1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No nested hardware loops. 25 // - No function calls in loops. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/SmallSet.h" 30 #include "Hexagon.h" 31 #include "HexagonSubtarget.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/PassSupport.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include <algorithm> 45 #include <vector> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "hwloops" 50 51 #ifndef NDEBUG 52 static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); 53 #endif 54 55 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 56 57 namespace llvm { 58 void initializeHexagonHardwareLoopsPass(PassRegistry&); 59 } 60 61 namespace { 62 class CountValue; 63 struct HexagonHardwareLoops : public MachineFunctionPass { 64 MachineLoopInfo *MLI; 65 MachineRegisterInfo *MRI; 66 MachineDominatorTree *MDT; 67 const HexagonInstrInfo *TII; 68 #ifndef NDEBUG 69 static int Counter; 70 #endif 71 72 public: 73 static char ID; 74 75 HexagonHardwareLoops() : MachineFunctionPass(ID) { 76 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 81 const char *getPassName() const override { return "Hexagon Hardware Loops"; } 82 83 void getAnalysisUsage(AnalysisUsage &AU) const override { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequired<MachineLoopInfo>(); 86 MachineFunctionPass::getAnalysisUsage(AU); 87 } 88 89 private: 90 /// Kinds of comparisons in the compare instructions. 91 struct Comparison { 92 enum Kind { 93 EQ = 0x01, 94 NE = 0x02, 95 L = 0x04, // Less-than property. 96 G = 0x08, // Greater-than property. 97 U = 0x40, // Unsigned property. 98 LTs = L, 99 LEs = L | EQ, 100 GTs = G, 101 GEs = G | EQ, 102 LTu = L | U, 103 LEu = L | EQ | U, 104 GTu = G | U, 105 GEu = G | EQ | U 106 }; 107 108 static Kind getSwappedComparison(Kind Cmp) { 109 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 110 if ((Cmp & L) || (Cmp & G)) 111 return (Kind)(Cmp ^ (L|G)); 112 return Cmp; 113 } 114 }; 115 116 /// \brief Find the register that contains the loop controlling 117 /// induction variable. 118 /// If successful, it will return true and set the \p Reg, \p IVBump 119 /// and \p IVOp arguments. Otherwise it will return false. 120 /// The returned induction register is the register R that follows the 121 /// following induction pattern: 122 /// loop: 123 /// R = phi ..., [ R.next, LatchBlock ] 124 /// R.next = R + #bump 125 /// if (R.next < #N) goto loop 126 /// IVBump is the immediate value added to R, and IVOp is the instruction 127 /// "R.next = R + #bump". 128 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 129 int64_t &IVBump, MachineInstr *&IVOp) const; 130 131 /// \brief Analyze the statements in a loop to determine if the loop 132 /// has a computable trip count and, if so, return a value that represents 133 /// the trip count expression. 134 CountValue *getLoopTripCount(MachineLoop *L, 135 SmallVectorImpl<MachineInstr *> &OldInsts); 136 137 /// \brief Return the expression that represents the number of times 138 /// a loop iterates. The function takes the operands that represent the 139 /// loop start value, loop end value, and induction value. Based upon 140 /// these operands, the function attempts to compute the trip count. 141 /// If the trip count is not directly available (as an immediate value, 142 /// or a register), the function will attempt to insert computation of it 143 /// to the loop's preheader. 144 CountValue *computeCount(MachineLoop *Loop, 145 const MachineOperand *Start, 146 const MachineOperand *End, 147 unsigned IVReg, 148 int64_t IVBump, 149 Comparison::Kind Cmp) const; 150 151 /// \brief Return true if the instruction is not valid within a hardware 152 /// loop. 153 bool isInvalidLoopOperation(const MachineInstr *MI) const; 154 155 /// \brief Return true if the loop contains an instruction that inhibits 156 /// using the hardware loop. 157 bool containsInvalidInstruction(MachineLoop *L) const; 158 159 /// \brief Given a loop, check if we can convert it to a hardware loop. 160 /// If so, then perform the conversion and return true. 161 bool convertToHardwareLoop(MachineLoop *L); 162 163 /// \brief Return true if the instruction is now dead. 164 bool isDead(const MachineInstr *MI, 165 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 166 167 /// \brief Remove the instruction if it is now dead. 168 void removeIfDead(MachineInstr *MI); 169 170 /// \brief Make sure that the "bump" instruction executes before the 171 /// compare. We need that for the IV fixup, so that the compare 172 /// instruction would not use a bumped value that has not yet been 173 /// defined. If the instructions are out of order, try to reorder them. 174 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 175 176 /// \brief Get the instruction that loads an immediate value into \p R, 177 /// or 0 if such an instruction does not exist. 178 MachineInstr *defWithImmediate(unsigned R); 179 180 /// \brief Get the immediate value referenced to by \p MO, either for 181 /// immediate operands, or for register operands, where the register 182 /// was defined with an immediate value. 183 int64_t getImmediate(MachineOperand &MO); 184 185 /// \brief Reset the given machine operand to now refer to a new immediate 186 /// value. Assumes that the operand was already referencing an immediate 187 /// value, either directly, or via a register. 188 void setImmediate(MachineOperand &MO, int64_t Val); 189 190 /// \brief Fix the data flow of the induction varible. 191 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 192 /// | 193 /// +-> back to phi 194 /// where "bump" is the increment of the induction variable: 195 /// iv = iv + #const. 196 /// Due to some prior code transformations, the actual flow may look 197 /// like this: 198 /// phi -+-> bump ---> back to phi 199 /// | 200 /// +-> comparison-in-latch (against upper_bound-bump), 201 /// i.e. the comparison that controls the loop execution may be using 202 /// the value of the induction variable from before the increment. 203 /// 204 /// Return true if the loop's flow is the desired one (i.e. it's 205 /// either been fixed, or no fixing was necessary). 206 /// Otherwise, return false. This can happen if the induction variable 207 /// couldn't be identified, or if the value in the latch's comparison 208 /// cannot be adjusted to reflect the post-bump value. 209 bool fixupInductionVariable(MachineLoop *L); 210 211 /// \brief Given a loop, if it does not have a preheader, create one. 212 /// Return the block that is the preheader. 213 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 214 }; 215 216 char HexagonHardwareLoops::ID = 0; 217 #ifndef NDEBUG 218 int HexagonHardwareLoops::Counter = 0; 219 #endif 220 221 /// \brief Abstraction for a trip count of a loop. A smaller version 222 /// of the MachineOperand class without the concerns of changing the 223 /// operand representation. 224 class CountValue { 225 public: 226 enum CountValueType { 227 CV_Register, 228 CV_Immediate 229 }; 230 private: 231 CountValueType Kind; 232 union Values { 233 struct { 234 unsigned Reg; 235 unsigned Sub; 236 } R; 237 unsigned ImmVal; 238 } Contents; 239 240 public: 241 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 242 Kind = t; 243 if (Kind == CV_Register) { 244 Contents.R.Reg = v; 245 Contents.R.Sub = u; 246 } else { 247 Contents.ImmVal = v; 248 } 249 } 250 bool isReg() const { return Kind == CV_Register; } 251 bool isImm() const { return Kind == CV_Immediate; } 252 253 unsigned getReg() const { 254 assert(isReg() && "Wrong CountValue accessor"); 255 return Contents.R.Reg; 256 } 257 unsigned getSubReg() const { 258 assert(isReg() && "Wrong CountValue accessor"); 259 return Contents.R.Sub; 260 } 261 unsigned getImm() const { 262 assert(isImm() && "Wrong CountValue accessor"); 263 return Contents.ImmVal; 264 } 265 266 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 267 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 268 if (isImm()) { OS << Contents.ImmVal; } 269 } 270 }; 271 } // end anonymous namespace 272 273 274 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 275 "Hexagon Hardware Loops", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 277 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 278 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 279 "Hexagon Hardware Loops", false, false) 280 281 282 /// \brief Returns true if the instruction is a hardware loop instruction. 283 static bool isHardwareLoop(const MachineInstr *MI) { 284 return MI->getOpcode() == Hexagon::J2_loop0r || 285 MI->getOpcode() == Hexagon::J2_loop0i; 286 } 287 288 FunctionPass *llvm::createHexagonHardwareLoops() { 289 return new HexagonHardwareLoops(); 290 } 291 292 293 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 294 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 295 296 bool Changed = false; 297 298 MLI = &getAnalysis<MachineLoopInfo>(); 299 MRI = &MF.getRegInfo(); 300 MDT = &getAnalysis<MachineDominatorTree>(); 301 TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 302 303 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); 304 I != E; ++I) { 305 MachineLoop *L = *I; 306 if (!L->getParentLoop()) 307 Changed |= convertToHardwareLoop(L); 308 } 309 310 return Changed; 311 } 312 313 314 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 315 unsigned &Reg, 316 int64_t &IVBump, 317 MachineInstr *&IVOp 318 ) const { 319 MachineBasicBlock *Header = L->getHeader(); 320 MachineBasicBlock *Preheader = L->getLoopPreheader(); 321 MachineBasicBlock *Latch = L->getLoopLatch(); 322 if (!Header || !Preheader || !Latch) 323 return false; 324 325 // This pair represents an induction register together with an immediate 326 // value that will be added to it in each loop iteration. 327 typedef std::pair<unsigned,int64_t> RegisterBump; 328 329 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 330 // from an induction operation 331 // R.next = R + bump 332 // where bump is an immediate value. 333 typedef std::map<unsigned,RegisterBump> InductionMap; 334 335 InductionMap IndMap; 336 337 typedef MachineBasicBlock::instr_iterator instr_iterator; 338 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 339 I != E && I->isPHI(); ++I) { 340 MachineInstr *Phi = &*I; 341 342 // Have a PHI instruction. Get the operand that corresponds to the 343 // latch block, and see if is a result of an addition of form "reg+imm", 344 // where the "reg" is defined by the PHI node we are looking at. 345 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 346 if (Phi->getOperand(i+1).getMBB() != Latch) 347 continue; 348 349 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 350 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 351 unsigned UpdOpc = DI->getOpcode(); 352 bool isAdd = (UpdOpc == Hexagon::A2_addi); 353 354 if (isAdd) { 355 // If the register operand to the add is the PHI we're 356 // looking at, this meets the induction pattern. 357 unsigned IndReg = DI->getOperand(1).getReg(); 358 if (MRI->getVRegDef(IndReg) == Phi) { 359 unsigned UpdReg = DI->getOperand(0).getReg(); 360 int64_t V = DI->getOperand(2).getImm(); 361 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 362 } 363 } 364 } // for (i) 365 } // for (instr) 366 367 SmallVector<MachineOperand,2> Cond; 368 MachineBasicBlock *TB = nullptr, *FB = nullptr; 369 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 370 if (NotAnalyzed) 371 return false; 372 373 unsigned CSz = Cond.size(); 374 assert (CSz == 1 || CSz == 2); 375 unsigned PredR = Cond[CSz-1].getReg(); 376 377 MachineInstr *PredI = MRI->getVRegDef(PredR); 378 if (!PredI->isCompare()) 379 return false; 380 381 unsigned CmpReg1 = 0, CmpReg2 = 0; 382 int CmpImm = 0, CmpMask = 0; 383 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, 384 CmpMask, CmpImm); 385 // Fail if the compare was not analyzed, or it's not comparing a register 386 // with an immediate value. Not checking the mask here, since we handle 387 // the individual compare opcodes (including CMPb) later on. 388 if (!CmpAnalyzed) 389 return false; 390 391 // Exactly one of the input registers to the comparison should be among 392 // the induction registers. 393 InductionMap::iterator IndMapEnd = IndMap.end(); 394 InductionMap::iterator F = IndMapEnd; 395 if (CmpReg1 != 0) { 396 InductionMap::iterator F1 = IndMap.find(CmpReg1); 397 if (F1 != IndMapEnd) 398 F = F1; 399 } 400 if (CmpReg2 != 0) { 401 InductionMap::iterator F2 = IndMap.find(CmpReg2); 402 if (F2 != IndMapEnd) { 403 if (F != IndMapEnd) 404 return false; 405 F = F2; 406 } 407 } 408 if (F == IndMapEnd) 409 return false; 410 411 Reg = F->second.first; 412 IVBump = F->second.second; 413 IVOp = MRI->getVRegDef(F->first); 414 return true; 415 } 416 417 418 /// \brief Analyze the statements in a loop to determine if the loop has 419 /// a computable trip count and, if so, return a value that represents 420 /// the trip count expression. 421 /// 422 /// This function iterates over the phi nodes in the loop to check for 423 /// induction variable patterns that are used in the calculation for 424 /// the number of time the loop is executed. 425 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 426 SmallVectorImpl<MachineInstr *> &OldInsts) { 427 MachineBasicBlock *TopMBB = L->getTopBlock(); 428 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 429 assert(PI != TopMBB->pred_end() && 430 "Loop must have more than one incoming edge!"); 431 MachineBasicBlock *Backedge = *PI++; 432 if (PI == TopMBB->pred_end()) // dead loop? 433 return nullptr; 434 MachineBasicBlock *Incoming = *PI++; 435 if (PI != TopMBB->pred_end()) // multiple backedges? 436 return nullptr; 437 438 // Make sure there is one incoming and one backedge and determine which 439 // is which. 440 if (L->contains(Incoming)) { 441 if (L->contains(Backedge)) 442 return nullptr; 443 std::swap(Incoming, Backedge); 444 } else if (!L->contains(Backedge)) 445 return nullptr; 446 447 // Look for the cmp instruction to determine if we can get a useful trip 448 // count. The trip count can be either a register or an immediate. The 449 // location of the value depends upon the type (reg or imm). 450 MachineBasicBlock *Latch = L->getLoopLatch(); 451 if (!Latch) 452 return nullptr; 453 454 unsigned IVReg = 0; 455 int64_t IVBump = 0; 456 MachineInstr *IVOp; 457 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 458 if (!FoundIV) 459 return nullptr; 460 461 MachineBasicBlock *Preheader = L->getLoopPreheader(); 462 463 MachineOperand *InitialValue = nullptr; 464 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 465 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 466 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 467 if (MBB == Preheader) 468 InitialValue = &IV_Phi->getOperand(i); 469 else if (MBB == Latch) 470 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 471 } 472 if (!InitialValue) 473 return nullptr; 474 475 SmallVector<MachineOperand,2> Cond; 476 MachineBasicBlock *TB = nullptr, *FB = nullptr; 477 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 478 if (NotAnalyzed) 479 return nullptr; 480 481 MachineBasicBlock *Header = L->getHeader(); 482 // TB must be non-null. If FB is also non-null, one of them must be 483 // the header. Otherwise, branch to TB could be exiting the loop, and 484 // the fall through can go to the header. 485 assert (TB && "Latch block without a branch?"); 486 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 487 if (!TB || (FB && TB != Header && FB != Header)) 488 return nullptr; 489 490 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 491 // to put imm(0), followed by P in the vector Cond. 492 // If TB is not the header, it means that the "not-taken" path must lead 493 // to the header. 494 bool Negated = (Cond.size() > 1) ^ (TB != Header); 495 unsigned PredReg = Cond[Cond.size()-1].getReg(); 496 MachineInstr *CondI = MRI->getVRegDef(PredReg); 497 unsigned CondOpc = CondI->getOpcode(); 498 499 unsigned CmpReg1 = 0, CmpReg2 = 0; 500 int Mask = 0, ImmValue = 0; 501 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, 502 Mask, ImmValue); 503 if (!AnalyzedCmp) 504 return nullptr; 505 506 // The comparison operator type determines how we compute the loop 507 // trip count. 508 OldInsts.push_back(CondI); 509 OldInsts.push_back(IVOp); 510 511 // Sadly, the following code gets information based on the position 512 // of the operands in the compare instruction. This has to be done 513 // this way, because the comparisons check for a specific relationship 514 // between the operands (e.g. is-less-than), rather than to find out 515 // what relationship the operands are in (as on PPC). 516 Comparison::Kind Cmp; 517 bool isSwapped = false; 518 const MachineOperand &Op1 = CondI->getOperand(1); 519 const MachineOperand &Op2 = CondI->getOperand(2); 520 const MachineOperand *EndValue = nullptr; 521 522 if (Op1.isReg()) { 523 if (Op2.isImm() || Op1.getReg() == IVReg) 524 EndValue = &Op2; 525 else { 526 EndValue = &Op1; 527 isSwapped = true; 528 } 529 } 530 531 if (!EndValue) 532 return nullptr; 533 534 switch (CondOpc) { 535 case Hexagon::C2_cmpeqi: 536 case Hexagon::C2_cmpeq: 537 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 538 break; 539 case Hexagon::C2_cmpgtui: 540 case Hexagon::C2_cmpgtu: 541 Cmp = !Negated ? Comparison::GTu : Comparison::LEu; 542 break; 543 case Hexagon::C2_cmpgti: 544 case Hexagon::C2_cmpgt: 545 Cmp = !Negated ? Comparison::GTs : Comparison::LEs; 546 break; 547 // Very limited support for byte/halfword compares. 548 case Hexagon::A4_cmpbeqi: 549 case Hexagon::A4_cmpheqi: { 550 if (IVBump != 1) 551 return nullptr; 552 553 int64_t InitV, EndV; 554 // Since the comparisons are "ri", the EndValue should be an 555 // immediate. Check it just in case. 556 assert(EndValue->isImm() && "Unrecognized latch comparison"); 557 EndV = EndValue->getImm(); 558 // Allow InitialValue to be a register defined with an immediate. 559 if (InitialValue->isReg()) { 560 if (!defWithImmediate(InitialValue->getReg())) 561 return nullptr; 562 InitV = getImmediate(*InitialValue); 563 } else { 564 assert(InitialValue->isImm()); 565 InitV = InitialValue->getImm(); 566 } 567 if (InitV >= EndV) 568 return nullptr; 569 if (CondOpc == Hexagon::A4_cmpbeqi) { 570 if (!isInt<8>(InitV) || !isInt<8>(EndV)) 571 return nullptr; 572 } else { // Hexagon::CMPhEQri_V4 573 if (!isInt<16>(InitV) || !isInt<16>(EndV)) 574 return nullptr; 575 } 576 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 577 break; 578 } 579 default: 580 return nullptr; 581 } 582 583 if (isSwapped) 584 Cmp = Comparison::getSwappedComparison(Cmp); 585 586 if (InitialValue->isReg()) { 587 unsigned R = InitialValue->getReg(); 588 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 589 if (!MDT->properlyDominates(DefBB, Header)) 590 return nullptr; 591 OldInsts.push_back(MRI->getVRegDef(R)); 592 } 593 if (EndValue->isReg()) { 594 unsigned R = EndValue->getReg(); 595 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 596 if (!MDT->properlyDominates(DefBB, Header)) 597 return nullptr; 598 } 599 600 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 601 } 602 603 /// \brief Helper function that returns the expression that represents the 604 /// number of times a loop iterates. The function takes the operands that 605 /// represent the loop start value, loop end value, and induction value. 606 /// Based upon these operands, the function attempts to compute the trip count. 607 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 608 const MachineOperand *Start, 609 const MachineOperand *End, 610 unsigned IVReg, 611 int64_t IVBump, 612 Comparison::Kind Cmp) const { 613 // Cannot handle comparison EQ, i.e. while (A == B). 614 if (Cmp == Comparison::EQ) 615 return nullptr; 616 617 // Check if either the start or end values are an assignment of an immediate. 618 // If so, use the immediate value rather than the register. 619 if (Start->isReg()) { 620 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 621 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi) 622 Start = &StartValInstr->getOperand(1); 623 } 624 if (End->isReg()) { 625 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 626 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi) 627 End = &EndValInstr->getOperand(1); 628 } 629 630 assert (Start->isReg() || Start->isImm()); 631 assert (End->isReg() || End->isImm()); 632 633 bool CmpLess = Cmp & Comparison::L; 634 bool CmpGreater = Cmp & Comparison::G; 635 bool CmpHasEqual = Cmp & Comparison::EQ; 636 637 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 638 // If loop executes while iv is "less" with the iv value going down, then 639 // the iv must wrap. 640 if (CmpLess && IVBump < 0) 641 return nullptr; 642 // If loop executes while iv is "greater" with the iv value going up, then 643 // the iv must wrap. 644 if (CmpGreater && IVBump > 0) 645 return nullptr; 646 647 if (Start->isImm() && End->isImm()) { 648 // Both, start and end are immediates. 649 int64_t StartV = Start->getImm(); 650 int64_t EndV = End->getImm(); 651 int64_t Dist = EndV - StartV; 652 if (Dist == 0) 653 return nullptr; 654 655 bool Exact = (Dist % IVBump) == 0; 656 657 if (Cmp == Comparison::NE) { 658 if (!Exact) 659 return nullptr; 660 if ((Dist < 0) ^ (IVBump < 0)) 661 return nullptr; 662 } 663 664 // For comparisons that include the final value (i.e. include equality 665 // with the final value), we need to increase the distance by 1. 666 if (CmpHasEqual) 667 Dist = Dist > 0 ? Dist+1 : Dist-1; 668 669 // assert (CmpLess => Dist > 0); 670 assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); 671 // assert (CmpGreater => Dist < 0); 672 assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); 673 674 // "Normalized" distance, i.e. with the bump set to +-1. 675 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump 676 : (-Dist + (-IVBump-1)) / (-IVBump); 677 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 678 679 uint64_t Count = Dist1; 680 681 if (Count > 0xFFFFFFFFULL) 682 return nullptr; 683 684 return new CountValue(CountValue::CV_Immediate, Count); 685 } 686 687 // A general case: Start and End are some values, but the actual 688 // iteration count may not be available. If it is not, insert 689 // a computation of it into the preheader. 690 691 // If the induction variable bump is not a power of 2, quit. 692 // Othwerise we'd need a general integer division. 693 if (!isPowerOf2_64(std::abs(IVBump))) 694 return nullptr; 695 696 MachineBasicBlock *PH = Loop->getLoopPreheader(); 697 assert (PH && "Should have a preheader by now"); 698 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 699 DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() 700 : DebugLoc(); 701 702 // If Start is an immediate and End is a register, the trip count 703 // will be "reg - imm". Hexagon's "subtract immediate" instruction 704 // is actually "reg + -imm". 705 706 // If the loop IV is going downwards, i.e. if the bump is negative, 707 // then the iteration count (computed as End-Start) will need to be 708 // negated. To avoid the negation, just swap Start and End. 709 if (IVBump < 0) { 710 std::swap(Start, End); 711 IVBump = -IVBump; 712 } 713 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 714 // Signedness, and "including equality" are preserved. 715 716 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 717 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 718 719 int64_t StartV = 0, EndV = 0; 720 if (Start->isImm()) 721 StartV = Start->getImm(); 722 if (End->isImm()) 723 EndV = End->getImm(); 724 725 int64_t AdjV = 0; 726 // To compute the iteration count, we would need this computation: 727 // Count = (End - Start + (IVBump-1)) / IVBump 728 // or, when CmpHasEqual: 729 // Count = (End - Start + (IVBump-1)+1) / IVBump 730 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 731 // generating an instruction specifically to add it if we can adjust 732 // the immediate values for Start or End. 733 734 if (CmpHasEqual) { 735 // Need to add 1 to the total iteration count. 736 if (Start->isImm()) 737 StartV--; 738 else if (End->isImm()) 739 EndV++; 740 else 741 AdjV += 1; 742 } 743 744 if (Cmp != Comparison::NE) { 745 if (Start->isImm()) 746 StartV -= (IVBump-1); 747 else if (End->isImm()) 748 EndV += (IVBump-1); 749 else 750 AdjV += (IVBump-1); 751 } 752 753 unsigned R = 0, SR = 0; 754 if (Start->isReg()) { 755 R = Start->getReg(); 756 SR = Start->getSubReg(); 757 } else { 758 R = End->getReg(); 759 SR = End->getSubReg(); 760 } 761 const TargetRegisterClass *RC = MRI->getRegClass(R); 762 // Hardware loops cannot handle 64-bit registers. If it's a double 763 // register, it has to have a subregister. 764 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 765 return nullptr; 766 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 767 768 // Compute DistR (register with the distance between Start and End). 769 unsigned DistR, DistSR; 770 771 // Avoid special case, where the start value is an imm(0). 772 if (Start->isImm() && StartV == 0) { 773 DistR = End->getReg(); 774 DistSR = End->getSubReg(); 775 } else { 776 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 777 (RegToImm ? TII->get(Hexagon::A2_subri) : 778 TII->get(Hexagon::A2_addi)); 779 unsigned SubR = MRI->createVirtualRegister(IntRC); 780 MachineInstrBuilder SubIB = 781 BuildMI(*PH, InsertPos, DL, SubD, SubR); 782 783 if (RegToReg) { 784 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 785 .addReg(Start->getReg(), 0, Start->getSubReg()); 786 } else if (RegToImm) { 787 SubIB.addImm(EndV) 788 .addReg(Start->getReg(), 0, Start->getSubReg()); 789 } else { // ImmToReg 790 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 791 .addImm(-StartV); 792 } 793 DistR = SubR; 794 DistSR = 0; 795 } 796 797 // From DistR, compute AdjR (register with the adjusted distance). 798 unsigned AdjR, AdjSR; 799 800 if (AdjV == 0) { 801 AdjR = DistR; 802 AdjSR = DistSR; 803 } else { 804 // Generate CountR = ADD DistR, AdjVal 805 unsigned AddR = MRI->createVirtualRegister(IntRC); 806 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 807 BuildMI(*PH, InsertPos, DL, AddD, AddR) 808 .addReg(DistR, 0, DistSR) 809 .addImm(AdjV); 810 811 AdjR = AddR; 812 AdjSR = 0; 813 } 814 815 // From AdjR, compute CountR (register with the final count). 816 unsigned CountR, CountSR; 817 818 if (IVBump == 1) { 819 CountR = AdjR; 820 CountSR = AdjSR; 821 } else { 822 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 823 unsigned Shift = Log2_32(IVBump); 824 825 // Generate NormR = LSR DistR, Shift. 826 unsigned LsrR = MRI->createVirtualRegister(IntRC); 827 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 828 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 829 .addReg(AdjR, 0, AdjSR) 830 .addImm(Shift); 831 832 CountR = LsrR; 833 CountSR = 0; 834 } 835 836 return new CountValue(CountValue::CV_Register, CountR, CountSR); 837 } 838 839 840 /// \brief Return true if the operation is invalid within hardware loop. 841 bool HexagonHardwareLoops::isInvalidLoopOperation( 842 const MachineInstr *MI) const { 843 844 // call is not allowed because the callee may use a hardware loop 845 if (MI->getDesc().isCall()) 846 return true; 847 848 // do not allow nested hardware loops 849 if (isHardwareLoop(MI)) 850 return true; 851 852 // check if the instruction defines a hardware loop register 853 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 854 const MachineOperand &MO = MI->getOperand(i); 855 if (!MO.isReg() || !MO.isDef()) 856 continue; 857 unsigned R = MO.getReg(); 858 if (R == Hexagon::LC0 || R == Hexagon::LC1 || 859 R == Hexagon::SA0 || R == Hexagon::SA1) 860 return true; 861 } 862 return false; 863 } 864 865 866 /// \brief - Return true if the loop contains an instruction that inhibits 867 /// the use of the hardware loop function. 868 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { 869 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 870 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 871 MachineBasicBlock *MBB = Blocks[i]; 872 for (MachineBasicBlock::iterator 873 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 874 const MachineInstr *MI = &*MII; 875 if (isInvalidLoopOperation(MI)) 876 return true; 877 } 878 } 879 return false; 880 } 881 882 883 /// \brief Returns true if the instruction is dead. This was essentially 884 /// copied from DeadMachineInstructionElim::isDead, but with special cases 885 /// for inline asm, physical registers and instructions with side effects 886 /// removed. 887 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 888 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 889 // Examine each operand. 890 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 891 const MachineOperand &MO = MI->getOperand(i); 892 if (!MO.isReg() || !MO.isDef()) 893 continue; 894 895 unsigned Reg = MO.getReg(); 896 if (MRI->use_nodbg_empty(Reg)) 897 continue; 898 899 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 900 901 // This instruction has users, but if the only user is the phi node for the 902 // parent block, and the only use of that phi node is this instruction, then 903 // this instruction is dead: both it (and the phi node) can be removed. 904 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 905 use_nodbg_iterator End = MRI->use_nodbg_end(); 906 if (std::next(I) != End || !I->getParent()->isPHI()) 907 return false; 908 909 MachineInstr *OnePhi = I->getParent(); 910 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 911 const MachineOperand &OPO = OnePhi->getOperand(j); 912 if (!OPO.isReg() || !OPO.isDef()) 913 continue; 914 915 unsigned OPReg = OPO.getReg(); 916 use_nodbg_iterator nextJ; 917 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 918 J != End; J = nextJ) { 919 nextJ = std::next(J); 920 MachineOperand &Use = *J; 921 MachineInstr *UseMI = Use.getParent(); 922 923 // If the phi node has a user that is not MI, bail... 924 if (MI != UseMI) 925 return false; 926 } 927 } 928 DeadPhis.push_back(OnePhi); 929 } 930 931 // If there are no defs with uses, the instruction is dead. 932 return true; 933 } 934 935 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 936 // This procedure was essentially copied from DeadMachineInstructionElim. 937 938 SmallVector<MachineInstr*, 1> DeadPhis; 939 if (isDead(MI, DeadPhis)) { 940 DEBUG(dbgs() << "HW looping will remove: " << *MI); 941 942 // It is possible that some DBG_VALUE instructions refer to this 943 // instruction. Examine each def operand for such references; 944 // if found, mark the DBG_VALUE as undef (but don't delete it). 945 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 946 const MachineOperand &MO = MI->getOperand(i); 947 if (!MO.isReg() || !MO.isDef()) 948 continue; 949 unsigned Reg = MO.getReg(); 950 MachineRegisterInfo::use_iterator nextI; 951 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 952 E = MRI->use_end(); I != E; I = nextI) { 953 nextI = std::next(I); // I is invalidated by the setReg 954 MachineOperand &Use = *I; 955 MachineInstr *UseMI = I->getParent(); 956 if (UseMI == MI) 957 continue; 958 if (Use.isDebug()) 959 UseMI->getOperand(0).setReg(0U); 960 // This may also be a "instr -> phi -> instr" case which can 961 // be removed too. 962 } 963 } 964 965 MI->eraseFromParent(); 966 for (unsigned i = 0; i < DeadPhis.size(); ++i) 967 DeadPhis[i]->eraseFromParent(); 968 } 969 } 970 971 /// \brief Check if the loop is a candidate for converting to a hardware 972 /// loop. If so, then perform the transformation. 973 /// 974 /// This function works on innermost loops first. A loop can be converted 975 /// if it is a counting loop; either a register value or an immediate. 976 /// 977 /// The code makes several assumptions about the representation of the loop 978 /// in llvm. 979 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { 980 // This is just for sanity. 981 assert(L->getHeader() && "Loop without a header?"); 982 983 bool Changed = false; 984 // Process nested loops first. 985 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 986 Changed |= convertToHardwareLoop(*I); 987 988 // If a nested loop has been converted, then we can't convert this loop. 989 if (Changed) 990 return Changed; 991 992 #ifndef NDEBUG 993 // Stop trying after reaching the limit (if any). 994 int Limit = HWLoopLimit; 995 if (Limit >= 0) { 996 if (Counter >= HWLoopLimit) 997 return false; 998 Counter++; 999 } 1000 #endif 1001 1002 // Does the loop contain any invalid instructions? 1003 if (containsInvalidInstruction(L)) 1004 return false; 1005 1006 // Is the induction variable bump feeding the latch condition? 1007 if (!fixupInductionVariable(L)) 1008 return false; 1009 1010 MachineBasicBlock *LastMBB = L->getExitingBlock(); 1011 // Don't generate hw loop if the loop has more than one exit. 1012 if (!LastMBB) 1013 return false; 1014 1015 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1016 if (LastI == LastMBB->end()) 1017 return false; 1018 1019 // Ensure the loop has a preheader: the loop instruction will be 1020 // placed there. 1021 bool NewPreheader = false; 1022 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1023 if (!Preheader) { 1024 Preheader = createPreheaderForLoop(L); 1025 if (!Preheader) 1026 return false; 1027 NewPreheader = true; 1028 } 1029 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1030 1031 SmallVector<MachineInstr*, 2> OldInsts; 1032 // Are we able to determine the trip count for the loop? 1033 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1034 if (!TripCount) 1035 return false; 1036 1037 // Is the trip count available in the preheader? 1038 if (TripCount->isReg()) { 1039 // There will be a use of the register inserted into the preheader, 1040 // so make sure that the register is actually defined at that point. 1041 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1042 MachineBasicBlock *BBDef = TCDef->getParent(); 1043 if (!NewPreheader) { 1044 if (!MDT->dominates(BBDef, Preheader)) 1045 return false; 1046 } else { 1047 // If we have just created a preheader, the dominator tree won't be 1048 // aware of it. Check if the definition of the register dominates 1049 // the header, but is not the header itself. 1050 if (!MDT->properlyDominates(BBDef, L->getHeader())) 1051 return false; 1052 } 1053 } 1054 1055 // Determine the loop start. 1056 MachineBasicBlock *LoopStart = L->getTopBlock(); 1057 if (L->getLoopLatch() != LastMBB) { 1058 // When the exit and latch are not the same, use the latch block as the 1059 // start. 1060 // The loop start address is used only after the 1st iteration, and the 1061 // loop latch may contains instrs. that need to be executed after the 1062 // first iteration. 1063 LoopStart = L->getLoopLatch(); 1064 // Make sure the latch is a successor of the exit, otherwise it won't work. 1065 if (!LastMBB->isSuccessor(LoopStart)) 1066 return false; 1067 } 1068 1069 // Convert the loop to a hardware loop. 1070 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1071 DebugLoc DL; 1072 if (InsertPos != Preheader->end()) 1073 DL = InsertPos->getDebugLoc(); 1074 1075 if (TripCount->isReg()) { 1076 // Create a copy of the loop count register. 1077 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1078 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1079 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1080 // Add the Loop instruction to the beginning of the loop. 1081 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r)) 1082 .addMBB(LoopStart) 1083 .addReg(CountReg); 1084 } else { 1085 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1086 // Add the Loop immediate instruction to the beginning of the loop, 1087 // if the immediate fits in the instructions. Otherwise, we need to 1088 // create a new virtual register. 1089 int64_t CountImm = TripCount->getImm(); 1090 if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) { 1091 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1092 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1093 .addImm(CountImm); 1094 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r)) 1095 .addMBB(LoopStart).addReg(CountReg); 1096 } else 1097 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i)) 1098 .addMBB(LoopStart).addImm(CountImm); 1099 } 1100 1101 // Make sure the loop start always has a reference in the CFG. We need 1102 // to create a BlockAddress operand to get this mechanism to work both the 1103 // MachineBasicBlock and BasicBlock objects need the flag set. 1104 LoopStart->setHasAddressTaken(); 1105 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1106 // object. 1107 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1108 1109 // Replace the loop branch with an endloop instruction. 1110 DebugLoc LastIDL = LastI->getDebugLoc(); 1111 BuildMI(*LastMBB, LastI, LastIDL, 1112 TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); 1113 1114 // The loop ends with either: 1115 // - a conditional branch followed by an unconditional branch, or 1116 // - a conditional branch to the loop start. 1117 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1118 LastI->getOpcode() == Hexagon::J2_jumpf) { 1119 // Delete one and change/add an uncond. branch to out of the loop. 1120 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1121 LastI = LastMBB->erase(LastI); 1122 if (!L->contains(BranchTarget)) { 1123 if (LastI != LastMBB->end()) 1124 LastI = LastMBB->erase(LastI); 1125 SmallVector<MachineOperand, 0> Cond; 1126 TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1127 } 1128 } else { 1129 // Conditional branch to loop start; just delete it. 1130 LastMBB->erase(LastI); 1131 } 1132 delete TripCount; 1133 1134 // The induction operation and the comparison may now be 1135 // unneeded. If these are unneeded, then remove them. 1136 for (unsigned i = 0; i < OldInsts.size(); ++i) 1137 removeIfDead(OldInsts[i]); 1138 1139 ++NumHWLoops; 1140 return true; 1141 } 1142 1143 1144 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1145 MachineInstr *CmpI) { 1146 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1147 1148 MachineBasicBlock *BB = BumpI->getParent(); 1149 if (CmpI->getParent() != BB) 1150 return false; 1151 1152 typedef MachineBasicBlock::instr_iterator instr_iterator; 1153 // Check if things are in order to begin with. 1154 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) 1155 if (&*I == CmpI) 1156 return true; 1157 1158 // Out of order. 1159 unsigned PredR = CmpI->getOperand(0).getReg(); 1160 bool FoundBump = false; 1161 instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt); 1162 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1163 MachineInstr *In = &*I; 1164 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1165 MachineOperand &MO = In->getOperand(i); 1166 if (MO.isReg() && MO.isUse()) { 1167 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1168 return false; 1169 } 1170 } 1171 1172 if (In == BumpI) { 1173 instr_iterator After = BumpI; 1174 instr_iterator From = CmpI; 1175 BB->splice(std::next(After), BB, From); 1176 FoundBump = true; 1177 break; 1178 } 1179 } 1180 assert (FoundBump && "Cannot determine instruction order"); 1181 return FoundBump; 1182 } 1183 1184 1185 MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { 1186 MachineInstr *DI = MRI->getVRegDef(R); 1187 unsigned DOpc = DI->getOpcode(); 1188 switch (DOpc) { 1189 case Hexagon::A2_tfrsi: 1190 case Hexagon::A2_tfrpi: 1191 case Hexagon::CONST32_Int_Real: 1192 case Hexagon::CONST64_Int_Real: 1193 return DI; 1194 } 1195 return nullptr; 1196 } 1197 1198 1199 int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { 1200 if (MO.isImm()) 1201 return MO.getImm(); 1202 assert(MO.isReg()); 1203 unsigned R = MO.getReg(); 1204 MachineInstr *DI = defWithImmediate(R); 1205 assert(DI && "Need an immediate operand"); 1206 // All currently supported "define-with-immediate" instructions have the 1207 // actual immediate value in the operand(1). 1208 int64_t v = DI->getOperand(1).getImm(); 1209 return v; 1210 } 1211 1212 1213 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1214 if (MO.isImm()) { 1215 MO.setImm(Val); 1216 return; 1217 } 1218 1219 assert(MO.isReg()); 1220 unsigned R = MO.getReg(); 1221 MachineInstr *DI = defWithImmediate(R); 1222 if (MRI->hasOneNonDBGUse(R)) { 1223 // If R has only one use, then just change its defining instruction to 1224 // the new immediate value. 1225 DI->getOperand(1).setImm(Val); 1226 return; 1227 } 1228 1229 const TargetRegisterClass *RC = MRI->getRegClass(R); 1230 unsigned NewR = MRI->createVirtualRegister(RC); 1231 MachineBasicBlock &B = *DI->getParent(); 1232 DebugLoc DL = DI->getDebugLoc(); 1233 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) 1234 .addImm(Val); 1235 MO.setReg(NewR); 1236 } 1237 1238 1239 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1240 MachineBasicBlock *Header = L->getHeader(); 1241 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1242 MachineBasicBlock *Latch = L->getLoopLatch(); 1243 1244 if (!Header || !Preheader || !Latch) 1245 return false; 1246 1247 // These data structures follow the same concept as the corresponding 1248 // ones in findInductionRegister (where some comments are). 1249 typedef std::pair<unsigned,int64_t> RegisterBump; 1250 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1251 typedef std::set<RegisterInduction> RegisterInductionSet; 1252 1253 // Register candidates for induction variables, with their associated bumps. 1254 RegisterInductionSet IndRegs; 1255 1256 // Look for induction patterns: 1257 // vreg1 = PHI ..., [ latch, vreg2 ] 1258 // vreg2 = ADD vreg1, imm 1259 typedef MachineBasicBlock::instr_iterator instr_iterator; 1260 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1261 I != E && I->isPHI(); ++I) { 1262 MachineInstr *Phi = &*I; 1263 1264 // Have a PHI instruction. 1265 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1266 if (Phi->getOperand(i+1).getMBB() != Latch) 1267 continue; 1268 1269 unsigned PhiReg = Phi->getOperand(i).getReg(); 1270 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1271 unsigned UpdOpc = DI->getOpcode(); 1272 bool isAdd = (UpdOpc == Hexagon::A2_addi); 1273 1274 if (isAdd) { 1275 // If the register operand to the add/sub is the PHI we are looking 1276 // at, this meets the induction pattern. 1277 unsigned IndReg = DI->getOperand(1).getReg(); 1278 if (MRI->getVRegDef(IndReg) == Phi) { 1279 unsigned UpdReg = DI->getOperand(0).getReg(); 1280 int64_t V = DI->getOperand(2).getImm(); 1281 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1282 } 1283 } 1284 } // for (i) 1285 } // for (instr) 1286 1287 if (IndRegs.empty()) 1288 return false; 1289 1290 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1291 SmallVector<MachineOperand,2> Cond; 1292 // AnalyzeBranch returns true if it fails to analyze branch. 1293 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 1294 if (NotAnalyzed) 1295 return false; 1296 1297 // Check if the latch branch is unconditional. 1298 if (Cond.empty()) 1299 return false; 1300 1301 if (TB != Header && FB != Header) 1302 // The latch does not go back to the header. Not a latch we know and love. 1303 return false; 1304 1305 // Expecting a predicate register as a condition. It won't be a hardware 1306 // predicate register at this point yet, just a vreg. 1307 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1308 // into Cond, followed by the predicate register. For non-negated branches 1309 // it's just the register. 1310 unsigned CSz = Cond.size(); 1311 if (CSz != 1 && CSz != 2) 1312 return false; 1313 1314 unsigned P = Cond[CSz-1].getReg(); 1315 MachineInstr *PredDef = MRI->getVRegDef(P); 1316 1317 if (!PredDef->isCompare()) 1318 return false; 1319 1320 SmallSet<unsigned,2> CmpRegs; 1321 MachineOperand *CmpImmOp = nullptr; 1322 1323 // Go over all operands to the compare and look for immediate and register 1324 // operands. Assume that if the compare has a single register use and a 1325 // single immediate operand, then the register is being compared with the 1326 // immediate value. 1327 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1328 MachineOperand &MO = PredDef->getOperand(i); 1329 if (MO.isReg()) { 1330 // Skip all implicit references. In one case there was: 1331 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1332 if (MO.isImplicit()) 1333 continue; 1334 if (MO.isUse()) { 1335 unsigned R = MO.getReg(); 1336 if (!defWithImmediate(R)) { 1337 CmpRegs.insert(MO.getReg()); 1338 continue; 1339 } 1340 // Consider the register to be the "immediate" operand. 1341 if (CmpImmOp) 1342 return false; 1343 CmpImmOp = &MO; 1344 } 1345 } else if (MO.isImm()) { 1346 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1347 return false; 1348 CmpImmOp = &MO; 1349 } 1350 } 1351 1352 if (CmpRegs.empty()) 1353 return false; 1354 1355 // Check if the compared register follows the order we want. Fix if needed. 1356 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1357 I != E; ++I) { 1358 // This is a success. If the register used in the comparison is one that 1359 // we have identified as a bumped (updated) induction register, there is 1360 // nothing to do. 1361 if (CmpRegs.count(I->first)) 1362 return true; 1363 1364 // Otherwise, if the register being compared comes out of a PHI node, 1365 // and has been recognized as following the induction pattern, and is 1366 // compared against an immediate, we can fix it. 1367 const RegisterBump &RB = I->second; 1368 if (CmpRegs.count(RB.first)) { 1369 if (!CmpImmOp) 1370 return false; 1371 1372 int64_t CmpImm = getImmediate(*CmpImmOp); 1373 int64_t V = RB.second; 1374 if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). 1375 return false; 1376 if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). 1377 return false; 1378 CmpImm += V; 1379 // Some forms of cmp-immediate allow u9 and s10. Assume the worst case 1380 // scenario, i.e. an 8-bit value. 1381 if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) 1382 return false; 1383 1384 // Make sure that the compare happens after the bump. Otherwise, 1385 // after the fixup, the compare would use a yet-undefined register. 1386 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1387 bool Order = orderBumpCompare(BumpI, PredDef); 1388 if (!Order) 1389 return false; 1390 1391 // Finally, fix the compare instruction. 1392 setImmediate(*CmpImmOp, CmpImm); 1393 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1394 MachineOperand &MO = PredDef->getOperand(i); 1395 if (MO.isReg() && MO.getReg() == RB.first) { 1396 MO.setReg(I->first); 1397 return true; 1398 } 1399 } 1400 } 1401 } 1402 1403 return false; 1404 } 1405 1406 1407 /// \brief Create a preheader for a given loop. 1408 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1409 MachineLoop *L) { 1410 if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) 1411 return TmpPH; 1412 1413 MachineBasicBlock *Header = L->getHeader(); 1414 MachineBasicBlock *Latch = L->getLoopLatch(); 1415 MachineFunction *MF = Header->getParent(); 1416 DebugLoc DL; 1417 1418 if (!Latch || Header->hasAddressTaken()) 1419 return nullptr; 1420 1421 typedef MachineBasicBlock::instr_iterator instr_iterator; 1422 1423 // Verify that all existing predecessors have analyzable branches 1424 // (or no branches at all). 1425 typedef std::vector<MachineBasicBlock*> MBBVector; 1426 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1427 SmallVector<MachineOperand,2> Tmp1; 1428 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1429 1430 if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) 1431 return nullptr; 1432 1433 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1434 MachineBasicBlock *PB = *I; 1435 if (PB != Latch) { 1436 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); 1437 if (NotAnalyzed) 1438 return nullptr; 1439 } 1440 } 1441 1442 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1443 MF->insert(Header, NewPH); 1444 1445 if (Header->pred_size() > 2) { 1446 // Ensure that the header has only two predecessors: the preheader and 1447 // the loop latch. Any additional predecessors of the header should 1448 // join at the newly created preheader. Inspect all PHI nodes from the 1449 // header and create appropriate corresponding PHI nodes in the preheader. 1450 1451 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1452 I != E && I->isPHI(); ++I) { 1453 MachineInstr *PN = &*I; 1454 1455 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1456 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1457 NewPH->insert(NewPH->end(), NewPN); 1458 1459 unsigned PR = PN->getOperand(0).getReg(); 1460 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1461 unsigned NewPR = MRI->createVirtualRegister(RC); 1462 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1463 1464 // Copy all non-latch operands of a header's PHI node to the newly 1465 // created PHI node in the preheader. 1466 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1467 unsigned PredR = PN->getOperand(i).getReg(); 1468 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1469 if (PredB == Latch) 1470 continue; 1471 1472 NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); 1473 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1474 } 1475 1476 // Remove copied operands from the old PHI node and add the value 1477 // coming from the preheader's PHI. 1478 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1479 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1480 if (PredB != Latch) { 1481 PN->RemoveOperand(i+1); 1482 PN->RemoveOperand(i); 1483 } 1484 } 1485 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1486 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1487 } 1488 1489 } else { 1490 assert(Header->pred_size() == 2); 1491 1492 // The header has only two predecessors, but the non-latch predecessor 1493 // is not a preheader (e.g. it has other successors, etc.) 1494 // In such a case we don't need any extra PHI nodes in the new preheader, 1495 // all we need is to adjust existing PHIs in the header to now refer to 1496 // the new preheader. 1497 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1498 I != E && I->isPHI(); ++I) { 1499 MachineInstr *PN = &*I; 1500 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1501 MachineOperand &MO = PN->getOperand(i+1); 1502 if (MO.getMBB() != Latch) 1503 MO.setMBB(NewPH); 1504 } 1505 } 1506 } 1507 1508 // "Reroute" the CFG edges to link in the new preheader. 1509 // If any of the predecessors falls through to the header, insert a branch 1510 // to the new preheader in that place. 1511 SmallVector<MachineOperand,1> Tmp2; 1512 SmallVector<MachineOperand,1> EmptyCond; 1513 1514 TB = FB = nullptr; 1515 1516 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1517 MachineBasicBlock *PB = *I; 1518 if (PB != Latch) { 1519 Tmp2.clear(); 1520 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); 1521 (void)NotAnalyzed; // suppress compiler warning 1522 assert (!NotAnalyzed && "Should be analyzable!"); 1523 if (TB != Header && (Tmp2.empty() || FB != Header)) 1524 TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1525 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1526 } 1527 } 1528 1529 // It can happen that the latch block will fall through into the header. 1530 // Insert an unconditional branch to the header. 1531 TB = FB = nullptr; 1532 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); 1533 (void)LatchNotAnalyzed; // suppress compiler warning 1534 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1535 if (!TB && !FB) 1536 TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1537 1538 // Finally, the branch from the preheader to the header. 1539 TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1540 NewPH->addSuccessor(Header); 1541 1542 return NewPH; 1543 } 1544