xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp (revision 3818aeaeb9337d5880e9c4ecea05f68f52d09117)
1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies loops where we can generate the Hexagon hardware
11 // loop instruction.  The hardware loop can perform loop branches with a
12 // zero-cycle overhead.
13 //
14 // The pattern that defines the induction variable can changed depending on
15 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16 // normalizes induction variables, and the Loop Strength Reduction pass
17 // run by 'llc' may also make changes to the induction variable.
18 // The pattern detected by this phase is due to running Strength Reduction.
19 //
20 // Criteria for hardware loops:
21 //  - Countable loops (w/ ind. var for a trip count)
22 //  - Assumes loops are normalized by IndVarSimplify
23 //  - Try inner-most loops first
24 //  - No function calls in loops.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "HexagonInstrInfo.h"
29 #include "HexagonSubtarget.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineDominators.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetRegisterInfo.h"
54 #include <cassert>
55 #include <cstdint>
56 #include <cstdlib>
57 #include <iterator>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "hwloops"
67 
68 #ifndef NDEBUG
69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
70 
71 // Option to create preheader only for a specific function.
72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73                                  cl::init(""));
74 #endif
75 
76 // Option to create a preheader if one doesn't exist.
77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78     cl::Hidden, cl::init(true),
79     cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
80 
81 // Turn it off by default. If a preheader block is not created here, the
82 // software pipeliner may be unable to find a block suitable to serve as
83 // a preheader. In that case SWP will not run.
84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
85   cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader "
86   "instructions"));
87 
88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
89 
90 namespace llvm {
91 
92   FunctionPass *createHexagonHardwareLoops();
93   void initializeHexagonHardwareLoopsPass(PassRegistry&);
94 
95 } // end namespace llvm
96 
97 namespace {
98 
99   class CountValue;
100 
101   struct HexagonHardwareLoops : public MachineFunctionPass {
102     MachineLoopInfo            *MLI;
103     MachineRegisterInfo        *MRI;
104     MachineDominatorTree       *MDT;
105     const HexagonInstrInfo     *TII;
106     const HexagonRegisterInfo  *TRI;
107 #ifndef NDEBUG
108     static int Counter;
109 #endif
110 
111   public:
112     static char ID;
113 
114     HexagonHardwareLoops() : MachineFunctionPass(ID) {}
115 
116     bool runOnMachineFunction(MachineFunction &MF) override;
117 
118     StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
119 
120     void getAnalysisUsage(AnalysisUsage &AU) const override {
121       AU.addRequired<MachineDominatorTree>();
122       AU.addRequired<MachineLoopInfo>();
123       MachineFunctionPass::getAnalysisUsage(AU);
124     }
125 
126   private:
127     using LoopFeederMap = std::map<unsigned, MachineInstr *>;
128 
129     /// Kinds of comparisons in the compare instructions.
130     struct Comparison {
131       enum Kind {
132         EQ  = 0x01,
133         NE  = 0x02,
134         L   = 0x04,
135         G   = 0x08,
136         U   = 0x40,
137         LTs = L,
138         LEs = L | EQ,
139         GTs = G,
140         GEs = G | EQ,
141         LTu = L      | U,
142         LEu = L | EQ | U,
143         GTu = G      | U,
144         GEu = G | EQ | U
145       };
146 
147       static Kind getSwappedComparison(Kind Cmp) {
148         assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
149         if ((Cmp & L) || (Cmp & G))
150           return (Kind)(Cmp ^ (L|G));
151         return Cmp;
152       }
153 
154       static Kind getNegatedComparison(Kind Cmp) {
155         if ((Cmp & L) || (Cmp & G))
156           return (Kind)((Cmp ^ (L | G)) ^ EQ);
157         if ((Cmp & NE) || (Cmp & EQ))
158           return (Kind)(Cmp ^ (EQ | NE));
159         return (Kind)0;
160       }
161 
162       static bool isSigned(Kind Cmp) {
163         return (Cmp & (L | G) && !(Cmp & U));
164       }
165 
166       static bool isUnsigned(Kind Cmp) {
167         return (Cmp & U);
168       }
169     };
170 
171     /// \brief Find the register that contains the loop controlling
172     /// induction variable.
173     /// If successful, it will return true and set the \p Reg, \p IVBump
174     /// and \p IVOp arguments.  Otherwise it will return false.
175     /// The returned induction register is the register R that follows the
176     /// following induction pattern:
177     /// loop:
178     ///   R = phi ..., [ R.next, LatchBlock ]
179     ///   R.next = R + #bump
180     ///   if (R.next < #N) goto loop
181     /// IVBump is the immediate value added to R, and IVOp is the instruction
182     /// "R.next = R + #bump".
183     bool findInductionRegister(MachineLoop *L, unsigned &Reg,
184                                int64_t &IVBump, MachineInstr *&IVOp) const;
185 
186     /// \brief Return the comparison kind for the specified opcode.
187     Comparison::Kind getComparisonKind(unsigned CondOpc,
188                                        MachineOperand *InitialValue,
189                                        const MachineOperand *Endvalue,
190                                        int64_t IVBump) const;
191 
192     /// \brief Analyze the statements in a loop to determine if the loop
193     /// has a computable trip count and, if so, return a value that represents
194     /// the trip count expression.
195     CountValue *getLoopTripCount(MachineLoop *L,
196                                  SmallVectorImpl<MachineInstr *> &OldInsts);
197 
198     /// \brief Return the expression that represents the number of times
199     /// a loop iterates.  The function takes the operands that represent the
200     /// loop start value, loop end value, and induction value.  Based upon
201     /// these operands, the function attempts to compute the trip count.
202     /// If the trip count is not directly available (as an immediate value,
203     /// or a register), the function will attempt to insert computation of it
204     /// to the loop's preheader.
205     CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206                              const MachineOperand *End, unsigned IVReg,
207                              int64_t IVBump, Comparison::Kind Cmp) const;
208 
209     /// \brief Return true if the instruction is not valid within a hardware
210     /// loop.
211     bool isInvalidLoopOperation(const MachineInstr *MI,
212                                 bool IsInnerHWLoop) const;
213 
214     /// \brief Return true if the loop contains an instruction that inhibits
215     /// using the hardware loop.
216     bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
217 
218     /// \brief Given a loop, check if we can convert it to a hardware loop.
219     /// If so, then perform the conversion and return true.
220     bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
221 
222     /// \brief Return true if the instruction is now dead.
223     bool isDead(const MachineInstr *MI,
224                 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
225 
226     /// \brief Remove the instruction if it is now dead.
227     void removeIfDead(MachineInstr *MI);
228 
229     /// \brief Make sure that the "bump" instruction executes before the
230     /// compare.  We need that for the IV fixup, so that the compare
231     /// instruction would not use a bumped value that has not yet been
232     /// defined.  If the instructions are out of order, try to reorder them.
233     bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
234 
235     /// \brief Return true if MO and MI pair is visited only once. If visited
236     /// more than once, this indicates there is recursion. In such a case,
237     /// return false.
238     bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239                       const MachineOperand *MO,
240                       LoopFeederMap &LoopFeederPhi) const;
241 
242     /// \brief Return true if the Phi may generate a value that may underflow,
243     /// or may wrap.
244     bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
245                                MachineBasicBlock *MBB, MachineLoop *L,
246                                LoopFeederMap &LoopFeederPhi) const;
247 
248     /// \brief Return true if the induction variable may underflow an unsigned
249     /// value in the first iteration.
250     bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251                                      const MachineOperand *EndVal,
252                                      MachineBasicBlock *MBB, MachineLoop *L,
253                                      LoopFeederMap &LoopFeederPhi) const;
254 
255     /// \brief Check if the given operand has a compile-time known constant
256     /// value. Return true if yes, and false otherwise. When returning true, set
257     /// Val to the corresponding constant value.
258     bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
259 
260     /// \brief Check if the operand has a compile-time known constant value.
261     bool isImmediate(const MachineOperand &MO) const {
262       int64_t V;
263       return checkForImmediate(MO, V);
264     }
265 
266     /// \brief Return the immediate for the specified operand.
267     int64_t getImmediate(const MachineOperand &MO) const {
268       int64_t V;
269       if (!checkForImmediate(MO, V))
270         llvm_unreachable("Invalid operand");
271       return V;
272     }
273 
274     /// \brief Reset the given machine operand to now refer to a new immediate
275     /// value.  Assumes that the operand was already referencing an immediate
276     /// value, either directly, or via a register.
277     void setImmediate(MachineOperand &MO, int64_t Val);
278 
279     /// \brief Fix the data flow of the induction variable.
280     /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281     ///                                     |
282     ///                                     +-> back to phi
283     /// where "bump" is the increment of the induction variable:
284     ///   iv = iv + #const.
285     /// Due to some prior code transformations, the actual flow may look
286     /// like this:
287     ///   phi -+-> bump ---> back to phi
288     ///        |
289     ///        +-> comparison-in-latch (against upper_bound-bump),
290     /// i.e. the comparison that controls the loop execution may be using
291     /// the value of the induction variable from before the increment.
292     ///
293     /// Return true if the loop's flow is the desired one (i.e. it's
294     /// either been fixed, or no fixing was necessary).
295     /// Otherwise, return false.  This can happen if the induction variable
296     /// couldn't be identified, or if the value in the latch's comparison
297     /// cannot be adjusted to reflect the post-bump value.
298     bool fixupInductionVariable(MachineLoop *L);
299 
300     /// \brief Given a loop, if it does not have a preheader, create one.
301     /// Return the block that is the preheader.
302     MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
303   };
304 
305   char HexagonHardwareLoops::ID = 0;
306 #ifndef NDEBUG
307   int HexagonHardwareLoops::Counter = 0;
308 #endif
309 
310   /// \brief Abstraction for a trip count of a loop. A smaller version
311   /// of the MachineOperand class without the concerns of changing the
312   /// operand representation.
313   class CountValue {
314   public:
315     enum CountValueType {
316       CV_Register,
317       CV_Immediate
318     };
319 
320   private:
321     CountValueType Kind;
322     union Values {
323       struct {
324         unsigned Reg;
325         unsigned Sub;
326       } R;
327       unsigned ImmVal;
328     } Contents;
329 
330   public:
331     explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
332       Kind = t;
333       if (Kind == CV_Register) {
334         Contents.R.Reg = v;
335         Contents.R.Sub = u;
336       } else {
337         Contents.ImmVal = v;
338       }
339     }
340 
341     bool isReg() const { return Kind == CV_Register; }
342     bool isImm() const { return Kind == CV_Immediate; }
343 
344     unsigned getReg() const {
345       assert(isReg() && "Wrong CountValue accessor");
346       return Contents.R.Reg;
347     }
348 
349     unsigned getSubReg() const {
350       assert(isReg() && "Wrong CountValue accessor");
351       return Contents.R.Sub;
352     }
353 
354     unsigned getImm() const {
355       assert(isImm() && "Wrong CountValue accessor");
356       return Contents.ImmVal;
357     }
358 
359     void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
360       if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
361       if (isImm()) { OS << Contents.ImmVal; }
362     }
363   };
364 
365 } // end anonymous namespace
366 
367 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
368                       "Hexagon Hardware Loops", false, false)
369 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
370 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
371 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
372                     "Hexagon Hardware Loops", false, false)
373 
374 FunctionPass *llvm::createHexagonHardwareLoops() {
375   return new HexagonHardwareLoops();
376 }
377 
378 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
379   DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
380   if (skipFunction(*MF.getFunction()))
381     return false;
382 
383   bool Changed = false;
384 
385   MLI = &getAnalysis<MachineLoopInfo>();
386   MRI = &MF.getRegInfo();
387   MDT = &getAnalysis<MachineDominatorTree>();
388   const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
389   TII = HST.getInstrInfo();
390   TRI = HST.getRegisterInfo();
391 
392   for (auto &L : *MLI)
393     if (!L->getParentLoop()) {
394       bool L0Used = false;
395       bool L1Used = false;
396       Changed |= convertToHardwareLoop(L, L0Used, L1Used);
397     }
398 
399   return Changed;
400 }
401 
402 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
403                                                  unsigned &Reg,
404                                                  int64_t &IVBump,
405                                                  MachineInstr *&IVOp
406                                                  ) const {
407   MachineBasicBlock *Header = L->getHeader();
408   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
409   MachineBasicBlock *Latch = L->getLoopLatch();
410   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
411   if (!Header || !Preheader || !Latch || !ExitingBlock)
412     return false;
413 
414   // This pair represents an induction register together with an immediate
415   // value that will be added to it in each loop iteration.
416   using RegisterBump = std::pair<unsigned, int64_t>;
417 
418   // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
419   // from an induction operation
420   //   R.next = R + bump
421   // where bump is an immediate value.
422   using InductionMap = std::map<unsigned, RegisterBump>;
423 
424   InductionMap IndMap;
425 
426   using instr_iterator = MachineBasicBlock::instr_iterator;
427 
428   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
429        I != E && I->isPHI(); ++I) {
430     MachineInstr *Phi = &*I;
431 
432     // Have a PHI instruction.  Get the operand that corresponds to the
433     // latch block, and see if is a result of an addition of form "reg+imm",
434     // where the "reg" is defined by the PHI node we are looking at.
435     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
436       if (Phi->getOperand(i+1).getMBB() != Latch)
437         continue;
438 
439       unsigned PhiOpReg = Phi->getOperand(i).getReg();
440       MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
441 
442       if (DI->getDesc().isAdd()) {
443         // If the register operand to the add is the PHI we're looking at, this
444         // meets the induction pattern.
445         unsigned IndReg = DI->getOperand(1).getReg();
446         MachineOperand &Opnd2 = DI->getOperand(2);
447         int64_t V;
448         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
449           unsigned UpdReg = DI->getOperand(0).getReg();
450           IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
451         }
452       }
453     }  // for (i)
454   }  // for (instr)
455 
456   SmallVector<MachineOperand,2> Cond;
457   MachineBasicBlock *TB = nullptr, *FB = nullptr;
458   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
459   if (NotAnalyzed)
460     return false;
461 
462   unsigned PredR, PredPos, PredRegFlags;
463   if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
464     return false;
465 
466   MachineInstr *PredI = MRI->getVRegDef(PredR);
467   if (!PredI->isCompare())
468     return false;
469 
470   unsigned CmpReg1 = 0, CmpReg2 = 0;
471   int CmpImm = 0, CmpMask = 0;
472   bool CmpAnalyzed =
473       TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
474   // Fail if the compare was not analyzed, or it's not comparing a register
475   // with an immediate value.  Not checking the mask here, since we handle
476   // the individual compare opcodes (including A4_cmpb*) later on.
477   if (!CmpAnalyzed)
478     return false;
479 
480   // Exactly one of the input registers to the comparison should be among
481   // the induction registers.
482   InductionMap::iterator IndMapEnd = IndMap.end();
483   InductionMap::iterator F = IndMapEnd;
484   if (CmpReg1 != 0) {
485     InductionMap::iterator F1 = IndMap.find(CmpReg1);
486     if (F1 != IndMapEnd)
487       F = F1;
488   }
489   if (CmpReg2 != 0) {
490     InductionMap::iterator F2 = IndMap.find(CmpReg2);
491     if (F2 != IndMapEnd) {
492       if (F != IndMapEnd)
493         return false;
494       F = F2;
495     }
496   }
497   if (F == IndMapEnd)
498     return false;
499 
500   Reg = F->second.first;
501   IVBump = F->second.second;
502   IVOp = MRI->getVRegDef(F->first);
503   return true;
504 }
505 
506 // Return the comparison kind for the specified opcode.
507 HexagonHardwareLoops::Comparison::Kind
508 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
509                                         MachineOperand *InitialValue,
510                                         const MachineOperand *EndValue,
511                                         int64_t IVBump) const {
512   Comparison::Kind Cmp = (Comparison::Kind)0;
513   switch (CondOpc) {
514   case Hexagon::C2_cmpeqi:
515   case Hexagon::C2_cmpeq:
516   case Hexagon::C2_cmpeqp:
517     Cmp = Comparison::EQ;
518     break;
519   case Hexagon::C4_cmpneq:
520   case Hexagon::C4_cmpneqi:
521     Cmp = Comparison::NE;
522     break;
523   case Hexagon::C4_cmplte:
524     Cmp = Comparison::LEs;
525     break;
526   case Hexagon::C4_cmplteu:
527     Cmp = Comparison::LEu;
528     break;
529   case Hexagon::C2_cmpgtui:
530   case Hexagon::C2_cmpgtu:
531   case Hexagon::C2_cmpgtup:
532     Cmp = Comparison::GTu;
533     break;
534   case Hexagon::C2_cmpgti:
535   case Hexagon::C2_cmpgt:
536   case Hexagon::C2_cmpgtp:
537     Cmp = Comparison::GTs;
538     break;
539   default:
540     return (Comparison::Kind)0;
541   }
542   return Cmp;
543 }
544 
545 /// \brief Analyze the statements in a loop to determine if the loop has
546 /// a computable trip count and, if so, return a value that represents
547 /// the trip count expression.
548 ///
549 /// This function iterates over the phi nodes in the loop to check for
550 /// induction variable patterns that are used in the calculation for
551 /// the number of time the loop is executed.
552 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
553     SmallVectorImpl<MachineInstr *> &OldInsts) {
554   MachineBasicBlock *TopMBB = L->getTopBlock();
555   MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
556   assert(PI != TopMBB->pred_end() &&
557          "Loop must have more than one incoming edge!");
558   MachineBasicBlock *Backedge = *PI++;
559   if (PI == TopMBB->pred_end())  // dead loop?
560     return nullptr;
561   MachineBasicBlock *Incoming = *PI++;
562   if (PI != TopMBB->pred_end())  // multiple backedges?
563     return nullptr;
564 
565   // Make sure there is one incoming and one backedge and determine which
566   // is which.
567   if (L->contains(Incoming)) {
568     if (L->contains(Backedge))
569       return nullptr;
570     std::swap(Incoming, Backedge);
571   } else if (!L->contains(Backedge))
572     return nullptr;
573 
574   // Look for the cmp instruction to determine if we can get a useful trip
575   // count.  The trip count can be either a register or an immediate.  The
576   // location of the value depends upon the type (reg or imm).
577   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
578   if (!ExitingBlock)
579     return nullptr;
580 
581   unsigned IVReg = 0;
582   int64_t IVBump = 0;
583   MachineInstr *IVOp;
584   bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
585   if (!FoundIV)
586     return nullptr;
587 
588   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
589 
590   MachineOperand *InitialValue = nullptr;
591   MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
592   MachineBasicBlock *Latch = L->getLoopLatch();
593   for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
594     MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
595     if (MBB == Preheader)
596       InitialValue = &IV_Phi->getOperand(i);
597     else if (MBB == Latch)
598       IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
599   }
600   if (!InitialValue)
601     return nullptr;
602 
603   SmallVector<MachineOperand,2> Cond;
604   MachineBasicBlock *TB = nullptr, *FB = nullptr;
605   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
606   if (NotAnalyzed)
607     return nullptr;
608 
609   MachineBasicBlock *Header = L->getHeader();
610   // TB must be non-null.  If FB is also non-null, one of them must be
611   // the header.  Otherwise, branch to TB could be exiting the loop, and
612   // the fall through can go to the header.
613   assert (TB && "Exit block without a branch?");
614   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
615     MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
616     SmallVector<MachineOperand,2> LCond;
617     bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
618     if (NotAnalyzed)
619       return nullptr;
620     if (TB == Latch)
621       TB = (LTB == Header) ? LTB : LFB;
622     else
623       FB = (LTB == Header) ? LTB: LFB;
624   }
625   assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
626   if (!TB || (FB && TB != Header && FB != Header))
627     return nullptr;
628 
629   // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
630   // to put imm(0), followed by P in the vector Cond.
631   // If TB is not the header, it means that the "not-taken" path must lead
632   // to the header.
633   bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
634   unsigned PredReg, PredPos, PredRegFlags;
635   if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
636     return nullptr;
637   MachineInstr *CondI = MRI->getVRegDef(PredReg);
638   unsigned CondOpc = CondI->getOpcode();
639 
640   unsigned CmpReg1 = 0, CmpReg2 = 0;
641   int Mask = 0, ImmValue = 0;
642   bool AnalyzedCmp =
643       TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
644   if (!AnalyzedCmp)
645     return nullptr;
646 
647   // The comparison operator type determines how we compute the loop
648   // trip count.
649   OldInsts.push_back(CondI);
650   OldInsts.push_back(IVOp);
651 
652   // Sadly, the following code gets information based on the position
653   // of the operands in the compare instruction.  This has to be done
654   // this way, because the comparisons check for a specific relationship
655   // between the operands (e.g. is-less-than), rather than to find out
656   // what relationship the operands are in (as on PPC).
657   Comparison::Kind Cmp;
658   bool isSwapped = false;
659   const MachineOperand &Op1 = CondI->getOperand(1);
660   const MachineOperand &Op2 = CondI->getOperand(2);
661   const MachineOperand *EndValue = nullptr;
662 
663   if (Op1.isReg()) {
664     if (Op2.isImm() || Op1.getReg() == IVReg)
665       EndValue = &Op2;
666     else {
667       EndValue = &Op1;
668       isSwapped = true;
669     }
670   }
671 
672   if (!EndValue)
673     return nullptr;
674 
675   Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
676   if (!Cmp)
677     return nullptr;
678   if (Negated)
679     Cmp = Comparison::getNegatedComparison(Cmp);
680   if (isSwapped)
681     Cmp = Comparison::getSwappedComparison(Cmp);
682 
683   if (InitialValue->isReg()) {
684     unsigned R = InitialValue->getReg();
685     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
686     if (!MDT->properlyDominates(DefBB, Header)) {
687       int64_t V;
688       if (!checkForImmediate(*InitialValue, V))
689         return nullptr;
690     }
691     OldInsts.push_back(MRI->getVRegDef(R));
692   }
693   if (EndValue->isReg()) {
694     unsigned R = EndValue->getReg();
695     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
696     if (!MDT->properlyDominates(DefBB, Header)) {
697       int64_t V;
698       if (!checkForImmediate(*EndValue, V))
699         return nullptr;
700     }
701     OldInsts.push_back(MRI->getVRegDef(R));
702   }
703 
704   return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
705 }
706 
707 /// \brief Helper function that returns the expression that represents the
708 /// number of times a loop iterates.  The function takes the operands that
709 /// represent the loop start value, loop end value, and induction value.
710 /// Based upon these operands, the function attempts to compute the trip count.
711 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
712                                                const MachineOperand *Start,
713                                                const MachineOperand *End,
714                                                unsigned IVReg,
715                                                int64_t IVBump,
716                                                Comparison::Kind Cmp) const {
717   // Cannot handle comparison EQ, i.e. while (A == B).
718   if (Cmp == Comparison::EQ)
719     return nullptr;
720 
721   // Check if either the start or end values are an assignment of an immediate.
722   // If so, use the immediate value rather than the register.
723   if (Start->isReg()) {
724     const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
725     if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
726                           StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
727       Start = &StartValInstr->getOperand(1);
728   }
729   if (End->isReg()) {
730     const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
731     if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
732                         EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
733       End = &EndValInstr->getOperand(1);
734   }
735 
736   if (!Start->isReg() && !Start->isImm())
737     return nullptr;
738   if (!End->isReg() && !End->isImm())
739     return nullptr;
740 
741   bool CmpLess =     Cmp & Comparison::L;
742   bool CmpGreater =  Cmp & Comparison::G;
743   bool CmpHasEqual = Cmp & Comparison::EQ;
744 
745   // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
746   if (CmpLess && IVBump < 0)
747     // Loop going while iv is "less" with the iv value going down.  Must wrap.
748     return nullptr;
749 
750   if (CmpGreater && IVBump > 0)
751     // Loop going while iv is "greater" with the iv value going up.  Must wrap.
752     return nullptr;
753 
754   // Phis that may feed into the loop.
755   LoopFeederMap LoopFeederPhi;
756 
757   // Check if the initial value may be zero and can be decremented in the first
758   // iteration. If the value is zero, the endloop instruction will not decrement
759   // the loop counter, so we shouldn't generate a hardware loop in this case.
760   if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
761                                   LoopFeederPhi))
762       return nullptr;
763 
764   if (Start->isImm() && End->isImm()) {
765     // Both, start and end are immediates.
766     int64_t StartV = Start->getImm();
767     int64_t EndV = End->getImm();
768     int64_t Dist = EndV - StartV;
769     if (Dist == 0)
770       return nullptr;
771 
772     bool Exact = (Dist % IVBump) == 0;
773 
774     if (Cmp == Comparison::NE) {
775       if (!Exact)
776         return nullptr;
777       if ((Dist < 0) ^ (IVBump < 0))
778         return nullptr;
779     }
780 
781     // For comparisons that include the final value (i.e. include equality
782     // with the final value), we need to increase the distance by 1.
783     if (CmpHasEqual)
784       Dist = Dist > 0 ? Dist+1 : Dist-1;
785 
786     // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
787     // CmpGreater should imply Dist < 0.  These conditions could actually
788     // fail, for example, in unreachable code (which may still appear to be
789     // reachable in the CFG).
790     if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
791       return nullptr;
792 
793     // "Normalized" distance, i.e. with the bump set to +-1.
794     int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
795                                  : (-Dist + (-IVBump - 1)) / (-IVBump);
796     assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
797 
798     uint64_t Count = Dist1;
799 
800     if (Count > 0xFFFFFFFFULL)
801       return nullptr;
802 
803     return new CountValue(CountValue::CV_Immediate, Count);
804   }
805 
806   // A general case: Start and End are some values, but the actual
807   // iteration count may not be available.  If it is not, insert
808   // a computation of it into the preheader.
809 
810   // If the induction variable bump is not a power of 2, quit.
811   // Othwerise we'd need a general integer division.
812   if (!isPowerOf2_64(std::abs(IVBump)))
813     return nullptr;
814 
815   MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
816   assert (PH && "Should have a preheader by now");
817   MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
818   DebugLoc DL;
819   if (InsertPos != PH->end())
820     DL = InsertPos->getDebugLoc();
821 
822   // If Start is an immediate and End is a register, the trip count
823   // will be "reg - imm".  Hexagon's "subtract immediate" instruction
824   // is actually "reg + -imm".
825 
826   // If the loop IV is going downwards, i.e. if the bump is negative,
827   // then the iteration count (computed as End-Start) will need to be
828   // negated.  To avoid the negation, just swap Start and End.
829   if (IVBump < 0) {
830     std::swap(Start, End);
831     IVBump = -IVBump;
832   }
833   // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
834   // Signedness, and "including equality" are preserved.
835 
836   bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
837   bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
838 
839   int64_t StartV = 0, EndV = 0;
840   if (Start->isImm())
841     StartV = Start->getImm();
842   if (End->isImm())
843     EndV = End->getImm();
844 
845   int64_t AdjV = 0;
846   // To compute the iteration count, we would need this computation:
847   //   Count = (End - Start + (IVBump-1)) / IVBump
848   // or, when CmpHasEqual:
849   //   Count = (End - Start + (IVBump-1)+1) / IVBump
850   // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
851   // generating an instruction specifically to add it if we can adjust
852   // the immediate values for Start or End.
853 
854   if (CmpHasEqual) {
855     // Need to add 1 to the total iteration count.
856     if (Start->isImm())
857       StartV--;
858     else if (End->isImm())
859       EndV++;
860     else
861       AdjV += 1;
862   }
863 
864   if (Cmp != Comparison::NE) {
865     if (Start->isImm())
866       StartV -= (IVBump-1);
867     else if (End->isImm())
868       EndV += (IVBump-1);
869     else
870       AdjV += (IVBump-1);
871   }
872 
873   unsigned R = 0, SR = 0;
874   if (Start->isReg()) {
875     R = Start->getReg();
876     SR = Start->getSubReg();
877   } else {
878     R = End->getReg();
879     SR = End->getSubReg();
880   }
881   const TargetRegisterClass *RC = MRI->getRegClass(R);
882   // Hardware loops cannot handle 64-bit registers.  If it's a double
883   // register, it has to have a subregister.
884   if (!SR && RC == &Hexagon::DoubleRegsRegClass)
885     return nullptr;
886   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
887 
888   // Compute DistR (register with the distance between Start and End).
889   unsigned DistR, DistSR;
890 
891   // Avoid special case, where the start value is an imm(0).
892   if (Start->isImm() && StartV == 0) {
893     DistR = End->getReg();
894     DistSR = End->getSubReg();
895   } else {
896     const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
897                               (RegToImm ? TII->get(Hexagon::A2_subri) :
898                                           TII->get(Hexagon::A2_addi));
899     if (RegToReg || RegToImm) {
900       unsigned SubR = MRI->createVirtualRegister(IntRC);
901       MachineInstrBuilder SubIB =
902         BuildMI(*PH, InsertPos, DL, SubD, SubR);
903 
904       if (RegToReg)
905         SubIB.addReg(End->getReg(), 0, End->getSubReg())
906           .addReg(Start->getReg(), 0, Start->getSubReg());
907       else
908         SubIB.addImm(EndV)
909           .addReg(Start->getReg(), 0, Start->getSubReg());
910       DistR = SubR;
911     } else {
912       // If the loop has been unrolled, we should use the original loop count
913       // instead of recalculating the value. This will avoid additional
914       // 'Add' instruction.
915       const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
916       if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
917           EndValInstr->getOperand(2).getImm() == StartV) {
918         DistR = EndValInstr->getOperand(1).getReg();
919       } else {
920         unsigned SubR = MRI->createVirtualRegister(IntRC);
921         MachineInstrBuilder SubIB =
922           BuildMI(*PH, InsertPos, DL, SubD, SubR);
923         SubIB.addReg(End->getReg(), 0, End->getSubReg())
924              .addImm(-StartV);
925         DistR = SubR;
926       }
927     }
928     DistSR = 0;
929   }
930 
931   // From DistR, compute AdjR (register with the adjusted distance).
932   unsigned AdjR, AdjSR;
933 
934   if (AdjV == 0) {
935     AdjR = DistR;
936     AdjSR = DistSR;
937   } else {
938     // Generate CountR = ADD DistR, AdjVal
939     unsigned AddR = MRI->createVirtualRegister(IntRC);
940     MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
941     BuildMI(*PH, InsertPos, DL, AddD, AddR)
942       .addReg(DistR, 0, DistSR)
943       .addImm(AdjV);
944 
945     AdjR = AddR;
946     AdjSR = 0;
947   }
948 
949   // From AdjR, compute CountR (register with the final count).
950   unsigned CountR, CountSR;
951 
952   if (IVBump == 1) {
953     CountR = AdjR;
954     CountSR = AdjSR;
955   } else {
956     // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
957     unsigned Shift = Log2_32(IVBump);
958 
959     // Generate NormR = LSR DistR, Shift.
960     unsigned LsrR = MRI->createVirtualRegister(IntRC);
961     const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
962     BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
963       .addReg(AdjR, 0, AdjSR)
964       .addImm(Shift);
965 
966     CountR = LsrR;
967     CountSR = 0;
968   }
969 
970   return new CountValue(CountValue::CV_Register, CountR, CountSR);
971 }
972 
973 /// \brief Return true if the operation is invalid within hardware loop.
974 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
975                                                   bool IsInnerHWLoop) const {
976   // Call is not allowed because the callee may use a hardware loop except for
977   // the case when the call never returns.
978   if (MI->getDesc().isCall())
979     return !TII->doesNotReturn(*MI);
980 
981   // Check if the instruction defines a hardware loop register.
982   using namespace Hexagon;
983 
984   static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 };
985   static const unsigned Regs1[]  = { LC1, SA1 };
986   auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01))
987                                  : makeArrayRef(Regs1, array_lengthof(Regs1));
988   for (unsigned R : CheckRegs)
989     if (MI->modifiesRegister(R, TRI))
990       return true;
991 
992   return false;
993 }
994 
995 /// \brief Return true if the loop contains an instruction that inhibits
996 /// the use of the hardware loop instruction.
997 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
998     bool IsInnerHWLoop) const {
999   const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
1000   DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
1001   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1002     MachineBasicBlock *MBB = Blocks[i];
1003     for (MachineBasicBlock::iterator
1004            MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
1005       const MachineInstr *MI = &*MII;
1006       if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
1007         DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump(););
1008         return true;
1009       }
1010     }
1011   }
1012   return false;
1013 }
1014 
1015 /// \brief Returns true if the instruction is dead.  This was essentially
1016 /// copied from DeadMachineInstructionElim::isDead, but with special cases
1017 /// for inline asm, physical registers and instructions with side effects
1018 /// removed.
1019 bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1020                               SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1021   // Examine each operand.
1022   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1023     const MachineOperand &MO = MI->getOperand(i);
1024     if (!MO.isReg() || !MO.isDef())
1025       continue;
1026 
1027     unsigned Reg = MO.getReg();
1028     if (MRI->use_nodbg_empty(Reg))
1029       continue;
1030 
1031     using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1032 
1033     // This instruction has users, but if the only user is the phi node for the
1034     // parent block, and the only use of that phi node is this instruction, then
1035     // this instruction is dead: both it (and the phi node) can be removed.
1036     use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1037     use_nodbg_iterator End = MRI->use_nodbg_end();
1038     if (std::next(I) != End || !I->getParent()->isPHI())
1039       return false;
1040 
1041     MachineInstr *OnePhi = I->getParent();
1042     for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
1043       const MachineOperand &OPO = OnePhi->getOperand(j);
1044       if (!OPO.isReg() || !OPO.isDef())
1045         continue;
1046 
1047       unsigned OPReg = OPO.getReg();
1048       use_nodbg_iterator nextJ;
1049       for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1050            J != End; J = nextJ) {
1051         nextJ = std::next(J);
1052         MachineOperand &Use = *J;
1053         MachineInstr *UseMI = Use.getParent();
1054 
1055         // If the phi node has a user that is not MI, bail.
1056         if (MI != UseMI)
1057           return false;
1058       }
1059     }
1060     DeadPhis.push_back(OnePhi);
1061   }
1062 
1063   // If there are no defs with uses, the instruction is dead.
1064   return true;
1065 }
1066 
1067 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1068   // This procedure was essentially copied from DeadMachineInstructionElim.
1069 
1070   SmallVector<MachineInstr*, 1> DeadPhis;
1071   if (isDead(MI, DeadPhis)) {
1072     DEBUG(dbgs() << "HW looping will remove: " << *MI);
1073 
1074     // It is possible that some DBG_VALUE instructions refer to this
1075     // instruction.  Examine each def operand for such references;
1076     // if found, mark the DBG_VALUE as undef (but don't delete it).
1077     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1078       const MachineOperand &MO = MI->getOperand(i);
1079       if (!MO.isReg() || !MO.isDef())
1080         continue;
1081       unsigned Reg = MO.getReg();
1082       MachineRegisterInfo::use_iterator nextI;
1083       for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
1084            E = MRI->use_end(); I != E; I = nextI) {
1085         nextI = std::next(I);  // I is invalidated by the setReg
1086         MachineOperand &Use = *I;
1087         MachineInstr *UseMI = I->getParent();
1088         if (UseMI == MI)
1089           continue;
1090         if (Use.isDebug())
1091           UseMI->getOperand(0).setReg(0U);
1092       }
1093     }
1094 
1095     MI->eraseFromParent();
1096     for (unsigned i = 0; i < DeadPhis.size(); ++i)
1097       DeadPhis[i]->eraseFromParent();
1098   }
1099 }
1100 
1101 /// \brief Check if the loop is a candidate for converting to a hardware
1102 /// loop.  If so, then perform the transformation.
1103 ///
1104 /// This function works on innermost loops first.  A loop can be converted
1105 /// if it is a counting loop; either a register value or an immediate.
1106 ///
1107 /// The code makes several assumptions about the representation of the loop
1108 /// in llvm.
1109 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1110                                                  bool &RecL0used,
1111                                                  bool &RecL1used) {
1112   // This is just for sanity.
1113   assert(L->getHeader() && "Loop without a header?");
1114 
1115   bool Changed = false;
1116   bool L0Used = false;
1117   bool L1Used = false;
1118 
1119   // Process nested loops first.
1120   for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
1121     Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
1122     L0Used |= RecL0used;
1123     L1Used |= RecL1used;
1124   }
1125 
1126   // If a nested loop has been converted, then we can't convert this loop.
1127   if (Changed && L0Used && L1Used)
1128     return Changed;
1129 
1130   unsigned LOOP_i;
1131   unsigned LOOP_r;
1132   unsigned ENDLOOP;
1133 
1134   // Flag used to track loopN instruction:
1135   // 1 - Hardware loop is being generated for the inner most loop.
1136   // 0 - Hardware loop is being generated for the outer loop.
1137   unsigned IsInnerHWLoop = 1;
1138 
1139   if (L0Used) {
1140     LOOP_i = Hexagon::J2_loop1i;
1141     LOOP_r = Hexagon::J2_loop1r;
1142     ENDLOOP = Hexagon::ENDLOOP1;
1143     IsInnerHWLoop = 0;
1144   } else {
1145     LOOP_i = Hexagon::J2_loop0i;
1146     LOOP_r = Hexagon::J2_loop0r;
1147     ENDLOOP = Hexagon::ENDLOOP0;
1148   }
1149 
1150 #ifndef NDEBUG
1151   // Stop trying after reaching the limit (if any).
1152   int Limit = HWLoopLimit;
1153   if (Limit >= 0) {
1154     if (Counter >= HWLoopLimit)
1155       return false;
1156     Counter++;
1157   }
1158 #endif
1159 
1160   // Does the loop contain any invalid instructions?
1161   if (containsInvalidInstruction(L, IsInnerHWLoop))
1162     return false;
1163 
1164   MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1165   // Don't generate hw loop if the loop has more than one exit.
1166   if (!LastMBB)
1167     return false;
1168 
1169   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1170   if (LastI == LastMBB->end())
1171     return false;
1172 
1173   // Is the induction variable bump feeding the latch condition?
1174   if (!fixupInductionVariable(L))
1175     return false;
1176 
1177   // Ensure the loop has a preheader: the loop instruction will be
1178   // placed there.
1179   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1180   if (!Preheader) {
1181     Preheader = createPreheaderForLoop(L);
1182     if (!Preheader)
1183       return false;
1184   }
1185 
1186   MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1187 
1188   SmallVector<MachineInstr*, 2> OldInsts;
1189   // Are we able to determine the trip count for the loop?
1190   CountValue *TripCount = getLoopTripCount(L, OldInsts);
1191   if (!TripCount)
1192     return false;
1193 
1194   // Is the trip count available in the preheader?
1195   if (TripCount->isReg()) {
1196     // There will be a use of the register inserted into the preheader,
1197     // so make sure that the register is actually defined at that point.
1198     MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1199     MachineBasicBlock *BBDef = TCDef->getParent();
1200     if (!MDT->dominates(BBDef, Preheader))
1201       return false;
1202   }
1203 
1204   // Determine the loop start.
1205   MachineBasicBlock *TopBlock = L->getTopBlock();
1206   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1207   MachineBasicBlock *LoopStart = nullptr;
1208   if (ExitingBlock !=  L->getLoopLatch()) {
1209     MachineBasicBlock *TB = nullptr, *FB = nullptr;
1210     SmallVector<MachineOperand, 2> Cond;
1211 
1212     if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1213       return false;
1214 
1215     if (L->contains(TB))
1216       LoopStart = TB;
1217     else if (L->contains(FB))
1218       LoopStart = FB;
1219     else
1220       return false;
1221   }
1222   else
1223     LoopStart = TopBlock;
1224 
1225   // Convert the loop to a hardware loop.
1226   DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1227   DebugLoc DL;
1228   if (InsertPos != Preheader->end())
1229     DL = InsertPos->getDebugLoc();
1230 
1231   if (TripCount->isReg()) {
1232     // Create a copy of the loop count register.
1233     unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1234     BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1235       .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1236     // Add the Loop instruction to the beginning of the loop.
1237     BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1238       .addReg(CountReg);
1239   } else {
1240     assert(TripCount->isImm() && "Expecting immediate value for trip count");
1241     // Add the Loop immediate instruction to the beginning of the loop,
1242     // if the immediate fits in the instructions.  Otherwise, we need to
1243     // create a new virtual register.
1244     int64_t CountImm = TripCount->getImm();
1245     if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1246       unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1247       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1248         .addImm(CountImm);
1249       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1250         .addMBB(LoopStart).addReg(CountReg);
1251     } else
1252       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1253         .addMBB(LoopStart).addImm(CountImm);
1254   }
1255 
1256   // Make sure the loop start always has a reference in the CFG.  We need
1257   // to create a BlockAddress operand to get this mechanism to work both the
1258   // MachineBasicBlock and BasicBlock objects need the flag set.
1259   LoopStart->setHasAddressTaken();
1260   // This line is needed to set the hasAddressTaken flag on the BasicBlock
1261   // object.
1262   BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1263 
1264   // Replace the loop branch with an endloop instruction.
1265   DebugLoc LastIDL = LastI->getDebugLoc();
1266   BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1267 
1268   // The loop ends with either:
1269   //  - a conditional branch followed by an unconditional branch, or
1270   //  - a conditional branch to the loop start.
1271   if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1272       LastI->getOpcode() == Hexagon::J2_jumpf) {
1273     // Delete one and change/add an uncond. branch to out of the loop.
1274     MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1275     LastI = LastMBB->erase(LastI);
1276     if (!L->contains(BranchTarget)) {
1277       if (LastI != LastMBB->end())
1278         LastI = LastMBB->erase(LastI);
1279       SmallVector<MachineOperand, 0> Cond;
1280       TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1281     }
1282   } else {
1283     // Conditional branch to loop start; just delete it.
1284     LastMBB->erase(LastI);
1285   }
1286   delete TripCount;
1287 
1288   // The induction operation and the comparison may now be
1289   // unneeded. If these are unneeded, then remove them.
1290   for (unsigned i = 0; i < OldInsts.size(); ++i)
1291     removeIfDead(OldInsts[i]);
1292 
1293   ++NumHWLoops;
1294 
1295   // Set RecL1used and RecL0used only after hardware loop has been
1296   // successfully generated. Doing it earlier can cause wrong loop instruction
1297   // to be used.
1298   if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1299     RecL1used = true;
1300   else
1301     RecL0used = true;
1302 
1303   return true;
1304 }
1305 
1306 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1307                                             MachineInstr *CmpI) {
1308   assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1309 
1310   MachineBasicBlock *BB = BumpI->getParent();
1311   if (CmpI->getParent() != BB)
1312     return false;
1313 
1314   using instr_iterator = MachineBasicBlock::instr_iterator;
1315 
1316   // Check if things are in order to begin with.
1317   for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1318     if (&*I == CmpI)
1319       return true;
1320 
1321   // Out of order.
1322   unsigned PredR = CmpI->getOperand(0).getReg();
1323   bool FoundBump = false;
1324   instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1325   for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1326     MachineInstr *In = &*I;
1327     for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1328       MachineOperand &MO = In->getOperand(i);
1329       if (MO.isReg() && MO.isUse()) {
1330         if (MO.getReg() == PredR)  // Found an intervening use of PredR.
1331           return false;
1332       }
1333     }
1334 
1335     if (In == BumpI) {
1336       BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1337       FoundBump = true;
1338       break;
1339     }
1340   }
1341   assert (FoundBump && "Cannot determine instruction order");
1342   return FoundBump;
1343 }
1344 
1345 /// This function is required to break recursion. Visiting phis in a loop may
1346 /// result in recursion during compilation. We break the recursion by making
1347 /// sure that we visit a MachineOperand and its definition in a
1348 /// MachineInstruction only once. If we attempt to visit more than once, then
1349 /// there is recursion, and will return false.
1350 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1351                                         MachineInstr *MI,
1352                                         const MachineOperand *MO,
1353                                         LoopFeederMap &LoopFeederPhi) const {
1354   if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1355     const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
1356     DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
1357     // Ignore all BBs that form Loop.
1358     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1359       MachineBasicBlock *MBB = Blocks[i];
1360       if (A == MBB)
1361         return false;
1362     }
1363     MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1364     LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1365     return true;
1366   } else
1367     // Already visited node.
1368     return false;
1369 }
1370 
1371 /// Return true if a Phi may generate a value that can underflow.
1372 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1373 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1374     MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1375     MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1376   assert(Phi->isPHI() && "Expecting a Phi.");
1377   // Walk through each Phi, and its used operands. Make sure that
1378   // if there is recursion in Phi, we won't generate hardware loops.
1379   for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1380     if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1381       if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1382                                       Phi->getParent(), L, LoopFeederPhi))
1383         return true;
1384   return false;
1385 }
1386 
1387 /// Return true if the induction variable can underflow in the first iteration.
1388 /// An example, is an initial unsigned value that is 0 and is decrement in the
1389 /// first itertion of a do-while loop.  In this case, we cannot generate a
1390 /// hardware loop because the endloop instruction does not decrement the loop
1391 /// counter if it is <= 1. We only need to perform this analysis if the
1392 /// initial value is a register.
1393 ///
1394 /// This function assumes the initial value may underfow unless proven
1395 /// otherwise. If the type is signed, then we don't care because signed
1396 /// underflow is undefined. We attempt to prove the initial value is not
1397 /// zero by perfoming a crude analysis of the loop counter. This function
1398 /// checks if the initial value is used in any comparison prior to the loop
1399 /// and, if so, assumes the comparison is a range check. This is inexact,
1400 /// but will catch the simple cases.
1401 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1402     const MachineOperand *InitVal, const MachineOperand *EndVal,
1403     MachineBasicBlock *MBB, MachineLoop *L,
1404     LoopFeederMap &LoopFeederPhi) const {
1405   // Only check register values since they are unknown.
1406   if (!InitVal->isReg())
1407     return false;
1408 
1409   if (!EndVal->isImm())
1410     return false;
1411 
1412   // A register value that is assigned an immediate is a known value, and it
1413   // won't underflow in the first iteration.
1414   int64_t Imm;
1415   if (checkForImmediate(*InitVal, Imm))
1416     return (EndVal->getImm() == Imm);
1417 
1418   unsigned Reg = InitVal->getReg();
1419 
1420   // We don't know the value of a physical register.
1421   if (!TargetRegisterInfo::isVirtualRegister(Reg))
1422     return true;
1423 
1424   MachineInstr *Def = MRI->getVRegDef(Reg);
1425   if (!Def)
1426     return true;
1427 
1428   // If the initial value is a Phi or copy and the operands may not underflow,
1429   // then the definition cannot be underflow either.
1430   if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1431                                              L, LoopFeederPhi))
1432     return false;
1433   if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1434                                                     EndVal, Def->getParent(),
1435                                                     L, LoopFeederPhi))
1436     return false;
1437 
1438   // Iterate over the uses of the initial value. If the initial value is used
1439   // in a compare, then we assume this is a range check that ensures the loop
1440   // doesn't underflow. This is not an exact test and should be improved.
1441   for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1442          E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1443     MachineInstr *MI = &*I;
1444     unsigned CmpReg1 = 0, CmpReg2 = 0;
1445     int CmpMask = 0, CmpValue = 0;
1446 
1447     if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1448       continue;
1449 
1450     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1451     SmallVector<MachineOperand, 2> Cond;
1452     if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1453       continue;
1454 
1455     Comparison::Kind Cmp =
1456         getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1457     if (Cmp == 0)
1458       continue;
1459     if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1460       Cmp = Comparison::getNegatedComparison(Cmp);
1461     if (CmpReg2 != 0 && CmpReg2 == Reg)
1462       Cmp = Comparison::getSwappedComparison(Cmp);
1463 
1464     // Signed underflow is undefined.
1465     if (Comparison::isSigned(Cmp))
1466       return false;
1467 
1468     // Check if there is a comparison of the initial value. If the initial value
1469     // is greater than or not equal to another value, then assume this is a
1470     // range check.
1471     if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1472       return false;
1473   }
1474 
1475   // OK - this is a hack that needs to be improved. We really need to analyze
1476   // the instructions performed on the initial value. This works on the simplest
1477   // cases only.
1478   if (!Def->isCopy() && !Def->isPHI())
1479     return false;
1480 
1481   return true;
1482 }
1483 
1484 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1485                                              int64_t &Val) const {
1486   if (MO.isImm()) {
1487     Val = MO.getImm();
1488     return true;
1489   }
1490   if (!MO.isReg())
1491     return false;
1492 
1493   // MO is a register. Check whether it is defined as an immediate value,
1494   // and if so, get the value of it in TV. That value will then need to be
1495   // processed to handle potential subregisters in MO.
1496   int64_t TV;
1497 
1498   unsigned R = MO.getReg();
1499   if (!TargetRegisterInfo::isVirtualRegister(R))
1500     return false;
1501   MachineInstr *DI = MRI->getVRegDef(R);
1502   unsigned DOpc = DI->getOpcode();
1503   switch (DOpc) {
1504     case TargetOpcode::COPY:
1505     case Hexagon::A2_tfrsi:
1506     case Hexagon::A2_tfrpi:
1507     case Hexagon::CONST32:
1508     case Hexagon::CONST64:
1509       // Call recursively to avoid an extra check whether operand(1) is
1510       // indeed an immediate (it could be a global address, for example),
1511       // plus we can handle COPY at the same time.
1512       if (!checkForImmediate(DI->getOperand(1), TV))
1513         return false;
1514       break;
1515     case Hexagon::A2_combineii:
1516     case Hexagon::A4_combineir:
1517     case Hexagon::A4_combineii:
1518     case Hexagon::A4_combineri:
1519     case Hexagon::A2_combinew: {
1520       const MachineOperand &S1 = DI->getOperand(1);
1521       const MachineOperand &S2 = DI->getOperand(2);
1522       int64_t V1, V2;
1523       if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1524         return false;
1525       TV = V2 | (static_cast<uint64_t>(V1) << 32);
1526       break;
1527     }
1528     case TargetOpcode::REG_SEQUENCE: {
1529       const MachineOperand &S1 = DI->getOperand(1);
1530       const MachineOperand &S3 = DI->getOperand(3);
1531       int64_t V1, V3;
1532       if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1533         return false;
1534       unsigned Sub2 = DI->getOperand(2).getImm();
1535       unsigned Sub4 = DI->getOperand(4).getImm();
1536       if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1537         TV = V1 | (V3 << 32);
1538       else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1539         TV = V3 | (V1 << 32);
1540       else
1541         llvm_unreachable("Unexpected form of REG_SEQUENCE");
1542       break;
1543     }
1544 
1545     default:
1546       return false;
1547   }
1548 
1549   // By now, we should have successfully obtained the immediate value defining
1550   // the register referenced in MO. Handle a potential use of a subregister.
1551   switch (MO.getSubReg()) {
1552     case Hexagon::isub_lo:
1553       Val = TV & 0xFFFFFFFFULL;
1554       break;
1555     case Hexagon::isub_hi:
1556       Val = (TV >> 32) & 0xFFFFFFFFULL;
1557       break;
1558     default:
1559       Val = TV;
1560       break;
1561   }
1562   return true;
1563 }
1564 
1565 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1566   if (MO.isImm()) {
1567     MO.setImm(Val);
1568     return;
1569   }
1570 
1571   assert(MO.isReg());
1572   unsigned R = MO.getReg();
1573   MachineInstr *DI = MRI->getVRegDef(R);
1574 
1575   const TargetRegisterClass *RC = MRI->getRegClass(R);
1576   unsigned NewR = MRI->createVirtualRegister(RC);
1577   MachineBasicBlock &B = *DI->getParent();
1578   DebugLoc DL = DI->getDebugLoc();
1579   BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1580   MO.setReg(NewR);
1581 }
1582 
1583 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
1584   // These two instructions are not extendable.
1585   if (CmpOpc == Hexagon::A4_cmpbeqi)
1586     return isUInt<8>(Imm);
1587   if (CmpOpc == Hexagon::A4_cmpbgti)
1588     return isInt<8>(Imm);
1589   // The rest of the comparison-with-immediate instructions are extendable.
1590   return true;
1591 }
1592 
1593 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1594   MachineBasicBlock *Header = L->getHeader();
1595   MachineBasicBlock *Latch = L->getLoopLatch();
1596   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1597 
1598   if (!(Header && Latch && ExitingBlock))
1599     return false;
1600 
1601   // These data structures follow the same concept as the corresponding
1602   // ones in findInductionRegister (where some comments are).
1603   using RegisterBump = std::pair<unsigned, int64_t>;
1604   using RegisterInduction = std::pair<unsigned, RegisterBump>;
1605   using RegisterInductionSet = std::set<RegisterInduction>;
1606 
1607   // Register candidates for induction variables, with their associated bumps.
1608   RegisterInductionSet IndRegs;
1609 
1610   // Look for induction patterns:
1611   //   vreg1 = PHI ..., [ latch, vreg2 ]
1612   //   vreg2 = ADD vreg1, imm
1613   using instr_iterator = MachineBasicBlock::instr_iterator;
1614 
1615   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1616        I != E && I->isPHI(); ++I) {
1617     MachineInstr *Phi = &*I;
1618 
1619     // Have a PHI instruction.
1620     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1621       if (Phi->getOperand(i+1).getMBB() != Latch)
1622         continue;
1623 
1624       unsigned PhiReg = Phi->getOperand(i).getReg();
1625       MachineInstr *DI = MRI->getVRegDef(PhiReg);
1626 
1627       if (DI->getDesc().isAdd()) {
1628         // If the register operand to the add/sub is the PHI we are looking
1629         // at, this meets the induction pattern.
1630         unsigned IndReg = DI->getOperand(1).getReg();
1631         MachineOperand &Opnd2 = DI->getOperand(2);
1632         int64_t V;
1633         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1634           unsigned UpdReg = DI->getOperand(0).getReg();
1635           IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1636         }
1637       }
1638     }  // for (i)
1639   }  // for (instr)
1640 
1641   if (IndRegs.empty())
1642     return false;
1643 
1644   MachineBasicBlock *TB = nullptr, *FB = nullptr;
1645   SmallVector<MachineOperand,2> Cond;
1646   // AnalyzeBranch returns true if it fails to analyze branch.
1647   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1648   if (NotAnalyzed || Cond.empty())
1649     return false;
1650 
1651   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1652     MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1653     SmallVector<MachineOperand,2> LCond;
1654     bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1655     if (NotAnalyzed)
1656       return false;
1657 
1658     // Since latch is not the exiting block, the latch branch should be an
1659     // unconditional branch to the loop header.
1660     if (TB == Latch)
1661       TB = (LTB == Header) ? LTB : LFB;
1662     else
1663       FB = (LTB == Header) ? LTB : LFB;
1664   }
1665   if (TB != Header) {
1666     if (FB != Header) {
1667       // The latch/exit block does not go back to the header.
1668       return false;
1669     }
1670     // FB is the header (i.e., uncond. jump to branch header)
1671     // In this case, the LoopBody -> TB should not be a back edge otherwise
1672     // it could result in an infinite loop after conversion to hw_loop.
1673     // This case can happen when the Latch has two jumps like this:
1674     // Jmp_c OuterLoopHeader <-- TB
1675     // Jmp   InnerLoopHeader <-- FB
1676     if (MDT->dominates(TB, FB))
1677       return false;
1678   }
1679 
1680   // Expecting a predicate register as a condition.  It won't be a hardware
1681   // predicate register at this point yet, just a vreg.
1682   // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1683   // into Cond, followed by the predicate register.  For non-negated branches
1684   // it's just the register.
1685   unsigned CSz = Cond.size();
1686   if (CSz != 1 && CSz != 2)
1687     return false;
1688 
1689   if (!Cond[CSz-1].isReg())
1690     return false;
1691 
1692   unsigned P = Cond[CSz-1].getReg();
1693   MachineInstr *PredDef = MRI->getVRegDef(P);
1694 
1695   if (!PredDef->isCompare())
1696     return false;
1697 
1698   SmallSet<unsigned,2> CmpRegs;
1699   MachineOperand *CmpImmOp = nullptr;
1700 
1701   // Go over all operands to the compare and look for immediate and register
1702   // operands.  Assume that if the compare has a single register use and a
1703   // single immediate operand, then the register is being compared with the
1704   // immediate value.
1705   for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1706     MachineOperand &MO = PredDef->getOperand(i);
1707     if (MO.isReg()) {
1708       // Skip all implicit references.  In one case there was:
1709       //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
1710       if (MO.isImplicit())
1711         continue;
1712       if (MO.isUse()) {
1713         if (!isImmediate(MO)) {
1714           CmpRegs.insert(MO.getReg());
1715           continue;
1716         }
1717         // Consider the register to be the "immediate" operand.
1718         if (CmpImmOp)
1719           return false;
1720         CmpImmOp = &MO;
1721       }
1722     } else if (MO.isImm()) {
1723       if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
1724         return false;
1725       CmpImmOp = &MO;
1726     }
1727   }
1728 
1729   if (CmpRegs.empty())
1730     return false;
1731 
1732   // Check if the compared register follows the order we want.  Fix if needed.
1733   for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1734        I != E; ++I) {
1735     // This is a success.  If the register used in the comparison is one that
1736     // we have identified as a bumped (updated) induction register, there is
1737     // nothing to do.
1738     if (CmpRegs.count(I->first))
1739       return true;
1740 
1741     // Otherwise, if the register being compared comes out of a PHI node,
1742     // and has been recognized as following the induction pattern, and is
1743     // compared against an immediate, we can fix it.
1744     const RegisterBump &RB = I->second;
1745     if (CmpRegs.count(RB.first)) {
1746       if (!CmpImmOp) {
1747         // If both operands to the compare instruction are registers, see if
1748         // it can be changed to use induction register as one of the operands.
1749         MachineInstr *IndI = nullptr;
1750         MachineInstr *nonIndI = nullptr;
1751         MachineOperand *IndMO = nullptr;
1752         MachineOperand *nonIndMO = nullptr;
1753 
1754         for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1755           MachineOperand &MO = PredDef->getOperand(i);
1756           if (MO.isReg() && MO.getReg() == RB.first) {
1757             DEBUG(dbgs() << "\n DefMI(" << i << ") = "
1758                          << *(MRI->getVRegDef(I->first)));
1759             if (IndI)
1760               return false;
1761 
1762             IndI = MRI->getVRegDef(I->first);
1763             IndMO = &MO;
1764           } else if (MO.isReg()) {
1765             DEBUG(dbgs() << "\n DefMI(" << i << ") = "
1766                          << *(MRI->getVRegDef(MO.getReg())));
1767             if (nonIndI)
1768               return false;
1769 
1770             nonIndI = MRI->getVRegDef(MO.getReg());
1771             nonIndMO = &MO;
1772           }
1773         }
1774         if (IndI && nonIndI &&
1775             nonIndI->getOpcode() == Hexagon::A2_addi &&
1776             nonIndI->getOperand(2).isImm() &&
1777             nonIndI->getOperand(2).getImm() == - RB.second) {
1778           bool Order = orderBumpCompare(IndI, PredDef);
1779           if (Order) {
1780             IndMO->setReg(I->first);
1781             nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1782             return true;
1783           }
1784         }
1785         return false;
1786       }
1787 
1788       // It is not valid to do this transformation on an unsigned comparison
1789       // because it may underflow.
1790       Comparison::Kind Cmp =
1791           getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1792       if (!Cmp || Comparison::isUnsigned(Cmp))
1793         return false;
1794 
1795       // If the register is being compared against an immediate, try changing
1796       // the compare instruction to use induction register and adjust the
1797       // immediate operand.
1798       int64_t CmpImm = getImmediate(*CmpImmOp);
1799       int64_t V = RB.second;
1800       // Handle Overflow (64-bit).
1801       if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
1802           ((V < 0) && (CmpImm < INT64_MIN - V)))
1803         return false;
1804       CmpImm += V;
1805       // Most comparisons of register against an immediate value allow
1806       // the immediate to be constant-extended. There are some exceptions
1807       // though. Make sure the new combination will work.
1808       if (CmpImmOp->isImm())
1809         if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
1810           return false;
1811 
1812       // Make sure that the compare happens after the bump.  Otherwise,
1813       // after the fixup, the compare would use a yet-undefined register.
1814       MachineInstr *BumpI = MRI->getVRegDef(I->first);
1815       bool Order = orderBumpCompare(BumpI, PredDef);
1816       if (!Order)
1817         return false;
1818 
1819       // Finally, fix the compare instruction.
1820       setImmediate(*CmpImmOp, CmpImm);
1821       for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1822         MachineOperand &MO = PredDef->getOperand(i);
1823         if (MO.isReg() && MO.getReg() == RB.first) {
1824           MO.setReg(I->first);
1825           return true;
1826         }
1827       }
1828     }
1829   }
1830 
1831   return false;
1832 }
1833 
1834 /// createPreheaderForLoop - Create a preheader for a given loop.
1835 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1836       MachineLoop *L) {
1837   if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1838     return TmpPH;
1839   if (!HWCreatePreheader)
1840     return nullptr;
1841 
1842   MachineBasicBlock *Header = L->getHeader();
1843   MachineBasicBlock *Latch = L->getLoopLatch();
1844   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1845   MachineFunction *MF = Header->getParent();
1846   DebugLoc DL;
1847 
1848 #ifndef NDEBUG
1849   if ((!PHFn.empty()) && (PHFn != MF->getName()))
1850     return nullptr;
1851 #endif
1852 
1853   if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1854     return nullptr;
1855 
1856   using instr_iterator = MachineBasicBlock::instr_iterator;
1857 
1858   // Verify that all existing predecessors have analyzable branches
1859   // (or no branches at all).
1860   using MBBVector = std::vector<MachineBasicBlock *>;
1861 
1862   MBBVector Preds(Header->pred_begin(), Header->pred_end());
1863   SmallVector<MachineOperand,2> Tmp1;
1864   MachineBasicBlock *TB = nullptr, *FB = nullptr;
1865 
1866   if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1867     return nullptr;
1868 
1869   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1870     MachineBasicBlock *PB = *I;
1871     bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1872     if (NotAnalyzed)
1873       return nullptr;
1874   }
1875 
1876   MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1877   MF->insert(Header->getIterator(), NewPH);
1878 
1879   if (Header->pred_size() > 2) {
1880     // Ensure that the header has only two predecessors: the preheader and
1881     // the loop latch.  Any additional predecessors of the header should
1882     // join at the newly created preheader. Inspect all PHI nodes from the
1883     // header and create appropriate corresponding PHI nodes in the preheader.
1884 
1885     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1886          I != E && I->isPHI(); ++I) {
1887       MachineInstr *PN = &*I;
1888 
1889       const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1890       MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1891       NewPH->insert(NewPH->end(), NewPN);
1892 
1893       unsigned PR = PN->getOperand(0).getReg();
1894       const TargetRegisterClass *RC = MRI->getRegClass(PR);
1895       unsigned NewPR = MRI->createVirtualRegister(RC);
1896       NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1897 
1898       // Copy all non-latch operands of a header's PHI node to the newly
1899       // created PHI node in the preheader.
1900       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1901         unsigned PredR = PN->getOperand(i).getReg();
1902         unsigned PredRSub = PN->getOperand(i).getSubReg();
1903         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1904         if (PredB == Latch)
1905           continue;
1906 
1907         MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1908         MO.setSubReg(PredRSub);
1909         NewPN->addOperand(MO);
1910         NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1911       }
1912 
1913       // Remove copied operands from the old PHI node and add the value
1914       // coming from the preheader's PHI.
1915       for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1916         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1917         if (PredB != Latch) {
1918           PN->RemoveOperand(i+1);
1919           PN->RemoveOperand(i);
1920         }
1921       }
1922       PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1923       PN->addOperand(MachineOperand::CreateMBB(NewPH));
1924     }
1925   } else {
1926     assert(Header->pred_size() == 2);
1927 
1928     // The header has only two predecessors, but the non-latch predecessor
1929     // is not a preheader (e.g. it has other successors, etc.)
1930     // In such a case we don't need any extra PHI nodes in the new preheader,
1931     // all we need is to adjust existing PHIs in the header to now refer to
1932     // the new preheader.
1933     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1934          I != E && I->isPHI(); ++I) {
1935       MachineInstr *PN = &*I;
1936       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1937         MachineOperand &MO = PN->getOperand(i+1);
1938         if (MO.getMBB() != Latch)
1939           MO.setMBB(NewPH);
1940       }
1941     }
1942   }
1943 
1944   // "Reroute" the CFG edges to link in the new preheader.
1945   // If any of the predecessors falls through to the header, insert a branch
1946   // to the new preheader in that place.
1947   SmallVector<MachineOperand,1> Tmp2;
1948   SmallVector<MachineOperand,1> EmptyCond;
1949 
1950   TB = FB = nullptr;
1951 
1952   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1953     MachineBasicBlock *PB = *I;
1954     if (PB != Latch) {
1955       Tmp2.clear();
1956       bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1957       (void)NotAnalyzed; // suppress compiler warning
1958       assert (!NotAnalyzed && "Should be analyzable!");
1959       if (TB != Header && (Tmp2.empty() || FB != Header))
1960         TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1961       PB->ReplaceUsesOfBlockWith(Header, NewPH);
1962     }
1963   }
1964 
1965   // It can happen that the latch block will fall through into the header.
1966   // Insert an unconditional branch to the header.
1967   TB = FB = nullptr;
1968   bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1969   (void)LatchNotAnalyzed; // suppress compiler warning
1970   assert (!LatchNotAnalyzed && "Should be analyzable!");
1971   if (!TB && !FB)
1972     TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1973 
1974   // Finally, the branch from the preheader to the header.
1975   TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1976   NewPH->addSuccessor(Header);
1977 
1978   MachineLoop *ParentLoop = L->getParentLoop();
1979   if (ParentLoop)
1980     ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
1981 
1982   // Update the dominator information with the new preheader.
1983   if (MDT) {
1984     if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1985       if (MachineDomTreeNode *DHN = HN->getIDom()) {
1986         MDT->addNewBlock(NewPH, DHN->getBlock());
1987         MDT->changeImmediateDominator(Header, NewPH);
1988       }
1989     }
1990   }
1991 
1992   return NewPH;
1993 }
1994