMBB() != Latch) 1511 MO.setMBB(NewPH); 1512 } 1513 } 1514 } 1515 1516 // "Reroute" the CFG edges to link in the new preheader. 1517 // If any of the predecessors falls through to the header, insert a branch 1518 // to the new preheader in that place. 1519 SmallVector<MachineOperand,1> Tmp2; 1520 SmallVector<MachineOperand,1> EmptyCond; 1521 1522 TB = FB = nullptr; 1523 1524 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1525 MachineBasicBlock *PB = *I; 1526 if (PB != Latch) { 1527 Tmp2.clear(); 1528 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); 1529 (void)NotAnalyzed; // suppress compiler warning 1530 assert (!NotAnalyzed && "Should be analyzable!"); 1531 if (TB != Header && (Tmp2.empty() || FB != Header)) 1532 TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1533 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1534 } 1535 } 1536 1537 // It can happen that the latch block will fall through into the header. 1538 // Insert an unconditional branch to the header. 1539 TB = FB = nullptr; 1540 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); 1541 (void)LatchNotAnalyzed; // suppress compiler warning 1542 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1543 if (!TB && !FB) 1544 TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1545 1546 // Finally, the branch from the preheader to the header. 1547 TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1548 NewPH->addSuccessor(Header); 1549 1550 return NewPH; 1551 } 1552