1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "HexagonInstrInfo.h" 29 #include "HexagonSubtarget.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineDominators.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include <cassert> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <iterator> 58 #include <map> 59 #include <set> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "hwloops" 67 68 #ifndef NDEBUG 69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 70 71 // Option to create preheader only for a specific function. 72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 73 cl::init("")); 74 #endif 75 76 // Option to create a preheader if one doesn't exist. 77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 78 cl::Hidden, cl::init(true), 79 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 80 81 // Turn it off by default. If a preheader block is not created here, the 82 // software pipeliner may be unable to find a block suitable to serve as 83 // a preheader. In that case SWP will not run. 84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 85 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 86 "instructions")); 87 88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 89 90 namespace llvm { 91 92 FunctionPass *createHexagonHardwareLoops(); 93 void initializeHexagonHardwareLoopsPass(PassRegistry&); 94 95 } // end namespace llvm 96 97 namespace { 98 99 class CountValue; 100 101 struct HexagonHardwareLoops : public MachineFunctionPass { 102 MachineLoopInfo *MLI; 103 MachineRegisterInfo *MRI; 104 MachineDominatorTree *MDT; 105 const HexagonInstrInfo *TII; 106 const HexagonRegisterInfo *TRI; 107 #ifndef NDEBUG 108 static int Counter; 109 #endif 110 111 public: 112 static char ID; 113 114 HexagonHardwareLoops() : MachineFunctionPass(ID) {} 115 116 bool runOnMachineFunction(MachineFunction &MF) override; 117 118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 119 120 void getAnalysisUsage(AnalysisUsage &AU) const override { 121 AU.addRequired<MachineDominatorTree>(); 122 AU.addRequired<MachineLoopInfo>(); 123 MachineFunctionPass::getAnalysisUsage(AU); 124 } 125 126 private: 127 using LoopFeederMap = std::map<unsigned, MachineInstr *>; 128 129 /// Kinds of comparisons in the compare instructions. 130 struct Comparison { 131 enum Kind { 132 EQ = 0x01, 133 NE = 0x02, 134 L = 0x04, 135 G = 0x08, 136 U = 0x40, 137 LTs = L, 138 LEs = L | EQ, 139 GTs = G, 140 GEs = G | EQ, 141 LTu = L | U, 142 LEu = L | EQ | U, 143 GTu = G | U, 144 GEu = G | EQ | U 145 }; 146 147 static Kind getSwappedComparison(Kind Cmp) { 148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 149 if ((Cmp & L) || (Cmp & G)) 150 return (Kind)(Cmp ^ (L|G)); 151 return Cmp; 152 } 153 154 static Kind getNegatedComparison(Kind Cmp) { 155 if ((Cmp & L) || (Cmp & G)) 156 return (Kind)((Cmp ^ (L | G)) ^ EQ); 157 if ((Cmp & NE) || (Cmp & EQ)) 158 return (Kind)(Cmp ^ (EQ | NE)); 159 return (Kind)0; 160 } 161 162 static bool isSigned(Kind Cmp) { 163 return (Cmp & (L | G) && !(Cmp & U)); 164 } 165 166 static bool isUnsigned(Kind Cmp) { 167 return (Cmp & U); 168 } 169 }; 170 171 /// \brief Find the register that contains the loop controlling 172 /// induction variable. 173 /// If successful, it will return true and set the \p Reg, \p IVBump 174 /// and \p IVOp arguments. Otherwise it will return false. 175 /// The returned induction register is the register R that follows the 176 /// following induction pattern: 177 /// loop: 178 /// R = phi ..., [ R.next, LatchBlock ] 179 /// R.next = R + #bump 180 /// if (R.next < #N) goto loop 181 /// IVBump is the immediate value added to R, and IVOp is the instruction 182 /// "R.next = R + #bump". 183 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 184 int64_t &IVBump, MachineInstr *&IVOp) const; 185 186 /// \brief Return the comparison kind for the specified opcode. 187 Comparison::Kind getComparisonKind(unsigned CondOpc, 188 MachineOperand *InitialValue, 189 const MachineOperand *Endvalue, 190 int64_t IVBump) const; 191 192 /// \brief Analyze the statements in a loop to determine if the loop 193 /// has a computable trip count and, if so, return a value that represents 194 /// the trip count expression. 195 CountValue *getLoopTripCount(MachineLoop *L, 196 SmallVectorImpl<MachineInstr *> &OldInsts); 197 198 /// \brief Return the expression that represents the number of times 199 /// a loop iterates. The function takes the operands that represent the 200 /// loop start value, loop end value, and induction value. Based upon 201 /// these operands, the function attempts to compute the trip count. 202 /// If the trip count is not directly available (as an immediate value, 203 /// or a register), the function will attempt to insert computation of it 204 /// to the loop's preheader. 205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 206 const MachineOperand *End, unsigned IVReg, 207 int64_t IVBump, Comparison::Kind Cmp) const; 208 209 /// \brief Return true if the instruction is not valid within a hardware 210 /// loop. 211 bool isInvalidLoopOperation(const MachineInstr *MI, 212 bool IsInnerHWLoop) const; 213 214 /// \brief Return true if the loop contains an instruction that inhibits 215 /// using the hardware loop. 216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 217 218 /// \brief Given a loop, check if we can convert it to a hardware loop. 219 /// If so, then perform the conversion and return true. 220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 221 222 /// \brief Return true if the instruction is now dead. 223 bool isDead(const MachineInstr *MI, 224 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 225 226 /// \brief Remove the instruction if it is now dead. 227 void removeIfDead(MachineInstr *MI); 228 229 /// \brief Make sure that the "bump" instruction executes before the 230 /// compare. We need that for the IV fixup, so that the compare 231 /// instruction would not use a bumped value that has not yet been 232 /// defined. If the instructions are out of order, try to reorder them. 233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 234 235 /// \brief Return true if MO and MI pair is visited only once. If visited 236 /// more than once, this indicates there is recursion. In such a case, 237 /// return false. 238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 239 const MachineOperand *MO, 240 LoopFeederMap &LoopFeederPhi) const; 241 242 /// \brief Return true if the Phi may generate a value that may underflow, 243 /// or may wrap. 244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 245 MachineBasicBlock *MBB, MachineLoop *L, 246 LoopFeederMap &LoopFeederPhi) const; 247 248 /// \brief Return true if the induction variable may underflow an unsigned 249 /// value in the first iteration. 250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 251 const MachineOperand *EndVal, 252 MachineBasicBlock *MBB, MachineLoop *L, 253 LoopFeederMap &LoopFeederPhi) const; 254 255 /// \brief Check if the given operand has a compile-time known constant 256 /// value. Return true if yes, and false otherwise. When returning true, set 257 /// Val to the corresponding constant value. 258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 259 260 /// \brief Check if the operand has a compile-time known constant value. 261 bool isImmediate(const MachineOperand &MO) const { 262 int64_t V; 263 return checkForImmediate(MO, V); 264 } 265 266 /// \brief Return the immediate for the specified operand. 267 int64_t getImmediate(const MachineOperand &MO) const { 268 int64_t V; 269 if (!checkForImmediate(MO, V)) 270 llvm_unreachable("Invalid operand"); 271 return V; 272 } 273 274 /// \brief Reset the given machine operand to now refer to a new immediate 275 /// value. Assumes that the operand was already referencing an immediate 276 /// value, either directly, or via a register. 277 void setImmediate(MachineOperand &MO, int64_t Val); 278 279 /// \brief Fix the data flow of the induction variable. 280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 281 /// | 282 /// +-> back to phi 283 /// where "bump" is the increment of the induction variable: 284 /// iv = iv + #const. 285 /// Due to some prior code transformations, the actual flow may look 286 /// like this: 287 /// phi -+-> bump ---> back to phi 288 /// | 289 /// +-> comparison-in-latch (against upper_bound-bump), 290 /// i.e. the comparison that controls the loop execution may be using 291 /// the value of the induction variable from before the increment. 292 /// 293 /// Return true if the loop's flow is the desired one (i.e. it's 294 /// either been fixed, or no fixing was necessary). 295 /// Otherwise, return false. This can happen if the induction variable 296 /// couldn't be identified, or if the value in the latch's comparison 297 /// cannot be adjusted to reflect the post-bump value. 298 bool fixupInductionVariable(MachineLoop *L); 299 300 /// \brief Given a loop, if it does not have a preheader, create one. 301 /// Return the block that is the preheader. 302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 303 }; 304 305 char HexagonHardwareLoops::ID = 0; 306 #ifndef NDEBUG 307 int HexagonHardwareLoops::Counter = 0; 308 #endif 309 310 /// \brief Abstraction for a trip count of a loop. A smaller version 311 /// of the MachineOperand class without the concerns of changing the 312 /// operand representation. 313 class CountValue { 314 public: 315 enum CountValueType { 316 CV_Register, 317 CV_Immediate 318 }; 319 320 private: 321 CountValueType Kind; 322 union Values { 323 struct { 324 unsigned Reg; 325 unsigned Sub; 326 } R; 327 unsigned ImmVal; 328 } Contents; 329 330 public: 331 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 332 Kind = t; 333 if (Kind == CV_Register) { 334 Contents.R.Reg = v; 335 Contents.R.Sub = u; 336 } else { 337 Contents.ImmVal = v; 338 } 339 } 340 341 bool isReg() const { return Kind == CV_Register; } 342 bool isImm() const { return Kind == CV_Immediate; } 343 344 unsigned getReg() const { 345 assert(isReg() && "Wrong CountValue accessor"); 346 return Contents.R.Reg; 347 } 348 349 unsigned getSubReg() const { 350 assert(isReg() && "Wrong CountValue accessor"); 351 return Contents.R.Sub; 352 } 353 354 unsigned getImm() const { 355 assert(isImm() && "Wrong CountValue accessor"); 356 return Contents.ImmVal; 357 } 358 359 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 360 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 361 if (isImm()) { OS << Contents.ImmVal; } 362 } 363 }; 364 365 } // end anonymous namespace 366 367 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 368 "Hexagon Hardware Loops", false, false) 369 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 370 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 371 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 372 "Hexagon Hardware Loops", false, false) 373 374 FunctionPass *llvm::createHexagonHardwareLoops() { 375 return new HexagonHardwareLoops(); 376 } 377 378 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 379 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 380 if (skipFunction(*MF.getFunction())) 381 return false; 382 383 bool Changed = false; 384 385 MLI = &getAnalysis<MachineLoopInfo>(); 386 MRI = &MF.getRegInfo(); 387 MDT = &getAnalysis<MachineDominatorTree>(); 388 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 389 TII = HST.getInstrInfo(); 390 TRI = HST.getRegisterInfo(); 391 392 for (auto &L : *MLI) 393 if (!L->getParentLoop()) { 394 bool L0Used = false; 395 bool L1Used = false; 396 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 397 } 398 399 return Changed; 400 } 401 402 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 403 unsigned &Reg, 404 int64_t &IVBump, 405 MachineInstr *&IVOp 406 ) const { 407 MachineBasicBlock *Header = L->getHeader(); 408 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 409 MachineBasicBlock *Latch = L->getLoopLatch(); 410 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 411 if (!Header || !Preheader || !Latch || !ExitingBlock) 412 return false; 413 414 // This pair represents an induction register together with an immediate 415 // value that will be added to it in each loop iteration. 416 using RegisterBump = std::pair<unsigned, int64_t>; 417 418 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 419 // from an induction operation 420 // R.next = R + bump 421 // where bump is an immediate value. 422 using InductionMap = std::map<unsigned, RegisterBump>; 423 424 InductionMap IndMap; 425 426 using instr_iterator = MachineBasicBlock::instr_iterator; 427 428 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 429 I != E && I->isPHI(); ++I) { 430 MachineInstr *Phi = &*I; 431 432 // Have a PHI instruction. Get the operand that corresponds to the 433 // latch block, and see if is a result of an addition of form "reg+imm", 434 // where the "reg" is defined by the PHI node we are looking at. 435 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 436 if (Phi->getOperand(i+1).getMBB() != Latch) 437 continue; 438 439 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 440 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 441 442 if (DI->getDesc().isAdd()) { 443 // If the register operand to the add is the PHI we're looking at, this 444 // meets the induction pattern. 445 unsigned IndReg = DI->getOperand(1).getReg(); 446 MachineOperand &Opnd2 = DI->getOperand(2); 447 int64_t V; 448 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 449 unsigned UpdReg = DI->getOperand(0).getReg(); 450 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 451 } 452 } 453 } // for (i) 454 } // for (instr) 455 456 SmallVector<MachineOperand,2> Cond; 457 MachineBasicBlock *TB = nullptr, *FB = nullptr; 458 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 459 if (NotAnalyzed) 460 return false; 461 462 unsigned PredR, PredPos, PredRegFlags; 463 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 464 return false; 465 466 MachineInstr *PredI = MRI->getVRegDef(PredR); 467 if (!PredI->isCompare()) 468 return false; 469 470 unsigned CmpReg1 = 0, CmpReg2 = 0; 471 int CmpImm = 0, CmpMask = 0; 472 bool CmpAnalyzed = 473 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 474 // Fail if the compare was not analyzed, or it's not comparing a register 475 // with an immediate value. Not checking the mask here, since we handle 476 // the individual compare opcodes (including A4_cmpb*) later on. 477 if (!CmpAnalyzed) 478 return false; 479 480 // Exactly one of the input registers to the comparison should be among 481 // the induction registers. 482 InductionMap::iterator IndMapEnd = IndMap.end(); 483 InductionMap::iterator F = IndMapEnd; 484 if (CmpReg1 != 0) { 485 InductionMap::iterator F1 = IndMap.find(CmpReg1); 486 if (F1 != IndMapEnd) 487 F = F1; 488 } 489 if (CmpReg2 != 0) { 490 InductionMap::iterator F2 = IndMap.find(CmpReg2); 491 if (F2 != IndMapEnd) { 492 if (F != IndMapEnd) 493 return false; 494 F = F2; 495 } 496 } 497 if (F == IndMapEnd) 498 return false; 499 500 Reg = F->second.first; 501 IVBump = F->second.second; 502 IVOp = MRI->getVRegDef(F->first); 503 return true; 504 } 505 506 // Return the comparison kind for the specified opcode. 507 HexagonHardwareLoops::Comparison::Kind 508 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 509 MachineOperand *InitialValue, 510 const MachineOperand *EndValue, 511 int64_t IVBump) const { 512 Comparison::Kind Cmp = (Comparison::Kind)0; 513 switch (CondOpc) { 514 case Hexagon::C2_cmpeqi: 515 case Hexagon::C2_cmpeq: 516 case Hexagon::C2_cmpeqp: 517 Cmp = Comparison::EQ; 518 break; 519 case Hexagon::C4_cmpneq: 520 case Hexagon::C4_cmpneqi: 521 Cmp = Comparison::NE; 522 break; 523 case Hexagon::C4_cmplte: 524 Cmp = Comparison::LEs; 525 break; 526 case Hexagon::C4_cmplteu: 527 Cmp = Comparison::LEu; 528 break; 529 case Hexagon::C2_cmpgtui: 530 case Hexagon::C2_cmpgtu: 531 case Hexagon::C2_cmpgtup: 532 Cmp = Comparison::GTu; 533 break; 534 case Hexagon::C2_cmpgti: 535 case Hexagon::C2_cmpgt: 536 case Hexagon::C2_cmpgtp: 537 Cmp = Comparison::GTs; 538 break; 539 default: 540 return (Comparison::Kind)0; 541 } 542 return Cmp; 543 } 544 545 /// \brief Analyze the statements in a loop to determine if the loop has 546 /// a computable trip count and, if so, return a value that represents 547 /// the trip count expression. 548 /// 549 /// This function iterates over the phi nodes in the loop to check for 550 /// induction variable patterns that are used in the calculation for 551 /// the number of time the loop is executed. 552 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 553 SmallVectorImpl<MachineInstr *> &OldInsts) { 554 MachineBasicBlock *TopMBB = L->getTopBlock(); 555 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 556 assert(PI != TopMBB->pred_end() && 557 "Loop must have more than one incoming edge!"); 558 MachineBasicBlock *Backedge = *PI++; 559 if (PI == TopMBB->pred_end()) // dead loop? 560 return nullptr; 561 MachineBasicBlock *Incoming = *PI++; 562 if (PI != TopMBB->pred_end()) // multiple backedges? 563 return nullptr; 564 565 // Make sure there is one incoming and one backedge and determine which 566 // is which. 567 if (L->contains(Incoming)) { 568 if (L->contains(Backedge)) 569 return nullptr; 570 std::swap(Incoming, Backedge); 571 } else if (!L->contains(Backedge)) 572 return nullptr; 573 574 // Look for the cmp instruction to determine if we can get a useful trip 575 // count. The trip count can be either a register or an immediate. The 576 // location of the value depends upon the type (reg or imm). 577 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 578 if (!ExitingBlock) 579 return nullptr; 580 581 unsigned IVReg = 0; 582 int64_t IVBump = 0; 583 MachineInstr *IVOp; 584 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 585 if (!FoundIV) 586 return nullptr; 587 588 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 589 590 MachineOperand *InitialValue = nullptr; 591 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 592 MachineBasicBlock *Latch = L->getLoopLatch(); 593 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 594 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 595 if (MBB == Preheader) 596 InitialValue = &IV_Phi->getOperand(i); 597 else if (MBB == Latch) 598 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 599 } 600 if (!InitialValue) 601 return nullptr; 602 603 SmallVector<MachineOperand,2> Cond; 604 MachineBasicBlock *TB = nullptr, *FB = nullptr; 605 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 606 if (NotAnalyzed) 607 return nullptr; 608 609 MachineBasicBlock *Header = L->getHeader(); 610 // TB must be non-null. If FB is also non-null, one of them must be 611 // the header. Otherwise, branch to TB could be exiting the loop, and 612 // the fall through can go to the header. 613 assert (TB && "Exit block without a branch?"); 614 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 615 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 616 SmallVector<MachineOperand,2> LCond; 617 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 618 if (NotAnalyzed) 619 return nullptr; 620 if (TB == Latch) 621 TB = (LTB == Header) ? LTB : LFB; 622 else 623 FB = (LTB == Header) ? LTB: LFB; 624 } 625 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 626 if (!TB || (FB && TB != Header && FB != Header)) 627 return nullptr; 628 629 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 630 // to put imm(0), followed by P in the vector Cond. 631 // If TB is not the header, it means that the "not-taken" path must lead 632 // to the header. 633 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 634 unsigned PredReg, PredPos, PredRegFlags; 635 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 636 return nullptr; 637 MachineInstr *CondI = MRI->getVRegDef(PredReg); 638 unsigned CondOpc = CondI->getOpcode(); 639 640 unsigned CmpReg1 = 0, CmpReg2 = 0; 641 int Mask = 0, ImmValue = 0; 642 bool AnalyzedCmp = 643 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 644 if (!AnalyzedCmp) 645 return nullptr; 646 647 // The comparison operator type determines how we compute the loop 648 // trip count. 649 OldInsts.push_back(CondI); 650 OldInsts.push_back(IVOp); 651 652 // Sadly, the following code gets information based on the position 653 // of the operands in the compare instruction. This has to be done 654 // this way, because the comparisons check for a specific relationship 655 // between the operands (e.g. is-less-than), rather than to find out 656 // what relationship the operands are in (as on PPC). 657 Comparison::Kind Cmp; 658 bool isSwapped = false; 659 const MachineOperand &Op1 = CondI->getOperand(1); 660 const MachineOperand &Op2 = CondI->getOperand(2); 661 const MachineOperand *EndValue = nullptr; 662 663 if (Op1.isReg()) { 664 if (Op2.isImm() || Op1.getReg() == IVReg) 665 EndValue = &Op2; 666 else { 667 EndValue = &Op1; 668 isSwapped = true; 669 } 670 } 671 672 if (!EndValue) 673 return nullptr; 674 675 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 676 if (!Cmp) 677 return nullptr; 678 if (Negated) 679 Cmp = Comparison::getNegatedComparison(Cmp); 680 if (isSwapped) 681 Cmp = Comparison::getSwappedComparison(Cmp); 682 683 if (InitialValue->isReg()) { 684 unsigned R = InitialValue->getReg(); 685 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 686 if (!MDT->properlyDominates(DefBB, Header)) { 687 int64_t V; 688 if (!checkForImmediate(*InitialValue, V)) 689 return nullptr; 690 } 691 OldInsts.push_back(MRI->getVRegDef(R)); 692 } 693 if (EndValue->isReg()) { 694 unsigned R = EndValue->getReg(); 695 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 696 if (!MDT->properlyDominates(DefBB, Header)) { 697 int64_t V; 698 if (!checkForImmediate(*EndValue, V)) 699 return nullptr; 700 } 701 OldInsts.push_back(MRI->getVRegDef(R)); 702 } 703 704 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 705 } 706 707 /// \brief Helper function that returns the expression that represents the 708 /// number of times a loop iterates. The function takes the operands that 709 /// represent the loop start value, loop end value, and induction value. 710 /// Based upon these operands, the function attempts to compute the trip count. 711 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 712 const MachineOperand *Start, 713 const MachineOperand *End, 714 unsigned IVReg, 715 int64_t IVBump, 716 Comparison::Kind Cmp) const { 717 // Cannot handle comparison EQ, i.e. while (A == B). 718 if (Cmp == Comparison::EQ) 719 return nullptr; 720 721 // Check if either the start or end values are an assignment of an immediate. 722 // If so, use the immediate value rather than the register. 723 if (Start->isReg()) { 724 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 725 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 726 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 727 Start = &StartValInstr->getOperand(1); 728 } 729 if (End->isReg()) { 730 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 731 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 732 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 733 End = &EndValInstr->getOperand(1); 734 } 735 736 if (!Start->isReg() && !Start->isImm()) 737 return nullptr; 738 if (!End->isReg() && !End->isImm()) 739 return nullptr; 740 741 bool CmpLess = Cmp & Comparison::L; 742 bool CmpGreater = Cmp & Comparison::G; 743 bool CmpHasEqual = Cmp & Comparison::EQ; 744 745 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 746 if (CmpLess && IVBump < 0) 747 // Loop going while iv is "less" with the iv value going down. Must wrap. 748 return nullptr; 749 750 if (CmpGreater && IVBump > 0) 751 // Loop going while iv is "greater" with the iv value going up. Must wrap. 752 return nullptr; 753 754 // Phis that may feed into the loop. 755 LoopFeederMap LoopFeederPhi; 756 757 // Check if the initial value may be zero and can be decremented in the first 758 // iteration. If the value is zero, the endloop instruction will not decrement 759 // the loop counter, so we shouldn't generate a hardware loop in this case. 760 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 761 LoopFeederPhi)) 762 return nullptr; 763 764 if (Start->isImm() && End->isImm()) { 765 // Both, start and end are immediates. 766 int64_t StartV = Start->getImm(); 767 int64_t EndV = End->getImm(); 768 int64_t Dist = EndV - StartV; 769 if (Dist == 0) 770 return nullptr; 771 772 bool Exact = (Dist % IVBump) == 0; 773 774 if (Cmp == Comparison::NE) { 775 if (!Exact) 776 return nullptr; 777 if ((Dist < 0) ^ (IVBump < 0)) 778 return nullptr; 779 } 780 781 // For comparisons that include the final value (i.e. include equality 782 // with the final value), we need to increase the distance by 1. 783 if (CmpHasEqual) 784 Dist = Dist > 0 ? Dist+1 : Dist-1; 785 786 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 787 // CmpGreater should imply Dist < 0. These conditions could actually 788 // fail, for example, in unreachable code (which may still appear to be 789 // reachable in the CFG). 790 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 791 return nullptr; 792 793 // "Normalized" distance, i.e. with the bump set to +-1. 794 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 795 : (-Dist + (-IVBump - 1)) / (-IVBump); 796 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 797 798 uint64_t Count = Dist1; 799 800 if (Count > 0xFFFFFFFFULL) 801 return nullptr; 802 803 return new CountValue(CountValue::CV_Immediate, Count); 804 } 805 806 // A general case: Start and End are some values, but the actual 807 // iteration count may not be available. If it is not, insert 808 // a computation of it into the preheader. 809 810 // If the induction variable bump is not a power of 2, quit. 811 // Othwerise we'd need a general integer division. 812 if (!isPowerOf2_64(std::abs(IVBump))) 813 return nullptr; 814 815 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 816 assert (PH && "Should have a preheader by now"); 817 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 818 DebugLoc DL; 819 if (InsertPos != PH->end()) 820 DL = InsertPos->getDebugLoc(); 821 822 // If Start is an immediate and End is a register, the trip count 823 // will be "reg - imm". Hexagon's "subtract immediate" instruction 824 // is actually "reg + -imm". 825 826 // If the loop IV is going downwards, i.e. if the bump is negative, 827 // then the iteration count (computed as End-Start) will need to be 828 // negated. To avoid the negation, just swap Start and End. 829 if (IVBump < 0) { 830 std::swap(Start, End); 831 IVBump = -IVBump; 832 } 833 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 834 // Signedness, and "including equality" are preserved. 835 836 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 837 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 838 839 int64_t StartV = 0, EndV = 0; 840 if (Start->isImm()) 841 StartV = Start->getImm(); 842 if (End->isImm()) 843 EndV = End->getImm(); 844 845 int64_t AdjV = 0; 846 // To compute the iteration count, we would need this computation: 847 // Count = (End - Start + (IVBump-1)) / IVBump 848 // or, when CmpHasEqual: 849 // Count = (End - Start + (IVBump-1)+1) / IVBump 850 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 851 // generating an instruction specifically to add it if we can adjust 852 // the immediate values for Start or End. 853 854 if (CmpHasEqual) { 855 // Need to add 1 to the total iteration count. 856 if (Start->isImm()) 857 StartV--; 858 else if (End->isImm()) 859 EndV++; 860 else 861 AdjV += 1; 862 } 863 864 if (Cmp != Comparison::NE) { 865 if (Start->isImm()) 866 StartV -= (IVBump-1); 867 else if (End->isImm()) 868 EndV += (IVBump-1); 869 else 870 AdjV += (IVBump-1); 871 } 872 873 unsigned R = 0, SR = 0; 874 if (Start->isReg()) { 875 R = Start->getReg(); 876 SR = Start->getSubReg(); 877 } else { 878 R = End->getReg(); 879 SR = End->getSubReg(); 880 } 881 const TargetRegisterClass *RC = MRI->getRegClass(R); 882 // Hardware loops cannot handle 64-bit registers. If it's a double 883 // register, it has to have a subregister. 884 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 885 return nullptr; 886 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 887 888 // Compute DistR (register with the distance between Start and End). 889 unsigned DistR, DistSR; 890 891 // Avoid special case, where the start value is an imm(0). 892 if (Start->isImm() && StartV == 0) { 893 DistR = End->getReg(); 894 DistSR = End->getSubReg(); 895 } else { 896 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 897 (RegToImm ? TII->get(Hexagon::A2_subri) : 898 TII->get(Hexagon::A2_addi)); 899 if (RegToReg || RegToImm) { 900 unsigned SubR = MRI->createVirtualRegister(IntRC); 901 MachineInstrBuilder SubIB = 902 BuildMI(*PH, InsertPos, DL, SubD, SubR); 903 904 if (RegToReg) 905 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 906 .addReg(Start->getReg(), 0, Start->getSubReg()); 907 else 908 SubIB.addImm(EndV) 909 .addReg(Start->getReg(), 0, Start->getSubReg()); 910 DistR = SubR; 911 } else { 912 // If the loop has been unrolled, we should use the original loop count 913 // instead of recalculating the value. This will avoid additional 914 // 'Add' instruction. 915 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 916 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 917 EndValInstr->getOperand(2).getImm() == StartV) { 918 DistR = EndValInstr->getOperand(1).getReg(); 919 } else { 920 unsigned SubR = MRI->createVirtualRegister(IntRC); 921 MachineInstrBuilder SubIB = 922 BuildMI(*PH, InsertPos, DL, SubD, SubR); 923 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 924 .addImm(-StartV); 925 DistR = SubR; 926 } 927 } 928 DistSR = 0; 929 } 930 931 // From DistR, compute AdjR (register with the adjusted distance). 932 unsigned AdjR, AdjSR; 933 934 if (AdjV == 0) { 935 AdjR = DistR; 936 AdjSR = DistSR; 937 } else { 938 // Generate CountR = ADD DistR, AdjVal 939 unsigned AddR = MRI->createVirtualRegister(IntRC); 940 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 941 BuildMI(*PH, InsertPos, DL, AddD, AddR) 942 .addReg(DistR, 0, DistSR) 943 .addImm(AdjV); 944 945 AdjR = AddR; 946 AdjSR = 0; 947 } 948 949 // From AdjR, compute CountR (register with the final count). 950 unsigned CountR, CountSR; 951 952 if (IVBump == 1) { 953 CountR = AdjR; 954 CountSR = AdjSR; 955 } else { 956 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 957 unsigned Shift = Log2_32(IVBump); 958 959 // Generate NormR = LSR DistR, Shift. 960 unsigned LsrR = MRI->createVirtualRegister(IntRC); 961 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 962 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 963 .addReg(AdjR, 0, AdjSR) 964 .addImm(Shift); 965 966 CountR = LsrR; 967 CountSR = 0; 968 } 969 970 return new CountValue(CountValue::CV_Register, CountR, CountSR); 971 } 972 973 /// \brief Return true if the operation is invalid within hardware loop. 974 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 975 bool IsInnerHWLoop) const { 976 // Call is not allowed because the callee may use a hardware loop except for 977 // the case when the call never returns. 978 if (MI->getDesc().isCall()) 979 return !TII->doesNotReturn(*MI); 980 981 // Check if the instruction defines a hardware loop register. 982 using namespace Hexagon; 983 984 static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; 985 static const unsigned Regs1[] = { LC1, SA1 }; 986 auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) 987 : makeArrayRef(Regs1, array_lengthof(Regs1)); 988 for (unsigned R : CheckRegs) 989 if (MI->modifiesRegister(R, TRI)) 990 return true; 991 992 return false; 993 } 994 995 /// \brief Return true if the loop contains an instruction that inhibits 996 /// the use of the hardware loop instruction. 997 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 998 bool IsInnerHWLoop) const { 999 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1000 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1001 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1002 MachineBasicBlock *MBB = Blocks[i]; 1003 for (MachineBasicBlock::iterator 1004 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 1005 const MachineInstr *MI = &*MII; 1006 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 1007 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 1008 return true; 1009 } 1010 } 1011 } 1012 return false; 1013 } 1014 1015 /// \brief Returns true if the instruction is dead. This was essentially 1016 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1017 /// for inline asm, physical registers and instructions with side effects 1018 /// removed. 1019 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1020 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1021 // Examine each operand. 1022 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1023 const MachineOperand &MO = MI->getOperand(i); 1024 if (!MO.isReg() || !MO.isDef()) 1025 continue; 1026 1027 unsigned Reg = MO.getReg(); 1028 if (MRI->use_nodbg_empty(Reg)) 1029 continue; 1030 1031 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1032 1033 // This instruction has users, but if the only user is the phi node for the 1034 // parent block, and the only use of that phi node is this instruction, then 1035 // this instruction is dead: both it (and the phi node) can be removed. 1036 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1037 use_nodbg_iterator End = MRI->use_nodbg_end(); 1038 if (std::next(I) != End || !I->getParent()->isPHI()) 1039 return false; 1040 1041 MachineInstr *OnePhi = I->getParent(); 1042 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1043 const MachineOperand &OPO = OnePhi->getOperand(j); 1044 if (!OPO.isReg() || !OPO.isDef()) 1045 continue; 1046 1047 unsigned OPReg = OPO.getReg(); 1048 use_nodbg_iterator nextJ; 1049 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1050 J != End; J = nextJ) { 1051 nextJ = std::next(J); 1052 MachineOperand &Use = *J; 1053 MachineInstr *UseMI = Use.getParent(); 1054 1055 // If the phi node has a user that is not MI, bail. 1056 if (MI != UseMI) 1057 return false; 1058 } 1059 } 1060 DeadPhis.push_back(OnePhi); 1061 } 1062 1063 // If there are no defs with uses, the instruction is dead. 1064 return true; 1065 } 1066 1067 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1068 // This procedure was essentially copied from DeadMachineInstructionElim. 1069 1070 SmallVector<MachineInstr*, 1> DeadPhis; 1071 if (isDead(MI, DeadPhis)) { 1072 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1073 1074 // It is possible that some DBG_VALUE instructions refer to this 1075 // instruction. Examine each def operand for such references; 1076 // if found, mark the DBG_VALUE as undef (but don't delete it). 1077 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1078 const MachineOperand &MO = MI->getOperand(i); 1079 if (!MO.isReg() || !MO.isDef()) 1080 continue; 1081 unsigned Reg = MO.getReg(); 1082 MachineRegisterInfo::use_iterator nextI; 1083 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1084 E = MRI->use_end(); I != E; I = nextI) { 1085 nextI = std::next(I); // I is invalidated by the setReg 1086 MachineOperand &Use = *I; 1087 MachineInstr *UseMI = I->getParent(); 1088 if (UseMI == MI) 1089 continue; 1090 if (Use.isDebug()) 1091 UseMI->getOperand(0).setReg(0U); 1092 } 1093 } 1094 1095 MI->eraseFromParent(); 1096 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1097 DeadPhis[i]->eraseFromParent(); 1098 } 1099 } 1100 1101 /// \brief Check if the loop is a candidate for converting to a hardware 1102 /// loop. If so, then perform the transformation. 1103 /// 1104 /// This function works on innermost loops first. A loop can be converted 1105 /// if it is a counting loop; either a register value or an immediate. 1106 /// 1107 /// The code makes several assumptions about the representation of the loop 1108 /// in llvm. 1109 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1110 bool &RecL0used, 1111 bool &RecL1used) { 1112 // This is just for sanity. 1113 assert(L->getHeader() && "Loop without a header?"); 1114 1115 bool Changed = false; 1116 bool L0Used = false; 1117 bool L1Used = false; 1118 1119 // Process nested loops first. 1120 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1121 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1122 L0Used |= RecL0used; 1123 L1Used |= RecL1used; 1124 } 1125 1126 // If a nested loop has been converted, then we can't convert this loop. 1127 if (Changed && L0Used && L1Used) 1128 return Changed; 1129 1130 unsigned LOOP_i; 1131 unsigned LOOP_r; 1132 unsigned ENDLOOP; 1133 1134 // Flag used to track loopN instruction: 1135 // 1 - Hardware loop is being generated for the inner most loop. 1136 // 0 - Hardware loop is being generated for the outer loop. 1137 unsigned IsInnerHWLoop = 1; 1138 1139 if (L0Used) { 1140 LOOP_i = Hexagon::J2_loop1i; 1141 LOOP_r = Hexagon::J2_loop1r; 1142 ENDLOOP = Hexagon::ENDLOOP1; 1143 IsInnerHWLoop = 0; 1144 } else { 1145 LOOP_i = Hexagon::J2_loop0i; 1146 LOOP_r = Hexagon::J2_loop0r; 1147 ENDLOOP = Hexagon::ENDLOOP0; 1148 } 1149 1150 #ifndef NDEBUG 1151 // Stop trying after reaching the limit (if any). 1152 int Limit = HWLoopLimit; 1153 if (Limit >= 0) { 1154 if (Counter >= HWLoopLimit) 1155 return false; 1156 Counter++; 1157 } 1158 #endif 1159 1160 // Does the loop contain any invalid instructions? 1161 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1162 return false; 1163 1164 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1165 // Don't generate hw loop if the loop has more than one exit. 1166 if (!LastMBB) 1167 return false; 1168 1169 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1170 if (LastI == LastMBB->end()) 1171 return false; 1172 1173 // Is the induction variable bump feeding the latch condition? 1174 if (!fixupInductionVariable(L)) 1175 return false; 1176 1177 // Ensure the loop has a preheader: the loop instruction will be 1178 // placed there. 1179 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1180 if (!Preheader) { 1181 Preheader = createPreheaderForLoop(L); 1182 if (!Preheader) 1183 return false; 1184 } 1185 1186 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1187 1188 SmallVector<MachineInstr*, 2> OldInsts; 1189 // Are we able to determine the trip count for the loop? 1190 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1191 if (!TripCount) 1192 return false; 1193 1194 // Is the trip count available in the preheader? 1195 if (TripCount->isReg()) { 1196 // There will be a use of the register inserted into the preheader, 1197 // so make sure that the register is actually defined at that point. 1198 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1199 MachineBasicBlock *BBDef = TCDef->getParent(); 1200 if (!MDT->dominates(BBDef, Preheader)) 1201 return false; 1202 } 1203 1204 // Determine the loop start. 1205 MachineBasicBlock *TopBlock = L->getTopBlock(); 1206 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1207 MachineBasicBlock *LoopStart = nullptr; 1208 if (ExitingBlock != L->getLoopLatch()) { 1209 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1210 SmallVector<MachineOperand, 2> Cond; 1211 1212 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1213 return false; 1214 1215 if (L->contains(TB)) 1216 LoopStart = TB; 1217 else if (L->contains(FB)) 1218 LoopStart = FB; 1219 else 1220 return false; 1221 } 1222 else 1223 LoopStart = TopBlock; 1224 1225 // Convert the loop to a hardware loop. 1226 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1227 DebugLoc DL; 1228 if (InsertPos != Preheader->end()) 1229 DL = InsertPos->getDebugLoc(); 1230 1231 if (TripCount->isReg()) { 1232 // Create a copy of the loop count register. 1233 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1234 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1235 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1236 // Add the Loop instruction to the beginning of the loop. 1237 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1238 .addReg(CountReg); 1239 } else { 1240 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1241 // Add the Loop immediate instruction to the beginning of the loop, 1242 // if the immediate fits in the instructions. Otherwise, we need to 1243 // create a new virtual register. 1244 int64_t CountImm = TripCount->getImm(); 1245 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1246 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1247 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1248 .addImm(CountImm); 1249 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1250 .addMBB(LoopStart).addReg(CountReg); 1251 } else 1252 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1253 .addMBB(LoopStart).addImm(CountImm); 1254 } 1255 1256 // Make sure the loop start always has a reference in the CFG. We need 1257 // to create a BlockAddress operand to get this mechanism to work both the 1258 // MachineBasicBlock and BasicBlock objects need the flag set. 1259 LoopStart->setHasAddressTaken(); 1260 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1261 // object. 1262 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1263 1264 // Replace the loop branch with an endloop instruction. 1265 DebugLoc LastIDL = LastI->getDebugLoc(); 1266 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1267 1268 // The loop ends with either: 1269 // - a conditional branch followed by an unconditional branch, or 1270 // - a conditional branch to the loop start. 1271 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1272 LastI->getOpcode() == Hexagon::J2_jumpf) { 1273 // Delete one and change/add an uncond. branch to out of the loop. 1274 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1275 LastI = LastMBB->erase(LastI); 1276 if (!L->contains(BranchTarget)) { 1277 if (LastI != LastMBB->end()) 1278 LastI = LastMBB->erase(LastI); 1279 SmallVector<MachineOperand, 0> Cond; 1280 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1281 } 1282 } else { 1283 // Conditional branch to loop start; just delete it. 1284 LastMBB->erase(LastI); 1285 } 1286 delete TripCount; 1287 1288 // The induction operation and the comparison may now be 1289 // unneeded. If these are unneeded, then remove them. 1290 for (unsigned i = 0; i < OldInsts.size(); ++i) 1291 removeIfDead(OldInsts[i]); 1292 1293 ++NumHWLoops; 1294 1295 // Set RecL1used and RecL0used only after hardware loop has been 1296 // successfully generated. Doing it earlier can cause wrong loop instruction 1297 // to be used. 1298 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1299 RecL1used = true; 1300 else 1301 RecL0used = true; 1302 1303 return true; 1304 } 1305 1306 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1307 MachineInstr *CmpI) { 1308 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1309 1310 MachineBasicBlock *BB = BumpI->getParent(); 1311 if (CmpI->getParent() != BB) 1312 return false; 1313 1314 using instr_iterator = MachineBasicBlock::instr_iterator; 1315 1316 // Check if things are in order to begin with. 1317 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1318 if (&*I == CmpI) 1319 return true; 1320 1321 // Out of order. 1322 unsigned PredR = CmpI->getOperand(0).getReg(); 1323 bool FoundBump = false; 1324 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1325 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1326 MachineInstr *In = &*I; 1327 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1328 MachineOperand &MO = In->getOperand(i); 1329 if (MO.isReg() && MO.isUse()) { 1330 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1331 return false; 1332 } 1333 } 1334 1335 if (In == BumpI) { 1336 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1337 FoundBump = true; 1338 break; 1339 } 1340 } 1341 assert (FoundBump && "Cannot determine instruction order"); 1342 return FoundBump; 1343 } 1344 1345 /// This function is required to break recursion. Visiting phis in a loop may 1346 /// result in recursion during compilation. We break the recursion by making 1347 /// sure that we visit a MachineOperand and its definition in a 1348 /// MachineInstruction only once. If we attempt to visit more than once, then 1349 /// there is recursion, and will return false. 1350 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1351 MachineInstr *MI, 1352 const MachineOperand *MO, 1353 LoopFeederMap &LoopFeederPhi) const { 1354 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1355 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1356 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1357 // Ignore all BBs that form Loop. 1358 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1359 MachineBasicBlock *MBB = Blocks[i]; 1360 if (A == MBB) 1361 return false; 1362 } 1363 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1364 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1365 return true; 1366 } else 1367 // Already visited node. 1368 return false; 1369 } 1370 1371 /// Return true if a Phi may generate a value that can underflow. 1372 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1373 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1374 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1375 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1376 assert(Phi->isPHI() && "Expecting a Phi."); 1377 // Walk through each Phi, and its used operands. Make sure that 1378 // if there is recursion in Phi, we won't generate hardware loops. 1379 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1380 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1381 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1382 Phi->getParent(), L, LoopFeederPhi)) 1383 return true; 1384 return false; 1385 } 1386 1387 /// Return true if the induction variable can underflow in the first iteration. 1388 /// An example, is an initial unsigned value that is 0 and is decrement in the 1389 /// first itertion of a do-while loop. In this case, we cannot generate a 1390 /// hardware loop because the endloop instruction does not decrement the loop 1391 /// counter if it is <= 1. We only need to perform this analysis if the 1392 /// initial value is a register. 1393 /// 1394 /// This function assumes the initial value may underfow unless proven 1395 /// otherwise. If the type is signed, then we don't care because signed 1396 /// underflow is undefined. We attempt to prove the initial value is not 1397 /// zero by perfoming a crude analysis of the loop counter. This function 1398 /// checks if the initial value is used in any comparison prior to the loop 1399 /// and, if so, assumes the comparison is a range check. This is inexact, 1400 /// but will catch the simple cases. 1401 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1402 const MachineOperand *InitVal, const MachineOperand *EndVal, 1403 MachineBasicBlock *MBB, MachineLoop *L, 1404 LoopFeederMap &LoopFeederPhi) const { 1405 // Only check register values since they are unknown. 1406 if (!InitVal->isReg()) 1407 return false; 1408 1409 if (!EndVal->isImm()) 1410 return false; 1411 1412 // A register value that is assigned an immediate is a known value, and it 1413 // won't underflow in the first iteration. 1414 int64_t Imm; 1415 if (checkForImmediate(*InitVal, Imm)) 1416 return (EndVal->getImm() == Imm); 1417 1418 unsigned Reg = InitVal->getReg(); 1419 1420 // We don't know the value of a physical register. 1421 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1422 return true; 1423 1424 MachineInstr *Def = MRI->getVRegDef(Reg); 1425 if (!Def) 1426 return true; 1427 1428 // If the initial value is a Phi or copy and the operands may not underflow, 1429 // then the definition cannot be underflow either. 1430 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1431 L, LoopFeederPhi)) 1432 return false; 1433 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1434 EndVal, Def->getParent(), 1435 L, LoopFeederPhi)) 1436 return false; 1437 1438 // Iterate over the uses of the initial value. If the initial value is used 1439 // in a compare, then we assume this is a range check that ensures the loop 1440 // doesn't underflow. This is not an exact test and should be improved. 1441 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1442 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1443 MachineInstr *MI = &*I; 1444 unsigned CmpReg1 = 0, CmpReg2 = 0; 1445 int CmpMask = 0, CmpValue = 0; 1446 1447 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1448 continue; 1449 1450 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1451 SmallVector<MachineOperand, 2> Cond; 1452 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1453 continue; 1454 1455 Comparison::Kind Cmp = 1456 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1457 if (Cmp == 0) 1458 continue; 1459 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1460 Cmp = Comparison::getNegatedComparison(Cmp); 1461 if (CmpReg2 != 0 && CmpReg2 == Reg) 1462 Cmp = Comparison::getSwappedComparison(Cmp); 1463 1464 // Signed underflow is undefined. 1465 if (Comparison::isSigned(Cmp)) 1466 return false; 1467 1468 // Check if there is a comparison of the initial value. If the initial value 1469 // is greater than or not equal to another value, then assume this is a 1470 // range check. 1471 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1472 return false; 1473 } 1474 1475 // OK - this is a hack that needs to be improved. We really need to analyze 1476 // the instructions performed on the initial value. This works on the simplest 1477 // cases only. 1478 if (!Def->isCopy() && !Def->isPHI()) 1479 return false; 1480 1481 return true; 1482 } 1483 1484 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1485 int64_t &Val) const { 1486 if (MO.isImm()) { 1487 Val = MO.getImm(); 1488 return true; 1489 } 1490 if (!MO.isReg()) 1491 return false; 1492 1493 // MO is a register. Check whether it is defined as an immediate value, 1494 // and if so, get the value of it in TV. That value will then need to be 1495 // processed to handle potential subregisters in MO. 1496 int64_t TV; 1497 1498 unsigned R = MO.getReg(); 1499 if (!TargetRegisterInfo::isVirtualRegister(R)) 1500 return false; 1501 MachineInstr *DI = MRI->getVRegDef(R); 1502 unsigned DOpc = DI->getOpcode(); 1503 switch (DOpc) { 1504 case TargetOpcode::COPY: 1505 case Hexagon::A2_tfrsi: 1506 case Hexagon::A2_tfrpi: 1507 case Hexagon::CONST32: 1508 case Hexagon::CONST64: 1509 // Call recursively to avoid an extra check whether operand(1) is 1510 // indeed an immediate (it could be a global address, for example), 1511 // plus we can handle COPY at the same time. 1512 if (!checkForImmediate(DI->getOperand(1), TV)) 1513 return false; 1514 break; 1515 case Hexagon::A2_combineii: 1516 case Hexagon::A4_combineir: 1517 case Hexagon::A4_combineii: 1518 case Hexagon::A4_combineri: 1519 case Hexagon::A2_combinew: { 1520 const MachineOperand &S1 = DI->getOperand(1); 1521 const MachineOperand &S2 = DI->getOperand(2); 1522 int64_t V1, V2; 1523 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1524 return false; 1525 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1526 break; 1527 } 1528 case TargetOpcode::REG_SEQUENCE: { 1529 const MachineOperand &S1 = DI->getOperand(1); 1530 const MachineOperand &S3 = DI->getOperand(3); 1531 int64_t V1, V3; 1532 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1533 return false; 1534 unsigned Sub2 = DI->getOperand(2).getImm(); 1535 unsigned Sub4 = DI->getOperand(4).getImm(); 1536 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1537 TV = V1 | (V3 << 32); 1538 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1539 TV = V3 | (V1 << 32); 1540 else 1541 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1542 break; 1543 } 1544 1545 default: 1546 return false; 1547 } 1548 1549 // By now, we should have successfully obtained the immediate value defining 1550 // the register referenced in MO. Handle a potential use of a subregister. 1551 switch (MO.getSubReg()) { 1552 case Hexagon::isub_lo: 1553 Val = TV & 0xFFFFFFFFULL; 1554 break; 1555 case Hexagon::isub_hi: 1556 Val = (TV >> 32) & 0xFFFFFFFFULL; 1557 break; 1558 default: 1559 Val = TV; 1560 break; 1561 } 1562 return true; 1563 } 1564 1565 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1566 if (MO.isImm()) { 1567 MO.setImm(Val); 1568 return; 1569 } 1570 1571 assert(MO.isReg()); 1572 unsigned R = MO.getReg(); 1573 MachineInstr *DI = MRI->getVRegDef(R); 1574 1575 const TargetRegisterClass *RC = MRI->getRegClass(R); 1576 unsigned NewR = MRI->createVirtualRegister(RC); 1577 MachineBasicBlock &B = *DI->getParent(); 1578 DebugLoc DL = DI->getDebugLoc(); 1579 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1580 MO.setReg(NewR); 1581 } 1582 1583 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1584 // These two instructions are not extendable. 1585 if (CmpOpc == Hexagon::A4_cmpbeqi) 1586 return isUInt<8>(Imm); 1587 if (CmpOpc == Hexagon::A4_cmpbgti) 1588 return isInt<8>(Imm); 1589 // The rest of the comparison-with-immediate instructions are extendable. 1590 return true; 1591 } 1592 1593 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1594 MachineBasicBlock *Header = L->getHeader(); 1595 MachineBasicBlock *Latch = L->getLoopLatch(); 1596 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1597 1598 if (!(Header && Latch && ExitingBlock)) 1599 return false; 1600 1601 // These data structures follow the same concept as the corresponding 1602 // ones in findInductionRegister (where some comments are). 1603 using RegisterBump = std::pair<unsigned, int64_t>; 1604 using RegisterInduction = std::pair<unsigned, RegisterBump>; 1605 using RegisterInductionSet = std::set<RegisterInduction>; 1606 1607 // Register candidates for induction variables, with their associated bumps. 1608 RegisterInductionSet IndRegs; 1609 1610 // Look for induction patterns: 1611 // vreg1 = PHI ..., [ latch, vreg2 ] 1612 // vreg2 = ADD vreg1, imm 1613 using instr_iterator = MachineBasicBlock::instr_iterator; 1614 1615 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1616 I != E && I->isPHI(); ++I) { 1617 MachineInstr *Phi = &*I; 1618 1619 // Have a PHI instruction. 1620 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1621 if (Phi->getOperand(i+1).getMBB() != Latch) 1622 continue; 1623 1624 unsigned PhiReg = Phi->getOperand(i).getReg(); 1625 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1626 1627 if (DI->getDesc().isAdd()) { 1628 // If the register operand to the add/sub is the PHI we are looking 1629 // at, this meets the induction pattern. 1630 unsigned IndReg = DI->getOperand(1).getReg(); 1631 MachineOperand &Opnd2 = DI->getOperand(2); 1632 int64_t V; 1633 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1634 unsigned UpdReg = DI->getOperand(0).getReg(); 1635 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1636 } 1637 } 1638 } // for (i) 1639 } // for (instr) 1640 1641 if (IndRegs.empty()) 1642 return false; 1643 1644 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1645 SmallVector<MachineOperand,2> Cond; 1646 // AnalyzeBranch returns true if it fails to analyze branch. 1647 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1648 if (NotAnalyzed || Cond.empty()) 1649 return false; 1650 1651 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1652 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1653 SmallVector<MachineOperand,2> LCond; 1654 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1655 if (NotAnalyzed) 1656 return false; 1657 1658 // Since latch is not the exiting block, the latch branch should be an 1659 // unconditional branch to the loop header. 1660 if (TB == Latch) 1661 TB = (LTB == Header) ? LTB : LFB; 1662 else 1663 FB = (LTB == Header) ? LTB : LFB; 1664 } 1665 if (TB != Header) { 1666 if (FB != Header) { 1667 // The latch/exit block does not go back to the header. 1668 return false; 1669 } 1670 // FB is the header (i.e., uncond. jump to branch header) 1671 // In this case, the LoopBody -> TB should not be a back edge otherwise 1672 // it could result in an infinite loop after conversion to hw_loop. 1673 // This case can happen when the Latch has two jumps like this: 1674 // Jmp_c OuterLoopHeader <-- TB 1675 // Jmp InnerLoopHeader <-- FB 1676 if (MDT->dominates(TB, FB)) 1677 return false; 1678 } 1679 1680 // Expecting a predicate register as a condition. It won't be a hardware 1681 // predicate register at this point yet, just a vreg. 1682 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1683 // into Cond, followed by the predicate register. For non-negated branches 1684 // it's just the register. 1685 unsigned CSz = Cond.size(); 1686 if (CSz != 1 && CSz != 2) 1687 return false; 1688 1689 if (!Cond[CSz-1].isReg()) 1690 return false; 1691 1692 unsigned P = Cond[CSz-1].getReg(); 1693 MachineInstr *PredDef = MRI->getVRegDef(P); 1694 1695 if (!PredDef->isCompare()) 1696 return false; 1697 1698 SmallSet<unsigned,2> CmpRegs; 1699 MachineOperand *CmpImmOp = nullptr; 1700 1701 // Go over all operands to the compare and look for immediate and register 1702 // operands. Assume that if the compare has a single register use and a 1703 // single immediate operand, then the register is being compared with the 1704 // immediate value. 1705 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1706 MachineOperand &MO = PredDef->getOperand(i); 1707 if (MO.isReg()) { 1708 // Skip all implicit references. In one case there was: 1709 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1710 if (MO.isImplicit()) 1711 continue; 1712 if (MO.isUse()) { 1713 if (!isImmediate(MO)) { 1714 CmpRegs.insert(MO.getReg()); 1715 continue; 1716 } 1717 // Consider the register to be the "immediate" operand. 1718 if (CmpImmOp) 1719 return false; 1720 CmpImmOp = &MO; 1721 } 1722 } else if (MO.isImm()) { 1723 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1724 return false; 1725 CmpImmOp = &MO; 1726 } 1727 } 1728 1729 if (CmpRegs.empty()) 1730 return false; 1731 1732 // Check if the compared register follows the order we want. Fix if needed. 1733 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1734 I != E; ++I) { 1735 // This is a success. If the register used in the comparison is one that 1736 // we have identified as a bumped (updated) induction register, there is 1737 // nothing to do. 1738 if (CmpRegs.count(I->first)) 1739 return true; 1740 1741 // Otherwise, if the register being compared comes out of a PHI node, 1742 // and has been recognized as following the induction pattern, and is 1743 // compared against an immediate, we can fix it. 1744 const RegisterBump &RB = I->second; 1745 if (CmpRegs.count(RB.first)) { 1746 if (!CmpImmOp) { 1747 // If both operands to the compare instruction are registers, see if 1748 // it can be changed to use induction register as one of the operands. 1749 MachineInstr *IndI = nullptr; 1750 MachineInstr *nonIndI = nullptr; 1751 MachineOperand *IndMO = nullptr; 1752 MachineOperand *nonIndMO = nullptr; 1753 1754 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1755 MachineOperand &MO = PredDef->getOperand(i); 1756 if (MO.isReg() && MO.getReg() == RB.first) { 1757 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1758 << *(MRI->getVRegDef(I->first))); 1759 if (IndI) 1760 return false; 1761 1762 IndI = MRI->getVRegDef(I->first); 1763 IndMO = &MO; 1764 } else if (MO.isReg()) { 1765 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1766 << *(MRI->getVRegDef(MO.getReg()))); 1767 if (nonIndI) 1768 return false; 1769 1770 nonIndI = MRI->getVRegDef(MO.getReg()); 1771 nonIndMO = &MO; 1772 } 1773 } 1774 if (IndI && nonIndI && 1775 nonIndI->getOpcode() == Hexagon::A2_addi && 1776 nonIndI->getOperand(2).isImm() && 1777 nonIndI->getOperand(2).getImm() == - RB.second) { 1778 bool Order = orderBumpCompare(IndI, PredDef); 1779 if (Order) { 1780 IndMO->setReg(I->first); 1781 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1782 return true; 1783 } 1784 } 1785 return false; 1786 } 1787 1788 // It is not valid to do this transformation on an unsigned comparison 1789 // because it may underflow. 1790 Comparison::Kind Cmp = 1791 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1792 if (!Cmp || Comparison::isUnsigned(Cmp)) 1793 return false; 1794 1795 // If the register is being compared against an immediate, try changing 1796 // the compare instruction to use induction register and adjust the 1797 // immediate operand. 1798 int64_t CmpImm = getImmediate(*CmpImmOp); 1799 int64_t V = RB.second; 1800 // Handle Overflow (64-bit). 1801 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1802 ((V < 0) && (CmpImm < INT64_MIN - V))) 1803 return false; 1804 CmpImm += V; 1805 // Most comparisons of register against an immediate value allow 1806 // the immediate to be constant-extended. There are some exceptions 1807 // though. Make sure the new combination will work. 1808 if (CmpImmOp->isImm()) 1809 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1810 return false; 1811 1812 // Make sure that the compare happens after the bump. Otherwise, 1813 // after the fixup, the compare would use a yet-undefined register. 1814 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1815 bool Order = orderBumpCompare(BumpI, PredDef); 1816 if (!Order) 1817 return false; 1818 1819 // Finally, fix the compare instruction. 1820 setImmediate(*CmpImmOp, CmpImm); 1821 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1822 MachineOperand &MO = PredDef->getOperand(i); 1823 if (MO.isReg() && MO.getReg() == RB.first) { 1824 MO.setReg(I->first); 1825 return true; 1826 } 1827 } 1828 } 1829 } 1830 1831 return false; 1832 } 1833 1834 /// createPreheaderForLoop - Create a preheader for a given loop. 1835 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1836 MachineLoop *L) { 1837 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1838 return TmpPH; 1839 if (!HWCreatePreheader) 1840 return nullptr; 1841 1842 MachineBasicBlock *Header = L->getHeader(); 1843 MachineBasicBlock *Latch = L->getLoopLatch(); 1844 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1845 MachineFunction *MF = Header->getParent(); 1846 DebugLoc DL; 1847 1848 #ifndef NDEBUG 1849 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1850 return nullptr; 1851 #endif 1852 1853 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1854 return nullptr; 1855 1856 using instr_iterator = MachineBasicBlock::instr_iterator; 1857 1858 // Verify that all existing predecessors have analyzable branches 1859 // (or no branches at all). 1860 using MBBVector = std::vector<MachineBasicBlock *>; 1861 1862 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1863 SmallVector<MachineOperand,2> Tmp1; 1864 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1865 1866 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1867 return nullptr; 1868 1869 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1870 MachineBasicBlock *PB = *I; 1871 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1872 if (NotAnalyzed) 1873 return nullptr; 1874 } 1875 1876 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1877 MF->insert(Header->getIterator(), NewPH); 1878 1879 if (Header->pred_size() > 2) { 1880 // Ensure that the header has only two predecessors: the preheader and 1881 // the loop latch. Any additional predecessors of the header should 1882 // join at the newly created preheader. Inspect all PHI nodes from the 1883 // header and create appropriate corresponding PHI nodes in the preheader. 1884 1885 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1886 I != E && I->isPHI(); ++I) { 1887 MachineInstr *PN = &*I; 1888 1889 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1890 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1891 NewPH->insert(NewPH->end(), NewPN); 1892 1893 unsigned PR = PN->getOperand(0).getReg(); 1894 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1895 unsigned NewPR = MRI->createVirtualRegister(RC); 1896 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1897 1898 // Copy all non-latch operands of a header's PHI node to the newly 1899 // created PHI node in the preheader. 1900 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1901 unsigned PredR = PN->getOperand(i).getReg(); 1902 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1903 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1904 if (PredB == Latch) 1905 continue; 1906 1907 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1908 MO.setSubReg(PredRSub); 1909 NewPN->addOperand(MO); 1910 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1911 } 1912 1913 // Remove copied operands from the old PHI node and add the value 1914 // coming from the preheader's PHI. 1915 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1916 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1917 if (PredB != Latch) { 1918 PN->RemoveOperand(i+1); 1919 PN->RemoveOperand(i); 1920 } 1921 } 1922 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1923 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1924 } 1925 } else { 1926 assert(Header->pred_size() == 2); 1927 1928 // The header has only two predecessors, but the non-latch predecessor 1929 // is not a preheader (e.g. it has other successors, etc.) 1930 // In such a case we don't need any extra PHI nodes in the new preheader, 1931 // all we need is to adjust existing PHIs in the header to now refer to 1932 // the new preheader. 1933 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1934 I != E && I->isPHI(); ++I) { 1935 MachineInstr *PN = &*I; 1936 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1937 MachineOperand &MO = PN->getOperand(i+1); 1938 if (MO.getMBB() != Latch) 1939 MO.setMBB(NewPH); 1940 } 1941 } 1942 } 1943 1944 // "Reroute" the CFG edges to link in the new preheader. 1945 // If any of the predecessors falls through to the header, insert a branch 1946 // to the new preheader in that place. 1947 SmallVector<MachineOperand,1> Tmp2; 1948 SmallVector<MachineOperand,1> EmptyCond; 1949 1950 TB = FB = nullptr; 1951 1952 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1953 MachineBasicBlock *PB = *I; 1954 if (PB != Latch) { 1955 Tmp2.clear(); 1956 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1957 (void)NotAnalyzed; // suppress compiler warning 1958 assert (!NotAnalyzed && "Should be analyzable!"); 1959 if (TB != Header && (Tmp2.empty() || FB != Header)) 1960 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1961 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1962 } 1963 } 1964 1965 // It can happen that the latch block will fall through into the header. 1966 // Insert an unconditional branch to the header. 1967 TB = FB = nullptr; 1968 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1969 (void)LatchNotAnalyzed; // suppress compiler warning 1970 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1971 if (!TB && !FB) 1972 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1973 1974 // Finally, the branch from the preheader to the header. 1975 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1976 NewPH->addSuccessor(Header); 1977 1978 MachineLoop *ParentLoop = L->getParentLoop(); 1979 if (ParentLoop) 1980 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1981 1982 // Update the dominator information with the new preheader. 1983 if (MDT) { 1984 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1985 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1986 MDT->addNewBlock(NewPH, DHN->getBlock()); 1987 MDT->changeImmediateDominator(Header, NewPH); 1988 } 1989 } 1990 } 1991 1992 return NewPH; 1993 } 1994