1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/SmallSet.h" 29 #include "Hexagon.h" 30 #include "HexagonSubtarget.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/PassSupport.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include <algorithm> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "hwloops" 49 50 #ifndef NDEBUG 51 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 52 53 // Option to create preheader only for a specific function. 54 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 55 cl::init("")); 56 #endif 57 58 // Option to create a preheader if one doesn't exist. 59 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 60 cl::Hidden, cl::init(true), 61 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 62 63 // Turn it off by default. If a preheader block is not created here, the 64 // software pipeliner may be unable to find a block suitable to serve as 65 // a preheader. In that case SWP will not run. 66 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 67 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 68 "instructions")); 69 70 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 71 72 namespace llvm { 73 FunctionPass *createHexagonHardwareLoops(); 74 void initializeHexagonHardwareLoopsPass(PassRegistry&); 75 } 76 77 namespace { 78 class CountValue; 79 struct HexagonHardwareLoops : public MachineFunctionPass { 80 MachineLoopInfo *MLI; 81 MachineRegisterInfo *MRI; 82 MachineDominatorTree *MDT; 83 const HexagonInstrInfo *TII; 84 #ifndef NDEBUG 85 static int Counter; 86 #endif 87 88 public: 89 static char ID; 90 91 HexagonHardwareLoops() : MachineFunctionPass(ID) { 92 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 93 } 94 95 bool runOnMachineFunction(MachineFunction &MF) override; 96 97 const char *getPassName() const override { return "Hexagon Hardware Loops"; } 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.addRequired<MachineDominatorTree>(); 101 AU.addRequired<MachineLoopInfo>(); 102 MachineFunctionPass::getAnalysisUsage(AU); 103 } 104 105 private: 106 typedef std::map<unsigned, MachineInstr *> LoopFeederMap; 107 108 /// Kinds of comparisons in the compare instructions. 109 struct Comparison { 110 enum Kind { 111 EQ = 0x01, 112 NE = 0x02, 113 L = 0x04, 114 G = 0x08, 115 U = 0x40, 116 LTs = L, 117 LEs = L | EQ, 118 GTs = G, 119 GEs = G | EQ, 120 LTu = L | U, 121 LEu = L | EQ | U, 122 GTu = G | U, 123 GEu = G | EQ | U 124 }; 125 126 static Kind getSwappedComparison(Kind Cmp) { 127 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 128 if ((Cmp & L) || (Cmp & G)) 129 return (Kind)(Cmp ^ (L|G)); 130 return Cmp; 131 } 132 133 static Kind getNegatedComparison(Kind Cmp) { 134 if ((Cmp & L) || (Cmp & G)) 135 return (Kind)((Cmp ^ (L | G)) ^ EQ); 136 if ((Cmp & NE) || (Cmp & EQ)) 137 return (Kind)(Cmp ^ (EQ | NE)); 138 return (Kind)0; 139 } 140 141 static bool isSigned(Kind Cmp) { 142 return (Cmp & (L | G) && !(Cmp & U)); 143 } 144 145 static bool isUnsigned(Kind Cmp) { 146 return (Cmp & U); 147 } 148 149 }; 150 151 /// \brief Find the register that contains the loop controlling 152 /// induction variable. 153 /// If successful, it will return true and set the \p Reg, \p IVBump 154 /// and \p IVOp arguments. Otherwise it will return false. 155 /// The returned induction register is the register R that follows the 156 /// following induction pattern: 157 /// loop: 158 /// R = phi ..., [ R.next, LatchBlock ] 159 /// R.next = R + #bump 160 /// if (R.next < #N) goto loop 161 /// IVBump is the immediate value added to R, and IVOp is the instruction 162 /// "R.next = R + #bump". 163 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 164 int64_t &IVBump, MachineInstr *&IVOp) const; 165 166 /// \brief Return the comparison kind for the specified opcode. 167 Comparison::Kind getComparisonKind(unsigned CondOpc, 168 MachineOperand *InitialValue, 169 const MachineOperand *Endvalue, 170 int64_t IVBump) const; 171 172 /// \brief Analyze the statements in a loop to determine if the loop 173 /// has a computable trip count and, if so, return a value that represents 174 /// the trip count expression. 175 CountValue *getLoopTripCount(MachineLoop *L, 176 SmallVectorImpl<MachineInstr *> &OldInsts); 177 178 /// \brief Return the expression that represents the number of times 179 /// a loop iterates. The function takes the operands that represent the 180 /// loop start value, loop end value, and induction value. Based upon 181 /// these operands, the function attempts to compute the trip count. 182 /// If the trip count is not directly available (as an immediate value, 183 /// or a register), the function will attempt to insert computation of it 184 /// to the loop's preheader. 185 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 186 const MachineOperand *End, unsigned IVReg, 187 int64_t IVBump, Comparison::Kind Cmp) const; 188 189 /// \brief Return true if the instruction is not valid within a hardware 190 /// loop. 191 bool isInvalidLoopOperation(const MachineInstr *MI, 192 bool IsInnerHWLoop) const; 193 194 /// \brief Return true if the loop contains an instruction that inhibits 195 /// using the hardware loop. 196 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 197 198 /// \brief Given a loop, check if we can convert it to a hardware loop. 199 /// If so, then perform the conversion and return true. 200 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 201 202 /// \brief Return true if the instruction is now dead. 203 bool isDead(const MachineInstr *MI, 204 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 205 206 /// \brief Remove the instruction if it is now dead. 207 void removeIfDead(MachineInstr *MI); 208 209 /// \brief Make sure that the "bump" instruction executes before the 210 /// compare. We need that for the IV fixup, so that the compare 211 /// instruction would not use a bumped value that has not yet been 212 /// defined. If the instructions are out of order, try to reorder them. 213 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 214 215 /// \brief Return true if MO and MI pair is visited only once. If visited 216 /// more than once, this indicates there is recursion. In such a case, 217 /// return false. 218 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 219 const MachineOperand *MO, 220 LoopFeederMap &LoopFeederPhi) const; 221 222 /// \brief Return true if the Phi may generate a value that may underflow, 223 /// or may wrap. 224 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 225 MachineBasicBlock *MBB, MachineLoop *L, 226 LoopFeederMap &LoopFeederPhi) const; 227 228 /// \brief Return true if the induction variable may underflow an unsigned 229 /// value in the first iteration. 230 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 231 const MachineOperand *EndVal, 232 MachineBasicBlock *MBB, MachineLoop *L, 233 LoopFeederMap &LoopFeederPhi) const; 234 235 /// \brief Check if the given operand has a compile-time known constant 236 /// value. Return true if yes, and false otherwise. When returning true, set 237 /// Val to the corresponding constant value. 238 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 239 240 /// \brief Check if the operand has a compile-time known constant value. 241 bool isImmediate(const MachineOperand &MO) const { 242 int64_t V; 243 return checkForImmediate(MO, V); 244 } 245 246 /// \brief Return the immediate for the specified operand. 247 int64_t getImmediate(const MachineOperand &MO) const { 248 int64_t V; 249 if (!checkForImmediate(MO, V)) 250 llvm_unreachable("Invalid operand"); 251 return V; 252 } 253 254 /// \brief Reset the given machine operand to now refer to a new immediate 255 /// value. Assumes that the operand was already referencing an immediate 256 /// value, either directly, or via a register. 257 void setImmediate(MachineOperand &MO, int64_t Val); 258 259 /// \brief Fix the data flow of the induction varible. 260 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 261 /// | 262 /// +-> back to phi 263 /// where "bump" is the increment of the induction variable: 264 /// iv = iv + #const. 265 /// Due to some prior code transformations, the actual flow may look 266 /// like this: 267 /// phi -+-> bump ---> back to phi 268 /// | 269 /// +-> comparison-in-latch (against upper_bound-bump), 270 /// i.e. the comparison that controls the loop execution may be using 271 /// the value of the induction variable from before the increment. 272 /// 273 /// Return true if the loop's flow is the desired one (i.e. it's 274 /// either been fixed, or no fixing was necessary). 275 /// Otherwise, return false. This can happen if the induction variable 276 /// couldn't be identified, or if the value in the latch's comparison 277 /// cannot be adjusted to reflect the post-bump value. 278 bool fixupInductionVariable(MachineLoop *L); 279 280 /// \brief Given a loop, if it does not have a preheader, create one. 281 /// Return the block that is the preheader. 282 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 283 }; 284 285 char HexagonHardwareLoops::ID = 0; 286 #ifndef NDEBUG 287 int HexagonHardwareLoops::Counter = 0; 288 #endif 289 290 /// \brief Abstraction for a trip count of a loop. A smaller version 291 /// of the MachineOperand class without the concerns of changing the 292 /// operand representation. 293 class CountValue { 294 public: 295 enum CountValueType { 296 CV_Register, 297 CV_Immediate 298 }; 299 private: 300 CountValueType Kind; 301 union Values { 302 struct { 303 unsigned Reg; 304 unsigned Sub; 305 } R; 306 unsigned ImmVal; 307 } Contents; 308 309 public: 310 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 311 Kind = t; 312 if (Kind == CV_Register) { 313 Contents.R.Reg = v; 314 Contents.R.Sub = u; 315 } else { 316 Contents.ImmVal = v; 317 } 318 } 319 bool isReg() const { return Kind == CV_Register; } 320 bool isImm() const { return Kind == CV_Immediate; } 321 322 unsigned getReg() const { 323 assert(isReg() && "Wrong CountValue accessor"); 324 return Contents.R.Reg; 325 } 326 unsigned getSubReg() const { 327 assert(isReg() && "Wrong CountValue accessor"); 328 return Contents.R.Sub; 329 } 330 unsigned getImm() const { 331 assert(isImm() && "Wrong CountValue accessor"); 332 return Contents.ImmVal; 333 } 334 335 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 336 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 337 if (isImm()) { OS << Contents.ImmVal; } 338 } 339 }; 340 } // end anonymous namespace 341 342 343 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 344 "Hexagon Hardware Loops", false, false) 345 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 346 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 347 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 348 "Hexagon Hardware Loops", false, false) 349 350 FunctionPass *llvm::createHexagonHardwareLoops() { 351 return new HexagonHardwareLoops(); 352 } 353 354 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 355 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 356 if (skipFunction(*MF.getFunction())) 357 return false; 358 359 bool Changed = false; 360 361 MLI = &getAnalysis<MachineLoopInfo>(); 362 MRI = &MF.getRegInfo(); 363 MDT = &getAnalysis<MachineDominatorTree>(); 364 TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 365 366 for (auto &L : *MLI) 367 if (!L->getParentLoop()) { 368 bool L0Used = false; 369 bool L1Used = false; 370 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 371 } 372 373 return Changed; 374 } 375 376 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 377 unsigned &Reg, 378 int64_t &IVBump, 379 MachineInstr *&IVOp 380 ) const { 381 MachineBasicBlock *Header = L->getHeader(); 382 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 383 MachineBasicBlock *Latch = L->getLoopLatch(); 384 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 385 if (!Header || !Preheader || !Latch || !ExitingBlock) 386 return false; 387 388 // This pair represents an induction register together with an immediate 389 // value that will be added to it in each loop iteration. 390 typedef std::pair<unsigned,int64_t> RegisterBump; 391 392 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 393 // from an induction operation 394 // R.next = R + bump 395 // where bump is an immediate value. 396 typedef std::map<unsigned,RegisterBump> InductionMap; 397 398 InductionMap IndMap; 399 400 typedef MachineBasicBlock::instr_iterator instr_iterator; 401 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 402 I != E && I->isPHI(); ++I) { 403 MachineInstr *Phi = &*I; 404 405 // Have a PHI instruction. Get the operand that corresponds to the 406 // latch block, and see if is a result of an addition of form "reg+imm", 407 // where the "reg" is defined by the PHI node we are looking at. 408 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 409 if (Phi->getOperand(i+1).getMBB() != Latch) 410 continue; 411 412 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 413 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 414 unsigned UpdOpc = DI->getOpcode(); 415 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 416 417 if (isAdd) { 418 // If the register operand to the add is the PHI we're looking at, this 419 // meets the induction pattern. 420 unsigned IndReg = DI->getOperand(1).getReg(); 421 MachineOperand &Opnd2 = DI->getOperand(2); 422 int64_t V; 423 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 424 unsigned UpdReg = DI->getOperand(0).getReg(); 425 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 426 } 427 } 428 } // for (i) 429 } // for (instr) 430 431 SmallVector<MachineOperand,2> Cond; 432 MachineBasicBlock *TB = nullptr, *FB = nullptr; 433 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 434 if (NotAnalyzed) 435 return false; 436 437 unsigned PredR, PredPos, PredRegFlags; 438 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 439 return false; 440 441 MachineInstr *PredI = MRI->getVRegDef(PredR); 442 if (!PredI->isCompare()) 443 return false; 444 445 unsigned CmpReg1 = 0, CmpReg2 = 0; 446 int CmpImm = 0, CmpMask = 0; 447 bool CmpAnalyzed = 448 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 449 // Fail if the compare was not analyzed, or it's not comparing a register 450 // with an immediate value. Not checking the mask here, since we handle 451 // the individual compare opcodes (including A4_cmpb*) later on. 452 if (!CmpAnalyzed) 453 return false; 454 455 // Exactly one of the input registers to the comparison should be among 456 // the induction registers. 457 InductionMap::iterator IndMapEnd = IndMap.end(); 458 InductionMap::iterator F = IndMapEnd; 459 if (CmpReg1 != 0) { 460 InductionMap::iterator F1 = IndMap.find(CmpReg1); 461 if (F1 != IndMapEnd) 462 F = F1; 463 } 464 if (CmpReg2 != 0) { 465 InductionMap::iterator F2 = IndMap.find(CmpReg2); 466 if (F2 != IndMapEnd) { 467 if (F != IndMapEnd) 468 return false; 469 F = F2; 470 } 471 } 472 if (F == IndMapEnd) 473 return false; 474 475 Reg = F->second.first; 476 IVBump = F->second.second; 477 IVOp = MRI->getVRegDef(F->first); 478 return true; 479 } 480 481 // Return the comparison kind for the specified opcode. 482 HexagonHardwareLoops::Comparison::Kind 483 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 484 MachineOperand *InitialValue, 485 const MachineOperand *EndValue, 486 int64_t IVBump) const { 487 Comparison::Kind Cmp = (Comparison::Kind)0; 488 switch (CondOpc) { 489 case Hexagon::C2_cmpeqi: 490 case Hexagon::C2_cmpeq: 491 case Hexagon::C2_cmpeqp: 492 Cmp = Comparison::EQ; 493 break; 494 case Hexagon::C4_cmpneq: 495 case Hexagon::C4_cmpneqi: 496 Cmp = Comparison::NE; 497 break; 498 case Hexagon::C4_cmplte: 499 Cmp = Comparison::LEs; 500 break; 501 case Hexagon::C4_cmplteu: 502 Cmp = Comparison::LEu; 503 break; 504 case Hexagon::C2_cmpgtui: 505 case Hexagon::C2_cmpgtu: 506 case Hexagon::C2_cmpgtup: 507 Cmp = Comparison::GTu; 508 break; 509 case Hexagon::C2_cmpgti: 510 case Hexagon::C2_cmpgt: 511 case Hexagon::C2_cmpgtp: 512 Cmp = Comparison::GTs; 513 break; 514 default: 515 return (Comparison::Kind)0; 516 } 517 return Cmp; 518 } 519 520 /// \brief Analyze the statements in a loop to determine if the loop has 521 /// a computable trip count and, if so, return a value that represents 522 /// the trip count expression. 523 /// 524 /// This function iterates over the phi nodes in the loop to check for 525 /// induction variable patterns that are used in the calculation for 526 /// the number of time the loop is executed. 527 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 528 SmallVectorImpl<MachineInstr *> &OldInsts) { 529 MachineBasicBlock *TopMBB = L->getTopBlock(); 530 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 531 assert(PI != TopMBB->pred_end() && 532 "Loop must have more than one incoming edge!"); 533 MachineBasicBlock *Backedge = *PI++; 534 if (PI == TopMBB->pred_end()) // dead loop? 535 return nullptr; 536 MachineBasicBlock *Incoming = *PI++; 537 if (PI != TopMBB->pred_end()) // multiple backedges? 538 return nullptr; 539 540 // Make sure there is one incoming and one backedge and determine which 541 // is which. 542 if (L->contains(Incoming)) { 543 if (L->contains(Backedge)) 544 return nullptr; 545 std::swap(Incoming, Backedge); 546 } else if (!L->contains(Backedge)) 547 return nullptr; 548 549 // Look for the cmp instruction to determine if we can get a useful trip 550 // count. The trip count can be either a register or an immediate. The 551 // location of the value depends upon the type (reg or imm). 552 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 553 if (!ExitingBlock) 554 return nullptr; 555 556 unsigned IVReg = 0; 557 int64_t IVBump = 0; 558 MachineInstr *IVOp; 559 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 560 if (!FoundIV) 561 return nullptr; 562 563 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 564 565 MachineOperand *InitialValue = nullptr; 566 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 567 MachineBasicBlock *Latch = L->getLoopLatch(); 568 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 569 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 570 if (MBB == Preheader) 571 InitialValue = &IV_Phi->getOperand(i); 572 else if (MBB == Latch) 573 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 574 } 575 if (!InitialValue) 576 return nullptr; 577 578 SmallVector<MachineOperand,2> Cond; 579 MachineBasicBlock *TB = nullptr, *FB = nullptr; 580 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 581 if (NotAnalyzed) 582 return nullptr; 583 584 MachineBasicBlock *Header = L->getHeader(); 585 // TB must be non-null. If FB is also non-null, one of them must be 586 // the header. Otherwise, branch to TB could be exiting the loop, and 587 // the fall through can go to the header. 588 assert (TB && "Exit block without a branch?"); 589 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 590 MachineBasicBlock *LTB = 0, *LFB = 0; 591 SmallVector<MachineOperand,2> LCond; 592 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 593 if (NotAnalyzed) 594 return nullptr; 595 if (TB == Latch) 596 TB = (LTB == Header) ? LTB : LFB; 597 else 598 FB = (LTB == Header) ? LTB: LFB; 599 } 600 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 601 if (!TB || (FB && TB != Header && FB != Header)) 602 return nullptr; 603 604 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 605 // to put imm(0), followed by P in the vector Cond. 606 // If TB is not the header, it means that the "not-taken" path must lead 607 // to the header. 608 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 609 unsigned PredReg, PredPos, PredRegFlags; 610 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 611 return nullptr; 612 MachineInstr *CondI = MRI->getVRegDef(PredReg); 613 unsigned CondOpc = CondI->getOpcode(); 614 615 unsigned CmpReg1 = 0, CmpReg2 = 0; 616 int Mask = 0, ImmValue = 0; 617 bool AnalyzedCmp = 618 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 619 if (!AnalyzedCmp) 620 return nullptr; 621 622 // The comparison operator type determines how we compute the loop 623 // trip count. 624 OldInsts.push_back(CondI); 625 OldInsts.push_back(IVOp); 626 627 // Sadly, the following code gets information based on the position 628 // of the operands in the compare instruction. This has to be done 629 // this way, because the comparisons check for a specific relationship 630 // between the operands (e.g. is-less-than), rather than to find out 631 // what relationship the operands are in (as on PPC). 632 Comparison::Kind Cmp; 633 bool isSwapped = false; 634 const MachineOperand &Op1 = CondI->getOperand(1); 635 const MachineOperand &Op2 = CondI->getOperand(2); 636 const MachineOperand *EndValue = nullptr; 637 638 if (Op1.isReg()) { 639 if (Op2.isImm() || Op1.getReg() == IVReg) 640 EndValue = &Op2; 641 else { 642 EndValue = &Op1; 643 isSwapped = true; 644 } 645 } 646 647 if (!EndValue) 648 return nullptr; 649 650 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 651 if (!Cmp) 652 return nullptr; 653 if (Negated) 654 Cmp = Comparison::getNegatedComparison(Cmp); 655 if (isSwapped) 656 Cmp = Comparison::getSwappedComparison(Cmp); 657 658 if (InitialValue->isReg()) { 659 unsigned R = InitialValue->getReg(); 660 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 661 if (!MDT->properlyDominates(DefBB, Header)) 662 return nullptr; 663 OldInsts.push_back(MRI->getVRegDef(R)); 664 } 665 if (EndValue->isReg()) { 666 unsigned R = EndValue->getReg(); 667 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 668 if (!MDT->properlyDominates(DefBB, Header)) 669 return nullptr; 670 OldInsts.push_back(MRI->getVRegDef(R)); 671 } 672 673 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 674 } 675 676 /// \brief Helper function that returns the expression that represents the 677 /// number of times a loop iterates. The function takes the operands that 678 /// represent the loop start value, loop end value, and induction value. 679 /// Based upon these operands, the function attempts to compute the trip count. 680 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 681 const MachineOperand *Start, 682 const MachineOperand *End, 683 unsigned IVReg, 684 int64_t IVBump, 685 Comparison::Kind Cmp) const { 686 // Cannot handle comparison EQ, i.e. while (A == B). 687 if (Cmp == Comparison::EQ) 688 return nullptr; 689 690 // Check if either the start or end values are an assignment of an immediate. 691 // If so, use the immediate value rather than the register. 692 if (Start->isReg()) { 693 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 694 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 695 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 696 Start = &StartValInstr->getOperand(1); 697 } 698 if (End->isReg()) { 699 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 700 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 701 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 702 End = &EndValInstr->getOperand(1); 703 } 704 705 if (!Start->isReg() && !Start->isImm()) 706 return nullptr; 707 if (!End->isReg() && !End->isImm()) 708 return nullptr; 709 710 bool CmpLess = Cmp & Comparison::L; 711 bool CmpGreater = Cmp & Comparison::G; 712 bool CmpHasEqual = Cmp & Comparison::EQ; 713 714 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 715 if (CmpLess && IVBump < 0) 716 // Loop going while iv is "less" with the iv value going down. Must wrap. 717 return nullptr; 718 719 if (CmpGreater && IVBump > 0) 720 // Loop going while iv is "greater" with the iv value going up. Must wrap. 721 return nullptr; 722 723 // Phis that may feed into the loop. 724 LoopFeederMap LoopFeederPhi; 725 726 // Check if the initial value may be zero and can be decremented in the first 727 // iteration. If the value is zero, the endloop instruction will not decrement 728 // the loop counter, so we shouldn't generate a hardware loop in this case. 729 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 730 LoopFeederPhi)) 731 return nullptr; 732 733 if (Start->isImm() && End->isImm()) { 734 // Both, start and end are immediates. 735 int64_t StartV = Start->getImm(); 736 int64_t EndV = End->getImm(); 737 int64_t Dist = EndV - StartV; 738 if (Dist == 0) 739 return nullptr; 740 741 bool Exact = (Dist % IVBump) == 0; 742 743 if (Cmp == Comparison::NE) { 744 if (!Exact) 745 return nullptr; 746 if ((Dist < 0) ^ (IVBump < 0)) 747 return nullptr; 748 } 749 750 // For comparisons that include the final value (i.e. include equality 751 // with the final value), we need to increase the distance by 1. 752 if (CmpHasEqual) 753 Dist = Dist > 0 ? Dist+1 : Dist-1; 754 755 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 756 // CmpGreater should imply Dist < 0. These conditions could actually 757 // fail, for example, in unreachable code (which may still appear to be 758 // reachable in the CFG). 759 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 760 return nullptr; 761 762 // "Normalized" distance, i.e. with the bump set to +-1. 763 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 764 : (-Dist + (-IVBump - 1)) / (-IVBump); 765 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 766 767 uint64_t Count = Dist1; 768 769 if (Count > 0xFFFFFFFFULL) 770 return nullptr; 771 772 return new CountValue(CountValue::CV_Immediate, Count); 773 } 774 775 // A general case: Start and End are some values, but the actual 776 // iteration count may not be available. If it is not, insert 777 // a computation of it into the preheader. 778 779 // If the induction variable bump is not a power of 2, quit. 780 // Othwerise we'd need a general integer division. 781 if (!isPowerOf2_64(std::abs(IVBump))) 782 return nullptr; 783 784 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 785 assert (PH && "Should have a preheader by now"); 786 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 787 DebugLoc DL; 788 if (InsertPos != PH->end()) 789 DL = InsertPos->getDebugLoc(); 790 791 // If Start is an immediate and End is a register, the trip count 792 // will be "reg - imm". Hexagon's "subtract immediate" instruction 793 // is actually "reg + -imm". 794 795 // If the loop IV is going downwards, i.e. if the bump is negative, 796 // then the iteration count (computed as End-Start) will need to be 797 // negated. To avoid the negation, just swap Start and End. 798 if (IVBump < 0) { 799 std::swap(Start, End); 800 IVBump = -IVBump; 801 } 802 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 803 // Signedness, and "including equality" are preserved. 804 805 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 806 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 807 808 int64_t StartV = 0, EndV = 0; 809 if (Start->isImm()) 810 StartV = Start->getImm(); 811 if (End->isImm()) 812 EndV = End->getImm(); 813 814 int64_t AdjV = 0; 815 // To compute the iteration count, we would need this computation: 816 // Count = (End - Start + (IVBump-1)) / IVBump 817 // or, when CmpHasEqual: 818 // Count = (End - Start + (IVBump-1)+1) / IVBump 819 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 820 // generating an instruction specifically to add it if we can adjust 821 // the immediate values for Start or End. 822 823 if (CmpHasEqual) { 824 // Need to add 1 to the total iteration count. 825 if (Start->isImm()) 826 StartV--; 827 else if (End->isImm()) 828 EndV++; 829 else 830 AdjV += 1; 831 } 832 833 if (Cmp != Comparison::NE) { 834 if (Start->isImm()) 835 StartV -= (IVBump-1); 836 else if (End->isImm()) 837 EndV += (IVBump-1); 838 else 839 AdjV += (IVBump-1); 840 } 841 842 unsigned R = 0, SR = 0; 843 if (Start->isReg()) { 844 R = Start->getReg(); 845 SR = Start->getSubReg(); 846 } else { 847 R = End->getReg(); 848 SR = End->getSubReg(); 849 } 850 const TargetRegisterClass *RC = MRI->getRegClass(R); 851 // Hardware loops cannot handle 64-bit registers. If it's a double 852 // register, it has to have a subregister. 853 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 854 return nullptr; 855 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 856 857 // Compute DistR (register with the distance between Start and End). 858 unsigned DistR, DistSR; 859 860 // Avoid special case, where the start value is an imm(0). 861 if (Start->isImm() && StartV == 0) { 862 DistR = End->getReg(); 863 DistSR = End->getSubReg(); 864 } else { 865 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 866 (RegToImm ? TII->get(Hexagon::A2_subri) : 867 TII->get(Hexagon::A2_addi)); 868 if (RegToReg || RegToImm) { 869 unsigned SubR = MRI->createVirtualRegister(IntRC); 870 MachineInstrBuilder SubIB = 871 BuildMI(*PH, InsertPos, DL, SubD, SubR); 872 873 if (RegToReg) 874 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 875 .addReg(Start->getReg(), 0, Start->getSubReg()); 876 else 877 SubIB.addImm(EndV) 878 .addReg(Start->getReg(), 0, Start->getSubReg()); 879 DistR = SubR; 880 } else { 881 // If the loop has been unrolled, we should use the original loop count 882 // instead of recalculating the value. This will avoid additional 883 // 'Add' instruction. 884 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 885 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 886 EndValInstr->getOperand(2).getImm() == StartV) { 887 DistR = EndValInstr->getOperand(1).getReg(); 888 } else { 889 unsigned SubR = MRI->createVirtualRegister(IntRC); 890 MachineInstrBuilder SubIB = 891 BuildMI(*PH, InsertPos, DL, SubD, SubR); 892 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 893 .addImm(-StartV); 894 DistR = SubR; 895 } 896 } 897 DistSR = 0; 898 } 899 900 // From DistR, compute AdjR (register with the adjusted distance). 901 unsigned AdjR, AdjSR; 902 903 if (AdjV == 0) { 904 AdjR = DistR; 905 AdjSR = DistSR; 906 } else { 907 // Generate CountR = ADD DistR, AdjVal 908 unsigned AddR = MRI->createVirtualRegister(IntRC); 909 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 910 BuildMI(*PH, InsertPos, DL, AddD, AddR) 911 .addReg(DistR, 0, DistSR) 912 .addImm(AdjV); 913 914 AdjR = AddR; 915 AdjSR = 0; 916 } 917 918 // From AdjR, compute CountR (register with the final count). 919 unsigned CountR, CountSR; 920 921 if (IVBump == 1) { 922 CountR = AdjR; 923 CountSR = AdjSR; 924 } else { 925 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 926 unsigned Shift = Log2_32(IVBump); 927 928 // Generate NormR = LSR DistR, Shift. 929 unsigned LsrR = MRI->createVirtualRegister(IntRC); 930 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 931 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 932 .addReg(AdjR, 0, AdjSR) 933 .addImm(Shift); 934 935 CountR = LsrR; 936 CountSR = 0; 937 } 938 939 return new CountValue(CountValue::CV_Register, CountR, CountSR); 940 } 941 942 /// \brief Return true if the operation is invalid within hardware loop. 943 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 944 bool IsInnerHWLoop) const { 945 946 // Call is not allowed because the callee may use a hardware loop except for 947 // the case when the call never returns. 948 if (MI->getDesc().isCall()) 949 return !TII->doesNotReturn(*MI); 950 951 // Check if the instruction defines a hardware loop register. 952 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 953 const MachineOperand &MO = MI->getOperand(i); 954 if (!MO.isReg() || !MO.isDef()) 955 continue; 956 unsigned R = MO.getReg(); 957 if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 || 958 R == Hexagon::LC1 || R == Hexagon::SA1)) 959 return true; 960 if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1)) 961 return true; 962 } 963 return false; 964 } 965 966 /// \brief Return true if the loop contains an instruction that inhibits 967 /// the use of the hardware loop instruction. 968 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 969 bool IsInnerHWLoop) const { 970 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 971 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 972 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 973 MachineBasicBlock *MBB = Blocks[i]; 974 for (MachineBasicBlock::iterator 975 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 976 const MachineInstr *MI = &*MII; 977 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 978 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 979 return true; 980 } 981 } 982 } 983 return false; 984 } 985 986 /// \brief Returns true if the instruction is dead. This was essentially 987 /// copied from DeadMachineInstructionElim::isDead, but with special cases 988 /// for inline asm, physical registers and instructions with side effects 989 /// removed. 990 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 991 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 992 // Examine each operand. 993 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 994 const MachineOperand &MO = MI->getOperand(i); 995 if (!MO.isReg() || !MO.isDef()) 996 continue; 997 998 unsigned Reg = MO.getReg(); 999 if (MRI->use_nodbg_empty(Reg)) 1000 continue; 1001 1002 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 1003 1004 // This instruction has users, but if the only user is the phi node for the 1005 // parent block, and the only use of that phi node is this instruction, then 1006 // this instruction is dead: both it (and the phi node) can be removed. 1007 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1008 use_nodbg_iterator End = MRI->use_nodbg_end(); 1009 if (std::next(I) != End || !I->getParent()->isPHI()) 1010 return false; 1011 1012 MachineInstr *OnePhi = I->getParent(); 1013 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1014 const MachineOperand &OPO = OnePhi->getOperand(j); 1015 if (!OPO.isReg() || !OPO.isDef()) 1016 continue; 1017 1018 unsigned OPReg = OPO.getReg(); 1019 use_nodbg_iterator nextJ; 1020 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1021 J != End; J = nextJ) { 1022 nextJ = std::next(J); 1023 MachineOperand &Use = *J; 1024 MachineInstr *UseMI = Use.getParent(); 1025 1026 // If the phi node has a user that is not MI, bail. 1027 if (MI != UseMI) 1028 return false; 1029 } 1030 } 1031 DeadPhis.push_back(OnePhi); 1032 } 1033 1034 // If there are no defs with uses, the instruction is dead. 1035 return true; 1036 } 1037 1038 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1039 // This procedure was essentially copied from DeadMachineInstructionElim. 1040 1041 SmallVector<MachineInstr*, 1> DeadPhis; 1042 if (isDead(MI, DeadPhis)) { 1043 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1044 1045 // It is possible that some DBG_VALUE instructions refer to this 1046 // instruction. Examine each def operand for such references; 1047 // if found, mark the DBG_VALUE as undef (but don't delete it). 1048 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1049 const MachineOperand &MO = MI->getOperand(i); 1050 if (!MO.isReg() || !MO.isDef()) 1051 continue; 1052 unsigned Reg = MO.getReg(); 1053 MachineRegisterInfo::use_iterator nextI; 1054 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1055 E = MRI->use_end(); I != E; I = nextI) { 1056 nextI = std::next(I); // I is invalidated by the setReg 1057 MachineOperand &Use = *I; 1058 MachineInstr *UseMI = I->getParent(); 1059 if (UseMI == MI) 1060 continue; 1061 if (Use.isDebug()) 1062 UseMI->getOperand(0).setReg(0U); 1063 } 1064 } 1065 1066 MI->eraseFromParent(); 1067 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1068 DeadPhis[i]->eraseFromParent(); 1069 } 1070 } 1071 1072 /// \brief Check if the loop is a candidate for converting to a hardware 1073 /// loop. If so, then perform the transformation. 1074 /// 1075 /// This function works on innermost loops first. A loop can be converted 1076 /// if it is a counting loop; either a register value or an immediate. 1077 /// 1078 /// The code makes several assumptions about the representation of the loop 1079 /// in llvm. 1080 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1081 bool &RecL0used, 1082 bool &RecL1used) { 1083 // This is just for sanity. 1084 assert(L->getHeader() && "Loop without a header?"); 1085 1086 bool Changed = false; 1087 bool L0Used = false; 1088 bool L1Used = false; 1089 1090 // Process nested loops first. 1091 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1092 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1093 L0Used |= RecL0used; 1094 L1Used |= RecL1used; 1095 } 1096 1097 // If a nested loop has been converted, then we can't convert this loop. 1098 if (Changed && L0Used && L1Used) 1099 return Changed; 1100 1101 unsigned LOOP_i; 1102 unsigned LOOP_r; 1103 unsigned ENDLOOP; 1104 1105 // Flag used to track loopN instruction: 1106 // 1 - Hardware loop is being generated for the inner most loop. 1107 // 0 - Hardware loop is being generated for the outer loop. 1108 unsigned IsInnerHWLoop = 1; 1109 1110 if (L0Used) { 1111 LOOP_i = Hexagon::J2_loop1i; 1112 LOOP_r = Hexagon::J2_loop1r; 1113 ENDLOOP = Hexagon::ENDLOOP1; 1114 IsInnerHWLoop = 0; 1115 } else { 1116 LOOP_i = Hexagon::J2_loop0i; 1117 LOOP_r = Hexagon::J2_loop0r; 1118 ENDLOOP = Hexagon::ENDLOOP0; 1119 } 1120 1121 #ifndef NDEBUG 1122 // Stop trying after reaching the limit (if any). 1123 int Limit = HWLoopLimit; 1124 if (Limit >= 0) { 1125 if (Counter >= HWLoopLimit) 1126 return false; 1127 Counter++; 1128 } 1129 #endif 1130 1131 // Does the loop contain any invalid instructions? 1132 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1133 return false; 1134 1135 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1136 // Don't generate hw loop if the loop has more than one exit. 1137 if (!LastMBB) 1138 return false; 1139 1140 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1141 if (LastI == LastMBB->end()) 1142 return false; 1143 1144 // Is the induction variable bump feeding the latch condition? 1145 if (!fixupInductionVariable(L)) 1146 return false; 1147 1148 // Ensure the loop has a preheader: the loop instruction will be 1149 // placed there. 1150 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1151 if (!Preheader) { 1152 Preheader = createPreheaderForLoop(L); 1153 if (!Preheader) 1154 return false; 1155 } 1156 1157 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1158 1159 SmallVector<MachineInstr*, 2> OldInsts; 1160 // Are we able to determine the trip count for the loop? 1161 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1162 if (!TripCount) 1163 return false; 1164 1165 // Is the trip count available in the preheader? 1166 if (TripCount->isReg()) { 1167 // There will be a use of the register inserted into the preheader, 1168 // so make sure that the register is actually defined at that point. 1169 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1170 MachineBasicBlock *BBDef = TCDef->getParent(); 1171 if (!MDT->dominates(BBDef, Preheader)) 1172 return false; 1173 } 1174 1175 // Determine the loop start. 1176 MachineBasicBlock *TopBlock = L->getTopBlock(); 1177 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1178 MachineBasicBlock *LoopStart = 0; 1179 if (ExitingBlock != L->getLoopLatch()) { 1180 MachineBasicBlock *TB = 0, *FB = 0; 1181 SmallVector<MachineOperand, 2> Cond; 1182 1183 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1184 return false; 1185 1186 if (L->contains(TB)) 1187 LoopStart = TB; 1188 else if (L->contains(FB)) 1189 LoopStart = FB; 1190 else 1191 return false; 1192 } 1193 else 1194 LoopStart = TopBlock; 1195 1196 // Convert the loop to a hardware loop. 1197 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1198 DebugLoc DL; 1199 if (InsertPos != Preheader->end()) 1200 DL = InsertPos->getDebugLoc(); 1201 1202 if (TripCount->isReg()) { 1203 // Create a copy of the loop count register. 1204 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1205 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1206 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1207 // Add the Loop instruction to the beginning of the loop. 1208 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1209 .addReg(CountReg); 1210 } else { 1211 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1212 // Add the Loop immediate instruction to the beginning of the loop, 1213 // if the immediate fits in the instructions. Otherwise, we need to 1214 // create a new virtual register. 1215 int64_t CountImm = TripCount->getImm(); 1216 if (!TII->isValidOffset(LOOP_i, CountImm)) { 1217 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1218 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1219 .addImm(CountImm); 1220 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1221 .addMBB(LoopStart).addReg(CountReg); 1222 } else 1223 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1224 .addMBB(LoopStart).addImm(CountImm); 1225 } 1226 1227 // Make sure the loop start always has a reference in the CFG. We need 1228 // to create a BlockAddress operand to get this mechanism to work both the 1229 // MachineBasicBlock and BasicBlock objects need the flag set. 1230 LoopStart->setHasAddressTaken(); 1231 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1232 // object. 1233 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1234 1235 // Replace the loop branch with an endloop instruction. 1236 DebugLoc LastIDL = LastI->getDebugLoc(); 1237 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1238 1239 // The loop ends with either: 1240 // - a conditional branch followed by an unconditional branch, or 1241 // - a conditional branch to the loop start. 1242 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1243 LastI->getOpcode() == Hexagon::J2_jumpf) { 1244 // Delete one and change/add an uncond. branch to out of the loop. 1245 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1246 LastI = LastMBB->erase(LastI); 1247 if (!L->contains(BranchTarget)) { 1248 if (LastI != LastMBB->end()) 1249 LastI = LastMBB->erase(LastI); 1250 SmallVector<MachineOperand, 0> Cond; 1251 TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1252 } 1253 } else { 1254 // Conditional branch to loop start; just delete it. 1255 LastMBB->erase(LastI); 1256 } 1257 delete TripCount; 1258 1259 // The induction operation and the comparison may now be 1260 // unneeded. If these are unneeded, then remove them. 1261 for (unsigned i = 0; i < OldInsts.size(); ++i) 1262 removeIfDead(OldInsts[i]); 1263 1264 ++NumHWLoops; 1265 1266 // Set RecL1used and RecL0used only after hardware loop has been 1267 // successfully generated. Doing it earlier can cause wrong loop instruction 1268 // to be used. 1269 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1270 RecL1used = true; 1271 else 1272 RecL0used = true; 1273 1274 return true; 1275 } 1276 1277 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1278 MachineInstr *CmpI) { 1279 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1280 1281 MachineBasicBlock *BB = BumpI->getParent(); 1282 if (CmpI->getParent() != BB) 1283 return false; 1284 1285 typedef MachineBasicBlock::instr_iterator instr_iterator; 1286 // Check if things are in order to begin with. 1287 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1288 if (&*I == CmpI) 1289 return true; 1290 1291 // Out of order. 1292 unsigned PredR = CmpI->getOperand(0).getReg(); 1293 bool FoundBump = false; 1294 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1295 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1296 MachineInstr *In = &*I; 1297 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1298 MachineOperand &MO = In->getOperand(i); 1299 if (MO.isReg() && MO.isUse()) { 1300 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1301 return false; 1302 } 1303 } 1304 1305 if (In == BumpI) { 1306 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1307 FoundBump = true; 1308 break; 1309 } 1310 } 1311 assert (FoundBump && "Cannot determine instruction order"); 1312 return FoundBump; 1313 } 1314 1315 /// This function is required to break recursion. Visiting phis in a loop may 1316 /// result in recursion during compilation. We break the recursion by making 1317 /// sure that we visit a MachineOperand and its definition in a 1318 /// MachineInstruction only once. If we attempt to visit more than once, then 1319 /// there is recursion, and will return false. 1320 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1321 MachineInstr *MI, 1322 const MachineOperand *MO, 1323 LoopFeederMap &LoopFeederPhi) const { 1324 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1325 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1326 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1327 // Ignore all BBs that form Loop. 1328 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1329 MachineBasicBlock *MBB = Blocks[i]; 1330 if (A == MBB) 1331 return false; 1332 } 1333 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1334 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1335 return true; 1336 } else 1337 // Already visited node. 1338 return false; 1339 } 1340 1341 /// Return true if a Phi may generate a value that can underflow. 1342 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1343 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1344 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1345 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1346 assert(Phi->isPHI() && "Expecting a Phi."); 1347 // Walk through each Phi, and its used operands. Make sure that 1348 // if there is recursion in Phi, we won't generate hardware loops. 1349 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1350 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1351 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1352 Phi->getParent(), L, LoopFeederPhi)) 1353 return true; 1354 return false; 1355 } 1356 1357 /// Return true if the induction variable can underflow in the first iteration. 1358 /// An example, is an initial unsigned value that is 0 and is decrement in the 1359 /// first itertion of a do-while loop. In this case, we cannot generate a 1360 /// hardware loop because the endloop instruction does not decrement the loop 1361 /// counter if it is <= 1. We only need to perform this analysis if the 1362 /// initial value is a register. 1363 /// 1364 /// This function assumes the initial value may underfow unless proven 1365 /// otherwise. If the type is signed, then we don't care because signed 1366 /// underflow is undefined. We attempt to prove the initial value is not 1367 /// zero by perfoming a crude analysis of the loop counter. This function 1368 /// checks if the initial value is used in any comparison prior to the loop 1369 /// and, if so, assumes the comparison is a range check. This is inexact, 1370 /// but will catch the simple cases. 1371 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1372 const MachineOperand *InitVal, const MachineOperand *EndVal, 1373 MachineBasicBlock *MBB, MachineLoop *L, 1374 LoopFeederMap &LoopFeederPhi) const { 1375 // Only check register values since they are unknown. 1376 if (!InitVal->isReg()) 1377 return false; 1378 1379 if (!EndVal->isImm()) 1380 return false; 1381 1382 // A register value that is assigned an immediate is a known value, and it 1383 // won't underflow in the first iteration. 1384 int64_t Imm; 1385 if (checkForImmediate(*InitVal, Imm)) 1386 return (EndVal->getImm() == Imm); 1387 1388 unsigned Reg = InitVal->getReg(); 1389 1390 // We don't know the value of a physical register. 1391 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1392 return true; 1393 1394 MachineInstr *Def = MRI->getVRegDef(Reg); 1395 if (!Def) 1396 return true; 1397 1398 // If the initial value is a Phi or copy and the operands may not underflow, 1399 // then the definition cannot be underflow either. 1400 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1401 L, LoopFeederPhi)) 1402 return false; 1403 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1404 EndVal, Def->getParent(), 1405 L, LoopFeederPhi)) 1406 return false; 1407 1408 // Iterate over the uses of the initial value. If the initial value is used 1409 // in a compare, then we assume this is a range check that ensures the loop 1410 // doesn't underflow. This is not an exact test and should be improved. 1411 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1412 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1413 MachineInstr *MI = &*I; 1414 unsigned CmpReg1 = 0, CmpReg2 = 0; 1415 int CmpMask = 0, CmpValue = 0; 1416 1417 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1418 continue; 1419 1420 MachineBasicBlock *TBB = 0, *FBB = 0; 1421 SmallVector<MachineOperand, 2> Cond; 1422 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1423 continue; 1424 1425 Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0); 1426 if (Cmp == 0) 1427 continue; 1428 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1429 Cmp = Comparison::getNegatedComparison(Cmp); 1430 if (CmpReg2 != 0 && CmpReg2 == Reg) 1431 Cmp = Comparison::getSwappedComparison(Cmp); 1432 1433 // Signed underflow is undefined. 1434 if (Comparison::isSigned(Cmp)) 1435 return false; 1436 1437 // Check if there is a comparison of the initial value. If the initial value 1438 // is greater than or not equal to another value, then assume this is a 1439 // range check. 1440 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1441 return false; 1442 } 1443 1444 // OK - this is a hack that needs to be improved. We really need to analyze 1445 // the instructions performed on the initial value. This works on the simplest 1446 // cases only. 1447 if (!Def->isCopy() && !Def->isPHI()) 1448 return false; 1449 1450 return true; 1451 } 1452 1453 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1454 int64_t &Val) const { 1455 if (MO.isImm()) { 1456 Val = MO.getImm(); 1457 return true; 1458 } 1459 if (!MO.isReg()) 1460 return false; 1461 1462 // MO is a register. Check whether it is defined as an immediate value, 1463 // and if so, get the value of it in TV. That value will then need to be 1464 // processed to handle potential subregisters in MO. 1465 int64_t TV; 1466 1467 unsigned R = MO.getReg(); 1468 if (!TargetRegisterInfo::isVirtualRegister(R)) 1469 return false; 1470 MachineInstr *DI = MRI->getVRegDef(R); 1471 unsigned DOpc = DI->getOpcode(); 1472 switch (DOpc) { 1473 case TargetOpcode::COPY: 1474 case Hexagon::A2_tfrsi: 1475 case Hexagon::A2_tfrpi: 1476 case Hexagon::CONST32: 1477 case Hexagon::CONST64: { 1478 // Call recursively to avoid an extra check whether operand(1) is 1479 // indeed an immediate (it could be a global address, for example), 1480 // plus we can handle COPY at the same time. 1481 if (!checkForImmediate(DI->getOperand(1), TV)) 1482 return false; 1483 break; 1484 } 1485 case Hexagon::A2_combineii: 1486 case Hexagon::A4_combineir: 1487 case Hexagon::A4_combineii: 1488 case Hexagon::A4_combineri: 1489 case Hexagon::A2_combinew: { 1490 const MachineOperand &S1 = DI->getOperand(1); 1491 const MachineOperand &S2 = DI->getOperand(2); 1492 int64_t V1, V2; 1493 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1494 return false; 1495 TV = V2 | (V1 << 32); 1496 break; 1497 } 1498 case TargetOpcode::REG_SEQUENCE: { 1499 const MachineOperand &S1 = DI->getOperand(1); 1500 const MachineOperand &S3 = DI->getOperand(3); 1501 int64_t V1, V3; 1502 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1503 return false; 1504 unsigned Sub2 = DI->getOperand(2).getImm(); 1505 unsigned Sub4 = DI->getOperand(4).getImm(); 1506 if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg) 1507 TV = V1 | (V3 << 32); 1508 else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg) 1509 TV = V3 | (V1 << 32); 1510 else 1511 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1512 break; 1513 } 1514 1515 default: 1516 return false; 1517 } 1518 1519 // By now, we should have successfuly obtained the immediate value defining 1520 // the register referenced in MO. Handle a potential use of a subregister. 1521 switch (MO.getSubReg()) { 1522 case Hexagon::subreg_loreg: 1523 Val = TV & 0xFFFFFFFFULL; 1524 break; 1525 case Hexagon::subreg_hireg: 1526 Val = (TV >> 32) & 0xFFFFFFFFULL; 1527 break; 1528 default: 1529 Val = TV; 1530 break; 1531 } 1532 return true; 1533 } 1534 1535 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1536 if (MO.isImm()) { 1537 MO.setImm(Val); 1538 return; 1539 } 1540 1541 assert(MO.isReg()); 1542 unsigned R = MO.getReg(); 1543 MachineInstr *DI = MRI->getVRegDef(R); 1544 1545 const TargetRegisterClass *RC = MRI->getRegClass(R); 1546 unsigned NewR = MRI->createVirtualRegister(RC); 1547 MachineBasicBlock &B = *DI->getParent(); 1548 DebugLoc DL = DI->getDebugLoc(); 1549 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1550 MO.setReg(NewR); 1551 } 1552 1553 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1554 // These two instructions are not extendable. 1555 if (CmpOpc == Hexagon::A4_cmpbeqi) 1556 return isUInt<8>(Imm); 1557 if (CmpOpc == Hexagon::A4_cmpbgti) 1558 return isInt<8>(Imm); 1559 // The rest of the comparison-with-immediate instructions are extendable. 1560 return true; 1561 } 1562 1563 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1564 MachineBasicBlock *Header = L->getHeader(); 1565 MachineBasicBlock *Latch = L->getLoopLatch(); 1566 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1567 1568 if (!(Header && Latch && ExitingBlock)) 1569 return false; 1570 1571 // These data structures follow the same concept as the corresponding 1572 // ones in findInductionRegister (where some comments are). 1573 typedef std::pair<unsigned,int64_t> RegisterBump; 1574 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1575 typedef std::set<RegisterInduction> RegisterInductionSet; 1576 1577 // Register candidates for induction variables, with their associated bumps. 1578 RegisterInductionSet IndRegs; 1579 1580 // Look for induction patterns: 1581 // vreg1 = PHI ..., [ latch, vreg2 ] 1582 // vreg2 = ADD vreg1, imm 1583 typedef MachineBasicBlock::instr_iterator instr_iterator; 1584 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1585 I != E && I->isPHI(); ++I) { 1586 MachineInstr *Phi = &*I; 1587 1588 // Have a PHI instruction. 1589 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1590 if (Phi->getOperand(i+1).getMBB() != Latch) 1591 continue; 1592 1593 unsigned PhiReg = Phi->getOperand(i).getReg(); 1594 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1595 unsigned UpdOpc = DI->getOpcode(); 1596 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 1597 1598 if (isAdd) { 1599 // If the register operand to the add/sub is the PHI we are looking 1600 // at, this meets the induction pattern. 1601 unsigned IndReg = DI->getOperand(1).getReg(); 1602 MachineOperand &Opnd2 = DI->getOperand(2); 1603 int64_t V; 1604 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1605 unsigned UpdReg = DI->getOperand(0).getReg(); 1606 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1607 } 1608 } 1609 } // for (i) 1610 } // for (instr) 1611 1612 if (IndRegs.empty()) 1613 return false; 1614 1615 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1616 SmallVector<MachineOperand,2> Cond; 1617 // AnalyzeBranch returns true if it fails to analyze branch. 1618 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1619 if (NotAnalyzed || Cond.empty()) 1620 return false; 1621 1622 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1623 MachineBasicBlock *LTB = 0, *LFB = 0; 1624 SmallVector<MachineOperand,2> LCond; 1625 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1626 if (NotAnalyzed) 1627 return false; 1628 1629 // Since latch is not the exiting block, the latch branch should be an 1630 // unconditional branch to the loop header. 1631 if (TB == Latch) 1632 TB = (LTB == Header) ? LTB : LFB; 1633 else 1634 FB = (LTB == Header) ? LTB : LFB; 1635 } 1636 if (TB != Header) { 1637 if (FB != Header) { 1638 // The latch/exit block does not go back to the header. 1639 return false; 1640 } 1641 // FB is the header (i.e., uncond. jump to branch header) 1642 // In this case, the LoopBody -> TB should not be a back edge otherwise 1643 // it could result in an infinite loop after conversion to hw_loop. 1644 // This case can happen when the Latch has two jumps like this: 1645 // Jmp_c OuterLoopHeader <-- TB 1646 // Jmp InnerLoopHeader <-- FB 1647 if (MDT->dominates(TB, FB)) 1648 return false; 1649 } 1650 1651 // Expecting a predicate register as a condition. It won't be a hardware 1652 // predicate register at this point yet, just a vreg. 1653 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1654 // into Cond, followed by the predicate register. For non-negated branches 1655 // it's just the register. 1656 unsigned CSz = Cond.size(); 1657 if (CSz != 1 && CSz != 2) 1658 return false; 1659 1660 if (!Cond[CSz-1].isReg()) 1661 return false; 1662 1663 unsigned P = Cond[CSz-1].getReg(); 1664 MachineInstr *PredDef = MRI->getVRegDef(P); 1665 1666 if (!PredDef->isCompare()) 1667 return false; 1668 1669 SmallSet<unsigned,2> CmpRegs; 1670 MachineOperand *CmpImmOp = nullptr; 1671 1672 // Go over all operands to the compare and look for immediate and register 1673 // operands. Assume that if the compare has a single register use and a 1674 // single immediate operand, then the register is being compared with the 1675 // immediate value. 1676 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1677 MachineOperand &MO = PredDef->getOperand(i); 1678 if (MO.isReg()) { 1679 // Skip all implicit references. In one case there was: 1680 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1681 if (MO.isImplicit()) 1682 continue; 1683 if (MO.isUse()) { 1684 if (!isImmediate(MO)) { 1685 CmpRegs.insert(MO.getReg()); 1686 continue; 1687 } 1688 // Consider the register to be the "immediate" operand. 1689 if (CmpImmOp) 1690 return false; 1691 CmpImmOp = &MO; 1692 } 1693 } else if (MO.isImm()) { 1694 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1695 return false; 1696 CmpImmOp = &MO; 1697 } 1698 } 1699 1700 if (CmpRegs.empty()) 1701 return false; 1702 1703 // Check if the compared register follows the order we want. Fix if needed. 1704 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1705 I != E; ++I) { 1706 // This is a success. If the register used in the comparison is one that 1707 // we have identified as a bumped (updated) induction register, there is 1708 // nothing to do. 1709 if (CmpRegs.count(I->first)) 1710 return true; 1711 1712 // Otherwise, if the register being compared comes out of a PHI node, 1713 // and has been recognized as following the induction pattern, and is 1714 // compared against an immediate, we can fix it. 1715 const RegisterBump &RB = I->second; 1716 if (CmpRegs.count(RB.first)) { 1717 if (!CmpImmOp) { 1718 // If both operands to the compare instruction are registers, see if 1719 // it can be changed to use induction register as one of the operands. 1720 MachineInstr *IndI = nullptr; 1721 MachineInstr *nonIndI = nullptr; 1722 MachineOperand *IndMO = nullptr; 1723 MachineOperand *nonIndMO = nullptr; 1724 1725 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1726 MachineOperand &MO = PredDef->getOperand(i); 1727 if (MO.isReg() && MO.getReg() == RB.first) { 1728 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1729 << *(MRI->getVRegDef(I->first))); 1730 if (IndI) 1731 return false; 1732 1733 IndI = MRI->getVRegDef(I->first); 1734 IndMO = &MO; 1735 } else if (MO.isReg()) { 1736 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1737 << *(MRI->getVRegDef(MO.getReg()))); 1738 if (nonIndI) 1739 return false; 1740 1741 nonIndI = MRI->getVRegDef(MO.getReg()); 1742 nonIndMO = &MO; 1743 } 1744 } 1745 if (IndI && nonIndI && 1746 nonIndI->getOpcode() == Hexagon::A2_addi && 1747 nonIndI->getOperand(2).isImm() && 1748 nonIndI->getOperand(2).getImm() == - RB.second) { 1749 bool Order = orderBumpCompare(IndI, PredDef); 1750 if (Order) { 1751 IndMO->setReg(I->first); 1752 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1753 return true; 1754 } 1755 } 1756 return false; 1757 } 1758 1759 // It is not valid to do this transformation on an unsigned comparison 1760 // because it may underflow. 1761 Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0); 1762 if (!Cmp || Comparison::isUnsigned(Cmp)) 1763 return false; 1764 1765 // If the register is being compared against an immediate, try changing 1766 // the compare instruction to use induction register and adjust the 1767 // immediate operand. 1768 int64_t CmpImm = getImmediate(*CmpImmOp); 1769 int64_t V = RB.second; 1770 // Handle Overflow (64-bit). 1771 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1772 ((V < 0) && (CmpImm < INT64_MIN - V))) 1773 return false; 1774 CmpImm += V; 1775 // Most comparisons of register against an immediate value allow 1776 // the immediate to be constant-extended. There are some exceptions 1777 // though. Make sure the new combination will work. 1778 if (CmpImmOp->isImm()) 1779 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1780 return false; 1781 1782 // Make sure that the compare happens after the bump. Otherwise, 1783 // after the fixup, the compare would use a yet-undefined register. 1784 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1785 bool Order = orderBumpCompare(BumpI, PredDef); 1786 if (!Order) 1787 return false; 1788 1789 // Finally, fix the compare instruction. 1790 setImmediate(*CmpImmOp, CmpImm); 1791 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1792 MachineOperand &MO = PredDef->getOperand(i); 1793 if (MO.isReg() && MO.getReg() == RB.first) { 1794 MO.setReg(I->first); 1795 return true; 1796 } 1797 } 1798 } 1799 } 1800 1801 return false; 1802 } 1803 1804 /// createPreheaderForLoop - Create a preheader for a given loop. 1805 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1806 MachineLoop *L) { 1807 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1808 return TmpPH; 1809 if (!HWCreatePreheader) 1810 return nullptr; 1811 1812 MachineBasicBlock *Header = L->getHeader(); 1813 MachineBasicBlock *Latch = L->getLoopLatch(); 1814 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1815 MachineFunction *MF = Header->getParent(); 1816 DebugLoc DL; 1817 1818 #ifndef NDEBUG 1819 if ((PHFn != "") && (PHFn != MF->getName())) 1820 return nullptr; 1821 #endif 1822 1823 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1824 return nullptr; 1825 1826 typedef MachineBasicBlock::instr_iterator instr_iterator; 1827 1828 // Verify that all existing predecessors have analyzable branches 1829 // (or no branches at all). 1830 typedef std::vector<MachineBasicBlock*> MBBVector; 1831 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1832 SmallVector<MachineOperand,2> Tmp1; 1833 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1834 1835 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1836 return nullptr; 1837 1838 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1839 MachineBasicBlock *PB = *I; 1840 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1841 if (NotAnalyzed) 1842 return nullptr; 1843 } 1844 1845 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1846 MF->insert(Header->getIterator(), NewPH); 1847 1848 if (Header->pred_size() > 2) { 1849 // Ensure that the header has only two predecessors: the preheader and 1850 // the loop latch. Any additional predecessors of the header should 1851 // join at the newly created preheader. Inspect all PHI nodes from the 1852 // header and create appropriate corresponding PHI nodes in the preheader. 1853 1854 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1855 I != E && I->isPHI(); ++I) { 1856 MachineInstr *PN = &*I; 1857 1858 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1859 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1860 NewPH->insert(NewPH->end(), NewPN); 1861 1862 unsigned PR = PN->getOperand(0).getReg(); 1863 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1864 unsigned NewPR = MRI->createVirtualRegister(RC); 1865 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1866 1867 // Copy all non-latch operands of a header's PHI node to the newly 1868 // created PHI node in the preheader. 1869 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1870 unsigned PredR = PN->getOperand(i).getReg(); 1871 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1872 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1873 if (PredB == Latch) 1874 continue; 1875 1876 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1877 MO.setSubReg(PredRSub); 1878 NewPN->addOperand(MO); 1879 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1880 } 1881 1882 // Remove copied operands from the old PHI node and add the value 1883 // coming from the preheader's PHI. 1884 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1885 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1886 if (PredB != Latch) { 1887 PN->RemoveOperand(i+1); 1888 PN->RemoveOperand(i); 1889 } 1890 } 1891 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1892 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1893 } 1894 1895 } else { 1896 assert(Header->pred_size() == 2); 1897 1898 // The header has only two predecessors, but the non-latch predecessor 1899 // is not a preheader (e.g. it has other successors, etc.) 1900 // In such a case we don't need any extra PHI nodes in the new preheader, 1901 // all we need is to adjust existing PHIs in the header to now refer to 1902 // the new preheader. 1903 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1904 I != E && I->isPHI(); ++I) { 1905 MachineInstr *PN = &*I; 1906 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1907 MachineOperand &MO = PN->getOperand(i+1); 1908 if (MO.getMBB() != Latch) 1909 MO.setMBB(NewPH); 1910 } 1911 } 1912 } 1913 1914 // "Reroute" the CFG edges to link in the new preheader. 1915 // If any of the predecessors falls through to the header, insert a branch 1916 // to the new preheader in that place. 1917 SmallVector<MachineOperand,1> Tmp2; 1918 SmallVector<MachineOperand,1> EmptyCond; 1919 1920 TB = FB = nullptr; 1921 1922 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1923 MachineBasicBlock *PB = *I; 1924 if (PB != Latch) { 1925 Tmp2.clear(); 1926 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1927 (void)NotAnalyzed; // suppress compiler warning 1928 assert (!NotAnalyzed && "Should be analyzable!"); 1929 if (TB != Header && (Tmp2.empty() || FB != Header)) 1930 TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1931 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1932 } 1933 } 1934 1935 // It can happen that the latch block will fall through into the header. 1936 // Insert an unconditional branch to the header. 1937 TB = FB = nullptr; 1938 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1939 (void)LatchNotAnalyzed; // suppress compiler warning 1940 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1941 if (!TB && !FB) 1942 TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1943 1944 // Finally, the branch from the preheader to the header. 1945 TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1946 NewPH->addSuccessor(Header); 1947 1948 MachineLoop *ParentLoop = L->getParentLoop(); 1949 if (ParentLoop) 1950 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1951 1952 // Update the dominator information with the new preheader. 1953 if (MDT) { 1954 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1955 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1956 MDT->addNewBlock(NewPH, DHN->getBlock()); 1957 MDT->changeImmediateDominator(Header, NewPH); 1958 } 1959 } 1960 } 1961 1962 return NewPH; 1963 } 1964