1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "HexagonInstrInfo.h" 29 #include "HexagonSubtarget.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineDominators.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include <cassert> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <iterator> 58 #include <map> 59 #include <set> 60 #include <string> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "hwloops" 67 68 #ifndef NDEBUG 69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 70 71 // Option to create preheader only for a specific function. 72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 73 cl::init("")); 74 #endif 75 76 // Option to create a preheader if one doesn't exist. 77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 78 cl::Hidden, cl::init(true), 79 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 80 81 // Turn it off by default. If a preheader block is not created here, the 82 // software pipeliner may be unable to find a block suitable to serve as 83 // a preheader. In that case SWP will not run. 84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 85 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 86 "instructions")); 87 88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 89 90 namespace llvm { 91 92 FunctionPass *createHexagonHardwareLoops(); 93 void initializeHexagonHardwareLoopsPass(PassRegistry&); 94 95 } // end namespace llvm 96 97 namespace { 98 99 class CountValue; 100 101 struct HexagonHardwareLoops : public MachineFunctionPass { 102 MachineLoopInfo *MLI; 103 MachineRegisterInfo *MRI; 104 MachineDominatorTree *MDT; 105 const HexagonInstrInfo *TII; 106 const HexagonRegisterInfo *TRI; 107 #ifndef NDEBUG 108 static int Counter; 109 #endif 110 111 public: 112 static char ID; 113 114 HexagonHardwareLoops() : MachineFunctionPass(ID) { 115 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 116 } 117 118 bool runOnMachineFunction(MachineFunction &MF) override; 119 120 StringRef getPassName() const override { return "Hexagon Hardware Loops"; } 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override { 123 AU.addRequired<MachineDominatorTree>(); 124 AU.addRequired<MachineLoopInfo>(); 125 MachineFunctionPass::getAnalysisUsage(AU); 126 } 127 128 private: 129 using LoopFeederMap = std::map<unsigned, MachineInstr *>; 130 131 /// Kinds of comparisons in the compare instructions. 132 struct Comparison { 133 enum Kind { 134 EQ = 0x01, 135 NE = 0x02, 136 L = 0x04, 137 G = 0x08, 138 U = 0x40, 139 LTs = L, 140 LEs = L | EQ, 141 GTs = G, 142 GEs = G | EQ, 143 LTu = L | U, 144 LEu = L | EQ | U, 145 GTu = G | U, 146 GEu = G | EQ | U 147 }; 148 149 static Kind getSwappedComparison(Kind Cmp) { 150 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 151 if ((Cmp & L) || (Cmp & G)) 152 return (Kind)(Cmp ^ (L|G)); 153 return Cmp; 154 } 155 156 static Kind getNegatedComparison(Kind Cmp) { 157 if ((Cmp & L) || (Cmp & G)) 158 return (Kind)((Cmp ^ (L | G)) ^ EQ); 159 if ((Cmp & NE) || (Cmp & EQ)) 160 return (Kind)(Cmp ^ (EQ | NE)); 161 return (Kind)0; 162 } 163 164 static bool isSigned(Kind Cmp) { 165 return (Cmp & (L | G) && !(Cmp & U)); 166 } 167 168 static bool isUnsigned(Kind Cmp) { 169 return (Cmp & U); 170 } 171 }; 172 173 /// \brief Find the register that contains the loop controlling 174 /// induction variable. 175 /// If successful, it will return true and set the \p Reg, \p IVBump 176 /// and \p IVOp arguments. Otherwise it will return false. 177 /// The returned induction register is the register R that follows the 178 /// following induction pattern: 179 /// loop: 180 /// R = phi ..., [ R.next, LatchBlock ] 181 /// R.next = R + #bump 182 /// if (R.next < #N) goto loop 183 /// IVBump is the immediate value added to R, and IVOp is the instruction 184 /// "R.next = R + #bump". 185 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 186 int64_t &IVBump, MachineInstr *&IVOp) const; 187 188 /// \brief Return the comparison kind for the specified opcode. 189 Comparison::Kind getComparisonKind(unsigned CondOpc, 190 MachineOperand *InitialValue, 191 const MachineOperand *Endvalue, 192 int64_t IVBump) const; 193 194 /// \brief Analyze the statements in a loop to determine if the loop 195 /// has a computable trip count and, if so, return a value that represents 196 /// the trip count expression. 197 CountValue *getLoopTripCount(MachineLoop *L, 198 SmallVectorImpl<MachineInstr *> &OldInsts); 199 200 /// \brief Return the expression that represents the number of times 201 /// a loop iterates. The function takes the operands that represent the 202 /// loop start value, loop end value, and induction value. Based upon 203 /// these operands, the function attempts to compute the trip count. 204 /// If the trip count is not directly available (as an immediate value, 205 /// or a register), the function will attempt to insert computation of it 206 /// to the loop's preheader. 207 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 208 const MachineOperand *End, unsigned IVReg, 209 int64_t IVBump, Comparison::Kind Cmp) const; 210 211 /// \brief Return true if the instruction is not valid within a hardware 212 /// loop. 213 bool isInvalidLoopOperation(const MachineInstr *MI, 214 bool IsInnerHWLoop) const; 215 216 /// \brief Return true if the loop contains an instruction that inhibits 217 /// using the hardware loop. 218 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 219 220 /// \brief Given a loop, check if we can convert it to a hardware loop. 221 /// If so, then perform the conversion and return true. 222 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 223 224 /// \brief Return true if the instruction is now dead. 225 bool isDead(const MachineInstr *MI, 226 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 227 228 /// \brief Remove the instruction if it is now dead. 229 void removeIfDead(MachineInstr *MI); 230 231 /// \brief Make sure that the "bump" instruction executes before the 232 /// compare. We need that for the IV fixup, so that the compare 233 /// instruction would not use a bumped value that has not yet been 234 /// defined. If the instructions are out of order, try to reorder them. 235 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 236 237 /// \brief Return true if MO and MI pair is visited only once. If visited 238 /// more than once, this indicates there is recursion. In such a case, 239 /// return false. 240 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 241 const MachineOperand *MO, 242 LoopFeederMap &LoopFeederPhi) const; 243 244 /// \brief Return true if the Phi may generate a value that may underflow, 245 /// or may wrap. 246 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 247 MachineBasicBlock *MBB, MachineLoop *L, 248 LoopFeederMap &LoopFeederPhi) const; 249 250 /// \brief Return true if the induction variable may underflow an unsigned 251 /// value in the first iteration. 252 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 253 const MachineOperand *EndVal, 254 MachineBasicBlock *MBB, MachineLoop *L, 255 LoopFeederMap &LoopFeederPhi) const; 256 257 /// \brief Check if the given operand has a compile-time known constant 258 /// value. Return true if yes, and false otherwise. When returning true, set 259 /// Val to the corresponding constant value. 260 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 261 262 /// \brief Check if the operand has a compile-time known constant value. 263 bool isImmediate(const MachineOperand &MO) const { 264 int64_t V; 265 return checkForImmediate(MO, V); 266 } 267 268 /// \brief Return the immediate for the specified operand. 269 int64_t getImmediate(const MachineOperand &MO) const { 270 int64_t V; 271 if (!checkForImmediate(MO, V)) 272 llvm_unreachable("Invalid operand"); 273 return V; 274 } 275 276 /// \brief Reset the given machine operand to now refer to a new immediate 277 /// value. Assumes that the operand was already referencing an immediate 278 /// value, either directly, or via a register. 279 void setImmediate(MachineOperand &MO, int64_t Val); 280 281 /// \brief Fix the data flow of the induction variable. 282 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 283 /// | 284 /// +-> back to phi 285 /// where "bump" is the increment of the induction variable: 286 /// iv = iv + #const. 287 /// Due to some prior code transformations, the actual flow may look 288 /// like this: 289 /// phi -+-> bump ---> back to phi 290 /// | 291 /// +-> comparison-in-latch (against upper_bound-bump), 292 /// i.e. the comparison that controls the loop execution may be using 293 /// the value of the induction variable from before the increment. 294 /// 295 /// Return true if the loop's flow is the desired one (i.e. it's 296 /// either been fixed, or no fixing was necessary). 297 /// Otherwise, return false. This can happen if the induction variable 298 /// couldn't be identified, or if the value in the latch's comparison 299 /// cannot be adjusted to reflect the post-bump value. 300 bool fixupInductionVariable(MachineLoop *L); 301 302 /// \brief Given a loop, if it does not have a preheader, create one. 303 /// Return the block that is the preheader. 304 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 305 }; 306 307 char HexagonHardwareLoops::ID = 0; 308 #ifndef NDEBUG 309 int HexagonHardwareLoops::Counter = 0; 310 #endif 311 312 /// \brief Abstraction for a trip count of a loop. A smaller version 313 /// of the MachineOperand class without the concerns of changing the 314 /// operand representation. 315 class CountValue { 316 public: 317 enum CountValueType { 318 CV_Register, 319 CV_Immediate 320 }; 321 322 private: 323 CountValueType Kind; 324 union Values { 325 struct { 326 unsigned Reg; 327 unsigned Sub; 328 } R; 329 unsigned ImmVal; 330 } Contents; 331 332 public: 333 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 334 Kind = t; 335 if (Kind == CV_Register) { 336 Contents.R.Reg = v; 337 Contents.R.Sub = u; 338 } else { 339 Contents.ImmVal = v; 340 } 341 } 342 343 bool isReg() const { return Kind == CV_Register; } 344 bool isImm() const { return Kind == CV_Immediate; } 345 346 unsigned getReg() const { 347 assert(isReg() && "Wrong CountValue accessor"); 348 return Contents.R.Reg; 349 } 350 351 unsigned getSubReg() const { 352 assert(isReg() && "Wrong CountValue accessor"); 353 return Contents.R.Sub; 354 } 355 356 unsigned getImm() const { 357 assert(isImm() && "Wrong CountValue accessor"); 358 return Contents.ImmVal; 359 } 360 361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 362 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 363 if (isImm()) { OS << Contents.ImmVal; } 364 } 365 }; 366 367 } // end anonymous namespace 368 369 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 370 "Hexagon Hardware Loops", false, false) 371 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 372 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 373 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 374 "Hexagon Hardware Loops", false, false) 375 376 FunctionPass *llvm::createHexagonHardwareLoops() { 377 return new HexagonHardwareLoops(); 378 } 379 380 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 381 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 382 if (skipFunction(*MF.getFunction())) 383 return false; 384 385 bool Changed = false; 386 387 MLI = &getAnalysis<MachineLoopInfo>(); 388 MRI = &MF.getRegInfo(); 389 MDT = &getAnalysis<MachineDominatorTree>(); 390 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); 391 TII = HST.getInstrInfo(); 392 TRI = HST.getRegisterInfo(); 393 394 for (auto &L : *MLI) 395 if (!L->getParentLoop()) { 396 bool L0Used = false; 397 bool L1Used = false; 398 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 399 } 400 401 return Changed; 402 } 403 404 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 405 unsigned &Reg, 406 int64_t &IVBump, 407 MachineInstr *&IVOp 408 ) const { 409 MachineBasicBlock *Header = L->getHeader(); 410 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 411 MachineBasicBlock *Latch = L->getLoopLatch(); 412 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 413 if (!Header || !Preheader || !Latch || !ExitingBlock) 414 return false; 415 416 // This pair represents an induction register together with an immediate 417 // value that will be added to it in each loop iteration. 418 using RegisterBump = std::pair<unsigned, int64_t>; 419 420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 421 // from an induction operation 422 // R.next = R + bump 423 // where bump is an immediate value. 424 using InductionMap = std::map<unsigned, RegisterBump>; 425 426 InductionMap IndMap; 427 428 using instr_iterator = MachineBasicBlock::instr_iterator; 429 430 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 431 I != E && I->isPHI(); ++I) { 432 MachineInstr *Phi = &*I; 433 434 // Have a PHI instruction. Get the operand that corresponds to the 435 // latch block, and see if is a result of an addition of form "reg+imm", 436 // where the "reg" is defined by the PHI node we are looking at. 437 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 438 if (Phi->getOperand(i+1).getMBB() != Latch) 439 continue; 440 441 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 442 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 443 444 if (DI->getDesc().isAdd()) { 445 // If the register operand to the add is the PHI we're looking at, this 446 // meets the induction pattern. 447 unsigned IndReg = DI->getOperand(1).getReg(); 448 MachineOperand &Opnd2 = DI->getOperand(2); 449 int64_t V; 450 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 451 unsigned UpdReg = DI->getOperand(0).getReg(); 452 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 453 } 454 } 455 } // for (i) 456 } // for (instr) 457 458 SmallVector<MachineOperand,2> Cond; 459 MachineBasicBlock *TB = nullptr, *FB = nullptr; 460 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 461 if (NotAnalyzed) 462 return false; 463 464 unsigned PredR, PredPos, PredRegFlags; 465 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 466 return false; 467 468 MachineInstr *PredI = MRI->getVRegDef(PredR); 469 if (!PredI->isCompare()) 470 return false; 471 472 unsigned CmpReg1 = 0, CmpReg2 = 0; 473 int CmpImm = 0, CmpMask = 0; 474 bool CmpAnalyzed = 475 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 476 // Fail if the compare was not analyzed, or it's not comparing a register 477 // with an immediate value. Not checking the mask here, since we handle 478 // the individual compare opcodes (including A4_cmpb*) later on. 479 if (!CmpAnalyzed) 480 return false; 481 482 // Exactly one of the input registers to the comparison should be among 483 // the induction registers. 484 InductionMap::iterator IndMapEnd = IndMap.end(); 485 InductionMap::iterator F = IndMapEnd; 486 if (CmpReg1 != 0) { 487 InductionMap::iterator F1 = IndMap.find(CmpReg1); 488 if (F1 != IndMapEnd) 489 F = F1; 490 } 491 if (CmpReg2 != 0) { 492 InductionMap::iterator F2 = IndMap.find(CmpReg2); 493 if (F2 != IndMapEnd) { 494 if (F != IndMapEnd) 495 return false; 496 F = F2; 497 } 498 } 499 if (F == IndMapEnd) 500 return false; 501 502 Reg = F->second.first; 503 IVBump = F->second.second; 504 IVOp = MRI->getVRegDef(F->first); 505 return true; 506 } 507 508 // Return the comparison kind for the specified opcode. 509 HexagonHardwareLoops::Comparison::Kind 510 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 511 MachineOperand *InitialValue, 512 const MachineOperand *EndValue, 513 int64_t IVBump) const { 514 Comparison::Kind Cmp = (Comparison::Kind)0; 515 switch (CondOpc) { 516 case Hexagon::C2_cmpeqi: 517 case Hexagon::C2_cmpeq: 518 case Hexagon::C2_cmpeqp: 519 Cmp = Comparison::EQ; 520 break; 521 case Hexagon::C4_cmpneq: 522 case Hexagon::C4_cmpneqi: 523 Cmp = Comparison::NE; 524 break; 525 case Hexagon::C4_cmplte: 526 Cmp = Comparison::LEs; 527 break; 528 case Hexagon::C4_cmplteu: 529 Cmp = Comparison::LEu; 530 break; 531 case Hexagon::C2_cmpgtui: 532 case Hexagon::C2_cmpgtu: 533 case Hexagon::C2_cmpgtup: 534 Cmp = Comparison::GTu; 535 break; 536 case Hexagon::C2_cmpgti: 537 case Hexagon::C2_cmpgt: 538 case Hexagon::C2_cmpgtp: 539 Cmp = Comparison::GTs; 540 break; 541 default: 542 return (Comparison::Kind)0; 543 } 544 return Cmp; 545 } 546 547 /// \brief Analyze the statements in a loop to determine if the loop has 548 /// a computable trip count and, if so, return a value that represents 549 /// the trip count expression. 550 /// 551 /// This function iterates over the phi nodes in the loop to check for 552 /// induction variable patterns that are used in the calculation for 553 /// the number of time the loop is executed. 554 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 555 SmallVectorImpl<MachineInstr *> &OldInsts) { 556 MachineBasicBlock *TopMBB = L->getTopBlock(); 557 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 558 assert(PI != TopMBB->pred_end() && 559 "Loop must have more than one incoming edge!"); 560 MachineBasicBlock *Backedge = *PI++; 561 if (PI == TopMBB->pred_end()) // dead loop? 562 return nullptr; 563 MachineBasicBlock *Incoming = *PI++; 564 if (PI != TopMBB->pred_end()) // multiple backedges? 565 return nullptr; 566 567 // Make sure there is one incoming and one backedge and determine which 568 // is which. 569 if (L->contains(Incoming)) { 570 if (L->contains(Backedge)) 571 return nullptr; 572 std::swap(Incoming, Backedge); 573 } else if (!L->contains(Backedge)) 574 return nullptr; 575 576 // Look for the cmp instruction to determine if we can get a useful trip 577 // count. The trip count can be either a register or an immediate. The 578 // location of the value depends upon the type (reg or imm). 579 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 580 if (!ExitingBlock) 581 return nullptr; 582 583 unsigned IVReg = 0; 584 int64_t IVBump = 0; 585 MachineInstr *IVOp; 586 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 587 if (!FoundIV) 588 return nullptr; 589 590 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 591 592 MachineOperand *InitialValue = nullptr; 593 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 594 MachineBasicBlock *Latch = L->getLoopLatch(); 595 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 596 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 597 if (MBB == Preheader) 598 InitialValue = &IV_Phi->getOperand(i); 599 else if (MBB == Latch) 600 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 601 } 602 if (!InitialValue) 603 return nullptr; 604 605 SmallVector<MachineOperand,2> Cond; 606 MachineBasicBlock *TB = nullptr, *FB = nullptr; 607 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 608 if (NotAnalyzed) 609 return nullptr; 610 611 MachineBasicBlock *Header = L->getHeader(); 612 // TB must be non-null. If FB is also non-null, one of them must be 613 // the header. Otherwise, branch to TB could be exiting the loop, and 614 // the fall through can go to the header. 615 assert (TB && "Exit block without a branch?"); 616 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 617 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 618 SmallVector<MachineOperand,2> LCond; 619 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 620 if (NotAnalyzed) 621 return nullptr; 622 if (TB == Latch) 623 TB = (LTB == Header) ? LTB : LFB; 624 else 625 FB = (LTB == Header) ? LTB: LFB; 626 } 627 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 628 if (!TB || (FB && TB != Header && FB != Header)) 629 return nullptr; 630 631 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 632 // to put imm(0), followed by P in the vector Cond. 633 // If TB is not the header, it means that the "not-taken" path must lead 634 // to the header. 635 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 636 unsigned PredReg, PredPos, PredRegFlags; 637 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 638 return nullptr; 639 MachineInstr *CondI = MRI->getVRegDef(PredReg); 640 unsigned CondOpc = CondI->getOpcode(); 641 642 unsigned CmpReg1 = 0, CmpReg2 = 0; 643 int Mask = 0, ImmValue = 0; 644 bool AnalyzedCmp = 645 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 646 if (!AnalyzedCmp) 647 return nullptr; 648 649 // The comparison operator type determines how we compute the loop 650 // trip count. 651 OldInsts.push_back(CondI); 652 OldInsts.push_back(IVOp); 653 654 // Sadly, the following code gets information based on the position 655 // of the operands in the compare instruction. This has to be done 656 // this way, because the comparisons check for a specific relationship 657 // between the operands (e.g. is-less-than), rather than to find out 658 // what relationship the operands are in (as on PPC). 659 Comparison::Kind Cmp; 660 bool isSwapped = false; 661 const MachineOperand &Op1 = CondI->getOperand(1); 662 const MachineOperand &Op2 = CondI->getOperand(2); 663 const MachineOperand *EndValue = nullptr; 664 665 if (Op1.isReg()) { 666 if (Op2.isImm() || Op1.getReg() == IVReg) 667 EndValue = &Op2; 668 else { 669 EndValue = &Op1; 670 isSwapped = true; 671 } 672 } 673 674 if (!EndValue) 675 return nullptr; 676 677 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 678 if (!Cmp) 679 return nullptr; 680 if (Negated) 681 Cmp = Comparison::getNegatedComparison(Cmp); 682 if (isSwapped) 683 Cmp = Comparison::getSwappedComparison(Cmp); 684 685 if (InitialValue->isReg()) { 686 unsigned R = InitialValue->getReg(); 687 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 688 if (!MDT->properlyDominates(DefBB, Header)) 689 return nullptr; 690 OldInsts.push_back(MRI->getVRegDef(R)); 691 } 692 if (EndValue->isReg()) { 693 unsigned R = EndValue->getReg(); 694 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 695 if (!MDT->properlyDominates(DefBB, Header)) 696 return nullptr; 697 OldInsts.push_back(MRI->getVRegDef(R)); 698 } 699 700 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 701 } 702 703 /// \brief Helper function that returns the expression that represents the 704 /// number of times a loop iterates. The function takes the operands that 705 /// represent the loop start value, loop end value, and induction value. 706 /// Based upon these operands, the function attempts to compute the trip count. 707 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 708 const MachineOperand *Start, 709 const MachineOperand *End, 710 unsigned IVReg, 711 int64_t IVBump, 712 Comparison::Kind Cmp) const { 713 // Cannot handle comparison EQ, i.e. while (A == B). 714 if (Cmp == Comparison::EQ) 715 return nullptr; 716 717 // Check if either the start or end values are an assignment of an immediate. 718 // If so, use the immediate value rather than the register. 719 if (Start->isReg()) { 720 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 721 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 722 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 723 Start = &StartValInstr->getOperand(1); 724 } 725 if (End->isReg()) { 726 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 727 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 728 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 729 End = &EndValInstr->getOperand(1); 730 } 731 732 if (!Start->isReg() && !Start->isImm()) 733 return nullptr; 734 if (!End->isReg() && !End->isImm()) 735 return nullptr; 736 737 bool CmpLess = Cmp & Comparison::L; 738 bool CmpGreater = Cmp & Comparison::G; 739 bool CmpHasEqual = Cmp & Comparison::EQ; 740 741 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 742 if (CmpLess && IVBump < 0) 743 // Loop going while iv is "less" with the iv value going down. Must wrap. 744 return nullptr; 745 746 if (CmpGreater && IVBump > 0) 747 // Loop going while iv is "greater" with the iv value going up. Must wrap. 748 return nullptr; 749 750 // Phis that may feed into the loop. 751 LoopFeederMap LoopFeederPhi; 752 753 // Check if the initial value may be zero and can be decremented in the first 754 // iteration. If the value is zero, the endloop instruction will not decrement 755 // the loop counter, so we shouldn't generate a hardware loop in this case. 756 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 757 LoopFeederPhi)) 758 return nullptr; 759 760 if (Start->isImm() && End->isImm()) { 761 // Both, start and end are immediates. 762 int64_t StartV = Start->getImm(); 763 int64_t EndV = End->getImm(); 764 int64_t Dist = EndV - StartV; 765 if (Dist == 0) 766 return nullptr; 767 768 bool Exact = (Dist % IVBump) == 0; 769 770 if (Cmp == Comparison::NE) { 771 if (!Exact) 772 return nullptr; 773 if ((Dist < 0) ^ (IVBump < 0)) 774 return nullptr; 775 } 776 777 // For comparisons that include the final value (i.e. include equality 778 // with the final value), we need to increase the distance by 1. 779 if (CmpHasEqual) 780 Dist = Dist > 0 ? Dist+1 : Dist-1; 781 782 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 783 // CmpGreater should imply Dist < 0. These conditions could actually 784 // fail, for example, in unreachable code (which may still appear to be 785 // reachable in the CFG). 786 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 787 return nullptr; 788 789 // "Normalized" distance, i.e. with the bump set to +-1. 790 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 791 : (-Dist + (-IVBump - 1)) / (-IVBump); 792 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 793 794 uint64_t Count = Dist1; 795 796 if (Count > 0xFFFFFFFFULL) 797 return nullptr; 798 799 return new CountValue(CountValue::CV_Immediate, Count); 800 } 801 802 // A general case: Start and End are some values, but the actual 803 // iteration count may not be available. If it is not, insert 804 // a computation of it into the preheader. 805 806 // If the induction variable bump is not a power of 2, quit. 807 // Othwerise we'd need a general integer division. 808 if (!isPowerOf2_64(std::abs(IVBump))) 809 return nullptr; 810 811 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); 812 assert (PH && "Should have a preheader by now"); 813 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 814 DebugLoc DL; 815 if (InsertPos != PH->end()) 816 DL = InsertPos->getDebugLoc(); 817 818 // If Start is an immediate and End is a register, the trip count 819 // will be "reg - imm". Hexagon's "subtract immediate" instruction 820 // is actually "reg + -imm". 821 822 // If the loop IV is going downwards, i.e. if the bump is negative, 823 // then the iteration count (computed as End-Start) will need to be 824 // negated. To avoid the negation, just swap Start and End. 825 if (IVBump < 0) { 826 std::swap(Start, End); 827 IVBump = -IVBump; 828 } 829 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 830 // Signedness, and "including equality" are preserved. 831 832 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 833 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 834 835 int64_t StartV = 0, EndV = 0; 836 if (Start->isImm()) 837 StartV = Start->getImm(); 838 if (End->isImm()) 839 EndV = End->getImm(); 840 841 int64_t AdjV = 0; 842 // To compute the iteration count, we would need this computation: 843 // Count = (End - Start + (IVBump-1)) / IVBump 844 // or, when CmpHasEqual: 845 // Count = (End - Start + (IVBump-1)+1) / IVBump 846 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 847 // generating an instruction specifically to add it if we can adjust 848 // the immediate values for Start or End. 849 850 if (CmpHasEqual) { 851 // Need to add 1 to the total iteration count. 852 if (Start->isImm()) 853 StartV--; 854 else if (End->isImm()) 855 EndV++; 856 else 857 AdjV += 1; 858 } 859 860 if (Cmp != Comparison::NE) { 861 if (Start->isImm()) 862 StartV -= (IVBump-1); 863 else if (End->isImm()) 864 EndV += (IVBump-1); 865 else 866 AdjV += (IVBump-1); 867 } 868 869 unsigned R = 0, SR = 0; 870 if (Start->isReg()) { 871 R = Start->getReg(); 872 SR = Start->getSubReg(); 873 } else { 874 R = End->getReg(); 875 SR = End->getSubReg(); 876 } 877 const TargetRegisterClass *RC = MRI->getRegClass(R); 878 // Hardware loops cannot handle 64-bit registers. If it's a double 879 // register, it has to have a subregister. 880 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 881 return nullptr; 882 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 883 884 // Compute DistR (register with the distance between Start and End). 885 unsigned DistR, DistSR; 886 887 // Avoid special case, where the start value is an imm(0). 888 if (Start->isImm() && StartV == 0) { 889 DistR = End->getReg(); 890 DistSR = End->getSubReg(); 891 } else { 892 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 893 (RegToImm ? TII->get(Hexagon::A2_subri) : 894 TII->get(Hexagon::A2_addi)); 895 if (RegToReg || RegToImm) { 896 unsigned SubR = MRI->createVirtualRegister(IntRC); 897 MachineInstrBuilder SubIB = 898 BuildMI(*PH, InsertPos, DL, SubD, SubR); 899 900 if (RegToReg) 901 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 902 .addReg(Start->getReg(), 0, Start->getSubReg()); 903 else 904 SubIB.addImm(EndV) 905 .addReg(Start->getReg(), 0, Start->getSubReg()); 906 DistR = SubR; 907 } else { 908 // If the loop has been unrolled, we should use the original loop count 909 // instead of recalculating the value. This will avoid additional 910 // 'Add' instruction. 911 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 912 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 913 EndValInstr->getOperand(2).getImm() == StartV) { 914 DistR = EndValInstr->getOperand(1).getReg(); 915 } else { 916 unsigned SubR = MRI->createVirtualRegister(IntRC); 917 MachineInstrBuilder SubIB = 918 BuildMI(*PH, InsertPos, DL, SubD, SubR); 919 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 920 .addImm(-StartV); 921 DistR = SubR; 922 } 923 } 924 DistSR = 0; 925 } 926 927 // From DistR, compute AdjR (register with the adjusted distance). 928 unsigned AdjR, AdjSR; 929 930 if (AdjV == 0) { 931 AdjR = DistR; 932 AdjSR = DistSR; 933 } else { 934 // Generate CountR = ADD DistR, AdjVal 935 unsigned AddR = MRI->createVirtualRegister(IntRC); 936 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 937 BuildMI(*PH, InsertPos, DL, AddD, AddR) 938 .addReg(DistR, 0, DistSR) 939 .addImm(AdjV); 940 941 AdjR = AddR; 942 AdjSR = 0; 943 } 944 945 // From AdjR, compute CountR (register with the final count). 946 unsigned CountR, CountSR; 947 948 if (IVBump == 1) { 949 CountR = AdjR; 950 CountSR = AdjSR; 951 } else { 952 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 953 unsigned Shift = Log2_32(IVBump); 954 955 // Generate NormR = LSR DistR, Shift. 956 unsigned LsrR = MRI->createVirtualRegister(IntRC); 957 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 958 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 959 .addReg(AdjR, 0, AdjSR) 960 .addImm(Shift); 961 962 CountR = LsrR; 963 CountSR = 0; 964 } 965 966 return new CountValue(CountValue::CV_Register, CountR, CountSR); 967 } 968 969 /// \brief Return true if the operation is invalid within hardware loop. 970 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 971 bool IsInnerHWLoop) const { 972 // Call is not allowed because the callee may use a hardware loop except for 973 // the case when the call never returns. 974 if (MI->getDesc().isCall()) 975 return !TII->doesNotReturn(*MI); 976 977 // Check if the instruction defines a hardware loop register. 978 using namespace Hexagon; 979 980 static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; 981 static const unsigned Regs1[] = { LC1, SA1 }; 982 auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) 983 : makeArrayRef(Regs1, array_lengthof(Regs1)); 984 for (unsigned R : CheckRegs) 985 if (MI->modifiesRegister(R, TRI)) 986 return true; 987 988 return false; 989 } 990 991 /// \brief Return true if the loop contains an instruction that inhibits 992 /// the use of the hardware loop instruction. 993 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 994 bool IsInnerHWLoop) const { 995 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 996 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 997 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 998 MachineBasicBlock *MBB = Blocks[i]; 999 for (MachineBasicBlock::iterator 1000 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 1001 const MachineInstr *MI = &*MII; 1002 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 1003 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 1004 return true; 1005 } 1006 } 1007 } 1008 return false; 1009 } 1010 1011 /// \brief Returns true if the instruction is dead. This was essentially 1012 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1013 /// for inline asm, physical registers and instructions with side effects 1014 /// removed. 1015 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1016 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1017 // Examine each operand. 1018 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1019 const MachineOperand &MO = MI->getOperand(i); 1020 if (!MO.isReg() || !MO.isDef()) 1021 continue; 1022 1023 unsigned Reg = MO.getReg(); 1024 if (MRI->use_nodbg_empty(Reg)) 1025 continue; 1026 1027 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; 1028 1029 // This instruction has users, but if the only user is the phi node for the 1030 // parent block, and the only use of that phi node is this instruction, then 1031 // this instruction is dead: both it (and the phi node) can be removed. 1032 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1033 use_nodbg_iterator End = MRI->use_nodbg_end(); 1034 if (std::next(I) != End || !I->getParent()->isPHI()) 1035 return false; 1036 1037 MachineInstr *OnePhi = I->getParent(); 1038 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1039 const MachineOperand &OPO = OnePhi->getOperand(j); 1040 if (!OPO.isReg() || !OPO.isDef()) 1041 continue; 1042 1043 unsigned OPReg = OPO.getReg(); 1044 use_nodbg_iterator nextJ; 1045 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1046 J != End; J = nextJ) { 1047 nextJ = std::next(J); 1048 MachineOperand &Use = *J; 1049 MachineInstr *UseMI = Use.getParent(); 1050 1051 // If the phi node has a user that is not MI, bail. 1052 if (MI != UseMI) 1053 return false; 1054 } 1055 } 1056 DeadPhis.push_back(OnePhi); 1057 } 1058 1059 // If there are no defs with uses, the instruction is dead. 1060 return true; 1061 } 1062 1063 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1064 // This procedure was essentially copied from DeadMachineInstructionElim. 1065 1066 SmallVector<MachineInstr*, 1> DeadPhis; 1067 if (isDead(MI, DeadPhis)) { 1068 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1069 1070 // It is possible that some DBG_VALUE instructions refer to this 1071 // instruction. Examine each def operand for such references; 1072 // if found, mark the DBG_VALUE as undef (but don't delete it). 1073 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1074 const MachineOperand &MO = MI->getOperand(i); 1075 if (!MO.isReg() || !MO.isDef()) 1076 continue; 1077 unsigned Reg = MO.getReg(); 1078 MachineRegisterInfo::use_iterator nextI; 1079 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1080 E = MRI->use_end(); I != E; I = nextI) { 1081 nextI = std::next(I); // I is invalidated by the setReg 1082 MachineOperand &Use = *I; 1083 MachineInstr *UseMI = I->getParent(); 1084 if (UseMI == MI) 1085 continue; 1086 if (Use.isDebug()) 1087 UseMI->getOperand(0).setReg(0U); 1088 } 1089 } 1090 1091 MI->eraseFromParent(); 1092 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1093 DeadPhis[i]->eraseFromParent(); 1094 } 1095 } 1096 1097 /// \brief Check if the loop is a candidate for converting to a hardware 1098 /// loop. If so, then perform the transformation. 1099 /// 1100 /// This function works on innermost loops first. A loop can be converted 1101 /// if it is a counting loop; either a register value or an immediate. 1102 /// 1103 /// The code makes several assumptions about the representation of the loop 1104 /// in llvm. 1105 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1106 bool &RecL0used, 1107 bool &RecL1used) { 1108 // This is just for sanity. 1109 assert(L->getHeader() && "Loop without a header?"); 1110 1111 bool Changed = false; 1112 bool L0Used = false; 1113 bool L1Used = false; 1114 1115 // Process nested loops first. 1116 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1117 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1118 L0Used |= RecL0used; 1119 L1Used |= RecL1used; 1120 } 1121 1122 // If a nested loop has been converted, then we can't convert this loop. 1123 if (Changed && L0Used && L1Used) 1124 return Changed; 1125 1126 unsigned LOOP_i; 1127 unsigned LOOP_r; 1128 unsigned ENDLOOP; 1129 1130 // Flag used to track loopN instruction: 1131 // 1 - Hardware loop is being generated for the inner most loop. 1132 // 0 - Hardware loop is being generated for the outer loop. 1133 unsigned IsInnerHWLoop = 1; 1134 1135 if (L0Used) { 1136 LOOP_i = Hexagon::J2_loop1i; 1137 LOOP_r = Hexagon::J2_loop1r; 1138 ENDLOOP = Hexagon::ENDLOOP1; 1139 IsInnerHWLoop = 0; 1140 } else { 1141 LOOP_i = Hexagon::J2_loop0i; 1142 LOOP_r = Hexagon::J2_loop0r; 1143 ENDLOOP = Hexagon::ENDLOOP0; 1144 } 1145 1146 #ifndef NDEBUG 1147 // Stop trying after reaching the limit (if any). 1148 int Limit = HWLoopLimit; 1149 if (Limit >= 0) { 1150 if (Counter >= HWLoopLimit) 1151 return false; 1152 Counter++; 1153 } 1154 #endif 1155 1156 // Does the loop contain any invalid instructions? 1157 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1158 return false; 1159 1160 MachineBasicBlock *LastMBB = L->findLoopControlBlock(); 1161 // Don't generate hw loop if the loop has more than one exit. 1162 if (!LastMBB) 1163 return false; 1164 1165 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1166 if (LastI == LastMBB->end()) 1167 return false; 1168 1169 // Is the induction variable bump feeding the latch condition? 1170 if (!fixupInductionVariable(L)) 1171 return false; 1172 1173 // Ensure the loop has a preheader: the loop instruction will be 1174 // placed there. 1175 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); 1176 if (!Preheader) { 1177 Preheader = createPreheaderForLoop(L); 1178 if (!Preheader) 1179 return false; 1180 } 1181 1182 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1183 1184 SmallVector<MachineInstr*, 2> OldInsts; 1185 // Are we able to determine the trip count for the loop? 1186 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1187 if (!TripCount) 1188 return false; 1189 1190 // Is the trip count available in the preheader? 1191 if (TripCount->isReg()) { 1192 // There will be a use of the register inserted into the preheader, 1193 // so make sure that the register is actually defined at that point. 1194 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1195 MachineBasicBlock *BBDef = TCDef->getParent(); 1196 if (!MDT->dominates(BBDef, Preheader)) 1197 return false; 1198 } 1199 1200 // Determine the loop start. 1201 MachineBasicBlock *TopBlock = L->getTopBlock(); 1202 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1203 MachineBasicBlock *LoopStart = nullptr; 1204 if (ExitingBlock != L->getLoopLatch()) { 1205 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1206 SmallVector<MachineOperand, 2> Cond; 1207 1208 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1209 return false; 1210 1211 if (L->contains(TB)) 1212 LoopStart = TB; 1213 else if (L->contains(FB)) 1214 LoopStart = FB; 1215 else 1216 return false; 1217 } 1218 else 1219 LoopStart = TopBlock; 1220 1221 // Convert the loop to a hardware loop. 1222 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1223 DebugLoc DL; 1224 if (InsertPos != Preheader->end()) 1225 DL = InsertPos->getDebugLoc(); 1226 1227 if (TripCount->isReg()) { 1228 // Create a copy of the loop count register. 1229 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1230 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1231 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1232 // Add the Loop instruction to the beginning of the loop. 1233 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1234 .addReg(CountReg); 1235 } else { 1236 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1237 // Add the Loop immediate instruction to the beginning of the loop, 1238 // if the immediate fits in the instructions. Otherwise, we need to 1239 // create a new virtual register. 1240 int64_t CountImm = TripCount->getImm(); 1241 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { 1242 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1243 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1244 .addImm(CountImm); 1245 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1246 .addMBB(LoopStart).addReg(CountReg); 1247 } else 1248 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1249 .addMBB(LoopStart).addImm(CountImm); 1250 } 1251 1252 // Make sure the loop start always has a reference in the CFG. We need 1253 // to create a BlockAddress operand to get this mechanism to work both the 1254 // MachineBasicBlock and BasicBlock objects need the flag set. 1255 LoopStart->setHasAddressTaken(); 1256 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1257 // object. 1258 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1259 1260 // Replace the loop branch with an endloop instruction. 1261 DebugLoc LastIDL = LastI->getDebugLoc(); 1262 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1263 1264 // The loop ends with either: 1265 // - a conditional branch followed by an unconditional branch, or 1266 // - a conditional branch to the loop start. 1267 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1268 LastI->getOpcode() == Hexagon::J2_jumpf) { 1269 // Delete one and change/add an uncond. branch to out of the loop. 1270 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1271 LastI = LastMBB->erase(LastI); 1272 if (!L->contains(BranchTarget)) { 1273 if (LastI != LastMBB->end()) 1274 LastI = LastMBB->erase(LastI); 1275 SmallVector<MachineOperand, 0> Cond; 1276 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1277 } 1278 } else { 1279 // Conditional branch to loop start; just delete it. 1280 LastMBB->erase(LastI); 1281 } 1282 delete TripCount; 1283 1284 // The induction operation and the comparison may now be 1285 // unneeded. If these are unneeded, then remove them. 1286 for (unsigned i = 0; i < OldInsts.size(); ++i) 1287 removeIfDead(OldInsts[i]); 1288 1289 ++NumHWLoops; 1290 1291 // Set RecL1used and RecL0used only after hardware loop has been 1292 // successfully generated. Doing it earlier can cause wrong loop instruction 1293 // to be used. 1294 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1295 RecL1used = true; 1296 else 1297 RecL0used = true; 1298 1299 return true; 1300 } 1301 1302 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1303 MachineInstr *CmpI) { 1304 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1305 1306 MachineBasicBlock *BB = BumpI->getParent(); 1307 if (CmpI->getParent() != BB) 1308 return false; 1309 1310 using instr_iterator = MachineBasicBlock::instr_iterator; 1311 1312 // Check if things are in order to begin with. 1313 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1314 if (&*I == CmpI) 1315 return true; 1316 1317 // Out of order. 1318 unsigned PredR = CmpI->getOperand(0).getReg(); 1319 bool FoundBump = false; 1320 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1321 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1322 MachineInstr *In = &*I; 1323 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1324 MachineOperand &MO = In->getOperand(i); 1325 if (MO.isReg() && MO.isUse()) { 1326 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1327 return false; 1328 } 1329 } 1330 1331 if (In == BumpI) { 1332 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1333 FoundBump = true; 1334 break; 1335 } 1336 } 1337 assert (FoundBump && "Cannot determine instruction order"); 1338 return FoundBump; 1339 } 1340 1341 /// This function is required to break recursion. Visiting phis in a loop may 1342 /// result in recursion during compilation. We break the recursion by making 1343 /// sure that we visit a MachineOperand and its definition in a 1344 /// MachineInstruction only once. If we attempt to visit more than once, then 1345 /// there is recursion, and will return false. 1346 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1347 MachineInstr *MI, 1348 const MachineOperand *MO, 1349 LoopFeederMap &LoopFeederPhi) const { 1350 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1351 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1352 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1353 // Ignore all BBs that form Loop. 1354 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1355 MachineBasicBlock *MBB = Blocks[i]; 1356 if (A == MBB) 1357 return false; 1358 } 1359 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1360 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1361 return true; 1362 } else 1363 // Already visited node. 1364 return false; 1365 } 1366 1367 /// Return true if a Phi may generate a value that can underflow. 1368 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1369 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1370 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1371 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1372 assert(Phi->isPHI() && "Expecting a Phi."); 1373 // Walk through each Phi, and its used operands. Make sure that 1374 // if there is recursion in Phi, we won't generate hardware loops. 1375 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1376 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1377 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1378 Phi->getParent(), L, LoopFeederPhi)) 1379 return true; 1380 return false; 1381 } 1382 1383 /// Return true if the induction variable can underflow in the first iteration. 1384 /// An example, is an initial unsigned value that is 0 and is decrement in the 1385 /// first itertion of a do-while loop. In this case, we cannot generate a 1386 /// hardware loop because the endloop instruction does not decrement the loop 1387 /// counter if it is <= 1. We only need to perform this analysis if the 1388 /// initial value is a register. 1389 /// 1390 /// This function assumes the initial value may underfow unless proven 1391 /// otherwise. If the type is signed, then we don't care because signed 1392 /// underflow is undefined. We attempt to prove the initial value is not 1393 /// zero by perfoming a crude analysis of the loop counter. This function 1394 /// checks if the initial value is used in any comparison prior to the loop 1395 /// and, if so, assumes the comparison is a range check. This is inexact, 1396 /// but will catch the simple cases. 1397 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1398 const MachineOperand *InitVal, const MachineOperand *EndVal, 1399 MachineBasicBlock *MBB, MachineLoop *L, 1400 LoopFeederMap &LoopFeederPhi) const { 1401 // Only check register values since they are unknown. 1402 if (!InitVal->isReg()) 1403 return false; 1404 1405 if (!EndVal->isImm()) 1406 return false; 1407 1408 // A register value that is assigned an immediate is a known value, and it 1409 // won't underflow in the first iteration. 1410 int64_t Imm; 1411 if (checkForImmediate(*InitVal, Imm)) 1412 return (EndVal->getImm() == Imm); 1413 1414 unsigned Reg = InitVal->getReg(); 1415 1416 // We don't know the value of a physical register. 1417 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1418 return true; 1419 1420 MachineInstr *Def = MRI->getVRegDef(Reg); 1421 if (!Def) 1422 return true; 1423 1424 // If the initial value is a Phi or copy and the operands may not underflow, 1425 // then the definition cannot be underflow either. 1426 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1427 L, LoopFeederPhi)) 1428 return false; 1429 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1430 EndVal, Def->getParent(), 1431 L, LoopFeederPhi)) 1432 return false; 1433 1434 // Iterate over the uses of the initial value. If the initial value is used 1435 // in a compare, then we assume this is a range check that ensures the loop 1436 // doesn't underflow. This is not an exact test and should be improved. 1437 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1438 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1439 MachineInstr *MI = &*I; 1440 unsigned CmpReg1 = 0, CmpReg2 = 0; 1441 int CmpMask = 0, CmpValue = 0; 1442 1443 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1444 continue; 1445 1446 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1447 SmallVector<MachineOperand, 2> Cond; 1448 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1449 continue; 1450 1451 Comparison::Kind Cmp = 1452 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); 1453 if (Cmp == 0) 1454 continue; 1455 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1456 Cmp = Comparison::getNegatedComparison(Cmp); 1457 if (CmpReg2 != 0 && CmpReg2 == Reg) 1458 Cmp = Comparison::getSwappedComparison(Cmp); 1459 1460 // Signed underflow is undefined. 1461 if (Comparison::isSigned(Cmp)) 1462 return false; 1463 1464 // Check if there is a comparison of the initial value. If the initial value 1465 // is greater than or not equal to another value, then assume this is a 1466 // range check. 1467 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1468 return false; 1469 } 1470 1471 // OK - this is a hack that needs to be improved. We really need to analyze 1472 // the instructions performed on the initial value. This works on the simplest 1473 // cases only. 1474 if (!Def->isCopy() && !Def->isPHI()) 1475 return false; 1476 1477 return true; 1478 } 1479 1480 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1481 int64_t &Val) const { 1482 if (MO.isImm()) { 1483 Val = MO.getImm(); 1484 return true; 1485 } 1486 if (!MO.isReg()) 1487 return false; 1488 1489 // MO is a register. Check whether it is defined as an immediate value, 1490 // and if so, get the value of it in TV. That value will then need to be 1491 // processed to handle potential subregisters in MO. 1492 int64_t TV; 1493 1494 unsigned R = MO.getReg(); 1495 if (!TargetRegisterInfo::isVirtualRegister(R)) 1496 return false; 1497 MachineInstr *DI = MRI->getVRegDef(R); 1498 unsigned DOpc = DI->getOpcode(); 1499 switch (DOpc) { 1500 case TargetOpcode::COPY: 1501 case Hexagon::A2_tfrsi: 1502 case Hexagon::A2_tfrpi: 1503 case Hexagon::CONST32: 1504 case Hexagon::CONST64: 1505 // Call recursively to avoid an extra check whether operand(1) is 1506 // indeed an immediate (it could be a global address, for example), 1507 // plus we can handle COPY at the same time. 1508 if (!checkForImmediate(DI->getOperand(1), TV)) 1509 return false; 1510 break; 1511 case Hexagon::A2_combineii: 1512 case Hexagon::A4_combineir: 1513 case Hexagon::A4_combineii: 1514 case Hexagon::A4_combineri: 1515 case Hexagon::A2_combinew: { 1516 const MachineOperand &S1 = DI->getOperand(1); 1517 const MachineOperand &S2 = DI->getOperand(2); 1518 int64_t V1, V2; 1519 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1520 return false; 1521 TV = V2 | (static_cast<uint64_t>(V1) << 32); 1522 break; 1523 } 1524 case TargetOpcode::REG_SEQUENCE: { 1525 const MachineOperand &S1 = DI->getOperand(1); 1526 const MachineOperand &S3 = DI->getOperand(3); 1527 int64_t V1, V3; 1528 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1529 return false; 1530 unsigned Sub2 = DI->getOperand(2).getImm(); 1531 unsigned Sub4 = DI->getOperand(4).getImm(); 1532 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) 1533 TV = V1 | (V3 << 32); 1534 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) 1535 TV = V3 | (V1 << 32); 1536 else 1537 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1538 break; 1539 } 1540 1541 default: 1542 return false; 1543 } 1544 1545 // By now, we should have successfully obtained the immediate value defining 1546 // the register referenced in MO. Handle a potential use of a subregister. 1547 switch (MO.getSubReg()) { 1548 case Hexagon::isub_lo: 1549 Val = TV & 0xFFFFFFFFULL; 1550 break; 1551 case Hexagon::isub_hi: 1552 Val = (TV >> 32) & 0xFFFFFFFFULL; 1553 break; 1554 default: 1555 Val = TV; 1556 break; 1557 } 1558 return true; 1559 } 1560 1561 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1562 if (MO.isImm()) { 1563 MO.setImm(Val); 1564 return; 1565 } 1566 1567 assert(MO.isReg()); 1568 unsigned R = MO.getReg(); 1569 MachineInstr *DI = MRI->getVRegDef(R); 1570 1571 const TargetRegisterClass *RC = MRI->getRegClass(R); 1572 unsigned NewR = MRI->createVirtualRegister(RC); 1573 MachineBasicBlock &B = *DI->getParent(); 1574 DebugLoc DL = DI->getDebugLoc(); 1575 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1576 MO.setReg(NewR); 1577 } 1578 1579 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1580 // These two instructions are not extendable. 1581 if (CmpOpc == Hexagon::A4_cmpbeqi) 1582 return isUInt<8>(Imm); 1583 if (CmpOpc == Hexagon::A4_cmpbgti) 1584 return isInt<8>(Imm); 1585 // The rest of the comparison-with-immediate instructions are extendable. 1586 return true; 1587 } 1588 1589 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1590 MachineBasicBlock *Header = L->getHeader(); 1591 MachineBasicBlock *Latch = L->getLoopLatch(); 1592 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1593 1594 if (!(Header && Latch && ExitingBlock)) 1595 return false; 1596 1597 // These data structures follow the same concept as the corresponding 1598 // ones in findInductionRegister (where some comments are). 1599 using RegisterBump = std::pair<unsigned, int64_t>; 1600 using RegisterInduction = std::pair<unsigned, RegisterBump>; 1601 using RegisterInductionSet = std::set<RegisterInduction>; 1602 1603 // Register candidates for induction variables, with their associated bumps. 1604 RegisterInductionSet IndRegs; 1605 1606 // Look for induction patterns: 1607 // vreg1 = PHI ..., [ latch, vreg2 ] 1608 // vreg2 = ADD vreg1, imm 1609 using instr_iterator = MachineBasicBlock::instr_iterator; 1610 1611 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1612 I != E && I->isPHI(); ++I) { 1613 MachineInstr *Phi = &*I; 1614 1615 // Have a PHI instruction. 1616 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1617 if (Phi->getOperand(i+1).getMBB() != Latch) 1618 continue; 1619 1620 unsigned PhiReg = Phi->getOperand(i).getReg(); 1621 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1622 1623 if (DI->getDesc().isAdd()) { 1624 // If the register operand to the add/sub is the PHI we are looking 1625 // at, this meets the induction pattern. 1626 unsigned IndReg = DI->getOperand(1).getReg(); 1627 MachineOperand &Opnd2 = DI->getOperand(2); 1628 int64_t V; 1629 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1630 unsigned UpdReg = DI->getOperand(0).getReg(); 1631 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1632 } 1633 } 1634 } // for (i) 1635 } // for (instr) 1636 1637 if (IndRegs.empty()) 1638 return false; 1639 1640 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1641 SmallVector<MachineOperand,2> Cond; 1642 // AnalyzeBranch returns true if it fails to analyze branch. 1643 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1644 if (NotAnalyzed || Cond.empty()) 1645 return false; 1646 1647 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1648 MachineBasicBlock *LTB = nullptr, *LFB = nullptr; 1649 SmallVector<MachineOperand,2> LCond; 1650 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1651 if (NotAnalyzed) 1652 return false; 1653 1654 // Since latch is not the exiting block, the latch branch should be an 1655 // unconditional branch to the loop header. 1656 if (TB == Latch) 1657 TB = (LTB == Header) ? LTB : LFB; 1658 else 1659 FB = (LTB == Header) ? LTB : LFB; 1660 } 1661 if (TB != Header) { 1662 if (FB != Header) { 1663 // The latch/exit block does not go back to the header. 1664 return false; 1665 } 1666 // FB is the header (i.e., uncond. jump to branch header) 1667 // In this case, the LoopBody -> TB should not be a back edge otherwise 1668 // it could result in an infinite loop after conversion to hw_loop. 1669 // This case can happen when the Latch has two jumps like this: 1670 // Jmp_c OuterLoopHeader <-- TB 1671 // Jmp InnerLoopHeader <-- FB 1672 if (MDT->dominates(TB, FB)) 1673 return false; 1674 } 1675 1676 // Expecting a predicate register as a condition. It won't be a hardware 1677 // predicate register at this point yet, just a vreg. 1678 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1679 // into Cond, followed by the predicate register. For non-negated branches 1680 // it's just the register. 1681 unsigned CSz = Cond.size(); 1682 if (CSz != 1 && CSz != 2) 1683 return false; 1684 1685 if (!Cond[CSz-1].isReg()) 1686 return false; 1687 1688 unsigned P = Cond[CSz-1].getReg(); 1689 MachineInstr *PredDef = MRI->getVRegDef(P); 1690 1691 if (!PredDef->isCompare()) 1692 return false; 1693 1694 SmallSet<unsigned,2> CmpRegs; 1695 MachineOperand *CmpImmOp = nullptr; 1696 1697 // Go over all operands to the compare and look for immediate and register 1698 // operands. Assume that if the compare has a single register use and a 1699 // single immediate operand, then the register is being compared with the 1700 // immediate value. 1701 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1702 MachineOperand &MO = PredDef->getOperand(i); 1703 if (MO.isReg()) { 1704 // Skip all implicit references. In one case there was: 1705 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1706 if (MO.isImplicit()) 1707 continue; 1708 if (MO.isUse()) { 1709 if (!isImmediate(MO)) { 1710 CmpRegs.insert(MO.getReg()); 1711 continue; 1712 } 1713 // Consider the register to be the "immediate" operand. 1714 if (CmpImmOp) 1715 return false; 1716 CmpImmOp = &MO; 1717 } 1718 } else if (MO.isImm()) { 1719 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1720 return false; 1721 CmpImmOp = &MO; 1722 } 1723 } 1724 1725 if (CmpRegs.empty()) 1726 return false; 1727 1728 // Check if the compared register follows the order we want. Fix if needed. 1729 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1730 I != E; ++I) { 1731 // This is a success. If the register used in the comparison is one that 1732 // we have identified as a bumped (updated) induction register, there is 1733 // nothing to do. 1734 if (CmpRegs.count(I->first)) 1735 return true; 1736 1737 // Otherwise, if the register being compared comes out of a PHI node, 1738 // and has been recognized as following the induction pattern, and is 1739 // compared against an immediate, we can fix it. 1740 const RegisterBump &RB = I->second; 1741 if (CmpRegs.count(RB.first)) { 1742 if (!CmpImmOp) { 1743 // If both operands to the compare instruction are registers, see if 1744 // it can be changed to use induction register as one of the operands. 1745 MachineInstr *IndI = nullptr; 1746 MachineInstr *nonIndI = nullptr; 1747 MachineOperand *IndMO = nullptr; 1748 MachineOperand *nonIndMO = nullptr; 1749 1750 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1751 MachineOperand &MO = PredDef->getOperand(i); 1752 if (MO.isReg() && MO.getReg() == RB.first) { 1753 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1754 << *(MRI->getVRegDef(I->first))); 1755 if (IndI) 1756 return false; 1757 1758 IndI = MRI->getVRegDef(I->first); 1759 IndMO = &MO; 1760 } else if (MO.isReg()) { 1761 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1762 << *(MRI->getVRegDef(MO.getReg()))); 1763 if (nonIndI) 1764 return false; 1765 1766 nonIndI = MRI->getVRegDef(MO.getReg()); 1767 nonIndMO = &MO; 1768 } 1769 } 1770 if (IndI && nonIndI && 1771 nonIndI->getOpcode() == Hexagon::A2_addi && 1772 nonIndI->getOperand(2).isImm() && 1773 nonIndI->getOperand(2).getImm() == - RB.second) { 1774 bool Order = orderBumpCompare(IndI, PredDef); 1775 if (Order) { 1776 IndMO->setReg(I->first); 1777 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1778 return true; 1779 } 1780 } 1781 return false; 1782 } 1783 1784 // It is not valid to do this transformation on an unsigned comparison 1785 // because it may underflow. 1786 Comparison::Kind Cmp = 1787 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); 1788 if (!Cmp || Comparison::isUnsigned(Cmp)) 1789 return false; 1790 1791 // If the register is being compared against an immediate, try changing 1792 // the compare instruction to use induction register and adjust the 1793 // immediate operand. 1794 int64_t CmpImm = getImmediate(*CmpImmOp); 1795 int64_t V = RB.second; 1796 // Handle Overflow (64-bit). 1797 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1798 ((V < 0) && (CmpImm < INT64_MIN - V))) 1799 return false; 1800 CmpImm += V; 1801 // Most comparisons of register against an immediate value allow 1802 // the immediate to be constant-extended. There are some exceptions 1803 // though. Make sure the new combination will work. 1804 if (CmpImmOp->isImm()) 1805 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1806 return false; 1807 1808 // Make sure that the compare happens after the bump. Otherwise, 1809 // after the fixup, the compare would use a yet-undefined register. 1810 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1811 bool Order = orderBumpCompare(BumpI, PredDef); 1812 if (!Order) 1813 return false; 1814 1815 // Finally, fix the compare instruction. 1816 setImmediate(*CmpImmOp, CmpImm); 1817 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1818 MachineOperand &MO = PredDef->getOperand(i); 1819 if (MO.isReg() && MO.getReg() == RB.first) { 1820 MO.setReg(I->first); 1821 return true; 1822 } 1823 } 1824 } 1825 } 1826 1827 return false; 1828 } 1829 1830 /// createPreheaderForLoop - Create a preheader for a given loop. 1831 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1832 MachineLoop *L) { 1833 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) 1834 return TmpPH; 1835 if (!HWCreatePreheader) 1836 return nullptr; 1837 1838 MachineBasicBlock *Header = L->getHeader(); 1839 MachineBasicBlock *Latch = L->getLoopLatch(); 1840 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); 1841 MachineFunction *MF = Header->getParent(); 1842 DebugLoc DL; 1843 1844 #ifndef NDEBUG 1845 if ((!PHFn.empty()) && (PHFn != MF->getName())) 1846 return nullptr; 1847 #endif 1848 1849 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1850 return nullptr; 1851 1852 using instr_iterator = MachineBasicBlock::instr_iterator; 1853 1854 // Verify that all existing predecessors have analyzable branches 1855 // (or no branches at all). 1856 using MBBVector = std::vector<MachineBasicBlock *>; 1857 1858 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1859 SmallVector<MachineOperand,2> Tmp1; 1860 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1861 1862 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1863 return nullptr; 1864 1865 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1866 MachineBasicBlock *PB = *I; 1867 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1868 if (NotAnalyzed) 1869 return nullptr; 1870 } 1871 1872 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1873 MF->insert(Header->getIterator(), NewPH); 1874 1875 if (Header->pred_size() > 2) { 1876 // Ensure that the header has only two predecessors: the preheader and 1877 // the loop latch. Any additional predecessors of the header should 1878 // join at the newly created preheader. Inspect all PHI nodes from the 1879 // header and create appropriate corresponding PHI nodes in the preheader. 1880 1881 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1882 I != E && I->isPHI(); ++I) { 1883 MachineInstr *PN = &*I; 1884 1885 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1886 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1887 NewPH->insert(NewPH->end(), NewPN); 1888 1889 unsigned PR = PN->getOperand(0).getReg(); 1890 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1891 unsigned NewPR = MRI->createVirtualRegister(RC); 1892 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1893 1894 // Copy all non-latch operands of a header's PHI node to the newly 1895 // created PHI node in the preheader. 1896 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1897 unsigned PredR = PN->getOperand(i).getReg(); 1898 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1899 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1900 if (PredB == Latch) 1901 continue; 1902 1903 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1904 MO.setSubReg(PredRSub); 1905 NewPN->addOperand(MO); 1906 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1907 } 1908 1909 // Remove copied operands from the old PHI node and add the value 1910 // coming from the preheader's PHI. 1911 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1912 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1913 if (PredB != Latch) { 1914 PN->RemoveOperand(i+1); 1915 PN->RemoveOperand(i); 1916 } 1917 } 1918 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1919 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1920 } 1921 } else { 1922 assert(Header->pred_size() == 2); 1923 1924 // The header has only two predecessors, but the non-latch predecessor 1925 // is not a preheader (e.g. it has other successors, etc.) 1926 // In such a case we don't need any extra PHI nodes in the new preheader, 1927 // all we need is to adjust existing PHIs in the header to now refer to 1928 // the new preheader. 1929 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1930 I != E && I->isPHI(); ++I) { 1931 MachineInstr *PN = &*I; 1932 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1933 MachineOperand &MO = PN->getOperand(i+1); 1934 if (MO.getMBB() != Latch) 1935 MO.setMBB(NewPH); 1936 } 1937 } 1938 } 1939 1940 // "Reroute" the CFG edges to link in the new preheader. 1941 // If any of the predecessors falls through to the header, insert a branch 1942 // to the new preheader in that place. 1943 SmallVector<MachineOperand,1> Tmp2; 1944 SmallVector<MachineOperand,1> EmptyCond; 1945 1946 TB = FB = nullptr; 1947 1948 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1949 MachineBasicBlock *PB = *I; 1950 if (PB != Latch) { 1951 Tmp2.clear(); 1952 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1953 (void)NotAnalyzed; // suppress compiler warning 1954 assert (!NotAnalyzed && "Should be analyzable!"); 1955 if (TB != Header && (Tmp2.empty() || FB != Header)) 1956 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1957 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1958 } 1959 } 1960 1961 // It can happen that the latch block will fall through into the header. 1962 // Insert an unconditional branch to the header. 1963 TB = FB = nullptr; 1964 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1965 (void)LatchNotAnalyzed; // suppress compiler warning 1966 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1967 if (!TB && !FB) 1968 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1969 1970 // Finally, the branch from the preheader to the header. 1971 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1972 NewPH->addSuccessor(Header); 1973 1974 MachineLoop *ParentLoop = L->getParentLoop(); 1975 if (ParentLoop) 1976 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 1977 1978 // Update the dominator information with the new preheader. 1979 if (MDT) { 1980 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 1981 if (MachineDomTreeNode *DHN = HN->getIDom()) { 1982 MDT->addNewBlock(NewPH, DHN->getBlock()); 1983 MDT->changeImmediateDominator(Header, NewPH); 1984 } 1985 } 1986 } 1987 1988 return NewPH; 1989 } 1990