1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/SmallSet.h" 29 #include "Hexagon.h" 30 #include "HexagonSubtarget.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/PassSupport.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include <algorithm> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "hwloops" 49 50 #ifndef NDEBUG 51 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 52 53 // Option to create preheader only for a specific function. 54 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 55 cl::init("")); 56 #endif 57 58 // Option to create a preheader if one doesn't exist. 59 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 60 cl::Hidden, cl::init(true), 61 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 62 63 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 64 65 namespace llvm { 66 void initializeHexagonHardwareLoopsPass(PassRegistry&); 67 } 68 69 namespace { 70 class CountValue; 71 struct HexagonHardwareLoops : public MachineFunctionPass { 72 MachineLoopInfo *MLI; 73 MachineRegisterInfo *MRI; 74 MachineDominatorTree *MDT; 75 const HexagonInstrInfo *TII; 76 #ifndef NDEBUG 77 static int Counter; 78 #endif 79 80 public: 81 static char ID; 82 83 HexagonHardwareLoops() : MachineFunctionPass(ID) { 84 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 85 } 86 87 bool runOnMachineFunction(MachineFunction &MF) override; 88 89 const char *getPassName() const override { return "Hexagon Hardware Loops"; } 90 91 void getAnalysisUsage(AnalysisUsage &AU) const override { 92 AU.addRequired<MachineDominatorTree>(); 93 AU.addRequired<MachineLoopInfo>(); 94 MachineFunctionPass::getAnalysisUsage(AU); 95 } 96 97 private: 98 99 /// Kinds of comparisons in the compare instructions. 100 struct Comparison { 101 enum Kind { 102 EQ = 0x01, 103 NE = 0x02, 104 L = 0x04, 105 G = 0x08, 106 U = 0x40, 107 LTs = L, 108 LEs = L | EQ, 109 GTs = G, 110 GEs = G | EQ, 111 LTu = L | U, 112 LEu = L | EQ | U, 113 GTu = G | U, 114 GEu = G | EQ | U 115 }; 116 117 static Kind getSwappedComparison(Kind Cmp) { 118 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 119 if ((Cmp & L) || (Cmp & G)) 120 return (Kind)(Cmp ^ (L|G)); 121 return Cmp; 122 } 123 124 static Kind getNegatedComparison(Kind Cmp) { 125 if ((Cmp & L) || (Cmp & G)) 126 return (Kind)((Cmp ^ (L | G)) ^ EQ); 127 if ((Cmp & NE) || (Cmp & EQ)) 128 return (Kind)(Cmp ^ (EQ | NE)); 129 return (Kind)0; 130 } 131 132 static bool isSigned(Kind Cmp) { 133 return (Cmp & (L | G) && !(Cmp & U)); 134 } 135 136 static bool isUnsigned(Kind Cmp) { 137 return (Cmp & U); 138 } 139 140 }; 141 142 /// \brief Find the register that contains the loop controlling 143 /// induction variable. 144 /// If successful, it will return true and set the \p Reg, \p IVBump 145 /// and \p IVOp arguments. Otherwise it will return false. 146 /// The returned induction register is the register R that follows the 147 /// following induction pattern: 148 /// loop: 149 /// R = phi ..., [ R.next, LatchBlock ] 150 /// R.next = R + #bump 151 /// if (R.next < #N) goto loop 152 /// IVBump is the immediate value added to R, and IVOp is the instruction 153 /// "R.next = R + #bump". 154 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 155 int64_t &IVBump, MachineInstr *&IVOp) const; 156 157 /// \brief Return the comparison kind for the specified opcode. 158 Comparison::Kind getComparisonKind(unsigned CondOpc, 159 MachineOperand *InitialValue, 160 const MachineOperand *Endvalue, 161 int64_t IVBump) const; 162 163 /// \brief Analyze the statements in a loop to determine if the loop 164 /// has a computable trip count and, if so, return a value that represents 165 /// the trip count expression. 166 CountValue *getLoopTripCount(MachineLoop *L, 167 SmallVectorImpl<MachineInstr *> &OldInsts); 168 169 /// \brief Return the expression that represents the number of times 170 /// a loop iterates. The function takes the operands that represent the 171 /// loop start value, loop end value, and induction value. Based upon 172 /// these operands, the function attempts to compute the trip count. 173 /// If the trip count is not directly available (as an immediate value, 174 /// or a register), the function will attempt to insert computation of it 175 /// to the loop's preheader. 176 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 177 const MachineOperand *End, unsigned IVReg, 178 int64_t IVBump, Comparison::Kind Cmp) const; 179 180 /// \brief Return true if the instruction is not valid within a hardware 181 /// loop. 182 bool isInvalidLoopOperation(const MachineInstr *MI) const; 183 184 /// \brief Return true if the loop contains an instruction that inhibits 185 /// using the hardware loop. 186 bool containsInvalidInstruction(MachineLoop *L) const; 187 188 /// \brief Given a loop, check if we can convert it to a hardware loop. 189 /// If so, then perform the conversion and return true. 190 bool convertToHardwareLoop(MachineLoop *L); 191 192 /// \brief Return true if the instruction is now dead. 193 bool isDead(const MachineInstr *MI, 194 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 195 196 /// \brief Remove the instruction if it is now dead. 197 void removeIfDead(MachineInstr *MI); 198 199 /// \brief Make sure that the "bump" instruction executes before the 200 /// compare. We need that for the IV fixup, so that the compare 201 /// instruction would not use a bumped value that has not yet been 202 /// defined. If the instructions are out of order, try to reorder them. 203 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 204 205 /// \brief Get the instruction that loads an immediate value into \p R, 206 /// or 0 if such an instruction does not exist. 207 MachineInstr *defWithImmediate(unsigned R); 208 209 /// \brief Get the immediate value referenced to by \p MO, either for 210 /// immediate operands, or for register operands, where the register 211 /// was defined with an immediate value. 212 int64_t getImmediate(MachineOperand &MO); 213 214 /// \brief Reset the given machine operand to now refer to a new immediate 215 /// value. Assumes that the operand was already referencing an immediate 216 /// value, either directly, or via a register. 217 void setImmediate(MachineOperand &MO, int64_t Val); 218 219 /// \brief Fix the data flow of the induction varible. 220 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 221 /// | 222 /// +-> back to phi 223 /// where "bump" is the increment of the induction variable: 224 /// iv = iv + #const. 225 /// Due to some prior code transformations, the actual flow may look 226 /// like this: 227 /// phi -+-> bump ---> back to phi 228 /// | 229 /// +-> comparison-in-latch (against upper_bound-bump), 230 /// i.e. the comparison that controls the loop execution may be using 231 /// the value of the induction variable from before the increment. 232 /// 233 /// Return true if the loop's flow is the desired one (i.e. it's 234 /// either been fixed, or no fixing was necessary). 235 /// Otherwise, return false. This can happen if the induction variable 236 /// couldn't be identified, or if the value in the latch's comparison 237 /// cannot be adjusted to reflect the post-bump value. 238 bool fixupInductionVariable(MachineLoop *L); 239 240 /// \brief Given a loop, if it does not have a preheader, create one. 241 /// Return the block that is the preheader. 242 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 243 }; 244 245 char HexagonHardwareLoops::ID = 0; 246 #ifndef NDEBUG 247 int HexagonHardwareLoops::Counter = 0; 248 #endif 249 250 /// \brief Abstraction for a trip count of a loop. A smaller version 251 /// of the MachineOperand class without the concerns of changing the 252 /// operand representation. 253 class CountValue { 254 public: 255 enum CountValueType { 256 CV_Register, 257 CV_Immediate 258 }; 259 private: 260 CountValueType Kind; 261 union Values { 262 struct { 263 unsigned Reg; 264 unsigned Sub; 265 } R; 266 unsigned ImmVal; 267 } Contents; 268 269 public: 270 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 271 Kind = t; 272 if (Kind == CV_Register) { 273 Contents.R.Reg = v; 274 Contents.R.Sub = u; 275 } else { 276 Contents.ImmVal = v; 277 } 278 } 279 bool isReg() const { return Kind == CV_Register; } 280 bool isImm() const { return Kind == CV_Immediate; } 281 282 unsigned getReg() const { 283 assert(isReg() && "Wrong CountValue accessor"); 284 return Contents.R.Reg; 285 } 286 unsigned getSubReg() const { 287 assert(isReg() && "Wrong CountValue accessor"); 288 return Contents.R.Sub; 289 } 290 unsigned getImm() const { 291 assert(isImm() && "Wrong CountValue accessor"); 292 return Contents.ImmVal; 293 } 294 295 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 296 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 297 if (isImm()) { OS << Contents.ImmVal; } 298 } 299 }; 300 } // end anonymous namespace 301 302 303 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 304 "Hexagon Hardware Loops", false, false) 305 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 306 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 307 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 308 "Hexagon Hardware Loops", false, false) 309 310 311 /// \brief Returns true if the instruction is a hardware loop instruction. 312 static bool isHardwareLoop(const MachineInstr *MI) { 313 return MI->getOpcode() == Hexagon::J2_loop0r || 314 MI->getOpcode() == Hexagon::J2_loop0i; 315 } 316 317 FunctionPass *llvm::createHexagonHardwareLoops() { 318 return new HexagonHardwareLoops(); 319 } 320 321 322 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 323 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 324 325 bool Changed = false; 326 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MRI = &MF.getRegInfo(); 329 MDT = &getAnalysis<MachineDominatorTree>(); 330 TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 331 332 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); 333 I != E; ++I) { 334 MachineLoop *L = *I; 335 if (!L->getParentLoop()) 336 Changed |= convertToHardwareLoop(L); 337 } 338 339 return Changed; 340 } 341 342 /// \brief Return the latch block if it's one of the exiting blocks. Otherwise, 343 /// return the exiting block. Return 'null' when multiple exiting blocks are 344 /// present. 345 static MachineBasicBlock* getExitingBlock(MachineLoop *L) { 346 if (MachineBasicBlock *Latch = L->getLoopLatch()) { 347 if (L->isLoopExiting(Latch)) 348 return Latch; 349 else 350 return L->getExitingBlock(); 351 } 352 return nullptr; 353 } 354 355 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 356 unsigned &Reg, 357 int64_t &IVBump, 358 MachineInstr *&IVOp 359 ) const { 360 MachineBasicBlock *Header = L->getHeader(); 361 MachineBasicBlock *Preheader = L->getLoopPreheader(); 362 MachineBasicBlock *Latch = L->getLoopLatch(); 363 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 364 if (!Header || !Preheader || !Latch || !ExitingBlock) 365 return false; 366 367 // This pair represents an induction register together with an immediate 368 // value that will be added to it in each loop iteration. 369 typedef std::pair<unsigned,int64_t> RegisterBump; 370 371 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 372 // from an induction operation 373 // R.next = R + bump 374 // where bump is an immediate value. 375 typedef std::map<unsigned,RegisterBump> InductionMap; 376 377 InductionMap IndMap; 378 379 typedef MachineBasicBlock::instr_iterator instr_iterator; 380 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 381 I != E && I->isPHI(); ++I) { 382 MachineInstr *Phi = &*I; 383 384 // Have a PHI instruction. Get the operand that corresponds to the 385 // latch block, and see if is a result of an addition of form "reg+imm", 386 // where the "reg" is defined by the PHI node we are looking at. 387 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 388 if (Phi->getOperand(i+1).getMBB() != Latch) 389 continue; 390 391 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 392 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 393 unsigned UpdOpc = DI->getOpcode(); 394 bool isAdd = (UpdOpc == Hexagon::A2_addi); 395 396 if (isAdd) { 397 // If the register operand to the add is the PHI we're 398 // looking at, this meets the induction pattern. 399 unsigned IndReg = DI->getOperand(1).getReg(); 400 if (MRI->getVRegDef(IndReg) == Phi) { 401 unsigned UpdReg = DI->getOperand(0).getReg(); 402 int64_t V = DI->getOperand(2).getImm(); 403 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 404 } 405 } 406 } // for (i) 407 } // for (instr) 408 409 SmallVector<MachineOperand,2> Cond; 410 MachineBasicBlock *TB = nullptr, *FB = nullptr; 411 bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false); 412 if (NotAnalyzed) 413 return false; 414 415 unsigned PredR, PredPos, PredRegFlags; 416 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 417 return false; 418 419 MachineInstr *PredI = MRI->getVRegDef(PredR); 420 if (!PredI->isCompare()) 421 return false; 422 423 unsigned CmpReg1 = 0, CmpReg2 = 0; 424 int CmpImm = 0, CmpMask = 0; 425 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, 426 CmpMask, CmpImm); 427 // Fail if the compare was not analyzed, or it's not comparing a register 428 // with an immediate value. Not checking the mask here, since we handle 429 // the individual compare opcodes (including A4_cmpb*) later on. 430 if (!CmpAnalyzed) 431 return false; 432 433 // Exactly one of the input registers to the comparison should be among 434 // the induction registers. 435 InductionMap::iterator IndMapEnd = IndMap.end(); 436 InductionMap::iterator F = IndMapEnd; 437 if (CmpReg1 != 0) { 438 InductionMap::iterator F1 = IndMap.find(CmpReg1); 439 if (F1 != IndMapEnd) 440 F = F1; 441 } 442 if (CmpReg2 != 0) { 443 InductionMap::iterator F2 = IndMap.find(CmpReg2); 444 if (F2 != IndMapEnd) { 445 if (F != IndMapEnd) 446 return false; 447 F = F2; 448 } 449 } 450 if (F == IndMapEnd) 451 return false; 452 453 Reg = F->second.first; 454 IVBump = F->second.second; 455 IVOp = MRI->getVRegDef(F->first); 456 return true; 457 } 458 459 // Return the comparison kind for the specified opcode. 460 HexagonHardwareLoops::Comparison::Kind 461 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 462 MachineOperand *InitialValue, 463 const MachineOperand *EndValue, 464 int64_t IVBump) const { 465 Comparison::Kind Cmp = (Comparison::Kind)0; 466 switch (CondOpc) { 467 case Hexagon::C2_cmpeqi: 468 case Hexagon::C2_cmpeq: 469 case Hexagon::C2_cmpeqp: 470 Cmp = Comparison::Kind::EQ; 471 break; 472 case Hexagon::C4_cmpneq: 473 case Hexagon::C4_cmpneqi: 474 Cmp = Comparison::Kind::NE; 475 break; 476 case Hexagon::C4_cmplte: 477 Cmp = Comparison::Kind::LEs; 478 break; 479 case Hexagon::C4_cmplteu: 480 Cmp = Comparison::Kind::LEu; 481 break; 482 case Hexagon::C2_cmpgtui: 483 case Hexagon::C2_cmpgtu: 484 case Hexagon::C2_cmpgtup: 485 Cmp = Comparison::Kind::GTu; 486 break; 487 case Hexagon::C2_cmpgti: 488 case Hexagon::C2_cmpgt: 489 case Hexagon::C2_cmpgtp: 490 Cmp = Comparison::Kind::GTs; 491 break; 492 default: 493 return (Comparison::Kind)0; 494 } 495 return Cmp; 496 } 497 498 /// \brief Analyze the statements in a loop to determine if the loop has 499 /// a computable trip count and, if so, return a value that represents 500 /// the trip count expression. 501 /// 502 /// This function iterates over the phi nodes in the loop to check for 503 /// induction variable patterns that are used in the calculation for 504 /// the number of time the loop is executed. 505 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 506 SmallVectorImpl<MachineInstr *> &OldInsts) { 507 MachineBasicBlock *TopMBB = L->getTopBlock(); 508 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 509 assert(PI != TopMBB->pred_end() && 510 "Loop must have more than one incoming edge!"); 511 MachineBasicBlock *Backedge = *PI++; 512 if (PI == TopMBB->pred_end()) // dead loop? 513 return nullptr; 514 MachineBasicBlock *Incoming = *PI++; 515 if (PI != TopMBB->pred_end()) // multiple backedges? 516 return nullptr; 517 518 // Make sure there is one incoming and one backedge and determine which 519 // is which. 520 if (L->contains(Incoming)) { 521 if (L->contains(Backedge)) 522 return nullptr; 523 std::swap(Incoming, Backedge); 524 } else if (!L->contains(Backedge)) 525 return nullptr; 526 527 // Look for the cmp instruction to determine if we can get a useful trip 528 // count. The trip count can be either a register or an immediate. The 529 // location of the value depends upon the type (reg or imm). 530 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 531 if (!ExitingBlock) 532 return nullptr; 533 534 unsigned IVReg = 0; 535 int64_t IVBump = 0; 536 MachineInstr *IVOp; 537 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 538 if (!FoundIV) 539 return nullptr; 540 541 MachineBasicBlock *Preheader = L->getLoopPreheader(); 542 543 MachineOperand *InitialValue = nullptr; 544 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 545 MachineBasicBlock *Latch = L->getLoopLatch(); 546 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 547 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 548 if (MBB == Preheader) 549 InitialValue = &IV_Phi->getOperand(i); 550 else if (MBB == Latch) 551 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 552 } 553 if (!InitialValue) 554 return nullptr; 555 556 SmallVector<MachineOperand,2> Cond; 557 MachineBasicBlock *TB = nullptr, *FB = nullptr; 558 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 559 if (NotAnalyzed) 560 return nullptr; 561 562 MachineBasicBlock *Header = L->getHeader(); 563 // TB must be non-null. If FB is also non-null, one of them must be 564 // the header. Otherwise, branch to TB could be exiting the loop, and 565 // the fall through can go to the header. 566 assert (TB && "Latch block without a branch?"); 567 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 568 MachineBasicBlock *LTB = 0, *LFB = 0; 569 SmallVector<MachineOperand,2> LCond; 570 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false); 571 if (NotAnalyzed) 572 return nullptr; 573 if (TB == Latch) 574 (LTB == Header) ? TB = LTB: TB = LFB; 575 else // FB == Latch 576 (LTB == Header) ? FB = LTB: FB = LFB; 577 } 578 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 579 if (!TB || (FB && TB != Header && FB != Header)) 580 return nullptr; 581 582 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 583 // to put imm(0), followed by P in the vector Cond. 584 // If TB is not the header, it means that the "not-taken" path must lead 585 // to the header. 586 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 587 unsigned PredReg, PredPos, PredRegFlags; 588 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 589 return nullptr; 590 MachineInstr *CondI = MRI->getVRegDef(PredReg); 591 unsigned CondOpc = CondI->getOpcode(); 592 593 unsigned CmpReg1 = 0, CmpReg2 = 0; 594 int Mask = 0, ImmValue = 0; 595 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, 596 Mask, ImmValue); 597 if (!AnalyzedCmp) 598 return nullptr; 599 600 // The comparison operator type determines how we compute the loop 601 // trip count. 602 OldInsts.push_back(CondI); 603 OldInsts.push_back(IVOp); 604 605 // Sadly, the following code gets information based on the position 606 // of the operands in the compare instruction. This has to be done 607 // this way, because the comparisons check for a specific relationship 608 // between the operands (e.g. is-less-than), rather than to find out 609 // what relationship the operands are in (as on PPC). 610 Comparison::Kind Cmp; 611 bool isSwapped = false; 612 const MachineOperand &Op1 = CondI->getOperand(1); 613 const MachineOperand &Op2 = CondI->getOperand(2); 614 const MachineOperand *EndValue = nullptr; 615 616 if (Op1.isReg()) { 617 if (Op2.isImm() || Op1.getReg() == IVReg) 618 EndValue = &Op2; 619 else { 620 EndValue = &Op1; 621 isSwapped = true; 622 } 623 } 624 625 if (!EndValue) 626 return nullptr; 627 628 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 629 if (!Cmp) 630 return nullptr; 631 if (Negated) 632 Cmp = Comparison::getNegatedComparison(Cmp); 633 if (isSwapped) 634 Cmp = Comparison::getSwappedComparison(Cmp); 635 636 if (InitialValue->isReg()) { 637 unsigned R = InitialValue->getReg(); 638 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 639 if (!MDT->properlyDominates(DefBB, Header)) 640 return nullptr; 641 OldInsts.push_back(MRI->getVRegDef(R)); 642 } 643 if (EndValue->isReg()) { 644 unsigned R = EndValue->getReg(); 645 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 646 if (!MDT->properlyDominates(DefBB, Header)) 647 return nullptr; 648 } 649 650 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 651 } 652 653 /// \brief Helper function that returns the expression that represents the 654 /// number of times a loop iterates. The function takes the operands that 655 /// represent the loop start value, loop end value, and induction value. 656 /// Based upon these operands, the function attempts to compute the trip count. 657 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 658 const MachineOperand *Start, 659 const MachineOperand *End, 660 unsigned IVReg, 661 int64_t IVBump, 662 Comparison::Kind Cmp) const { 663 // Cannot handle comparison EQ, i.e. while (A == B). 664 if (Cmp == Comparison::EQ) 665 return nullptr; 666 667 // Check if either the start or end values are an assignment of an immediate. 668 // If so, use the immediate value rather than the register. 669 if (Start->isReg()) { 670 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 671 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi) 672 Start = &StartValInstr->getOperand(1); 673 } 674 if (End->isReg()) { 675 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 676 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi) 677 End = &EndValInstr->getOperand(1); 678 } 679 680 assert (Start->isReg() || Start->isImm()); 681 assert (End->isReg() || End->isImm()); 682 683 bool CmpLess = Cmp & Comparison::L; 684 bool CmpGreater = Cmp & Comparison::G; 685 bool CmpHasEqual = Cmp & Comparison::EQ; 686 687 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 688 if (CmpLess && IVBump < 0) 689 // Loop going while iv is "less" with the iv value going down. Must wrap. 690 return nullptr; 691 692 // If loop executes while iv is "greater" with the iv value going up, then 693 // the iv must wrap. 694 if (CmpGreater && IVBump > 0) 695 // Loop going while iv is "greater" with the iv value going up. Must wrap. 696 return nullptr; 697 698 if (Start->isImm() && End->isImm()) { 699 // Both, start and end are immediates. 700 int64_t StartV = Start->getImm(); 701 int64_t EndV = End->getImm(); 702 int64_t Dist = EndV - StartV; 703 if (Dist == 0) 704 return nullptr; 705 706 bool Exact = (Dist % IVBump) == 0; 707 708 if (Cmp == Comparison::NE) { 709 if (!Exact) 710 return nullptr; 711 if ((Dist < 0) ^ (IVBump < 0)) 712 return nullptr; 713 } 714 715 // For comparisons that include the final value (i.e. include equality 716 // with the final value), we need to increase the distance by 1. 717 if (CmpHasEqual) 718 Dist = Dist > 0 ? Dist+1 : Dist-1; 719 720 // assert (CmpLess => Dist > 0); 721 assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); 722 // assert (CmpGreater => Dist < 0); 723 assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); 724 725 // "Normalized" distance, i.e. with the bump set to +-1. 726 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump 727 : (-Dist + (-IVBump-1)) / (-IVBump); 728 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 729 730 uint64_t Count = Dist1; 731 732 if (Count > 0xFFFFFFFFULL) 733 return nullptr; 734 735 return new CountValue(CountValue::CV_Immediate, Count); 736 } 737 738 // A general case: Start and End are some values, but the actual 739 // iteration count may not be available. If it is not, insert 740 // a computation of it into the preheader. 741 742 // If the induction variable bump is not a power of 2, quit. 743 // Othwerise we'd need a general integer division. 744 if (!isPowerOf2_64(std::abs(IVBump))) 745 return nullptr; 746 747 MachineBasicBlock *PH = Loop->getLoopPreheader(); 748 assert (PH && "Should have a preheader by now"); 749 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 750 DebugLoc DL; 751 if (InsertPos != PH->end()) 752 InsertPos->getDebugLoc(); 753 754 // If Start is an immediate and End is a register, the trip count 755 // will be "reg - imm". Hexagon's "subtract immediate" instruction 756 // is actually "reg + -imm". 757 758 // If the loop IV is going downwards, i.e. if the bump is negative, 759 // then the iteration count (computed as End-Start) will need to be 760 // negated. To avoid the negation, just swap Start and End. 761 if (IVBump < 0) { 762 std::swap(Start, End); 763 IVBump = -IVBump; 764 } 765 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 766 // Signedness, and "including equality" are preserved. 767 768 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 769 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 770 771 int64_t StartV = 0, EndV = 0; 772 if (Start->isImm()) 773 StartV = Start->getImm(); 774 if (End->isImm()) 775 EndV = End->getImm(); 776 777 int64_t AdjV = 0; 778 // To compute the iteration count, we would need this computation: 779 // Count = (End - Start + (IVBump-1)) / IVBump 780 // or, when CmpHasEqual: 781 // Count = (End - Start + (IVBump-1)+1) / IVBump 782 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 783 // generating an instruction specifically to add it if we can adjust 784 // the immediate values for Start or End. 785 786 if (CmpHasEqual) { 787 // Need to add 1 to the total iteration count. 788 if (Start->isImm()) 789 StartV--; 790 else if (End->isImm()) 791 EndV++; 792 else 793 AdjV += 1; 794 } 795 796 if (Cmp != Comparison::NE) { 797 if (Start->isImm()) 798 StartV -= (IVBump-1); 799 else if (End->isImm()) 800 EndV += (IVBump-1); 801 else 802 AdjV += (IVBump-1); 803 } 804 805 unsigned R = 0, SR = 0; 806 if (Start->isReg()) { 807 R = Start->getReg(); 808 SR = Start->getSubReg(); 809 } else { 810 R = End->getReg(); 811 SR = End->getSubReg(); 812 } 813 const TargetRegisterClass *RC = MRI->getRegClass(R); 814 // Hardware loops cannot handle 64-bit registers. If it's a double 815 // register, it has to have a subregister. 816 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 817 return nullptr; 818 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 819 820 // Compute DistR (register with the distance between Start and End). 821 unsigned DistR, DistSR; 822 823 // Avoid special case, where the start value is an imm(0). 824 if (Start->isImm() && StartV == 0) { 825 DistR = End->getReg(); 826 DistSR = End->getSubReg(); 827 } else { 828 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 829 (RegToImm ? TII->get(Hexagon::A2_subri) : 830 TII->get(Hexagon::A2_addi)); 831 if (RegToReg || RegToImm) { 832 unsigned SubR = MRI->createVirtualRegister(IntRC); 833 MachineInstrBuilder SubIB = 834 BuildMI(*PH, InsertPos, DL, SubD, SubR); 835 836 if (RegToReg) 837 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 838 .addReg(Start->getReg(), 0, Start->getSubReg()); 839 else 840 SubIB.addImm(EndV) 841 .addReg(Start->getReg(), 0, Start->getSubReg()); 842 DistR = SubR; 843 } else { 844 // If the loop has been unrolled, we should use the original loop count 845 // instead of recalculating the value. This will avoid additional 846 // 'Add' instruction. 847 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 848 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 849 EndValInstr->getOperand(2).getImm() == StartV) { 850 DistR = EndValInstr->getOperand(1).getReg(); 851 } else { 852 unsigned SubR = MRI->createVirtualRegister(IntRC); 853 MachineInstrBuilder SubIB = 854 BuildMI(*PH, InsertPos, DL, SubD, SubR); 855 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 856 .addImm(-StartV); 857 DistR = SubR; 858 } 859 } 860 DistSR = 0; 861 } 862 863 // From DistR, compute AdjR (register with the adjusted distance). 864 unsigned AdjR, AdjSR; 865 866 if (AdjV == 0) { 867 AdjR = DistR; 868 AdjSR = DistSR; 869 } else { 870 // Generate CountR = ADD DistR, AdjVal 871 unsigned AddR = MRI->createVirtualRegister(IntRC); 872 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 873 BuildMI(*PH, InsertPos, DL, AddD, AddR) 874 .addReg(DistR, 0, DistSR) 875 .addImm(AdjV); 876 877 AdjR = AddR; 878 AdjSR = 0; 879 } 880 881 // From AdjR, compute CountR (register with the final count). 882 unsigned CountR, CountSR; 883 884 if (IVBump == 1) { 885 CountR = AdjR; 886 CountSR = AdjSR; 887 } else { 888 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 889 unsigned Shift = Log2_32(IVBump); 890 891 // Generate NormR = LSR DistR, Shift. 892 unsigned LsrR = MRI->createVirtualRegister(IntRC); 893 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 894 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 895 .addReg(AdjR, 0, AdjSR) 896 .addImm(Shift); 897 898 CountR = LsrR; 899 CountSR = 0; 900 } 901 902 return new CountValue(CountValue::CV_Register, CountR, CountSR); 903 } 904 905 906 /// \brief Return true if the operation is invalid within hardware loop. 907 bool HexagonHardwareLoops::isInvalidLoopOperation( 908 const MachineInstr *MI) const { 909 910 // Call is not allowed because the callee may use a hardware loop except for 911 // the case when the call never returns. 912 if (MI->getDesc().isCall() && MI->getOpcode() != Hexagon::CALLv3nr) 913 return true; 914 915 // do not allow nested hardware loops 916 if (isHardwareLoop(MI)) 917 return true; 918 919 // check if the instruction defines a hardware loop register 920 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 921 const MachineOperand &MO = MI->getOperand(i); 922 if (!MO.isReg() || !MO.isDef()) 923 continue; 924 unsigned R = MO.getReg(); 925 if (R == Hexagon::LC0 || R == Hexagon::LC1 || 926 R == Hexagon::SA0 || R == Hexagon::SA1) 927 return true; 928 } 929 return false; 930 } 931 932 933 /// \brief - Return true if the loop contains an instruction that inhibits 934 /// the use of the hardware loop function. 935 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { 936 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 937 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 938 MachineBasicBlock *MBB = Blocks[i]; 939 for (MachineBasicBlock::iterator 940 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 941 const MachineInstr *MI = &*MII; 942 if (isInvalidLoopOperation(MI)) 943 return true; 944 } 945 } 946 return false; 947 } 948 949 950 /// \brief Returns true if the instruction is dead. This was essentially 951 /// copied from DeadMachineInstructionElim::isDead, but with special cases 952 /// for inline asm, physical registers and instructions with side effects 953 /// removed. 954 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 955 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 956 // Examine each operand. 957 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 958 const MachineOperand &MO = MI->getOperand(i); 959 if (!MO.isReg() || !MO.isDef()) 960 continue; 961 962 unsigned Reg = MO.getReg(); 963 if (MRI->use_nodbg_empty(Reg)) 964 continue; 965 966 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 967 968 // This instruction has users, but if the only user is the phi node for the 969 // parent block, and the only use of that phi node is this instruction, then 970 // this instruction is dead: both it (and the phi node) can be removed. 971 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 972 use_nodbg_iterator End = MRI->use_nodbg_end(); 973 if (std::next(I) != End || !I->getParent()->isPHI()) 974 return false; 975 976 MachineInstr *OnePhi = I->getParent(); 977 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 978 const MachineOperand &OPO = OnePhi->getOperand(j); 979 if (!OPO.isReg() || !OPO.isDef()) 980 continue; 981 982 unsigned OPReg = OPO.getReg(); 983 use_nodbg_iterator nextJ; 984 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 985 J != End; J = nextJ) { 986 nextJ = std::next(J); 987 MachineOperand &Use = *J; 988 MachineInstr *UseMI = Use.getParent(); 989 990 // If the phi node has a user that is not MI, bail... 991 if (MI != UseMI) 992 return false; 993 } 994 } 995 DeadPhis.push_back(OnePhi); 996 } 997 998 // If there are no defs with uses, the instruction is dead. 999 return true; 1000 } 1001 1002 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1003 // This procedure was essentially copied from DeadMachineInstructionElim. 1004 1005 SmallVector<MachineInstr*, 1> DeadPhis; 1006 if (isDead(MI, DeadPhis)) { 1007 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1008 1009 // It is possible that some DBG_VALUE instructions refer to this 1010 // instruction. Examine each def operand for such references; 1011 // if found, mark the DBG_VALUE as undef (but don't delete it). 1012 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1013 const MachineOperand &MO = MI->getOperand(i); 1014 if (!MO.isReg() || !MO.isDef()) 1015 continue; 1016 unsigned Reg = MO.getReg(); 1017 MachineRegisterInfo::use_iterator nextI; 1018 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1019 E = MRI->use_end(); I != E; I = nextI) { 1020 nextI = std::next(I); // I is invalidated by the setReg 1021 MachineOperand &Use = *I; 1022 MachineInstr *UseMI = I->getParent(); 1023 if (UseMI == MI) 1024 continue; 1025 if (Use.isDebug()) 1026 UseMI->getOperand(0).setReg(0U); 1027 } 1028 } 1029 1030 MI->eraseFromParent(); 1031 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1032 DeadPhis[i]->eraseFromParent(); 1033 } 1034 } 1035 1036 /// \brief Check if the loop is a candidate for converting to a hardware 1037 /// loop. If so, then perform the transformation. 1038 /// 1039 /// This function works on innermost loops first. A loop can be converted 1040 /// if it is a counting loop; either a register value or an immediate. 1041 /// 1042 /// The code makes several assumptions about the representation of the loop 1043 /// in llvm. 1044 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { 1045 // This is just for sanity. 1046 assert(L->getHeader() && "Loop without a header?"); 1047 1048 bool Changed = false; 1049 // Process nested loops first. 1050 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 1051 Changed |= convertToHardwareLoop(*I); 1052 1053 // If a nested loop has been converted, then we can't convert this loop. 1054 if (Changed) 1055 return Changed; 1056 1057 #ifndef NDEBUG 1058 // Stop trying after reaching the limit (if any). 1059 int Limit = HWLoopLimit; 1060 if (Limit >= 0) { 1061 if (Counter >= HWLoopLimit) 1062 return false; 1063 Counter++; 1064 } 1065 #endif 1066 1067 // Does the loop contain any invalid instructions? 1068 if (containsInvalidInstruction(L)) 1069 return false; 1070 1071 MachineBasicBlock *LastMBB = L->getExitingBlock(); 1072 // Don't generate hw loop if the loop has more than one exit. 1073 if (!LastMBB) 1074 return false; 1075 1076 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1077 if (LastI == LastMBB->end()) 1078 return false; 1079 1080 // Is the induction variable bump feeding the latch condition? 1081 if (!fixupInductionVariable(L)) 1082 return false; 1083 1084 // Ensure the loop has a preheader: the loop instruction will be 1085 // placed there. 1086 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1087 if (!Preheader) { 1088 Preheader = createPreheaderForLoop(L); 1089 if (!Preheader) 1090 return false; 1091 } 1092 1093 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1094 1095 SmallVector<MachineInstr*, 2> OldInsts; 1096 // Are we able to determine the trip count for the loop? 1097 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1098 if (!TripCount) 1099 return false; 1100 1101 // Is the trip count available in the preheader? 1102 if (TripCount->isReg()) { 1103 // There will be a use of the register inserted into the preheader, 1104 // so make sure that the register is actually defined at that point. 1105 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1106 MachineBasicBlock *BBDef = TCDef->getParent(); 1107 if (!MDT->dominates(BBDef, Preheader)) 1108 return false; 1109 } 1110 1111 // Determine the loop start. 1112 MachineBasicBlock *TopBlock = L->getTopBlock(); 1113 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1114 MachineBasicBlock *LoopStart = 0; 1115 if (ExitingBlock != L->getLoopLatch()) { 1116 MachineBasicBlock *TB = 0, *FB = 0; 1117 SmallVector<MachineOperand, 2> Cond; 1118 1119 if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1120 return false; 1121 1122 if (L->contains(TB)) 1123 LoopStart = TB; 1124 else if (L->contains(FB)) 1125 LoopStart = FB; 1126 else 1127 return false; 1128 } 1129 else 1130 LoopStart = TopBlock; 1131 1132 // Convert the loop to a hardware loop. 1133 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1134 DebugLoc DL; 1135 if (InsertPos != Preheader->end()) 1136 DL = InsertPos->getDebugLoc(); 1137 1138 if (TripCount->isReg()) { 1139 // Create a copy of the loop count register. 1140 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1141 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1142 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1143 // Add the Loop instruction to the beginning of the loop. 1144 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r)) 1145 .addMBB(LoopStart) 1146 .addReg(CountReg); 1147 } else { 1148 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1149 // Add the Loop immediate instruction to the beginning of the loop, 1150 // if the immediate fits in the instructions. Otherwise, we need to 1151 // create a new virtual register. 1152 int64_t CountImm = TripCount->getImm(); 1153 if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) { 1154 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1155 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1156 .addImm(CountImm); 1157 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r)) 1158 .addMBB(LoopStart).addReg(CountReg); 1159 } else 1160 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i)) 1161 .addMBB(LoopStart).addImm(CountImm); 1162 } 1163 1164 // Make sure the loop start always has a reference in the CFG. We need 1165 // to create a BlockAddress operand to get this mechanism to work both the 1166 // MachineBasicBlock and BasicBlock objects need the flag set. 1167 LoopStart->setHasAddressTaken(); 1168 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1169 // object. 1170 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1171 1172 // Replace the loop branch with an endloop instruction. 1173 DebugLoc LastIDL = LastI->getDebugLoc(); 1174 BuildMI(*LastMBB, LastI, LastIDL, 1175 TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); 1176 1177 // The loop ends with either: 1178 // - a conditional branch followed by an unconditional branch, or 1179 // - a conditional branch to the loop start. 1180 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1181 LastI->getOpcode() == Hexagon::J2_jumpf) { 1182 // Delete one and change/add an uncond. branch to out of the loop. 1183 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1184 LastI = LastMBB->erase(LastI); 1185 if (!L->contains(BranchTarget)) { 1186 if (LastI != LastMBB->end()) 1187 LastI = LastMBB->erase(LastI); 1188 SmallVector<MachineOperand, 0> Cond; 1189 TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1190 } 1191 } else { 1192 // Conditional branch to loop start; just delete it. 1193 LastMBB->erase(LastI); 1194 } 1195 delete TripCount; 1196 1197 // The induction operation and the comparison may now be 1198 // unneeded. If these are unneeded, then remove them. 1199 for (unsigned i = 0; i < OldInsts.size(); ++i) 1200 removeIfDead(OldInsts[i]); 1201 1202 ++NumHWLoops; 1203 return true; 1204 } 1205 1206 1207 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1208 MachineInstr *CmpI) { 1209 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1210 1211 MachineBasicBlock *BB = BumpI->getParent(); 1212 if (CmpI->getParent() != BB) 1213 return false; 1214 1215 typedef MachineBasicBlock::instr_iterator instr_iterator; 1216 // Check if things are in order to begin with. 1217 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) 1218 if (&*I == CmpI) 1219 return true; 1220 1221 // Out of order. 1222 unsigned PredR = CmpI->getOperand(0).getReg(); 1223 bool FoundBump = false; 1224 instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt); 1225 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1226 MachineInstr *In = &*I; 1227 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1228 MachineOperand &MO = In->getOperand(i); 1229 if (MO.isReg() && MO.isUse()) { 1230 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1231 return false; 1232 } 1233 } 1234 1235 if (In == BumpI) { 1236 instr_iterator After = BumpI; 1237 instr_iterator From = CmpI; 1238 BB->splice(std::next(After), BB, From); 1239 FoundBump = true; 1240 break; 1241 } 1242 } 1243 assert (FoundBump && "Cannot determine instruction order"); 1244 return FoundBump; 1245 } 1246 1247 1248 MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { 1249 MachineInstr *DI = MRI->getVRegDef(R); 1250 unsigned DOpc = DI->getOpcode(); 1251 switch (DOpc) { 1252 case Hexagon::A2_tfrsi: 1253 case Hexagon::A2_tfrpi: 1254 case Hexagon::CONST32_Int_Real: 1255 case Hexagon::CONST64_Int_Real: 1256 return DI; 1257 } 1258 return nullptr; 1259 } 1260 1261 1262 int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { 1263 if (MO.isImm()) 1264 return MO.getImm(); 1265 assert(MO.isReg()); 1266 unsigned R = MO.getReg(); 1267 MachineInstr *DI = defWithImmediate(R); 1268 assert(DI && "Need an immediate operand"); 1269 // All currently supported "define-with-immediate" instructions have the 1270 // actual immediate value in the operand(1). 1271 int64_t v = DI->getOperand(1).getImm(); 1272 return v; 1273 } 1274 1275 1276 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1277 if (MO.isImm()) { 1278 MO.setImm(Val); 1279 return; 1280 } 1281 1282 assert(MO.isReg()); 1283 unsigned R = MO.getReg(); 1284 MachineInstr *DI = MRI->getVRegDef(R); 1285 1286 const TargetRegisterClass *RC = MRI->getRegClass(R); 1287 unsigned NewR = MRI->createVirtualRegister(RC); 1288 MachineBasicBlock &B = *DI->getParent(); 1289 DebugLoc DL = DI->getDebugLoc(); 1290 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) 1291 .addImm(Val); 1292 MO.setReg(NewR); 1293 } 1294 1295 1296 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1297 MachineBasicBlock *Header = L->getHeader(); 1298 MachineBasicBlock *Latch = L->getLoopLatch(); 1299 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1300 1301 if (!(Header && Latch && ExitingBlock)) 1302 return false; 1303 1304 // These data structures follow the same concept as the corresponding 1305 // ones in findInductionRegister (where some comments are). 1306 typedef std::pair<unsigned,int64_t> RegisterBump; 1307 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1308 typedef std::set<RegisterInduction> RegisterInductionSet; 1309 1310 // Register candidates for induction variables, with their associated bumps. 1311 RegisterInductionSet IndRegs; 1312 1313 // Look for induction patterns: 1314 // vreg1 = PHI ..., [ latch, vreg2 ] 1315 // vreg2 = ADD vreg1, imm 1316 typedef MachineBasicBlock::instr_iterator instr_iterator; 1317 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1318 I != E && I->isPHI(); ++I) { 1319 MachineInstr *Phi = &*I; 1320 1321 // Have a PHI instruction. 1322 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1323 if (Phi->getOperand(i+1).getMBB() != Latch) 1324 continue; 1325 1326 unsigned PhiReg = Phi->getOperand(i).getReg(); 1327 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1328 unsigned UpdOpc = DI->getOpcode(); 1329 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 1330 1331 if (isAdd) { 1332 // If the register operand to the add/sub is the PHI we are looking 1333 // at, this meets the induction pattern. 1334 unsigned IndReg = DI->getOperand(1).getReg(); 1335 if (MRI->getVRegDef(IndReg) == Phi) { 1336 unsigned UpdReg = DI->getOperand(0).getReg(); 1337 int64_t V = DI->getOperand(2).getImm(); 1338 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1339 } 1340 } 1341 } // for (i) 1342 } // for (instr) 1343 1344 if (IndRegs.empty()) 1345 return false; 1346 1347 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1348 SmallVector<MachineOperand,2> Cond; 1349 // AnalyzeBranch returns true if it fails to analyze branch. 1350 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 1351 if (NotAnalyzed) 1352 return false; 1353 1354 // Check if the latch branch is unconditional. 1355 if (Cond.empty()) 1356 return false; 1357 1358 if (TB != Header && FB != Header) 1359 // The latch does not go back to the header. Not a latch we know and love. 1360 return false; 1361 1362 // Expecting a predicate register as a condition. It won't be a hardware 1363 // predicate register at this point yet, just a vreg. 1364 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1365 // into Cond, followed by the predicate register. For non-negated branches 1366 // it's just the register. 1367 unsigned CSz = Cond.size(); 1368 if (CSz != 1 && CSz != 2) 1369 return false; 1370 1371 unsigned P = Cond[CSz-1].getReg(); 1372 MachineInstr *PredDef = MRI->getVRegDef(P); 1373 1374 if (!PredDef->isCompare()) 1375 return false; 1376 1377 SmallSet<unsigned,2> CmpRegs; 1378 MachineOperand *CmpImmOp = nullptr; 1379 1380 // Go over all operands to the compare and look for immediate and register 1381 // operands. Assume that if the compare has a single register use and a 1382 // single immediate operand, then the register is being compared with the 1383 // immediate value. 1384 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1385 MachineOperand &MO = PredDef->getOperand(i); 1386 if (MO.isReg()) { 1387 // Skip all implicit references. In one case there was: 1388 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1389 if (MO.isImplicit()) 1390 continue; 1391 if (MO.isUse()) { 1392 unsigned R = MO.getReg(); 1393 if (!defWithImmediate(R)) { 1394 CmpRegs.insert(MO.getReg()); 1395 continue; 1396 } 1397 // Consider the register to be the "immediate" operand. 1398 if (CmpImmOp) 1399 return false; 1400 CmpImmOp = &MO; 1401 } 1402 } else if (MO.isImm()) { 1403 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1404 return false; 1405 CmpImmOp = &MO; 1406 } 1407 } 1408 1409 if (CmpRegs.empty()) 1410 return false; 1411 1412 // Check if the compared register follows the order we want. Fix if needed. 1413 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1414 I != E; ++I) { 1415 // This is a success. If the register used in the comparison is one that 1416 // we have identified as a bumped (updated) induction register, there is 1417 // nothing to do. 1418 if (CmpRegs.count(I->first)) 1419 return true; 1420 1421 // Otherwise, if the register being compared comes out of a PHI node, 1422 // and has been recognized as following the induction pattern, and is 1423 // compared against an immediate, we can fix it. 1424 const RegisterBump &RB = I->second; 1425 if (CmpRegs.count(RB.first)) { 1426 if (!CmpImmOp) 1427 return false; 1428 1429 int64_t CmpImm = getImmediate(*CmpImmOp); 1430 int64_t V = RB.second; 1431 if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). 1432 return false; 1433 if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). 1434 return false; 1435 CmpImm += V; 1436 // Some forms of cmp-immediate allow u9 and s10. Assume the worst case 1437 // scenario, i.e. an 8-bit value. 1438 if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) 1439 return false; 1440 1441 // Make sure that the compare happens after the bump. Otherwise, 1442 // after the fixup, the compare would use a yet-undefined register. 1443 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1444 bool Order = orderBumpCompare(BumpI, PredDef); 1445 if (!Order) 1446 return false; 1447 1448 // Finally, fix the compare instruction. 1449 setImmediate(*CmpImmOp, CmpImm); 1450 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1451 MachineOperand &MO = PredDef->getOperand(i); 1452 if (MO.isReg() && MO.getReg() == RB.first) { 1453 MO.setReg(I->first); 1454 return true; 1455 } 1456 } 1457 } 1458 } 1459 1460 return false; 1461 } 1462 1463 1464 /// \brief Create a preheader for a given loop. 1465 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1466 MachineLoop *L) { 1467 if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) 1468 return TmpPH; 1469 1470 if (!HWCreatePreheader) 1471 return nullptr; 1472 1473 MachineBasicBlock *Header = L->getHeader(); 1474 MachineBasicBlock *Latch = L->getLoopLatch(); 1475 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1476 MachineFunction *MF = Header->getParent(); 1477 DebugLoc DL; 1478 1479 #ifndef NDEBUG 1480 if ((PHFn != "") && (PHFn != MF->getName())) 1481 return nullptr; 1482 #endif 1483 1484 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1485 return nullptr; 1486 1487 typedef MachineBasicBlock::instr_iterator instr_iterator; 1488 1489 // Verify that all existing predecessors have analyzable branches 1490 // (or no branches at all). 1491 typedef std::vector<MachineBasicBlock*> MBBVector; 1492 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1493 SmallVector<MachineOperand,2> Tmp1; 1494 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1495 1496 if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1497 return nullptr; 1498 1499 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1500 MachineBasicBlock *PB = *I; 1501 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); 1502 if (NotAnalyzed) 1503 return nullptr; 1504 } 1505 1506 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1507 MF->insert(Header, NewPH); 1508 1509 if (Header->pred_size() > 2) { 1510 // Ensure that the header has only two predecessors: the preheader and 1511 // the loop latch. Any additional predecessors of the header should 1512 // join at the newly created preheader. Inspect all PHI nodes from the 1513 // header and create appropriate corresponding PHI nodes in the preheader. 1514 1515 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1516 I != E && I->isPHI(); ++I) { 1517 MachineInstr *PN = &*I; 1518 1519 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1520 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1521 NewPH->insert(NewPH->end(), NewPN); 1522 1523 unsigned PR = PN->getOperand(0).getReg(); 1524 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1525 unsigned NewPR = MRI->createVirtualRegister(RC); 1526 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1527 1528 // Copy all non-latch operands of a header's PHI node to the newly 1529 // created PHI node in the preheader. 1530 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1531 unsigned PredR = PN->getOperand(i).getReg(); 1532 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1533 if (PredB == Latch) 1534 continue; 1535 1536 NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); 1537 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1538 } 1539 1540 // Remove copied operands from the old PHI node and add the value 1541 // coming from the preheader's PHI. 1542 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1543 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1544 if (PredB != Latch) { 1545 PN->RemoveOperand(i+1); 1546 PN->RemoveOperand(i); 1547 } 1548 } 1549 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1550 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1551 } 1552 1553 } else { 1554 assert(Header->pred_size() == 2); 1555 1556 // The header has only two predecessors, but the non-latch predecessor 1557 // is not a preheader (e.g. it has other successors, etc.) 1558 // In such a case we don't need any extra PHI nodes in the new preheader, 1559 // all we need is to adjust existing PHIs in the header to now refer to 1560 // the new preheader. 1561 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1562 I != E && I->isPHI(); ++I) { 1563 MachineInstr *PN = &*I; 1564 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1565 MachineOperand &MO = PN->getOperand(i+1); 1566 if (MO.getMBB() != Latch) 1567 MO.setMBB(NewPH); 1568 } 1569 } 1570 } 1571 1572 // "Reroute" the CFG edges to link in the new preheader. 1573 // If any of the predecessors falls through to the header, insert a branch 1574 // to the new preheader in that place. 1575 SmallVector<MachineOperand,1> Tmp2; 1576 SmallVector<MachineOperand,1> EmptyCond; 1577 1578 TB = FB = nullptr; 1579 1580 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1581 MachineBasicBlock *PB = *I; 1582 if (PB != Latch) { 1583 Tmp2.clear(); 1584 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); 1585 (void)NotAnalyzed; // suppress compiler warning 1586 assert (!NotAnalyzed && "Should be analyzable!"); 1587 if (TB != Header && (Tmp2.empty() || FB != Header)) 1588 TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1589 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1590 } 1591 } 1592 1593 // It can happen that the latch block will fall through into the header. 1594 // Insert an unconditional branch to the header. 1595 TB = FB = nullptr; 1596 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); 1597 (void)LatchNotAnalyzed; // suppress compiler warning 1598 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1599 if (!TB && !FB) 1600 TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1601 1602 // Finally, the branch from the preheader to the header. 1603 TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1604 NewPH->addSuccessor(Header); 1605 1606 MachineLoop *ParentLoop = L->getParentLoop(); 1607 if (ParentLoop) 1608 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1609 1610 // Update the dominator information with the new preheader. 1611 if (MDT) { 1612 MachineDomTreeNode *HDom = MDT->getNode(Header); 1613 MDT->addNewBlock(NewPH, HDom->getIDom()->getBlock()); 1614 MDT->changeImmediateDominator(Header, NewPH); 1615 } 1616 1617 return NewPH; 1618 } 1619