1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/SmallSet.h" 29 #include "Hexagon.h" 30 #include "HexagonSubtarget.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/PassSupport.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include <algorithm> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "hwloops" 49 50 #ifndef NDEBUG 51 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 52 53 // Option to create preheader only for a specific function. 54 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 55 cl::init("")); 56 #endif 57 58 // Option to create a preheader if one doesn't exist. 59 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 60 cl::Hidden, cl::init(true), 61 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 62 63 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 64 65 namespace llvm { 66 void initializeHexagonHardwareLoopsPass(PassRegistry&); 67 } 68 69 namespace { 70 class CountValue; 71 struct HexagonHardwareLoops : public MachineFunctionPass { 72 MachineLoopInfo *MLI; 73 MachineRegisterInfo *MRI; 74 MachineDominatorTree *MDT; 75 const HexagonInstrInfo *TII; 76 #ifndef NDEBUG 77 static int Counter; 78 #endif 79 80 public: 81 static char ID; 82 83 HexagonHardwareLoops() : MachineFunctionPass(ID) { 84 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 85 } 86 87 bool runOnMachineFunction(MachineFunction &MF) override; 88 89 const char *getPassName() const override { return "Hexagon Hardware Loops"; } 90 91 void getAnalysisUsage(AnalysisUsage &AU) const override { 92 AU.addRequired<MachineDominatorTree>(); 93 AU.addRequired<MachineLoopInfo>(); 94 MachineFunctionPass::getAnalysisUsage(AU); 95 } 96 97 private: 98 typedef std::map<unsigned, MachineInstr *> LoopFeederMap; 99 100 /// Kinds of comparisons in the compare instructions. 101 struct Comparison { 102 enum Kind { 103 EQ = 0x01, 104 NE = 0x02, 105 L = 0x04, 106 G = 0x08, 107 U = 0x40, 108 LTs = L, 109 LEs = L | EQ, 110 GTs = G, 111 GEs = G | EQ, 112 LTu = L | U, 113 LEu = L | EQ | U, 114 GTu = G | U, 115 GEu = G | EQ | U 116 }; 117 118 static Kind getSwappedComparison(Kind Cmp) { 119 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 120 if ((Cmp & L) || (Cmp & G)) 121 return (Kind)(Cmp ^ (L|G)); 122 return Cmp; 123 } 124 125 static Kind getNegatedComparison(Kind Cmp) { 126 if ((Cmp & L) || (Cmp & G)) 127 return (Kind)((Cmp ^ (L | G)) ^ EQ); 128 if ((Cmp & NE) || (Cmp & EQ)) 129 return (Kind)(Cmp ^ (EQ | NE)); 130 return (Kind)0; 131 } 132 133 static bool isSigned(Kind Cmp) { 134 return (Cmp & (L | G) && !(Cmp & U)); 135 } 136 137 static bool isUnsigned(Kind Cmp) { 138 return (Cmp & U); 139 } 140 141 }; 142 143 /// \brief Find the register that contains the loop controlling 144 /// induction variable. 145 /// If successful, it will return true and set the \p Reg, \p IVBump 146 /// and \p IVOp arguments. Otherwise it will return false. 147 /// The returned induction register is the register R that follows the 148 /// following induction pattern: 149 /// loop: 150 /// R = phi ..., [ R.next, LatchBlock ] 151 /// R.next = R + #bump 152 /// if (R.next < #N) goto loop 153 /// IVBump is the immediate value added to R, and IVOp is the instruction 154 /// "R.next = R + #bump". 155 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 156 int64_t &IVBump, MachineInstr *&IVOp) const; 157 158 /// \brief Return the comparison kind for the specified opcode. 159 Comparison::Kind getComparisonKind(unsigned CondOpc, 160 MachineOperand *InitialValue, 161 const MachineOperand *Endvalue, 162 int64_t IVBump) const; 163 164 /// \brief Analyze the statements in a loop to determine if the loop 165 /// has a computable trip count and, if so, return a value that represents 166 /// the trip count expression. 167 CountValue *getLoopTripCount(MachineLoop *L, 168 SmallVectorImpl<MachineInstr *> &OldInsts); 169 170 /// \brief Return the expression that represents the number of times 171 /// a loop iterates. The function takes the operands that represent the 172 /// loop start value, loop end value, and induction value. Based upon 173 /// these operands, the function attempts to compute the trip count. 174 /// If the trip count is not directly available (as an immediate value, 175 /// or a register), the function will attempt to insert computation of it 176 /// to the loop's preheader. 177 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 178 const MachineOperand *End, unsigned IVReg, 179 int64_t IVBump, Comparison::Kind Cmp) const; 180 181 /// \brief Return true if the instruction is not valid within a hardware 182 /// loop. 183 bool isInvalidLoopOperation(const MachineInstr *MI, 184 bool IsInnerHWLoop) const; 185 186 /// \brief Return true if the loop contains an instruction that inhibits 187 /// using the hardware loop. 188 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 189 190 /// \brief Given a loop, check if we can convert it to a hardware loop. 191 /// If so, then perform the conversion and return true. 192 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 193 194 /// \brief Return true if the instruction is now dead. 195 bool isDead(const MachineInstr *MI, 196 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 197 198 /// \brief Remove the instruction if it is now dead. 199 void removeIfDead(MachineInstr *MI); 200 201 /// \brief Make sure that the "bump" instruction executes before the 202 /// compare. We need that for the IV fixup, so that the compare 203 /// instruction would not use a bumped value that has not yet been 204 /// defined. If the instructions are out of order, try to reorder them. 205 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 206 207 /// \brief Return true if MO and MI pair is visited only once. If visited 208 /// more than once, this indicates there is recursion. In such a case, 209 /// return false. 210 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 211 const MachineOperand *MO, 212 LoopFeederMap &LoopFeederPhi) const; 213 214 /// \brief Return true if the Phi may generate a value that may underflow, 215 /// or may wrap. 216 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 217 MachineBasicBlock *MBB, MachineLoop *L, 218 LoopFeederMap &LoopFeederPhi) const; 219 220 /// \brief Return true if the induction variable may underflow an unsigned 221 /// value in the first iteration. 222 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 223 const MachineOperand *EndVal, 224 MachineBasicBlock *MBB, MachineLoop *L, 225 LoopFeederMap &LoopFeederPhi) const; 226 227 /// \brief Check if the given operand has a compile-time known constant 228 /// value. Return true if yes, and false otherwise. When returning true, set 229 /// Val to the corresponding constant value. 230 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 231 232 /// \brief Check if the operand has a compile-time known constant value. 233 bool isImmediate(const MachineOperand &MO) const { 234 int64_t V; 235 return checkForImmediate(MO, V); 236 } 237 238 /// \brief Return the immediate for the specified operand. 239 int64_t getImmediate(const MachineOperand &MO) const { 240 int64_t V; 241 if (!checkForImmediate(MO, V)) 242 llvm_unreachable("Invalid operand"); 243 return V; 244 } 245 246 /// \brief Reset the given machine operand to now refer to a new immediate 247 /// value. Assumes that the operand was already referencing an immediate 248 /// value, either directly, or via a register. 249 void setImmediate(MachineOperand &MO, int64_t Val); 250 251 /// \brief Fix the data flow of the induction varible. 252 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 253 /// | 254 /// +-> back to phi 255 /// where "bump" is the increment of the induction variable: 256 /// iv = iv + #const. 257 /// Due to some prior code transformations, the actual flow may look 258 /// like this: 259 /// phi -+-> bump ---> back to phi 260 /// | 261 /// +-> comparison-in-latch (against upper_bound-bump), 262 /// i.e. the comparison that controls the loop execution may be using 263 /// the value of the induction variable from before the increment. 264 /// 265 /// Return true if the loop's flow is the desired one (i.e. it's 266 /// either been fixed, or no fixing was necessary). 267 /// Otherwise, return false. This can happen if the induction variable 268 /// couldn't be identified, or if the value in the latch's comparison 269 /// cannot be adjusted to reflect the post-bump value. 270 bool fixupInductionVariable(MachineLoop *L); 271 272 /// \brief Given a loop, if it does not have a preheader, create one. 273 /// Return the block that is the preheader. 274 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 275 }; 276 277 char HexagonHardwareLoops::ID = 0; 278 #ifndef NDEBUG 279 int HexagonHardwareLoops::Counter = 0; 280 #endif 281 282 /// \brief Abstraction for a trip count of a loop. A smaller version 283 /// of the MachineOperand class without the concerns of changing the 284 /// operand representation. 285 class CountValue { 286 public: 287 enum CountValueType { 288 CV_Register, 289 CV_Immediate 290 }; 291 private: 292 CountValueType Kind; 293 union Values { 294 struct { 295 unsigned Reg; 296 unsigned Sub; 297 } R; 298 unsigned ImmVal; 299 } Contents; 300 301 public: 302 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 303 Kind = t; 304 if (Kind == CV_Register) { 305 Contents.R.Reg = v; 306 Contents.R.Sub = u; 307 } else { 308 Contents.ImmVal = v; 309 } 310 } 311 bool isReg() const { return Kind == CV_Register; } 312 bool isImm() const { return Kind == CV_Immediate; } 313 314 unsigned getReg() const { 315 assert(isReg() && "Wrong CountValue accessor"); 316 return Contents.R.Reg; 317 } 318 unsigned getSubReg() const { 319 assert(isReg() && "Wrong CountValue accessor"); 320 return Contents.R.Sub; 321 } 322 unsigned getImm() const { 323 assert(isImm() && "Wrong CountValue accessor"); 324 return Contents.ImmVal; 325 } 326 327 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 328 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 329 if (isImm()) { OS << Contents.ImmVal; } 330 } 331 }; 332 } // end anonymous namespace 333 334 335 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 336 "Hexagon Hardware Loops", false, false) 337 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 338 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 339 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 340 "Hexagon Hardware Loops", false, false) 341 342 FunctionPass *llvm::createHexagonHardwareLoops() { 343 return new HexagonHardwareLoops(); 344 } 345 346 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 347 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 348 349 bool Changed = false; 350 351 MLI = &getAnalysis<MachineLoopInfo>(); 352 MRI = &MF.getRegInfo(); 353 MDT = &getAnalysis<MachineDominatorTree>(); 354 TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 355 356 for (auto &L : *MLI) 357 if (!L->getParentLoop()) { 358 bool L0Used = false; 359 bool L1Used = false; 360 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 361 } 362 363 return Changed; 364 } 365 366 /// \brief Return the latch block if it's one of the exiting blocks. Otherwise, 367 /// return the exiting block. Return 'null' when multiple exiting blocks are 368 /// present. 369 static MachineBasicBlock* getExitingBlock(MachineLoop *L) { 370 if (MachineBasicBlock *Latch = L->getLoopLatch()) { 371 if (L->isLoopExiting(Latch)) 372 return Latch; 373 else 374 return L->getExitingBlock(); 375 } 376 return nullptr; 377 } 378 379 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 380 unsigned &Reg, 381 int64_t &IVBump, 382 MachineInstr *&IVOp 383 ) const { 384 MachineBasicBlock *Header = L->getHeader(); 385 MachineBasicBlock *Preheader = L->getLoopPreheader(); 386 MachineBasicBlock *Latch = L->getLoopLatch(); 387 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 388 if (!Header || !Preheader || !Latch || !ExitingBlock) 389 return false; 390 391 // This pair represents an induction register together with an immediate 392 // value that will be added to it in each loop iteration. 393 typedef std::pair<unsigned,int64_t> RegisterBump; 394 395 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 396 // from an induction operation 397 // R.next = R + bump 398 // where bump is an immediate value. 399 typedef std::map<unsigned,RegisterBump> InductionMap; 400 401 InductionMap IndMap; 402 403 typedef MachineBasicBlock::instr_iterator instr_iterator; 404 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 405 I != E && I->isPHI(); ++I) { 406 MachineInstr *Phi = &*I; 407 408 // Have a PHI instruction. Get the operand that corresponds to the 409 // latch block, and see if is a result of an addition of form "reg+imm", 410 // where the "reg" is defined by the PHI node we are looking at. 411 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 412 if (Phi->getOperand(i+1).getMBB() != Latch) 413 continue; 414 415 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 416 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 417 unsigned UpdOpc = DI->getOpcode(); 418 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 419 420 if (isAdd) { 421 // If the register operand to the add is the PHI we're looking at, this 422 // meets the induction pattern. 423 unsigned IndReg = DI->getOperand(1).getReg(); 424 MachineOperand &Opnd2 = DI->getOperand(2); 425 int64_t V; 426 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 427 unsigned UpdReg = DI->getOperand(0).getReg(); 428 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 429 } 430 } 431 } // for (i) 432 } // for (instr) 433 434 SmallVector<MachineOperand,2> Cond; 435 MachineBasicBlock *TB = nullptr, *FB = nullptr; 436 bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false); 437 if (NotAnalyzed) 438 return false; 439 440 unsigned PredR, PredPos, PredRegFlags; 441 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 442 return false; 443 444 MachineInstr *PredI = MRI->getVRegDef(PredR); 445 if (!PredI->isCompare()) 446 return false; 447 448 unsigned CmpReg1 = 0, CmpReg2 = 0; 449 int CmpImm = 0, CmpMask = 0; 450 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, 451 CmpMask, CmpImm); 452 // Fail if the compare was not analyzed, or it's not comparing a register 453 // with an immediate value. Not checking the mask here, since we handle 454 // the individual compare opcodes (including A4_cmpb*) later on. 455 if (!CmpAnalyzed) 456 return false; 457 458 // Exactly one of the input registers to the comparison should be among 459 // the induction registers. 460 InductionMap::iterator IndMapEnd = IndMap.end(); 461 InductionMap::iterator F = IndMapEnd; 462 if (CmpReg1 != 0) { 463 InductionMap::iterator F1 = IndMap.find(CmpReg1); 464 if (F1 != IndMapEnd) 465 F = F1; 466 } 467 if (CmpReg2 != 0) { 468 InductionMap::iterator F2 = IndMap.find(CmpReg2); 469 if (F2 != IndMapEnd) { 470 if (F != IndMapEnd) 471 return false; 472 F = F2; 473 } 474 } 475 if (F == IndMapEnd) 476 return false; 477 478 Reg = F->second.first; 479 IVBump = F->second.second; 480 IVOp = MRI->getVRegDef(F->first); 481 return true; 482 } 483 484 // Return the comparison kind for the specified opcode. 485 HexagonHardwareLoops::Comparison::Kind 486 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 487 MachineOperand *InitialValue, 488 const MachineOperand *EndValue, 489 int64_t IVBump) const { 490 Comparison::Kind Cmp = (Comparison::Kind)0; 491 switch (CondOpc) { 492 case Hexagon::C2_cmpeqi: 493 case Hexagon::C2_cmpeq: 494 case Hexagon::C2_cmpeqp: 495 Cmp = Comparison::EQ; 496 break; 497 case Hexagon::C4_cmpneq: 498 case Hexagon::C4_cmpneqi: 499 Cmp = Comparison::NE; 500 break; 501 case Hexagon::C4_cmplte: 502 Cmp = Comparison::LEs; 503 break; 504 case Hexagon::C4_cmplteu: 505 Cmp = Comparison::LEu; 506 break; 507 case Hexagon::C2_cmpgtui: 508 case Hexagon::C2_cmpgtu: 509 case Hexagon::C2_cmpgtup: 510 Cmp = Comparison::GTu; 511 break; 512 case Hexagon::C2_cmpgti: 513 case Hexagon::C2_cmpgt: 514 case Hexagon::C2_cmpgtp: 515 Cmp = Comparison::GTs; 516 break; 517 default: 518 return (Comparison::Kind)0; 519 } 520 return Cmp; 521 } 522 523 /// \brief Analyze the statements in a loop to determine if the loop has 524 /// a computable trip count and, if so, return a value that represents 525 /// the trip count expression. 526 /// 527 /// This function iterates over the phi nodes in the loop to check for 528 /// induction variable patterns that are used in the calculation for 529 /// the number of time the loop is executed. 530 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 531 SmallVectorImpl<MachineInstr *> &OldInsts) { 532 MachineBasicBlock *TopMBB = L->getTopBlock(); 533 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 534 assert(PI != TopMBB->pred_end() && 535 "Loop must have more than one incoming edge!"); 536 MachineBasicBlock *Backedge = *PI++; 537 if (PI == TopMBB->pred_end()) // dead loop? 538 return nullptr; 539 MachineBasicBlock *Incoming = *PI++; 540 if (PI != TopMBB->pred_end()) // multiple backedges? 541 return nullptr; 542 543 // Make sure there is one incoming and one backedge and determine which 544 // is which. 545 if (L->contains(Incoming)) { 546 if (L->contains(Backedge)) 547 return nullptr; 548 std::swap(Incoming, Backedge); 549 } else if (!L->contains(Backedge)) 550 return nullptr; 551 552 // Look for the cmp instruction to determine if we can get a useful trip 553 // count. The trip count can be either a register or an immediate. The 554 // location of the value depends upon the type (reg or imm). 555 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 556 if (!ExitingBlock) 557 return nullptr; 558 559 unsigned IVReg = 0; 560 int64_t IVBump = 0; 561 MachineInstr *IVOp; 562 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 563 if (!FoundIV) 564 return nullptr; 565 566 MachineBasicBlock *Preheader = L->getLoopPreheader(); 567 568 MachineOperand *InitialValue = nullptr; 569 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 570 MachineBasicBlock *Latch = L->getLoopLatch(); 571 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 572 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 573 if (MBB == Preheader) 574 InitialValue = &IV_Phi->getOperand(i); 575 else if (MBB == Latch) 576 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 577 } 578 if (!InitialValue) 579 return nullptr; 580 581 SmallVector<MachineOperand,2> Cond; 582 MachineBasicBlock *TB = nullptr, *FB = nullptr; 583 bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false); 584 if (NotAnalyzed) 585 return nullptr; 586 587 MachineBasicBlock *Header = L->getHeader(); 588 // TB must be non-null. If FB is also non-null, one of them must be 589 // the header. Otherwise, branch to TB could be exiting the loop, and 590 // the fall through can go to the header. 591 assert (TB && "Exit block without a branch?"); 592 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 593 MachineBasicBlock *LTB = 0, *LFB = 0; 594 SmallVector<MachineOperand,2> LCond; 595 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false); 596 if (NotAnalyzed) 597 return nullptr; 598 if (TB == Latch) 599 TB = (LTB == Header) ? LTB : LFB; 600 else 601 FB = (LTB == Header) ? LTB: LFB; 602 } 603 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 604 if (!TB || (FB && TB != Header && FB != Header)) 605 return nullptr; 606 607 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 608 // to put imm(0), followed by P in the vector Cond. 609 // If TB is not the header, it means that the "not-taken" path must lead 610 // to the header. 611 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 612 unsigned PredReg, PredPos, PredRegFlags; 613 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 614 return nullptr; 615 MachineInstr *CondI = MRI->getVRegDef(PredReg); 616 unsigned CondOpc = CondI->getOpcode(); 617 618 unsigned CmpReg1 = 0, CmpReg2 = 0; 619 int Mask = 0, ImmValue = 0; 620 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, 621 Mask, ImmValue); 622 if (!AnalyzedCmp) 623 return nullptr; 624 625 // The comparison operator type determines how we compute the loop 626 // trip count. 627 OldInsts.push_back(CondI); 628 OldInsts.push_back(IVOp); 629 630 // Sadly, the following code gets information based on the position 631 // of the operands in the compare instruction. This has to be done 632 // this way, because the comparisons check for a specific relationship 633 // between the operands (e.g. is-less-than), rather than to find out 634 // what relationship the operands are in (as on PPC). 635 Comparison::Kind Cmp; 636 bool isSwapped = false; 637 const MachineOperand &Op1 = CondI->getOperand(1); 638 const MachineOperand &Op2 = CondI->getOperand(2); 639 const MachineOperand *EndValue = nullptr; 640 641 if (Op1.isReg()) { 642 if (Op2.isImm() || Op1.getReg() == IVReg) 643 EndValue = &Op2; 644 else { 645 EndValue = &Op1; 646 isSwapped = true; 647 } 648 } 649 650 if (!EndValue) 651 return nullptr; 652 653 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 654 if (!Cmp) 655 return nullptr; 656 if (Negated) 657 Cmp = Comparison::getNegatedComparison(Cmp); 658 if (isSwapped) 659 Cmp = Comparison::getSwappedComparison(Cmp); 660 661 if (InitialValue->isReg()) { 662 unsigned R = InitialValue->getReg(); 663 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 664 if (!MDT->properlyDominates(DefBB, Header)) 665 return nullptr; 666 OldInsts.push_back(MRI->getVRegDef(R)); 667 } 668 if (EndValue->isReg()) { 669 unsigned R = EndValue->getReg(); 670 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 671 if (!MDT->properlyDominates(DefBB, Header)) 672 return nullptr; 673 } 674 675 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 676 } 677 678 /// \brief Helper function that returns the expression that represents the 679 /// number of times a loop iterates. The function takes the operands that 680 /// represent the loop start value, loop end value, and induction value. 681 /// Based upon these operands, the function attempts to compute the trip count. 682 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 683 const MachineOperand *Start, 684 const MachineOperand *End, 685 unsigned IVReg, 686 int64_t IVBump, 687 Comparison::Kind Cmp) const { 688 // Cannot handle comparison EQ, i.e. while (A == B). 689 if (Cmp == Comparison::EQ) 690 return nullptr; 691 692 // Check if either the start or end values are an assignment of an immediate. 693 // If so, use the immediate value rather than the register. 694 if (Start->isReg()) { 695 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 696 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi) 697 Start = &StartValInstr->getOperand(1); 698 } 699 if (End->isReg()) { 700 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 701 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi) 702 End = &EndValInstr->getOperand(1); 703 } 704 705 if (!Start->isReg() && !Start->isImm()) 706 return nullptr; 707 if (!End->isReg() && !End->isImm()) 708 return nullptr; 709 710 bool CmpLess = Cmp & Comparison::L; 711 bool CmpGreater = Cmp & Comparison::G; 712 bool CmpHasEqual = Cmp & Comparison::EQ; 713 714 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 715 if (CmpLess && IVBump < 0) 716 // Loop going while iv is "less" with the iv value going down. Must wrap. 717 return nullptr; 718 719 if (CmpGreater && IVBump > 0) 720 // Loop going while iv is "greater" with the iv value going up. Must wrap. 721 return nullptr; 722 723 // Phis that may feed into the loop. 724 LoopFeederMap LoopFeederPhi; 725 726 // Check if the inital value may be zero and can be decremented in the first 727 // iteration. If the value is zero, the endloop instruction will not decrement 728 // the loop counter, so we shoudn't generate a hardware loop in this case. 729 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 730 LoopFeederPhi)) 731 return nullptr; 732 733 if (Start->isImm() && End->isImm()) { 734 // Both, start and end are immediates. 735 int64_t StartV = Start->getImm(); 736 int64_t EndV = End->getImm(); 737 int64_t Dist = EndV - StartV; 738 if (Dist == 0) 739 return nullptr; 740 741 bool Exact = (Dist % IVBump) == 0; 742 743 if (Cmp == Comparison::NE) { 744 if (!Exact) 745 return nullptr; 746 if ((Dist < 0) ^ (IVBump < 0)) 747 return nullptr; 748 } 749 750 // For comparisons that include the final value (i.e. include equality 751 // with the final value), we need to increase the distance by 1. 752 if (CmpHasEqual) 753 Dist = Dist > 0 ? Dist+1 : Dist-1; 754 755 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 756 // CmpGreater should imply Dist < 0. These conditions could actually 757 // fail, for example, in unreachable code (which may still appear to be 758 // reachable in the CFG). 759 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 760 return nullptr; 761 762 // "Normalized" distance, i.e. with the bump set to +-1. 763 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 764 : (-Dist + (-IVBump - 1)) / (-IVBump); 765 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 766 767 uint64_t Count = Dist1; 768 769 if (Count > 0xFFFFFFFFULL) 770 return nullptr; 771 772 return new CountValue(CountValue::CV_Immediate, Count); 773 } 774 775 // A general case: Start and End are some values, but the actual 776 // iteration count may not be available. If it is not, insert 777 // a computation of it into the preheader. 778 779 // If the induction variable bump is not a power of 2, quit. 780 // Othwerise we'd need a general integer division. 781 if (!isPowerOf2_64(std::abs(IVBump))) 782 return nullptr; 783 784 MachineBasicBlock *PH = Loop->getLoopPreheader(); 785 assert (PH && "Should have a preheader by now"); 786 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 787 DebugLoc DL; 788 if (InsertPos != PH->end()) 789 DL = InsertPos->getDebugLoc(); 790 791 // If Start is an immediate and End is a register, the trip count 792 // will be "reg - imm". Hexagon's "subtract immediate" instruction 793 // is actually "reg + -imm". 794 795 // If the loop IV is going downwards, i.e. if the bump is negative, 796 // then the iteration count (computed as End-Start) will need to be 797 // negated. To avoid the negation, just swap Start and End. 798 if (IVBump < 0) { 799 std::swap(Start, End); 800 IVBump = -IVBump; 801 } 802 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 803 // Signedness, and "including equality" are preserved. 804 805 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 806 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 807 808 int64_t StartV = 0, EndV = 0; 809 if (Start->isImm()) 810 StartV = Start->getImm(); 811 if (End->isImm()) 812 EndV = End->getImm(); 813 814 int64_t AdjV = 0; 815 // To compute the iteration count, we would need this computation: 816 // Count = (End - Start + (IVBump-1)) / IVBump 817 // or, when CmpHasEqual: 818 // Count = (End - Start + (IVBump-1)+1) / IVBump 819 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 820 // generating an instruction specifically to add it if we can adjust 821 // the immediate values for Start or End. 822 823 if (CmpHasEqual) { 824 // Need to add 1 to the total iteration count. 825 if (Start->isImm()) 826 StartV--; 827 else if (End->isImm()) 828 EndV++; 829 else 830 AdjV += 1; 831 } 832 833 if (Cmp != Comparison::NE) { 834 if (Start->isImm()) 835 StartV -= (IVBump-1); 836 else if (End->isImm()) 837 EndV += (IVBump-1); 838 else 839 AdjV += (IVBump-1); 840 } 841 842 unsigned R = 0, SR = 0; 843 if (Start->isReg()) { 844 R = Start->getReg(); 845 SR = Start->getSubReg(); 846 } else { 847 R = End->getReg(); 848 SR = End->getSubReg(); 849 } 850 const TargetRegisterClass *RC = MRI->getRegClass(R); 851 // Hardware loops cannot handle 64-bit registers. If it's a double 852 // register, it has to have a subregister. 853 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 854 return nullptr; 855 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 856 857 // Compute DistR (register with the distance between Start and End). 858 unsigned DistR, DistSR; 859 860 // Avoid special case, where the start value is an imm(0). 861 if (Start->isImm() && StartV == 0) { 862 DistR = End->getReg(); 863 DistSR = End->getSubReg(); 864 } else { 865 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 866 (RegToImm ? TII->get(Hexagon::A2_subri) : 867 TII->get(Hexagon::A2_addi)); 868 if (RegToReg || RegToImm) { 869 unsigned SubR = MRI->createVirtualRegister(IntRC); 870 MachineInstrBuilder SubIB = 871 BuildMI(*PH, InsertPos, DL, SubD, SubR); 872 873 if (RegToReg) 874 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 875 .addReg(Start->getReg(), 0, Start->getSubReg()); 876 else 877 SubIB.addImm(EndV) 878 .addReg(Start->getReg(), 0, Start->getSubReg()); 879 DistR = SubR; 880 } else { 881 // If the loop has been unrolled, we should use the original loop count 882 // instead of recalculating the value. This will avoid additional 883 // 'Add' instruction. 884 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 885 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 886 EndValInstr->getOperand(2).getImm() == StartV) { 887 DistR = EndValInstr->getOperand(1).getReg(); 888 } else { 889 unsigned SubR = MRI->createVirtualRegister(IntRC); 890 MachineInstrBuilder SubIB = 891 BuildMI(*PH, InsertPos, DL, SubD, SubR); 892 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 893 .addImm(-StartV); 894 DistR = SubR; 895 } 896 } 897 DistSR = 0; 898 } 899 900 // From DistR, compute AdjR (register with the adjusted distance). 901 unsigned AdjR, AdjSR; 902 903 if (AdjV == 0) { 904 AdjR = DistR; 905 AdjSR = DistSR; 906 } else { 907 // Generate CountR = ADD DistR, AdjVal 908 unsigned AddR = MRI->createVirtualRegister(IntRC); 909 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 910 BuildMI(*PH, InsertPos, DL, AddD, AddR) 911 .addReg(DistR, 0, DistSR) 912 .addImm(AdjV); 913 914 AdjR = AddR; 915 AdjSR = 0; 916 } 917 918 // From AdjR, compute CountR (register with the final count). 919 unsigned CountR, CountSR; 920 921 if (IVBump == 1) { 922 CountR = AdjR; 923 CountSR = AdjSR; 924 } else { 925 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 926 unsigned Shift = Log2_32(IVBump); 927 928 // Generate NormR = LSR DistR, Shift. 929 unsigned LsrR = MRI->createVirtualRegister(IntRC); 930 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 931 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 932 .addReg(AdjR, 0, AdjSR) 933 .addImm(Shift); 934 935 CountR = LsrR; 936 CountSR = 0; 937 } 938 939 return new CountValue(CountValue::CV_Register, CountR, CountSR); 940 } 941 942 /// \brief Return true if the operation is invalid within hardware loop. 943 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 944 bool IsInnerHWLoop) const { 945 946 // Call is not allowed because the callee may use a hardware loop except for 947 // the case when the call never returns. 948 if (MI->getDesc().isCall() && MI->getOpcode() != Hexagon::CALLv3nr) 949 return true; 950 951 // Check if the instruction defines a hardware loop register. 952 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 953 const MachineOperand &MO = MI->getOperand(i); 954 if (!MO.isReg() || !MO.isDef()) 955 continue; 956 unsigned R = MO.getReg(); 957 if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 || 958 R == Hexagon::LC1 || R == Hexagon::SA1)) 959 return true; 960 if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1)) 961 return true; 962 } 963 return false; 964 } 965 966 /// \brief Return true if the loop contains an instruction that inhibits 967 /// the use of the hardware loop instruction. 968 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 969 bool IsInnerHWLoop) const { 970 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 971 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 972 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 973 MachineBasicBlock *MBB = Blocks[i]; 974 for (MachineBasicBlock::iterator 975 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 976 const MachineInstr *MI = &*MII; 977 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 978 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 979 return true; 980 } 981 } 982 } 983 return false; 984 } 985 986 /// \brief Returns true if the instruction is dead. This was essentially 987 /// copied from DeadMachineInstructionElim::isDead, but with special cases 988 /// for inline asm, physical registers and instructions with side effects 989 /// removed. 990 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 991 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 992 // Examine each operand. 993 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 994 const MachineOperand &MO = MI->getOperand(i); 995 if (!MO.isReg() || !MO.isDef()) 996 continue; 997 998 unsigned Reg = MO.getReg(); 999 if (MRI->use_nodbg_empty(Reg)) 1000 continue; 1001 1002 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 1003 1004 // This instruction has users, but if the only user is the phi node for the 1005 // parent block, and the only use of that phi node is this instruction, then 1006 // this instruction is dead: both it (and the phi node) can be removed. 1007 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1008 use_nodbg_iterator End = MRI->use_nodbg_end(); 1009 if (std::next(I) != End || !I->getParent()->isPHI()) 1010 return false; 1011 1012 MachineInstr *OnePhi = I->getParent(); 1013 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1014 const MachineOperand &OPO = OnePhi->getOperand(j); 1015 if (!OPO.isReg() || !OPO.isDef()) 1016 continue; 1017 1018 unsigned OPReg = OPO.getReg(); 1019 use_nodbg_iterator nextJ; 1020 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1021 J != End; J = nextJ) { 1022 nextJ = std::next(J); 1023 MachineOperand &Use = *J; 1024 MachineInstr *UseMI = Use.getParent(); 1025 1026 // If the phi node has a user that is not MI, bail. 1027 if (MI != UseMI) 1028 return false; 1029 } 1030 } 1031 DeadPhis.push_back(OnePhi); 1032 } 1033 1034 // If there are no defs with uses, the instruction is dead. 1035 return true; 1036 } 1037 1038 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1039 // This procedure was essentially copied from DeadMachineInstructionElim. 1040 1041 SmallVector<MachineInstr*, 1> DeadPhis; 1042 if (isDead(MI, DeadPhis)) { 1043 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1044 1045 // It is possible that some DBG_VALUE instructions refer to this 1046 // instruction. Examine each def operand for such references; 1047 // if found, mark the DBG_VALUE as undef (but don't delete it). 1048 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1049 const MachineOperand &MO = MI->getOperand(i); 1050 if (!MO.isReg() || !MO.isDef()) 1051 continue; 1052 unsigned Reg = MO.getReg(); 1053 MachineRegisterInfo::use_iterator nextI; 1054 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1055 E = MRI->use_end(); I != E; I = nextI) { 1056 nextI = std::next(I); // I is invalidated by the setReg 1057 MachineOperand &Use = *I; 1058 MachineInstr *UseMI = I->getParent(); 1059 if (UseMI == MI) 1060 continue; 1061 if (Use.isDebug()) 1062 UseMI->getOperand(0).setReg(0U); 1063 } 1064 } 1065 1066 MI->eraseFromParent(); 1067 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1068 DeadPhis[i]->eraseFromParent(); 1069 } 1070 } 1071 1072 /// \brief Check if the loop is a candidate for converting to a hardware 1073 /// loop. If so, then perform the transformation. 1074 /// 1075 /// This function works on innermost loops first. A loop can be converted 1076 /// if it is a counting loop; either a register value or an immediate. 1077 /// 1078 /// The code makes several assumptions about the representation of the loop 1079 /// in llvm. 1080 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1081 bool &RecL0used, 1082 bool &RecL1used) { 1083 // This is just for sanity. 1084 assert(L->getHeader() && "Loop without a header?"); 1085 1086 bool Changed = false; 1087 bool L0Used = false; 1088 bool L1Used = false; 1089 1090 // Process nested loops first. 1091 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1092 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1093 L0Used |= RecL0used; 1094 L1Used |= RecL1used; 1095 } 1096 1097 // If a nested loop has been converted, then we can't convert this loop. 1098 if (Changed && L0Used && L1Used) 1099 return Changed; 1100 1101 unsigned LOOP_i; 1102 unsigned LOOP_r; 1103 unsigned ENDLOOP; 1104 1105 // Flag used to track loopN instruction: 1106 // 1 - Hardware loop is being generated for the inner most loop. 1107 // 0 - Hardware loop is being generated for the outer loop. 1108 unsigned IsInnerHWLoop = 1; 1109 1110 if (L0Used) { 1111 LOOP_i = Hexagon::J2_loop1i; 1112 LOOP_r = Hexagon::J2_loop1r; 1113 ENDLOOP = Hexagon::ENDLOOP1; 1114 IsInnerHWLoop = 0; 1115 } else { 1116 LOOP_i = Hexagon::J2_loop0i; 1117 LOOP_r = Hexagon::J2_loop0r; 1118 ENDLOOP = Hexagon::ENDLOOP0; 1119 } 1120 1121 #ifndef NDEBUG 1122 // Stop trying after reaching the limit (if any). 1123 int Limit = HWLoopLimit; 1124 if (Limit >= 0) { 1125 if (Counter >= HWLoopLimit) 1126 return false; 1127 Counter++; 1128 } 1129 #endif 1130 1131 // Does the loop contain any invalid instructions? 1132 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1133 return false; 1134 1135 MachineBasicBlock *LastMBB = getExitingBlock(L); 1136 // Don't generate hw loop if the loop has more than one exit. 1137 if (!LastMBB) 1138 return false; 1139 1140 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1141 if (LastI == LastMBB->end()) 1142 return false; 1143 1144 // Is the induction variable bump feeding the latch condition? 1145 if (!fixupInductionVariable(L)) 1146 return false; 1147 1148 // Ensure the loop has a preheader: the loop instruction will be 1149 // placed there. 1150 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1151 if (!Preheader) { 1152 Preheader = createPreheaderForLoop(L); 1153 if (!Preheader) 1154 return false; 1155 } 1156 1157 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1158 1159 SmallVector<MachineInstr*, 2> OldInsts; 1160 // Are we able to determine the trip count for the loop? 1161 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1162 if (!TripCount) 1163 return false; 1164 1165 // Is the trip count available in the preheader? 1166 if (TripCount->isReg()) { 1167 // There will be a use of the register inserted into the preheader, 1168 // so make sure that the register is actually defined at that point. 1169 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1170 MachineBasicBlock *BBDef = TCDef->getParent(); 1171 if (!MDT->dominates(BBDef, Preheader)) 1172 return false; 1173 } 1174 1175 // Determine the loop start. 1176 MachineBasicBlock *TopBlock = L->getTopBlock(); 1177 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1178 MachineBasicBlock *LoopStart = 0; 1179 if (ExitingBlock != L->getLoopLatch()) { 1180 MachineBasicBlock *TB = 0, *FB = 0; 1181 SmallVector<MachineOperand, 2> Cond; 1182 1183 if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1184 return false; 1185 1186 if (L->contains(TB)) 1187 LoopStart = TB; 1188 else if (L->contains(FB)) 1189 LoopStart = FB; 1190 else 1191 return false; 1192 } 1193 else 1194 LoopStart = TopBlock; 1195 1196 // Convert the loop to a hardware loop. 1197 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1198 DebugLoc DL; 1199 if (InsertPos != Preheader->end()) 1200 DL = InsertPos->getDebugLoc(); 1201 1202 if (TripCount->isReg()) { 1203 // Create a copy of the loop count register. 1204 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1205 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1206 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1207 // Add the Loop instruction to the beginning of the loop. 1208 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1209 .addReg(CountReg); 1210 } else { 1211 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1212 // Add the Loop immediate instruction to the beginning of the loop, 1213 // if the immediate fits in the instructions. Otherwise, we need to 1214 // create a new virtual register. 1215 int64_t CountImm = TripCount->getImm(); 1216 if (!TII->isValidOffset(LOOP_i, CountImm)) { 1217 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1218 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1219 .addImm(CountImm); 1220 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1221 .addMBB(LoopStart).addReg(CountReg); 1222 } else 1223 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1224 .addMBB(LoopStart).addImm(CountImm); 1225 } 1226 1227 // Make sure the loop start always has a reference in the CFG. We need 1228 // to create a BlockAddress operand to get this mechanism to work both the 1229 // MachineBasicBlock and BasicBlock objects need the flag set. 1230 LoopStart->setHasAddressTaken(); 1231 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1232 // object. 1233 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1234 1235 // Replace the loop branch with an endloop instruction. 1236 DebugLoc LastIDL = LastI->getDebugLoc(); 1237 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1238 1239 // The loop ends with either: 1240 // - a conditional branch followed by an unconditional branch, or 1241 // - a conditional branch to the loop start. 1242 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1243 LastI->getOpcode() == Hexagon::J2_jumpf) { 1244 // Delete one and change/add an uncond. branch to out of the loop. 1245 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1246 LastI = LastMBB->erase(LastI); 1247 if (!L->contains(BranchTarget)) { 1248 if (LastI != LastMBB->end()) 1249 LastI = LastMBB->erase(LastI); 1250 SmallVector<MachineOperand, 0> Cond; 1251 TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1252 } 1253 } else { 1254 // Conditional branch to loop start; just delete it. 1255 LastMBB->erase(LastI); 1256 } 1257 delete TripCount; 1258 1259 // The induction operation and the comparison may now be 1260 // unneeded. If these are unneeded, then remove them. 1261 for (unsigned i = 0; i < OldInsts.size(); ++i) 1262 removeIfDead(OldInsts[i]); 1263 1264 ++NumHWLoops; 1265 1266 // Set RecL1used and RecL0used only after hardware loop has been 1267 // successfully generated. Doing it earlier can cause wrong loop instruction 1268 // to be used. 1269 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1270 RecL1used = true; 1271 else 1272 RecL0used = true; 1273 1274 return true; 1275 } 1276 1277 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1278 MachineInstr *CmpI) { 1279 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1280 1281 MachineBasicBlock *BB = BumpI->getParent(); 1282 if (CmpI->getParent() != BB) 1283 return false; 1284 1285 typedef MachineBasicBlock::instr_iterator instr_iterator; 1286 // Check if things are in order to begin with. 1287 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) 1288 if (&*I == CmpI) 1289 return true; 1290 1291 // Out of order. 1292 unsigned PredR = CmpI->getOperand(0).getReg(); 1293 bool FoundBump = false; 1294 instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt); 1295 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1296 MachineInstr *In = &*I; 1297 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1298 MachineOperand &MO = In->getOperand(i); 1299 if (MO.isReg() && MO.isUse()) { 1300 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1301 return false; 1302 } 1303 } 1304 1305 if (In == BumpI) { 1306 instr_iterator After = BumpI; 1307 instr_iterator From = CmpI; 1308 BB->splice(std::next(After), BB, From); 1309 FoundBump = true; 1310 break; 1311 } 1312 } 1313 assert (FoundBump && "Cannot determine instruction order"); 1314 return FoundBump; 1315 } 1316 1317 /// This function is required to break recursion. Visiting phis in a loop may 1318 /// result in recursion during compilation. We break the recursion by making 1319 /// sure that we visit a MachineOperand and its definition in a 1320 /// MachineInstruction only once. If we attempt to visit more than once, then 1321 /// there is recursion, and will return false. 1322 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1323 MachineInstr *MI, 1324 const MachineOperand *MO, 1325 LoopFeederMap &LoopFeederPhi) const { 1326 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1327 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1328 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1329 // Ignore all BBs that form Loop. 1330 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1331 MachineBasicBlock *MBB = Blocks[i]; 1332 if (A == MBB) 1333 return false; 1334 } 1335 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1336 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1337 return true; 1338 } else 1339 // Already visited node. 1340 return false; 1341 } 1342 1343 /// Return true if a Phi may generate a value that can underflow. 1344 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1345 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1346 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1347 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1348 assert(Phi->isPHI() && "Expecting a Phi."); 1349 // Walk through each Phi, and its used operands. Make sure that 1350 // if there is recursion in Phi, we won't generate hardware loops. 1351 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1352 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1353 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1354 Phi->getParent(), L, LoopFeederPhi)) 1355 return true; 1356 return false; 1357 } 1358 1359 /// Return true if the induction variable can underflow in the first iteration. 1360 /// An example, is an initial unsigned value that is 0 and is decrement in the 1361 /// first itertion of a do-while loop. In this case, we cannot generate a 1362 /// hardware loop because the endloop instruction does not decrement the loop 1363 /// counter if it is <= 1. We only need to perform this analysis if the 1364 /// initial value is a register. 1365 /// 1366 /// This function assumes the initial value may underfow unless proven 1367 /// otherwise. If the type is signed, then we don't care because signed 1368 /// underflow is undefined. We attempt to prove the initial value is not 1369 /// zero by perfoming a crude analysis of the loop counter. This function 1370 /// checks if the initial value is used in any comparison prior to the loop 1371 /// and, if so, assumes the comparison is a range check. This is inexact, 1372 /// but will catch the simple cases. 1373 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1374 const MachineOperand *InitVal, const MachineOperand *EndVal, 1375 MachineBasicBlock *MBB, MachineLoop *L, 1376 LoopFeederMap &LoopFeederPhi) const { 1377 // Only check register values since they are unknown. 1378 if (!InitVal->isReg()) 1379 return false; 1380 1381 if (!EndVal->isImm()) 1382 return false; 1383 1384 // A register value that is assigned an immediate is a known value, and it 1385 // won't underflow in the first iteration. 1386 int64_t Imm; 1387 if (checkForImmediate(*InitVal, Imm)) 1388 return (EndVal->getImm() == Imm); 1389 1390 unsigned Reg = InitVal->getReg(); 1391 1392 // We don't know the value of a physical register. 1393 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1394 return true; 1395 1396 MachineInstr *Def = MRI->getVRegDef(Reg); 1397 if (!Def) 1398 return true; 1399 1400 // If the initial value is a Phi or copy and the operands may not underflow, 1401 // then the definition cannot be underflow either. 1402 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1403 L, LoopFeederPhi)) 1404 return false; 1405 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1406 EndVal, Def->getParent(), 1407 L, LoopFeederPhi)) 1408 return false; 1409 1410 // Iterate over the uses of the initial value. If the initial value is used 1411 // in a compare, then we assume this is a range check that ensures the loop 1412 // doesn't underflow. This is not an exact test and should be improved. 1413 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1414 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1415 MachineInstr *MI = &*I; 1416 unsigned CmpReg1 = 0, CmpReg2 = 0; 1417 int CmpMask = 0, CmpValue = 0; 1418 1419 if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1420 continue; 1421 1422 MachineBasicBlock *TBB = 0, *FBB = 0; 1423 SmallVector<MachineOperand, 2> Cond; 1424 if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1425 continue; 1426 1427 Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0); 1428 if (Cmp == 0) 1429 continue; 1430 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1431 Cmp = Comparison::getNegatedComparison(Cmp); 1432 if (CmpReg2 != 0 && CmpReg2 == Reg) 1433 Cmp = Comparison::getSwappedComparison(Cmp); 1434 1435 // Signed underflow is undefined. 1436 if (Comparison::isSigned(Cmp)) 1437 return false; 1438 1439 // Check if there is a comparison of the inital value. If the initial value 1440 // is greater than or not equal to another value, then assume this is a 1441 // range check. 1442 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1443 return false; 1444 } 1445 1446 // OK - this is a hack that needs to be improved. We really need to analyze 1447 // the instructions performed on the initial value. This works on the simplest 1448 // cases only. 1449 if (!Def->isCopy() && !Def->isPHI()) 1450 return false; 1451 1452 return true; 1453 } 1454 1455 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1456 int64_t &Val) const { 1457 if (MO.isImm()) { 1458 Val = MO.getImm(); 1459 return true; 1460 } 1461 if (!MO.isReg()) 1462 return false; 1463 1464 // MO is a register. Check whether it is defined as an immediate value, 1465 // and if so, get the value of it in TV. That value will then need to be 1466 // processed to handle potential subregisters in MO. 1467 int64_t TV; 1468 1469 unsigned R = MO.getReg(); 1470 if (!TargetRegisterInfo::isVirtualRegister(R)) 1471 return false; 1472 MachineInstr *DI = MRI->getVRegDef(R); 1473 unsigned DOpc = DI->getOpcode(); 1474 switch (DOpc) { 1475 case TargetOpcode::COPY: 1476 case Hexagon::A2_tfrsi: 1477 case Hexagon::A2_tfrpi: 1478 case Hexagon::CONST32_Int_Real: 1479 case Hexagon::CONST64_Int_Real: { 1480 // Call recursively to avoid an extra check whether operand(1) is 1481 // indeed an immediate (it could be a global address, for example), 1482 // plus we can handle COPY at the same time. 1483 if (!checkForImmediate(DI->getOperand(1), TV)) 1484 return false; 1485 break; 1486 } 1487 case Hexagon::A2_combineii: 1488 case Hexagon::A4_combineir: 1489 case Hexagon::A4_combineii: 1490 case Hexagon::A4_combineri: 1491 case Hexagon::A2_combinew: { 1492 const MachineOperand &S1 = DI->getOperand(1); 1493 const MachineOperand &S2 = DI->getOperand(2); 1494 int64_t V1, V2; 1495 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1496 return false; 1497 TV = V2 | (V1 << 32); 1498 break; 1499 } 1500 case TargetOpcode::REG_SEQUENCE: { 1501 const MachineOperand &S1 = DI->getOperand(1); 1502 const MachineOperand &S3 = DI->getOperand(3); 1503 int64_t V1, V3; 1504 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1505 return false; 1506 unsigned Sub2 = DI->getOperand(2).getImm(); 1507 unsigned Sub4 = DI->getOperand(4).getImm(); 1508 if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg) 1509 TV = V1 | (V3 << 32); 1510 else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg) 1511 TV = V3 | (V1 << 32); 1512 else 1513 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1514 break; 1515 } 1516 1517 default: 1518 return false; 1519 } 1520 1521 // By now, we should have successfuly obtained the immediate value defining 1522 // the register referenced in MO. Handle a potential use of a subregister. 1523 switch (MO.getSubReg()) { 1524 case Hexagon::subreg_loreg: 1525 Val = TV & 0xFFFFFFFFULL; 1526 break; 1527 case Hexagon::subreg_hireg: 1528 Val = (TV >> 32) & 0xFFFFFFFFULL; 1529 break; 1530 default: 1531 Val = TV; 1532 break; 1533 } 1534 return true; 1535 } 1536 1537 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1538 if (MO.isImm()) { 1539 MO.setImm(Val); 1540 return; 1541 } 1542 1543 assert(MO.isReg()); 1544 unsigned R = MO.getReg(); 1545 MachineInstr *DI = MRI->getVRegDef(R); 1546 1547 const TargetRegisterClass *RC = MRI->getRegClass(R); 1548 unsigned NewR = MRI->createVirtualRegister(RC); 1549 MachineBasicBlock &B = *DI->getParent(); 1550 DebugLoc DL = DI->getDebugLoc(); 1551 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1552 MO.setReg(NewR); 1553 } 1554 1555 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1556 // These two instructions are not extendable. 1557 if (CmpOpc == Hexagon::A4_cmpbeqi) 1558 return isUInt<8>(Imm); 1559 if (CmpOpc == Hexagon::A4_cmpbgti) 1560 return isInt<8>(Imm); 1561 // The rest of the comparison-with-immediate instructions are extendable. 1562 return true; 1563 } 1564 1565 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1566 MachineBasicBlock *Header = L->getHeader(); 1567 MachineBasicBlock *Latch = L->getLoopLatch(); 1568 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1569 1570 if (!(Header && Latch && ExitingBlock)) 1571 return false; 1572 1573 // These data structures follow the same concept as the corresponding 1574 // ones in findInductionRegister (where some comments are). 1575 typedef std::pair<unsigned,int64_t> RegisterBump; 1576 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1577 typedef std::set<RegisterInduction> RegisterInductionSet; 1578 1579 // Register candidates for induction variables, with their associated bumps. 1580 RegisterInductionSet IndRegs; 1581 1582 // Look for induction patterns: 1583 // vreg1 = PHI ..., [ latch, vreg2 ] 1584 // vreg2 = ADD vreg1, imm 1585 typedef MachineBasicBlock::instr_iterator instr_iterator; 1586 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1587 I != E && I->isPHI(); ++I) { 1588 MachineInstr *Phi = &*I; 1589 1590 // Have a PHI instruction. 1591 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1592 if (Phi->getOperand(i+1).getMBB() != Latch) 1593 continue; 1594 1595 unsigned PhiReg = Phi->getOperand(i).getReg(); 1596 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1597 unsigned UpdOpc = DI->getOpcode(); 1598 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 1599 1600 if (isAdd) { 1601 // If the register operand to the add/sub is the PHI we are looking 1602 // at, this meets the induction pattern. 1603 unsigned IndReg = DI->getOperand(1).getReg(); 1604 MachineOperand &Opnd2 = DI->getOperand(2); 1605 int64_t V; 1606 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1607 unsigned UpdReg = DI->getOperand(0).getReg(); 1608 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1609 } 1610 } 1611 } // for (i) 1612 } // for (instr) 1613 1614 if (IndRegs.empty()) 1615 return false; 1616 1617 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1618 SmallVector<MachineOperand,2> Cond; 1619 // AnalyzeBranch returns true if it fails to analyze branch. 1620 bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1621 if (NotAnalyzed || Cond.empty()) 1622 return false; 1623 1624 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1625 MachineBasicBlock *LTB = 0, *LFB = 0; 1626 SmallVector<MachineOperand,2> LCond; 1627 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false); 1628 if (NotAnalyzed) 1629 return false; 1630 1631 // Since latch is not the exiting block, the latch branch should be an 1632 // unconditional branch to the loop header. 1633 if (TB == Latch) 1634 TB = (LTB == Header) ? LTB : LFB; 1635 else 1636 FB = (LTB == Header) ? LTB : LFB; 1637 } 1638 if (TB != Header) { 1639 if (FB != Header) { 1640 // The latch/exit block does not go back to the header. 1641 return false; 1642 } 1643 // FB is the header (i.e., uncond. jump to branch header) 1644 // In this case, the LoopBody -> TB should not be a back edge otherwise 1645 // it could result in an infinite loop after conversion to hw_loop. 1646 // This case can happen when the Latch has two jumps like this: 1647 // Jmp_c OuterLoopHeader <-- TB 1648 // Jmp InnerLoopHeader <-- FB 1649 if (MDT->dominates(TB, FB)) 1650 return false; 1651 } 1652 1653 // Expecting a predicate register as a condition. It won't be a hardware 1654 // predicate register at this point yet, just a vreg. 1655 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1656 // into Cond, followed by the predicate register. For non-negated branches 1657 // it's just the register. 1658 unsigned CSz = Cond.size(); 1659 if (CSz != 1 && CSz != 2) 1660 return false; 1661 1662 if (!Cond[CSz-1].isReg()) 1663 return false; 1664 1665 unsigned P = Cond[CSz-1].getReg(); 1666 MachineInstr *PredDef = MRI->getVRegDef(P); 1667 1668 if (!PredDef->isCompare()) 1669 return false; 1670 1671 SmallSet<unsigned,2> CmpRegs; 1672 MachineOperand *CmpImmOp = nullptr; 1673 1674 // Go over all operands to the compare and look for immediate and register 1675 // operands. Assume that if the compare has a single register use and a 1676 // single immediate operand, then the register is being compared with the 1677 // immediate value. 1678 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1679 MachineOperand &MO = PredDef->getOperand(i); 1680 if (MO.isReg()) { 1681 // Skip all implicit references. In one case there was: 1682 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1683 if (MO.isImplicit()) 1684 continue; 1685 if (MO.isUse()) { 1686 if (!isImmediate(MO)) { 1687 CmpRegs.insert(MO.getReg()); 1688 continue; 1689 } 1690 // Consider the register to be the "immediate" operand. 1691 if (CmpImmOp) 1692 return false; 1693 CmpImmOp = &MO; 1694 } 1695 } else if (MO.isImm()) { 1696 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1697 return false; 1698 CmpImmOp = &MO; 1699 } 1700 } 1701 1702 if (CmpRegs.empty()) 1703 return false; 1704 1705 // Check if the compared register follows the order we want. Fix if needed. 1706 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1707 I != E; ++I) { 1708 // This is a success. If the register used in the comparison is one that 1709 // we have identified as a bumped (updated) induction register, there is 1710 // nothing to do. 1711 if (CmpRegs.count(I->first)) 1712 return true; 1713 1714 // Otherwise, if the register being compared comes out of a PHI node, 1715 // and has been recognized as following the induction pattern, and is 1716 // compared against an immediate, we can fix it. 1717 const RegisterBump &RB = I->second; 1718 if (CmpRegs.count(RB.first)) { 1719 if (!CmpImmOp) 1720 return false; 1721 1722 // If the register is being compared against an immediate, try changing 1723 // the compare instruction to use induction register and adjust the 1724 // immediate operand. 1725 int64_t CmpImm = getImmediate(*CmpImmOp); 1726 int64_t V = RB.second; 1727 // Handle Overflow (64-bit). 1728 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1729 ((V < 0) && (CmpImm < INT64_MIN - V))) 1730 return false; 1731 CmpImm += V; 1732 // Most comparisons of register against an immediate value allow 1733 // the immediate to be constant-extended. There are some exceptions 1734 // though. Make sure the new combination will work. 1735 if (CmpImmOp->isImm()) 1736 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1737 return false; 1738 1739 // It is not valid to do this transformation on an unsigned comparison 1740 // because it may underflow. 1741 Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0); 1742 if (!Cmp || Comparison::isUnsigned(Cmp)) 1743 return false; 1744 1745 // Make sure that the compare happens after the bump. Otherwise, 1746 // after the fixup, the compare would use a yet-undefined register. 1747 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1748 bool Order = orderBumpCompare(BumpI, PredDef); 1749 if (!Order) 1750 return false; 1751 1752 // Finally, fix the compare instruction. 1753 setImmediate(*CmpImmOp, CmpImm); 1754 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1755 MachineOperand &MO = PredDef->getOperand(i); 1756 if (MO.isReg() && MO.getReg() == RB.first) { 1757 MO.setReg(I->first); 1758 return true; 1759 } 1760 } 1761 } 1762 } 1763 1764 return false; 1765 } 1766 1767 /// \brief Create a preheader for a given loop. 1768 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1769 MachineLoop *L) { 1770 if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) 1771 return TmpPH; 1772 1773 if (!HWCreatePreheader) 1774 return nullptr; 1775 1776 MachineBasicBlock *Header = L->getHeader(); 1777 MachineBasicBlock *Latch = L->getLoopLatch(); 1778 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1779 MachineFunction *MF = Header->getParent(); 1780 DebugLoc DL; 1781 1782 #ifndef NDEBUG 1783 if ((PHFn != "") && (PHFn != MF->getName())) 1784 return nullptr; 1785 #endif 1786 1787 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1788 return nullptr; 1789 1790 typedef MachineBasicBlock::instr_iterator instr_iterator; 1791 1792 // Verify that all existing predecessors have analyzable branches 1793 // (or no branches at all). 1794 typedef std::vector<MachineBasicBlock*> MBBVector; 1795 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1796 SmallVector<MachineOperand,2> Tmp1; 1797 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1798 1799 if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1800 return nullptr; 1801 1802 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1803 MachineBasicBlock *PB = *I; 1804 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); 1805 if (NotAnalyzed) 1806 return nullptr; 1807 } 1808 1809 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1810 MF->insert(Header, NewPH); 1811 1812 if (Header->pred_size() > 2) { 1813 // Ensure that the header has only two predecessors: the preheader and 1814 // the loop latch. Any additional predecessors of the header should 1815 // join at the newly created preheader. Inspect all PHI nodes from the 1816 // header and create appropriate corresponding PHI nodes in the preheader. 1817 1818 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1819 I != E && I->isPHI(); ++I) { 1820 MachineInstr *PN = &*I; 1821 1822 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1823 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1824 NewPH->insert(NewPH->end(), NewPN); 1825 1826 unsigned PR = PN->getOperand(0).getReg(); 1827 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1828 unsigned NewPR = MRI->createVirtualRegister(RC); 1829 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1830 1831 // Copy all non-latch operands of a header's PHI node to the newly 1832 // created PHI node in the preheader. 1833 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1834 unsigned PredR = PN->getOperand(i).getReg(); 1835 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1836 if (PredB == Latch) 1837 continue; 1838 1839 NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); 1840 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1841 } 1842 1843 // Remove copied operands from the old PHI node and add the value 1844 // coming from the preheader's PHI. 1845 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1846 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1847 if (PredB != Latch) { 1848 PN->RemoveOperand(i+1); 1849 PN->RemoveOperand(i); 1850 } 1851 } 1852 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1853 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1854 } 1855 1856 } else { 1857 assert(Header->pred_size() == 2); 1858 1859 // The header has only two predecessors, but the non-latch predecessor 1860 // is not a preheader (e.g. it has other successors, etc.) 1861 // In such a case we don't need any extra PHI nodes in the new preheader, 1862 // all we need is to adjust existing PHIs in the header to now refer to 1863 // the new preheader. 1864 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1865 I != E && I->isPHI(); ++I) { 1866 MachineInstr *PN = &*I; 1867 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1868 MachineOperand &MO = PN->getOperand(i+1); 1869 if (MO.getMBB() != Latch) 1870 MO.setMBB(NewPH); 1871 } 1872 } 1873 } 1874 1875 // "Reroute" the CFG edges to link in the new preheader. 1876 // If any of the predecessors falls through to the header, insert a branch 1877 // to the new preheader in that place. 1878 SmallVector<MachineOperand,1> Tmp2; 1879 SmallVector<MachineOperand,1> EmptyCond; 1880 1881 TB = FB = nullptr; 1882 1883 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1884 MachineBasicBlock *PB = *I; 1885 if (PB != Latch) { 1886 Tmp2.clear(); 1887 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); 1888 (void)NotAnalyzed; // suppress compiler warning 1889 assert (!NotAnalyzed && "Should be analyzable!"); 1890 if (TB != Header && (Tmp2.empty() || FB != Header)) 1891 TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1892 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1893 } 1894 } 1895 1896 // It can happen that the latch block will fall through into the header. 1897 // Insert an unconditional branch to the header. 1898 TB = FB = nullptr; 1899 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); 1900 (void)LatchNotAnalyzed; // suppress compiler warning 1901 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1902 if (!TB && !FB) 1903 TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1904 1905 // Finally, the branch from the preheader to the header. 1906 TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1907 NewPH->addSuccessor(Header); 1908 1909 MachineLoop *ParentLoop = L->getParentLoop(); 1910 if (ParentLoop) 1911 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1912 1913 // Update the dominator information with the new preheader. 1914 if (MDT) { 1915 MachineDomTreeNode *HDom = MDT->getNode(Header); 1916 MDT->addNewBlock(NewPH, HDom->getIDom()->getBlock()); 1917 MDT->changeImmediateDominator(Header, NewPH); 1918 } 1919 1920 return NewPH; 1921 } 1922