1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/SmallSet.h" 29 #include "Hexagon.h" 30 #include "HexagonSubtarget.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/PassSupport.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include <algorithm> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "hwloops" 49 50 #ifndef NDEBUG 51 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 52 53 // Option to create preheader only for a specific function. 54 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 55 cl::init("")); 56 #endif 57 58 // Option to create a preheader if one doesn't exist. 59 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 60 cl::Hidden, cl::init(true), 61 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 62 63 // Turn it off by default. If a preheader block is not created here, the 64 // software pipeliner may be unable to find a block suitable to serve as 65 // a preheader. In that case SWP will not run. 66 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 67 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 68 "instructions")); 69 70 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 71 72 namespace llvm { 73 FunctionPass *createHexagonHardwareLoops(); 74 void initializeHexagonHardwareLoopsPass(PassRegistry&); 75 } 76 77 namespace { 78 class CountValue; 79 struct HexagonHardwareLoops : public MachineFunctionPass { 80 MachineLoopInfo *MLI; 81 MachineRegisterInfo *MRI; 82 MachineDominatorTree *MDT; 83 const HexagonInstrInfo *TII; 84 #ifndef NDEBUG 85 static int Counter; 86 #endif 87 88 public: 89 static char ID; 90 91 HexagonHardwareLoops() : MachineFunctionPass(ID) { 92 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 93 } 94 95 bool runOnMachineFunction(MachineFunction &MF) override; 96 97 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.addRequired<MachineDominatorTree>(); 101 AU.addRequired<MachineLoopInfo>(); 102 MachineFunctionPass::getAnalysisUsage(AU); 103 } 104 105 private: 106 typedef std::map<unsigned, MachineInstr *> LoopFeederMap; 107 108 /// Kinds of comparisons in the compare instructions. 109 struct Comparison { 110 enum Kind { 111 EQ = 0x01, 112 NE = 0x02, 113 L = 0x04, 114 G = 0x08, 115 U = 0x40, 116 LTs = L, 117 LEs = L | EQ, 118 GTs = G, 119 GEs = G | EQ, 120 LTu = L | U, 121 LEu = L | EQ | U, 122 GTu = G | U, 123 GEu = G | EQ | U 124 }; 125 126 static Kind getSwappedComparison(Kind Cmp) { 127 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 128 if ((Cmp & L) || (Cmp & G)) 129 return (Kind)(Cmp ^ (L|G)); 130 return Cmp; 131 } 132 133 static Kind getNegatedComparison(Kind Cmp) { 134 if ((Cmp & L) || (Cmp & G)) 135 return (Kind)((Cmp ^ (L | G)) ^ EQ); 136 if ((Cmp & NE) || (Cmp & EQ)) 137 return (Kind)(Cmp ^ (EQ | NE)); 138 return (Kind)0; 139 } 140 141 static bool isSigned(Kind Cmp) { 142 return (Cmp & (L | G) && !(Cmp & U)); 143 } 144 145 static bool isUnsigned(Kind Cmp) { 146 return (Cmp & U); 147 } 148 149 }; 150 151 /// \brief Find the register that contains the loop controlling 152 /// induction variable. 153 /// If successful, it will return true and set the \p Reg, \p IVBump 154 /// and \p IVOp arguments. Otherwise it will return false. 155 /// The returned induction register is the register R that follows the 156 /// following induction pattern: 157 /// loop: 158 /// R = phi ..., [ R.next, LatchBlock ] 159 /// R.next = R + #bump 160 /// if (R.next < #N) goto loop 161 /// IVBump is the immediate value added to R, and IVOp is the instruction 162 /// "R.next = R + #bump". 163 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 164 int64_t &IVBump, MachineInstr *&IVOp) const; 165 166 /// \brief Return the comparison kind for the specified opcode. 167 Comparison::Kind getComparisonKind(unsigned CondOpc, 168 MachineOperand *InitialValue, 169 const MachineOperand *Endvalue, 170 int64_t IVBump) const; 171 172 /// \brief Analyze the statements in a loop to determine if the loop 173 /// has a computable trip count and, if so, return a value that represents 174 /// the trip count expression. 175 CountValue *getLoopTripCount(MachineLoop *L, 176 SmallVectorImpl<MachineInstr *> &OldInsts); 177 178 /// \brief Return the expression that represents the number of times 179 /// a loop iterates. The function takes the operands that represent the 180 /// loop start value, loop end value, and induction value. Based upon 181 /// these operands, the function attempts to compute the trip count. 182 /// If the trip count is not directly available (as an immediate value, 183 /// or a register), the function will attempt to insert computation of it 184 /// to the loop's preheader. 185 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 186 const MachineOperand *End, unsigned IVReg, 187 int64_t IVBump, Comparison::Kind Cmp) const; 188 189 /// \brief Return true if the instruction is not valid within a hardware 190 /// loop. 191 bool isInvalidLoopOperation(const MachineInstr *MI, 192 bool IsInnerHWLoop) const; 193 194 /// \brief Return true if the loop contains an instruction that inhibits 195 /// using the hardware loop. 196 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 197 198 /// \brief Given a loop, check if we can convert it to a hardware loop. 199 /// If so, then perform the conversion and return true. 200 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 201 202 /// \brief Return true if the instruction is now dead. 203 bool isDead(const MachineInstr *MI, 204 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 205 206 /// \brief Remove the instruction if it is now dead. 207 void removeIfDead(MachineInstr *MI); 208 209 /// \brief Make sure that the "bump" instruction executes before the 210 /// compare. We need that for the IV fixup, so that the compare 211 /// instruction would not use a bumped value that has not yet been 212 /// defined. If the instructions are out of order, try to reorder them. 213 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 214 215 /// \brief Return true if MO and MI pair is visited only once. If visited 216 /// more than once, this indicates there is recursion. In such a case, 217 /// return false. 218 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 219 const MachineOperand *MO, 220 LoopFeederMap &LoopFeederPhi) const; 221 222 /// \brief Return true if the Phi may generate a value that may underflow, 223 /// or may wrap. 224 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 225 MachineBasicBlock *MBB, MachineLoop *L, 226 LoopFeederMap &LoopFeederPhi) const; 227 228 /// \brief Return true if the induction variable may underflow an unsigned 229 /// value in the first iteration. 230 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 231 const MachineOperand *EndVal, 232 MachineBasicBlock *MBB, MachineLoop *L, 233 LoopFeederMap &LoopFeederPhi) const; 234 235 /// \brief Check if the given operand has a compile-time known constant 236 /// value. Return true if yes, and false otherwise. When returning true, set 237 /// Val to the corresponding constant value. 238 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 239 240 /// \brief Check if the operand has a compile-time known constant value. 241 bool isImmediate(const MachineOperand &MO) const { 242 int64_t V; 243 return checkForImmediate(MO, V); 244 } 245 246 /// \brief Return the immediate for the specified operand. 247 int64_t getImmediate(const MachineOperand &MO) const { 248 int64_t V; 249 if (!checkForImmediate(MO, V)) 250 llvm_unreachable("Invalid operand"); 251 return V; 252 } 253 254 /// \brief Reset the given machine operand to now refer to a new immediate 255 /// value. Assumes that the operand was already referencing an immediate 256 /// value, either directly, or via a register. 257 void setImmediate(MachineOperand &MO, int64_t Val); 258 259 /// \brief Fix the data flow of the induction varible. 260 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 261 /// | 262 /// +-> back to phi 263 /// where "bump" is the increment of the induction variable: 264 /// iv = iv + #const. 265 /// Due to some prior code transformations, the actual flow may look 266 /// like this: 267 /// phi -+-> bump ---> back to phi 268 /// | 269 /// +-> comparison-in-latch (against upper_bound-bump), 270 /// i.e. the comparison that controls the loop execution may be using 271 /// the value of the induction variable from before the increment. 272 /// 273 /// Return true if the loop's flow is the desired one (i.e. it's 274 /// either been fixed, or no fixing was necessary). 275 /// Otherwise, return false. This can happen if the induction variable 276 /// couldn't be identified, or if the value in the latch's comparison 277 /// cannot be adjusted to reflect the post-bump value. 278 bool fixupInductionVariable(MachineLoop *L); 279 280 /// \brief Given a loop, if it does not have a preheader, create one. 281 /// Return the block that is the preheader. 282 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 283 }; 284 285 char HexagonHardwareLoops::ID = 0; 286 #ifndef NDEBUG 287 int HexagonHardwareLoops::Counter = 0; 288 #endif 289 290 /// \brief Abstraction for a trip count of a loop. A smaller version 291 /// of the MachineOperand class without the concerns of changing the 292 /// operand representation. 293 class CountValue { 294 public: 295 enum CountValueType { 296 CV_Register, 297 CV_Immediate 298 }; 299 private: 300 CountValueType Kind; 301 union Values { 302 struct { 303 unsigned Reg; 304 unsigned Sub; 305 } R; 306 unsigned ImmVal; 307 } Contents; 308 309 public: 310 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 311 Kind = t; 312 if (Kind == CV_Register) { 313 Contents.R.Reg = v; 314 Contents.R.Sub = u; 315 } else { 316 Contents.ImmVal = v; 317 } 318 } 319 bool isReg() const { return Kind == CV_Register; } 320 bool isImm() const { return Kind == CV_Immediate; } 321 322 unsigned getReg() const { 323 assert(isReg() && "Wrong CountValue accessor"); 324 return Contents.R.Reg; 325 } 326 unsigned getSubReg() const { 327 assert(isReg() && "Wrong CountValue accessor"); 328 return Contents.R.Sub; 329 } 330 unsigned getImm() const { 331 assert(isImm() && "Wrong CountValue accessor"); 332 return Contents.ImmVal; 333 } 334 335 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 336 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 337 if (isImm()) { OS << Contents.ImmVal; } 338 } 339 }; 340 } // end anonymous namespace 341 342 343 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 344 "Hexagon Hardware Loops", false, false) 345 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 346 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 347 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 348 "Hexagon Hardware Loops", false, false) 349 350 FunctionPass *llvm::createHexagonHardwareLoops() { 351 return new HexagonHardwareLoops(); 352 } 353 354 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 355 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 356 if (skipFunction(*MF.getFunction())) 357 return false; 358 359 bool Changed = false; 360 361 MLI = &getAnalysis<MachineLoopInfo>(); 362 MRI = &MF.getRegInfo(); 363 MDT = &getAnalysis<MachineDominatorTree>(); 364 TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 365 366 for (auto &L : *MLI) 367 if (!L->getParentLoop()) { 368 bool L0Used = false; 369 bool L1Used = false; 370 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 371 } 372 373 return Changed; 374 } 375 376 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 377 unsigned &Reg, 378 int64_t &IVBump, 379 MachineInstr *&IVOp 380 ) const { 381 MachineBasicBlock *Header = L->getHeader(); 382 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 383 MachineBasicBlock *Latch = L->getLoopLatch(); 384 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 385 if (!Header || !Preheader || !Latch || !ExitingBlock) 386 return false; 387 388 // This pair represents an induction register together with an immediate 389 // value that will be added to it in each loop iteration. 390 typedef std::pair<unsigned,int64_t> RegisterBump; 391 392 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 393 // from an induction operation 394 // R.next = R + bump 395 // where bump is an immediate value. 396 typedef std::map<unsigned,RegisterBump> InductionMap; 397 398 InductionMap IndMap; 399 400 typedef MachineBasicBlock::instr_iterator instr_iterator; 401 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 402 I != E && I->isPHI(); ++I) { 403 MachineInstr *Phi = &*I; 404 405 // Have a PHI instruction. Get the operand that corresponds to the 406 // latch block, and see if is a result of an addition of form "reg+imm", 407 // where the "reg" is defined by the PHI node we are looking at. 408 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 409 if (Phi->getOperand(i+1).getMBB() != Latch) 410 continue; 411 412 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 413 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 414 415 if (DI->getDesc().isAdd()) { 416 // If the register operand to the add is the PHI we're looking at, this 417 // meets the induction pattern. 418 unsigned IndReg = DI->getOperand(1).getReg(); 419 MachineOperand &Opnd2 = DI->getOperand(2); 420 int64_t V; 421 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 422 unsigned UpdReg = DI->getOperand(0).getReg(); 423 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 424 } 425 } 426 } // for (i) 427 } // for (instr) 428 429 SmallVector<MachineOperand,2> Cond; 430 MachineBasicBlock *TB = nullptr, *FB = nullptr; 431 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 432 if (NotAnalyzed) 433 return false; 434 435 unsigned PredR, PredPos, PredRegFlags; 436 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 437 return false; 438 439 MachineInstr *PredI = MRI->getVRegDef(PredR); 440 if (!PredI->isCompare()) 441 return false; 442 443 unsigned CmpReg1 = 0, CmpReg2 = 0; 444 int CmpImm = 0, CmpMask = 0; 445 bool CmpAnalyzed = 446 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 447 // Fail if the compare was not analyzed, or it's not comparing a register 448 // with an immediate value. Not checking the mask here, since we handle 449 // the individual compare opcodes (including A4_cmpb*) later on. 450 if (!CmpAnalyzed) 451 return false; 452 453 // Exactly one of the input registers to the comparison should be among 454 // the induction registers. 455 InductionMap::iterator IndMapEnd = IndMap.end(); 456 InductionMap::iterator F = IndMapEnd; 457 if (CmpReg1 != 0) { 458 InductionMap::iterator F1 = IndMap.find(CmpReg1); 459 if (F1 != IndMapEnd) 460 F = F1; 461 } 462 if (CmpReg2 != 0) { 463 InductionMap::iterator F2 = IndMap.find(CmpReg2); 464 if (F2 != IndMapEnd) { 465 if (F != IndMapEnd) 466 return false; 467 F = F2; 468 } 469 } 470 if (F == IndMapEnd) 471 return false; 472 473 Reg = F->second.first; 474 IVBump = F->second.second; 475 IVOp = MRI->getVRegDef(F->first); 476 return true; 477 } 478 479 // Return the comparison kind for the specified opcode. 480 HexagonHardwareLoops::Comparison::Kind 481 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 482 MachineOperand *InitialValue, 483 const MachineOperand *EndValue, 484 int64_t IVBump) const { 485 Comparison::Kind Cmp = (Comparison::Kind)0; 486 switch (CondOpc) { 487 case Hexagon::C2_cmpeqi: 488 case Hexagon::C2_cmpeq: 489 case Hexagon::C2_cmpeqp: 490 Cmp = Comparison::EQ; 491 break; 492 case Hexagon::C4_cmpneq: 493 case Hexagon::C4_cmpneqi: 494 Cmp = Comparison::NE; 495 break; 496 case Hexagon::C4_cmplte: 497 Cmp = Comparison::LEs; 498 break; 499 case Hexagon::C4_cmplteu: 500 Cmp = Comparison::LEu; 501 break; 502 case Hexagon::C2_cmpgtui: 503 case Hexagon::C2_cmpgtu: 504 case Hexagon::C2_cmpgtup: 505 Cmp = Comparison::GTu; 506 break; 507 case Hexagon::C2_cmpgti: 508 case Hexagon::C2_cmpgt: 509 case Hexagon::C2_cmpgtp: 510 Cmp = Comparison::GTs; 511 break; 512 default: 513 return (Comparison::Kind)0; 514 } 515 return Cmp; 516 } 517 518 /// \brief Analyze the statements in a loop to determine if the loop has 519 /// a computable trip count and, if so, return a value that represents 520 /// the trip count expression. 521 /// 522 /// This function iterates over the phi nodes in the loop to check for 523 /// induction variable patterns that are used in the calculation for 524 /// the number of time the loop is executed. 525 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 526 SmallVectorImpl<MachineInstr *> &OldInsts) { 527 MachineBasicBlock *TopMBB = L->getTopBlock(); 528 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 529 assert(PI != TopMBB->pred_end() && 530 "Loop must have more than one incoming edge!"); 531 MachineBasicBlock *Backedge = *PI++; 532 if (PI == TopMBB->pred_end()) // dead loop? 533 return nullptr; 534 MachineBasicBlock *Incoming = *PI++; 535 if (PI != TopMBB->pred_end()) // multiple backedges? 536 return nullptr; 537 538 // Make sure there is one incoming and one backedge and determine which 539 // is which. 540 if (L->contains(Incoming)) { 541 if (L->contains(Backedge)) 542 return nullptr; 543 std::swap(Incoming, Backedge); 544 } else if (!L->contains(Backedge)) 545 return nullptr; 546 547 // Look for the cmp instruction to determine if we can get a useful trip 548 // count. The trip count can be either a register or an immediate. The 549 // location of the value depends upon the type (reg or imm). 550 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 551 if (!ExitingBlock) 552 return nullptr; 553 554 unsigned IVReg = 0; 555 int64_t IVBump = 0; 556 MachineInstr *IVOp; 557 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 558 if (!FoundIV) 559 return nullptr; 560 561 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 562 563 MachineOperand *InitialValue = nullptr; 564 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 565 MachineBasicBlock *Latch = L->getLoopLatch(); 566 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 567 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 568 if (MBB == Preheader) 569 InitialValue = &IV_Phi->getOperand(i); 570 else if (MBB == Latch) 571 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 572 } 573 if (!InitialValue) 574 return nullptr; 575 576 SmallVector<MachineOperand,2> Cond; 577 MachineBasicBlock *TB = nullptr, *FB = nullptr; 578 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 579 if (NotAnalyzed) 580 return nullptr; 581 582 MachineBasicBlock *Header = L->getHeader(); 583 // TB must be non-null. If FB is also non-null, one of them must be 584 // the header. Otherwise, branch to TB could be exiting the loop, and 585 // the fall through can go to the header. 586 assert (TB && "Exit block without a branch?"); 587 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 588 MachineBasicBlock *LTB = 0, *LFB = 0; 589 SmallVector<MachineOperand,2> LCond; 590 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 591 if (NotAnalyzed) 592 return nullptr; 593 if (TB == Latch) 594 TB = (LTB == Header) ? LTB : LFB; 595 else 596 FB = (LTB == Header) ? LTB: LFB; 597 } 598 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 599 if (!TB || (FB && TB != Header && FB != Header)) 600 return nullptr; 601 602 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 603 // to put imm(0), followed by P in the vector Cond. 604 // If TB is not the header, it means that the "not-taken" path must lead 605 // to the header. 606 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 607 unsigned PredReg, PredPos, PredRegFlags; 608 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 609 return nullptr; 610 MachineInstr *CondI = MRI->getVRegDef(PredReg); 611 unsigned CondOpc = CondI->getOpcode(); 612 613 unsigned CmpReg1 = 0, CmpReg2 = 0; 614 int Mask = 0, ImmValue = 0; 615 bool AnalyzedCmp = 616 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 617 if (!AnalyzedCmp) 618 return nullptr; 619 620 // The comparison operator type determines how we compute the loop 621 // trip count. 622 OldInsts.push_back(CondI); 623 OldInsts.push_back(IVOp); 624 625 // Sadly, the following code gets information based on the position 626 // of the operands in the compare instruction. This has to be done 627 // this way, because the comparisons check for a specific relationship 628 // between the operands (e.g. is-less-than), rather than to find out 629 // what relationship the operands are in (as on PPC). 630 Comparison::Kind Cmp; 631 bool isSwapped = false; 632 const MachineOperand &Op1 = CondI->getOperand(1); 633 const MachineOperand &Op2 = CondI->getOperand(2); 634 const MachineOperand *EndValue = nullptr; 635 636 if (Op1.isReg()) { 637 if (Op2.isImm() || Op1.getReg() == IVReg) 638 EndValue = &Op2; 639 else { 640 EndValue = &Op1; 641 isSwapped = true; 642 } 643 } 644 645 if (!EndValue) 646 return nullptr; 647 648 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 649 if (!Cmp) 650 return nullptr; 651 if (Negated) 652 Cmp = Comparison::getNegatedComparison(Cmp); 653 if (isSwapped) 654 Cmp = Comparison::getSwappedComparison(Cmp); 655 656 if (InitialValue->isReg()) { 657 unsigned R = InitialValue->getReg(); 658 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 659 if (!MDT->properlyDominates(DefBB, Header)) 660 return nullptr; 661 OldInsts.push_back(MRI->getVRegDef(R)); 662 } 663 if (EndValue->isReg()) { 664 unsigned R = EndValue->getReg(); 665 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 666 if (!MDT->properlyDominates(DefBB, Header)) 667 return nullptr; 668 OldInsts.push_back(MRI->getVRegDef(R)); 669 } 670 671 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 672 } 673 674 /// \brief Helper function that returns the expression that represents the 675 /// number of times a loop iterates. The function takes the operands that 676 /// represent the loop start value, loop end value, and induction value. 677 /// Based upon these operands, the function attempts to compute the trip count. 678 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 679 const MachineOperand *Start, 680 const MachineOperand *End, 681 unsigned IVReg, 682 int64_t IVBump, 683 Comparison::Kind Cmp) const { 684 // Cannot handle comparison EQ, i.e. while (A == B). 685 if (Cmp == Comparison::EQ) 686 return nullptr; 687 688 // Check if either the start or end values are an assignment of an immediate. 689 // If so, use the immediate value rather than the register. 690 if (Start->isReg()) { 691 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 692 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 693 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 694 Start = &StartValInstr->getOperand(1); 695 } 696 if (End->isReg()) { 697 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 698 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 699 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 700 End = &EndValInstr->getOperand(1); 701 } 702 703 if (!Start->isReg() && !Start->isImm()) 704 return nullptr; 705 if (!End->isReg() && !End->isImm()) 706 return nullptr; 707 708 bool CmpLess = Cmp & Comparison::L; 709 bool CmpGreater = Cmp & Comparison::G; 710 bool CmpHasEqual = Cmp & Comparison::EQ; 711 712 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 713 if (CmpLess && IVBump < 0) 714 // Loop going while iv is "less" with the iv value going down. Must wrap. 715 return nullptr; 716 717 if (CmpGreater && IVBump > 0) 718 // Loop going while iv is "greater" with the iv value going up. Must wrap. 719 return nullptr; 720 721 // Phis that may feed into the loop. 722 LoopFeederMap LoopFeederPhi; 723 724 // Check if the initial value may be zero and can be decremented in the first 725 // iteration. If the value is zero, the endloop instruction will not decrement 726 // the loop counter, so we shouldn't generate a hardware loop in this case. 727 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 728 LoopFeederPhi)) 729 return nullptr; 730 731 if (Start->isImm() && End->isImm()) { 732 // Both, start and end are immediates. 733 int64_t StartV = Start->getImm(); 734 int64_t EndV = End->getImm(); 735 int64_t Dist = EndV - StartV; 736 if (Dist == 0) 737 return nullptr; 738 739 bool Exact = (Dist % IVBump) == 0; 740 741 if (Cmp == Comparison::NE) { 742 if (!Exact) 743 return nullptr; 744 if ((Dist < 0) ^ (IVBump < 0)) 745 return nullptr; 746 } 747 748 // For comparisons that include the final value (i.e. include equality 749 // with the final value), we need to increase the distance by 1. 750 if (CmpHasEqual) 751 Dist = Dist > 0 ? Dist+1 : Dist-1; 752 753 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 754 // CmpGreater should imply Dist < 0. These conditions could actually 755 // fail, for example, in unreachable code (which may still appear to be 756 // reachable in the CFG). 757 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 758 return nullptr; 759 760 // "Normalized" distance, i.e. with the bump set to +-1. 761 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 762 : (-Dist + (-IVBump - 1)) / (-IVBump); 763 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 764 765 uint64_t Count = Dist1; 766 767 if (Count > 0xFFFFFFFFULL) 768 return nullptr; 769 770 return new CountValue(CountValue::CV_Immediate, Count); 771 } 772 773 // A general case: Start and End are some values, but the actual 774 // iteration count may not be available. If it is not, insert 775 // a computation of it into the preheader. 776 777 // If the induction variable bump is not a power of 2, quit. 778 // Othwerise we'd need a general integer division. 779 if (!isPowerOf2_64(std::abs(IVBump))) 780 return nullptr; 781 782 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 783 assert (PH && "Should have a preheader by now"); 784 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 785 DebugLoc DL; 786 if (InsertPos != PH->end()) 787 DL = InsertPos->getDebugLoc(); 788 789 // If Start is an immediate and End is a register, the trip count 790 // will be "reg - imm". Hexagon's "subtract immediate" instruction 791 // is actually "reg + -imm". 792 793 // If the loop IV is going downwards, i.e. if the bump is negative, 794 // then the iteration count (computed as End-Start) will need to be 795 // negated. To avoid the negation, just swap Start and End. 796 if (IVBump < 0) { 797 std::swap(Start, End); 798 IVBump = -IVBump; 799 } 800 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 801 // Signedness, and "including equality" are preserved. 802 803 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 804 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 805 806 int64_t StartV = 0, EndV = 0; 807 if (Start->isImm()) 808 StartV = Start->getImm(); 809 if (End->isImm()) 810 EndV = End->getImm(); 811 812 int64_t AdjV = 0; 813 // To compute the iteration count, we would need this computation: 814 // Count = (End - Start + (IVBump-1)) / IVBump 815 // or, when CmpHasEqual: 816 // Count = (End - Start + (IVBump-1)+1) / IVBump 817 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 818 // generating an instruction specifically to add it if we can adjust 819 // the immediate values for Start or End. 820 821 if (CmpHasEqual) { 822 // Need to add 1 to the total iteration count. 823 if (Start->isImm()) 824 StartV--; 825 else if (End->isImm()) 826 EndV++; 827 else 828 AdjV += 1; 829 } 830 831 if (Cmp != Comparison::NE) { 832 if (Start->isImm()) 833 StartV -= (IVBump-1); 834 else if (End->isImm()) 835 EndV += (IVBump-1); 836 else 837 AdjV += (IVBump-1); 838 } 839 840 unsigned R = 0, SR = 0; 841 if (Start->isReg()) { 842 R = Start->getReg(); 843 SR = Start->getSubReg(); 844 } else { 845 R = End->getReg(); 846 SR = End->getSubReg(); 847 } 848 const TargetRegisterClass *RC = MRI->getRegClass(R); 849 // Hardware loops cannot handle 64-bit registers. If it's a double 850 // register, it has to have a subregister. 851 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 852 return nullptr; 853 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 854 855 // Compute DistR (register with the distance between Start and End). 856 unsigned DistR, DistSR; 857 858 // Avoid special case, where the start value is an imm(0). 859 if (Start->isImm() && StartV == 0) { 860 DistR = End->getReg(); 861 DistSR = End->getSubReg(); 862 } else { 863 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 864 (RegToImm ? TII->get(Hexagon::A2_subri) : 865 TII->get(Hexagon::A2_addi)); 866 if (RegToReg || RegToImm) { 867 unsigned SubR = MRI->createVirtualRegister(IntRC); 868 MachineInstrBuilder SubIB = 869 BuildMI(*PH, InsertPos, DL, SubD, SubR); 870 871 if (RegToReg) 872 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 873 .addReg(Start->getReg(), 0, Start->getSubReg()); 874 else 875 SubIB.addImm(EndV) 876 .addReg(Start->getReg(), 0, Start->getSubReg()); 877 DistR = SubR; 878 } else { 879 // If the loop has been unrolled, we should use the original loop count 880 // instead of recalculating the value. This will avoid additional 881 // 'Add' instruction. 882 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 883 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 884 EndValInstr->getOperand(2).getImm() == StartV) { 885 DistR = EndValInstr->getOperand(1).getReg(); 886 } else { 887 unsigned SubR = MRI->createVirtualRegister(IntRC); 888 MachineInstrBuilder SubIB = 889 BuildMI(*PH, InsertPos, DL, SubD, SubR); 890 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 891 .addImm(-StartV); 892 DistR = SubR; 893 } 894 } 895 DistSR = 0; 896 } 897 898 // From DistR, compute AdjR (register with the adjusted distance). 899 unsigned AdjR, AdjSR; 900 901 if (AdjV == 0) { 902 AdjR = DistR; 903 AdjSR = DistSR; 904 } else { 905 // Generate CountR = ADD DistR, AdjVal 906 unsigned AddR = MRI->createVirtualRegister(IntRC); 907 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 908 BuildMI(*PH, InsertPos, DL, AddD, AddR) 909 .addReg(DistR, 0, DistSR) 910 .addImm(AdjV); 911 912 AdjR = AddR; 913 AdjSR = 0; 914 } 915 916 // From AdjR, compute CountR (register with the final count). 917 unsigned CountR, CountSR; 918 919 if (IVBump == 1) { 920 CountR = AdjR; 921 CountSR = AdjSR; 922 } else { 923 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 924 unsigned Shift = Log2_32(IVBump); 925 926 // Generate NormR = LSR DistR, Shift. 927 unsigned LsrR = MRI->createVirtualRegister(IntRC); 928 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 929 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 930 .addReg(AdjR, 0, AdjSR) 931 .addImm(Shift); 932 933 CountR = LsrR; 934 CountSR = 0; 935 } 936 937 return new CountValue(CountValue::CV_Register, CountR, CountSR); 938 } 939 940 /// \brief Return true if the operation is invalid within hardware loop. 941 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 942 bool IsInnerHWLoop) const { 943 944 // Call is not allowed because the callee may use a hardware loop except for 945 // the case when the call never returns. 946 if (MI->getDesc().isCall()) 947 return !TII->doesNotReturn(*MI); 948 949 // Check if the instruction defines a hardware loop register. 950 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 951 const MachineOperand &MO = MI->getOperand(i); 952 if (!MO.isReg() || !MO.isDef()) 953 continue; 954 unsigned R = MO.getReg(); 955 if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 || 956 R == Hexagon::LC1 || R == Hexagon::SA1)) 957 return true; 958 if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1)) 959 return true; 960 } 961 return false; 962 } 963 964 /// \brief Return true if the loop contains an instruction that inhibits 965 /// the use of the hardware loop instruction. 966 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 967 bool IsInnerHWLoop) const { 968 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 969 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 970 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 971 MachineBasicBlock *MBB = Blocks[i]; 972 for (MachineBasicBlock::iterator 973 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 974 const MachineInstr *MI = &*MII; 975 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 976 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 977 return true; 978 } 979 } 980 } 981 return false; 982 } 983 984 /// \brief Returns true if the instruction is dead. This was essentially 985 /// copied from DeadMachineInstructionElim::isDead, but with special cases 986 /// for inline asm, physical registers and instructions with side effects 987 /// removed. 988 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 989 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 990 // Examine each operand. 991 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 992 const MachineOperand &MO = MI->getOperand(i); 993 if (!MO.isReg() || !MO.isDef()) 994 continue; 995 996 unsigned Reg = MO.getReg(); 997 if (MRI->use_nodbg_empty(Reg)) 998 continue; 999 1000 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 1001 1002 // This instruction has users, but if the only user is the phi node for the 1003 // parent block, and the only use of that phi node is this instruction, then 1004 // this instruction is dead: both it (and the phi node) can be removed. 1005 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1006 use_nodbg_iterator End = MRI->use_nodbg_end(); 1007 if (std::next(I) != End || !I->getParent()->isPHI()) 1008 return false; 1009 1010 MachineInstr *OnePhi = I->getParent(); 1011 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1012 const MachineOperand &OPO = OnePhi->getOperand(j); 1013 if (!OPO.isReg() || !OPO.isDef()) 1014 continue; 1015 1016 unsigned OPReg = OPO.getReg(); 1017 use_nodbg_iterator nextJ; 1018 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1019 J != End; J = nextJ) { 1020 nextJ = std::next(J); 1021 MachineOperand &Use = *J; 1022 MachineInstr *UseMI = Use.getParent(); 1023 1024 // If the phi node has a user that is not MI, bail. 1025 if (MI != UseMI) 1026 return false; 1027 } 1028 } 1029 DeadPhis.push_back(OnePhi); 1030 } 1031 1032 // If there are no defs with uses, the instruction is dead. 1033 return true; 1034 } 1035 1036 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1037 // This procedure was essentially copied from DeadMachineInstructionElim. 1038 1039 SmallVector<MachineInstr*, 1> DeadPhis; 1040 if (isDead(MI, DeadPhis)) { 1041 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1042 1043 // It is possible that some DBG_VALUE instructions refer to this 1044 // instruction. Examine each def operand for such references; 1045 // if found, mark the DBG_VALUE as undef (but don't delete it). 1046 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1047 const MachineOperand &MO = MI->getOperand(i); 1048 if (!MO.isReg() || !MO.isDef()) 1049 continue; 1050 unsigned Reg = MO.getReg(); 1051 MachineRegisterInfo::use_iterator nextI; 1052 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1053 E = MRI->use_end(); I != E; I = nextI) { 1054 nextI = std::next(I); // I is invalidated by the setReg 1055 MachineOperand &Use = *I; 1056 MachineInstr *UseMI = I->getParent(); 1057 if (UseMI == MI) 1058 continue; 1059 if (Use.isDebug()) 1060 UseMI->getOperand(0).setReg(0U); 1061 } 1062 } 1063 1064 MI->eraseFromParent(); 1065 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1066 DeadPhis[i]->eraseFromParent(); 1067 } 1068 } 1069 1070 /// \brief Check if the loop is a candidate for converting to a hardware 1071 /// loop. If so, then perform the transformation. 1072 /// 1073 /// This function works on innermost loops first. A loop can be converted 1074 /// if it is a counting loop; either a register value or an immediate. 1075 /// 1076 /// The code makes several assumptions about the representation of the loop 1077 /// in llvm. 1078 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1079 bool &RecL0used, 1080 bool &RecL1used) { 1081 // This is just for sanity. 1082 assert(L->getHeader() && "Loop without a header?"); 1083 1084 bool Changed = false; 1085 bool L0Used = false; 1086 bool L1Used = false; 1087 1088 // Process nested loops first. 1089 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1090 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1091 L0Used |= RecL0used; 1092 L1Used |= RecL1used; 1093 } 1094 1095 // If a nested loop has been converted, then we can't convert this loop. 1096 if (Changed && L0Used && L1Used) 1097 return Changed; 1098 1099 unsigned LOOP_i; 1100 unsigned LOOP_r; 1101 unsigned ENDLOOP; 1102 1103 // Flag used to track loopN instruction: 1104 // 1 - Hardware loop is being generated for the inner most loop. 1105 // 0 - Hardware loop is being generated for the outer loop. 1106 unsigned IsInnerHWLoop = 1; 1107 1108 if (L0Used) { 1109 LOOP_i = Hexagon::J2_loop1i; 1110 LOOP_r = Hexagon::J2_loop1r; 1111 ENDLOOP = Hexagon::ENDLOOP1; 1112 IsInnerHWLoop = 0; 1113 } else { 1114 LOOP_i = Hexagon::J2_loop0i; 1115 LOOP_r = Hexagon::J2_loop0r; 1116 ENDLOOP = Hexagon::ENDLOOP0; 1117 } 1118 1119 #ifndef NDEBUG 1120 // Stop trying after reaching the limit (if any). 1121 int Limit = HWLoopLimit; 1122 if (Limit >= 0) { 1123 if (Counter >= HWLoopLimit) 1124 return false; 1125 Counter++; 1126 } 1127 #endif 1128 1129 // Does the loop contain any invalid instructions? 1130 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1131 return false; 1132 1133 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1134 // Don't generate hw loop if the loop has more than one exit. 1135 if (!LastMBB) 1136 return false; 1137 1138 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1139 if (LastI == LastMBB->end()) 1140 return false; 1141 1142 // Is the induction variable bump feeding the latch condition? 1143 if (!fixupInductionVariable(L)) 1144 return false; 1145 1146 // Ensure the loop has a preheader: the loop instruction will be 1147 // placed there. 1148 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1149 if (!Preheader) { 1150 Preheader = createPreheaderForLoop(L); 1151 if (!Preheader) 1152 return false; 1153 } 1154 1155 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1156 1157 SmallVector<MachineInstr*, 2> OldInsts; 1158 // Are we able to determine the trip count for the loop? 1159 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1160 if (!TripCount) 1161 return false; 1162 1163 // Is the trip count available in the preheader? 1164 if (TripCount->isReg()) { 1165 // There will be a use of the register inserted into the preheader, 1166 // so make sure that the register is actually defined at that point. 1167 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1168 MachineBasicBlock *BBDef = TCDef->getParent(); 1169 if (!MDT->dominates(BBDef, Preheader)) 1170 return false; 1171 } 1172 1173 // Determine the loop start. 1174 MachineBasicBlock *TopBlock = L->getTopBlock(); 1175 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1176 MachineBasicBlock *LoopStart = 0; 1177 if (ExitingBlock != L->getLoopLatch()) { 1178 MachineBasicBlock *TB = 0, *FB = 0; 1179 SmallVector<MachineOperand, 2> Cond; 1180 1181 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1182 return false; 1183 1184 if (L->contains(TB)) 1185 LoopStart = TB; 1186 else if (L->contains(FB)) 1187 LoopStart = FB; 1188 else 1189 return false; 1190 } 1191 else 1192 LoopStart = TopBlock; 1193 1194 // Convert the loop to a hardware loop. 1195 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1196 DebugLoc DL; 1197 if (InsertPos != Preheader->end()) 1198 DL = InsertPos->getDebugLoc(); 1199 1200 if (TripCount->isReg()) { 1201 // Create a copy of the loop count register. 1202 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1203 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1204 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1205 // Add the Loop instruction to the beginning of the loop. 1206 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1207 .addReg(CountReg); 1208 } else { 1209 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1210 // Add the Loop immediate instruction to the beginning of the loop, 1211 // if the immediate fits in the instructions. Otherwise, we need to 1212 // create a new virtual register. 1213 int64_t CountImm = TripCount->getImm(); 1214 if (!TII->isValidOffset(LOOP_i, CountImm)) { 1215 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1216 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1217 .addImm(CountImm); 1218 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1219 .addMBB(LoopStart).addReg(CountReg); 1220 } else 1221 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1222 .addMBB(LoopStart).addImm(CountImm); 1223 } 1224 1225 // Make sure the loop start always has a reference in the CFG. We need 1226 // to create a BlockAddress operand to get this mechanism to work both the 1227 // MachineBasicBlock and BasicBlock objects need the flag set. 1228 LoopStart->setHasAddressTaken(); 1229 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1230 // object. 1231 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1232 1233 // Replace the loop branch with an endloop instruction. 1234 DebugLoc LastIDL = LastI->getDebugLoc(); 1235 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1236 1237 // The loop ends with either: 1238 // - a conditional branch followed by an unconditional branch, or 1239 // - a conditional branch to the loop start. 1240 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1241 LastI->getOpcode() == Hexagon::J2_jumpf) { 1242 // Delete one and change/add an uncond. branch to out of the loop. 1243 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1244 LastI = LastMBB->erase(LastI); 1245 if (!L->contains(BranchTarget)) { 1246 if (LastI != LastMBB->end()) 1247 LastI = LastMBB->erase(LastI); 1248 SmallVector<MachineOperand, 0> Cond; 1249 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1250 } 1251 } else { 1252 // Conditional branch to loop start; just delete it. 1253 LastMBB->erase(LastI); 1254 } 1255 delete TripCount; 1256 1257 // The induction operation and the comparison may now be 1258 // unneeded. If these are unneeded, then remove them. 1259 for (unsigned i = 0; i < OldInsts.size(); ++i) 1260 removeIfDead(OldInsts[i]); 1261 1262 ++NumHWLoops; 1263 1264 // Set RecL1used and RecL0used only after hardware loop has been 1265 // successfully generated. Doing it earlier can cause wrong loop instruction 1266 // to be used. 1267 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1268 RecL1used = true; 1269 else 1270 RecL0used = true; 1271 1272 return true; 1273 } 1274 1275 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1276 MachineInstr *CmpI) { 1277 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1278 1279 MachineBasicBlock *BB = BumpI->getParent(); 1280 if (CmpI->getParent() != BB) 1281 return false; 1282 1283 typedef MachineBasicBlock::instr_iterator instr_iterator; 1284 // Check if things are in order to begin with. 1285 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1286 if (&*I == CmpI) 1287 return true; 1288 1289 // Out of order. 1290 unsigned PredR = CmpI->getOperand(0).getReg(); 1291 bool FoundBump = false; 1292 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1293 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1294 MachineInstr *In = &*I; 1295 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1296 MachineOperand &MO = In->getOperand(i); 1297 if (MO.isReg() && MO.isUse()) { 1298 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1299 return false; 1300 } 1301 } 1302 1303 if (In == BumpI) { 1304 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1305 FoundBump = true; 1306 break; 1307 } 1308 } 1309 assert (FoundBump && "Cannot determine instruction order"); 1310 return FoundBump; 1311 } 1312 1313 /// This function is required to break recursion. Visiting phis in a loop may 1314 /// result in recursion during compilation. We break the recursion by making 1315 /// sure that we visit a MachineOperand and its definition in a 1316 /// MachineInstruction only once. If we attempt to visit more than once, then 1317 /// there is recursion, and will return false. 1318 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1319 MachineInstr *MI, 1320 const MachineOperand *MO, 1321 LoopFeederMap &LoopFeederPhi) const { 1322 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1323 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1324 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1325 // Ignore all BBs that form Loop. 1326 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1327 MachineBasicBlock *MBB = Blocks[i]; 1328 if (A == MBB) 1329 return false; 1330 } 1331 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1332 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1333 return true; 1334 } else 1335 // Already visited node. 1336 return false; 1337 } 1338 1339 /// Return true if a Phi may generate a value that can underflow. 1340 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1341 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1342 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1343 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1344 assert(Phi->isPHI() && "Expecting a Phi."); 1345 // Walk through each Phi, and its used operands. Make sure that 1346 // if there is recursion in Phi, we won't generate hardware loops. 1347 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1348 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1349 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1350 Phi->getParent(), L, LoopFeederPhi)) 1351 return true; 1352 return false; 1353 } 1354 1355 /// Return true if the induction variable can underflow in the first iteration. 1356 /// An example, is an initial unsigned value that is 0 and is decrement in the 1357 /// first itertion of a do-while loop. In this case, we cannot generate a 1358 /// hardware loop because the endloop instruction does not decrement the loop 1359 /// counter if it is <= 1. We only need to perform this analysis if the 1360 /// initial value is a register. 1361 /// 1362 /// This function assumes the initial value may underfow unless proven 1363 /// otherwise. If the type is signed, then we don't care because signed 1364 /// underflow is undefined. We attempt to prove the initial value is not 1365 /// zero by perfoming a crude analysis of the loop counter. This function 1366 /// checks if the initial value is used in any comparison prior to the loop 1367 /// and, if so, assumes the comparison is a range check. This is inexact, 1368 /// but will catch the simple cases. 1369 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1370 const MachineOperand *InitVal, const MachineOperand *EndVal, 1371 MachineBasicBlock *MBB, MachineLoop *L, 1372 LoopFeederMap &LoopFeederPhi) const { 1373 // Only check register values since they are unknown. 1374 if (!InitVal->isReg()) 1375 return false; 1376 1377 if (!EndVal->isImm()) 1378 return false; 1379 1380 // A register value that is assigned an immediate is a known value, and it 1381 // won't underflow in the first iteration. 1382 int64_t Imm; 1383 if (checkForImmediate(*InitVal, Imm)) 1384 return (EndVal->getImm() == Imm); 1385 1386 unsigned Reg = InitVal->getReg(); 1387 1388 // We don't know the value of a physical register. 1389 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1390 return true; 1391 1392 MachineInstr *Def = MRI->getVRegDef(Reg); 1393 if (!Def) 1394 return true; 1395 1396 // If the initial value is a Phi or copy and the operands may not underflow, 1397 // then the definition cannot be underflow either. 1398 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1399 L, LoopFeederPhi)) 1400 return false; 1401 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1402 EndVal, Def->getParent(), 1403 L, LoopFeederPhi)) 1404 return false; 1405 1406 // Iterate over the uses of the initial value. If the initial value is used 1407 // in a compare, then we assume this is a range check that ensures the loop 1408 // doesn't underflow. This is not an exact test and should be improved. 1409 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1410 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1411 MachineInstr *MI = &*I; 1412 unsigned CmpReg1 = 0, CmpReg2 = 0; 1413 int CmpMask = 0, CmpValue = 0; 1414 1415 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1416 continue; 1417 1418 MachineBasicBlock *TBB = 0, *FBB = 0; 1419 SmallVector<MachineOperand, 2> Cond; 1420 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1421 continue; 1422 1423 Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0); 1424 if (Cmp == 0) 1425 continue; 1426 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1427 Cmp = Comparison::getNegatedComparison(Cmp); 1428 if (CmpReg2 != 0 && CmpReg2 == Reg) 1429 Cmp = Comparison::getSwappedComparison(Cmp); 1430 1431 // Signed underflow is undefined. 1432 if (Comparison::isSigned(Cmp)) 1433 return false; 1434 1435 // Check if there is a comparison of the initial value. If the initial value 1436 // is greater than or not equal to another value, then assume this is a 1437 // range check. 1438 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1439 return false; 1440 } 1441 1442 // OK - this is a hack that needs to be improved. We really need to analyze 1443 // the instructions performed on the initial value. This works on the simplest 1444 // cases only. 1445 if (!Def->isCopy() && !Def->isPHI()) 1446 return false; 1447 1448 return true; 1449 } 1450 1451 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1452 int64_t &Val) const { 1453 if (MO.isImm()) { 1454 Val = MO.getImm(); 1455 return true; 1456 } 1457 if (!MO.isReg()) 1458 return false; 1459 1460 // MO is a register. Check whether it is defined as an immediate value, 1461 // and if so, get the value of it in TV. That value will then need to be 1462 // processed to handle potential subregisters in MO. 1463 int64_t TV; 1464 1465 unsigned R = MO.getReg(); 1466 if (!TargetRegisterInfo::isVirtualRegister(R)) 1467 return false; 1468 MachineInstr *DI = MRI->getVRegDef(R); 1469 unsigned DOpc = DI->getOpcode(); 1470 switch (DOpc) { 1471 case TargetOpcode::COPY: 1472 case Hexagon::A2_tfrsi: 1473 case Hexagon::A2_tfrpi: 1474 case Hexagon::CONST32: 1475 case Hexagon::CONST64: { 1476 // Call recursively to avoid an extra check whether operand(1) is 1477 // indeed an immediate (it could be a global address, for example), 1478 // plus we can handle COPY at the same time. 1479 if (!checkForImmediate(DI->getOperand(1), TV)) 1480 return false; 1481 break; 1482 } 1483 case Hexagon::A2_combineii: 1484 case Hexagon::A4_combineir: 1485 case Hexagon::A4_combineii: 1486 case Hexagon::A4_combineri: 1487 case Hexagon::A2_combinew: { 1488 const MachineOperand &S1 = DI->getOperand(1); 1489 const MachineOperand &S2 = DI->getOperand(2); 1490 int64_t V1, V2; 1491 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1492 return false; 1493 TV = V2 | (V1 << 32); 1494 break; 1495 } 1496 case TargetOpcode::REG_SEQUENCE: { 1497 const MachineOperand &S1 = DI->getOperand(1); 1498 const MachineOperand &S3 = DI->getOperand(3); 1499 int64_t V1, V3; 1500 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1501 return false; 1502 unsigned Sub2 = DI->getOperand(2).getImm(); 1503 unsigned Sub4 = DI->getOperand(4).getImm(); 1504 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1505 TV = V1 | (V3 << 32); 1506 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1507 TV = V3 | (V1 << 32); 1508 else 1509 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1510 break; 1511 } 1512 1513 default: 1514 return false; 1515 } 1516 1517 // By now, we should have successfully obtained the immediate value defining 1518 // the register referenced in MO. Handle a potential use of a subregister. 1519 switch (MO.getSubReg()) { 1520 case Hexagon::isub_lo: 1521 Val = TV & 0xFFFFFFFFULL; 1522 break; 1523 case Hexagon::isub_hi: 1524 Val = (TV >> 32) & 0xFFFFFFFFULL; 1525 break; 1526 default: 1527 Val = TV; 1528 break; 1529 } 1530 return true; 1531 } 1532 1533 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1534 if (MO.isImm()) { 1535 MO.setImm(Val); 1536 return; 1537 } 1538 1539 assert(MO.isReg()); 1540 unsigned R = MO.getReg(); 1541 MachineInstr *DI = MRI->getVRegDef(R); 1542 1543 const TargetRegisterClass *RC = MRI->getRegClass(R); 1544 unsigned NewR = MRI->createVirtualRegister(RC); 1545 MachineBasicBlock &B = *DI->getParent(); 1546 DebugLoc DL = DI->getDebugLoc(); 1547 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1548 MO.setReg(NewR); 1549 } 1550 1551 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1552 // These two instructions are not extendable. 1553 if (CmpOpc == Hexagon::A4_cmpbeqi) 1554 return isUInt<8>(Imm); 1555 if (CmpOpc == Hexagon::A4_cmpbgti) 1556 return isInt<8>(Imm); 1557 // The rest of the comparison-with-immediate instructions are extendable. 1558 return true; 1559 } 1560 1561 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1562 MachineBasicBlock *Header = L->getHeader(); 1563 MachineBasicBlock *Latch = L->getLoopLatch(); 1564 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1565 1566 if (!(Header && Latch && ExitingBlock)) 1567 return false; 1568 1569 // These data structures follow the same concept as the corresponding 1570 // ones in findInductionRegister (where some comments are). 1571 typedef std::pair<unsigned,int64_t> RegisterBump; 1572 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1573 typedef std::set<RegisterInduction> RegisterInductionSet; 1574 1575 // Register candidates for induction variables, with their associated bumps. 1576 RegisterInductionSet IndRegs; 1577 1578 // Look for induction patterns: 1579 // vreg1 = PHI ..., [ latch, vreg2 ] 1580 // vreg2 = ADD vreg1, imm 1581 typedef MachineBasicBlock::instr_iterator instr_iterator; 1582 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1583 I != E && I->isPHI(); ++I) { 1584 MachineInstr *Phi = &*I; 1585 1586 // Have a PHI instruction. 1587 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1588 if (Phi->getOperand(i+1).getMBB() != Latch) 1589 continue; 1590 1591 unsigned PhiReg = Phi->getOperand(i).getReg(); 1592 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1593 1594 if (DI->getDesc().isAdd()) { 1595 // If the register operand to the add/sub is the PHI we are looking 1596 // at, this meets the induction pattern. 1597 unsigned IndReg = DI->getOperand(1).getReg(); 1598 MachineOperand &Opnd2 = DI->getOperand(2); 1599 int64_t V; 1600 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1601 unsigned UpdReg = DI->getOperand(0).getReg(); 1602 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1603 } 1604 } 1605 } // for (i) 1606 } // for (instr) 1607 1608 if (IndRegs.empty()) 1609 return false; 1610 1611 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1612 SmallVector<MachineOperand,2> Cond; 1613 // AnalyzeBranch returns true if it fails to analyze branch. 1614 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1615 if (NotAnalyzed || Cond.empty()) 1616 return false; 1617 1618 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1619 MachineBasicBlock *LTB = 0, *LFB = 0; 1620 SmallVector<MachineOperand,2> LCond; 1621 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1622 if (NotAnalyzed) 1623 return false; 1624 1625 // Since latch is not the exiting block, the latch branch should be an 1626 // unconditional branch to the loop header. 1627 if (TB == Latch) 1628 TB = (LTB == Header) ? LTB : LFB; 1629 else 1630 FB = (LTB == Header) ? LTB : LFB; 1631 } 1632 if (TB != Header) { 1633 if (FB != Header) { 1634 // The latch/exit block does not go back to the header. 1635 return false; 1636 } 1637 // FB is the header (i.e., uncond. jump to branch header) 1638 // In this case, the LoopBody -> TB should not be a back edge otherwise 1639 // it could result in an infinite loop after conversion to hw_loop. 1640 // This case can happen when the Latch has two jumps like this: 1641 // Jmp_c OuterLoopHeader <-- TB 1642 // Jmp InnerLoopHeader <-- FB 1643 if (MDT->dominates(TB, FB)) 1644 return false; 1645 } 1646 1647 // Expecting a predicate register as a condition. It won't be a hardware 1648 // predicate register at this point yet, just a vreg. 1649 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1650 // into Cond, followed by the predicate register. For non-negated branches 1651 // it's just the register. 1652 unsigned CSz = Cond.size(); 1653 if (CSz != 1 && CSz != 2) 1654 return false; 1655 1656 if (!Cond[CSz-1].isReg()) 1657 return false; 1658 1659 unsigned P = Cond[CSz-1].getReg(); 1660 MachineInstr *PredDef = MRI->getVRegDef(P); 1661 1662 if (!PredDef->isCompare()) 1663 return false; 1664 1665 SmallSet<unsigned,2> CmpRegs; 1666 MachineOperand *CmpImmOp = nullptr; 1667 1668 // Go over all operands to the compare and look for immediate and register 1669 // operands. Assume that if the compare has a single register use and a 1670 // single immediate operand, then the register is being compared with the 1671 // immediate value. 1672 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1673 MachineOperand &MO = PredDef->getOperand(i); 1674 if (MO.isReg()) { 1675 // Skip all implicit references. In one case there was: 1676 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1677 if (MO.isImplicit()) 1678 continue; 1679 if (MO.isUse()) { 1680 if (!isImmediate(MO)) { 1681 CmpRegs.insert(MO.getReg()); 1682 continue; 1683 } 1684 // Consider the register to be the "immediate" operand. 1685 if (CmpImmOp) 1686 return false; 1687 CmpImmOp = &MO; 1688 } 1689 } else if (MO.isImm()) { 1690 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1691 return false; 1692 CmpImmOp = &MO; 1693 } 1694 } 1695 1696 if (CmpRegs.empty()) 1697 return false; 1698 1699 // Check if the compared register follows the order we want. Fix if needed. 1700 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1701 I != E; ++I) { 1702 // This is a success. If the register used in the comparison is one that 1703 // we have identified as a bumped (updated) induction register, there is 1704 // nothing to do. 1705 if (CmpRegs.count(I->first)) 1706 return true; 1707 1708 // Otherwise, if the register being compared comes out of a PHI node, 1709 // and has been recognized as following the induction pattern, and is 1710 // compared against an immediate, we can fix it. 1711 const RegisterBump &RB = I->second; 1712 if (CmpRegs.count(RB.first)) { 1713 if (!CmpImmOp) { 1714 // If both operands to the compare instruction are registers, see if 1715 // it can be changed to use induction register as one of the operands. 1716 MachineInstr *IndI = nullptr; 1717 MachineInstr *nonIndI = nullptr; 1718 MachineOperand *IndMO = nullptr; 1719 MachineOperand *nonIndMO = nullptr; 1720 1721 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1722 MachineOperand &MO = PredDef->getOperand(i); 1723 if (MO.isReg() && MO.getReg() == RB.first) { 1724 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1725 << *(MRI->getVRegDef(I->first))); 1726 if (IndI) 1727 return false; 1728 1729 IndI = MRI->getVRegDef(I->first); 1730 IndMO = &MO; 1731 } else if (MO.isReg()) { 1732 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1733 << *(MRI->getVRegDef(MO.getReg()))); 1734 if (nonIndI) 1735 return false; 1736 1737 nonIndI = MRI->getVRegDef(MO.getReg()); 1738 nonIndMO = &MO; 1739 } 1740 } 1741 if (IndI && nonIndI && 1742 nonIndI->getOpcode() == Hexagon::A2_addi && 1743 nonIndI->getOperand(2).isImm() && 1744 nonIndI->getOperand(2).getImm() == - RB.second) { 1745 bool Order = orderBumpCompare(IndI, PredDef); 1746 if (Order) { 1747 IndMO->setReg(I->first); 1748 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1749 return true; 1750 } 1751 } 1752 return false; 1753 } 1754 1755 // It is not valid to do this transformation on an unsigned comparison 1756 // because it may underflow. 1757 Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0); 1758 if (!Cmp || Comparison::isUnsigned(Cmp)) 1759 return false; 1760 1761 // If the register is being compared against an immediate, try changing 1762 // the compare instruction to use induction register and adjust the 1763 // immediate operand. 1764 int64_t CmpImm = getImmediate(*CmpImmOp); 1765 int64_t V = RB.second; 1766 // Handle Overflow (64-bit). 1767 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1768 ((V < 0) && (CmpImm < INT64_MIN - V))) 1769 return false; 1770 CmpImm += V; 1771 // Most comparisons of register against an immediate value allow 1772 // the immediate to be constant-extended. There are some exceptions 1773 // though. Make sure the new combination will work. 1774 if (CmpImmOp->isImm()) 1775 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1776 return false; 1777 1778 // Make sure that the compare happens after the bump. Otherwise, 1779 // after the fixup, the compare would use a yet-undefined register. 1780 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1781 bool Order = orderBumpCompare(BumpI, PredDef); 1782 if (!Order) 1783 return false; 1784 1785 // Finally, fix the compare instruction. 1786 setImmediate(*CmpImmOp, CmpImm); 1787 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1788 MachineOperand &MO = PredDef->getOperand(i); 1789 if (MO.isReg() && MO.getReg() == RB.first) { 1790 MO.setReg(I->first); 1791 return true; 1792 } 1793 } 1794 } 1795 } 1796 1797 return false; 1798 } 1799 1800 /// createPreheaderForLoop - Create a preheader for a given loop. 1801 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1802 MachineLoop *L) { 1803 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1804 return TmpPH; 1805 if (!HWCreatePreheader) 1806 return nullptr; 1807 1808 MachineBasicBlock *Header = L->getHeader(); 1809 MachineBasicBlock *Latch = L->getLoopLatch(); 1810 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1811 MachineFunction *MF = Header->getParent(); 1812 DebugLoc DL; 1813 1814 #ifndef NDEBUG 1815 if ((PHFn != "") && (PHFn != MF->getName())) 1816 return nullptr; 1817 #endif 1818 1819 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1820 return nullptr; 1821 1822 typedef MachineBasicBlock::instr_iterator instr_iterator; 1823 1824 // Verify that all existing predecessors have analyzable branches 1825 // (or no branches at all). 1826 typedef std::vector<MachineBasicBlock*> MBBVector; 1827 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1828 SmallVector<MachineOperand,2> Tmp1; 1829 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1830 1831 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1832 return nullptr; 1833 1834 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1835 MachineBasicBlock *PB = *I; 1836 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1837 if (NotAnalyzed) 1838 return nullptr; 1839 } 1840 1841 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1842 MF->insert(Header->getIterator(), NewPH); 1843 1844 if (Header->pred_size() > 2) { 1845 // Ensure that the header has only two predecessors: the preheader and 1846 // the loop latch. Any additional predecessors of the header should 1847 // join at the newly created preheader. Inspect all PHI nodes from the 1848 // header and create appropriate corresponding PHI nodes in the preheader. 1849 1850 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1851 I != E && I->isPHI(); ++I) { 1852 MachineInstr *PN = &*I; 1853 1854 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1855 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1856 NewPH->insert(NewPH->end(), NewPN); 1857 1858 unsigned PR = PN->getOperand(0).getReg(); 1859 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1860 unsigned NewPR = MRI->createVirtualRegister(RC); 1861 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1862 1863 // Copy all non-latch operands of a header's PHI node to the newly 1864 // created PHI node in the preheader. 1865 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1866 unsigned PredR = PN->getOperand(i).getReg(); 1867 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1868 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1869 if (PredB == Latch) 1870 continue; 1871 1872 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1873 MO.setSubReg(PredRSub); 1874 NewPN->addOperand(MO); 1875 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1876 } 1877 1878 // Remove copied operands from the old PHI node and add the value 1879 // coming from the preheader's PHI. 1880 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1881 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1882 if (PredB != Latch) { 1883 PN->RemoveOperand(i+1); 1884 PN->RemoveOperand(i); 1885 } 1886 } 1887 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1888 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1889 } 1890 1891 } else { 1892 assert(Header->pred_size() == 2); 1893 1894 // The header has only two predecessors, but the non-latch predecessor 1895 // is not a preheader (e.g. it has other successors, etc.) 1896 // In such a case we don't need any extra PHI nodes in the new preheader, 1897 // all we need is to adjust existing PHIs in the header to now refer to 1898 // the new preheader. 1899 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1900 I != E && I->isPHI(); ++I) { 1901 MachineInstr *PN = &*I; 1902 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1903 MachineOperand &MO = PN->getOperand(i+1); 1904 if (MO.getMBB() != Latch) 1905 MO.setMBB(NewPH); 1906 } 1907 } 1908 } 1909 1910 // "Reroute" the CFG edges to link in the new preheader. 1911 // If any of the predecessors falls through to the header, insert a branch 1912 // to the new preheader in that place. 1913 SmallVector<MachineOperand,1> Tmp2; 1914 SmallVector<MachineOperand,1> EmptyCond; 1915 1916 TB = FB = nullptr; 1917 1918 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1919 MachineBasicBlock *PB = *I; 1920 if (PB != Latch) { 1921 Tmp2.clear(); 1922 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1923 (void)NotAnalyzed; // suppress compiler warning 1924 assert (!NotAnalyzed && "Should be analyzable!"); 1925 if (TB != Header && (Tmp2.empty() || FB != Header)) 1926 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1927 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1928 } 1929 } 1930 1931 // It can happen that the latch block will fall through into the header. 1932 // Insert an unconditional branch to the header. 1933 TB = FB = nullptr; 1934 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1935 (void)LatchNotAnalyzed; // suppress compiler warning 1936 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1937 if (!TB && !FB) 1938 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1939 1940 // Finally, the branch from the preheader to the header. 1941 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1942 NewPH->addSuccessor(Header); 1943 1944 MachineLoop *ParentLoop = L->getParentLoop(); 1945 if (ParentLoop) 1946 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1947 1948 // Update the dominator information with the new preheader. 1949 if (MDT) { 1950 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1951 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1952 MDT->addNewBlock(NewPH, DHN->getBlock()); 1953 MDT->changeImmediateDominator(Header, NewPH); 1954 } 1955 } 1956 } 1957 1958 return NewPH; 1959 } 1960