1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No function calls in loops. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/SmallSet.h" 29 #include "Hexagon.h" 30 #include "HexagonSubtarget.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/PassSupport.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include <algorithm> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "hwloops" 49 50 #ifndef NDEBUG 51 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); 52 53 // Option to create preheader only for a specific function. 54 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, 55 cl::init("")); 56 #endif 57 58 // Option to create a preheader if one doesn't exist. 59 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", 60 cl::Hidden, cl::init(true), 61 cl::desc("Add a preheader to a hardware loop if one doesn't exist")); 62 63 // Turn it off by default. If a preheader block is not created here, the 64 // software pipeliner may be unable to find a block suitable to serve as 65 // a preheader. In that case SWP will not run. 66 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), 67 cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " 68 "instructions")); 69 70 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 71 72 namespace llvm { 73 FunctionPass *createHexagonHardwareLoops(); 74 void initializeHexagonHardwareLoopsPass(PassRegistry&); 75 } 76 77 namespace { 78 class CountValue; 79 struct HexagonHardwareLoops : public MachineFunctionPass { 80 MachineLoopInfo *MLI; 81 MachineRegisterInfo *MRI; 82 MachineDominatorTree *MDT; 83 const HexagonInstrInfo *TII; 84 #ifndef NDEBUG 85 static int Counter; 86 #endif 87 88 public: 89 static char ID; 90 91 HexagonHardwareLoops() : MachineFunctionPass(ID) { 92 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 93 } 94 95 bool runOnMachineFunction(MachineFunction &MF) override; 96 97 const char *getPassName() const override { return "Hexagon Hardware Loops"; } 98 99 void getAnalysisUsage(AnalysisUsage &AU) const override { 100 AU.addRequired<MachineDominatorTree>(); 101 AU.addRequired<MachineLoopInfo>(); 102 MachineFunctionPass::getAnalysisUsage(AU); 103 } 104 105 private: 106 typedef std::map<unsigned, MachineInstr *> LoopFeederMap; 107 108 /// Kinds of comparisons in the compare instructions. 109 struct Comparison { 110 enum Kind { 111 EQ = 0x01, 112 NE = 0x02, 113 L = 0x04, 114 G = 0x08, 115 U = 0x40, 116 LTs = L, 117 LEs = L | EQ, 118 GTs = G, 119 GEs = G | EQ, 120 LTu = L | U, 121 LEu = L | EQ | U, 122 GTu = G | U, 123 GEu = G | EQ | U 124 }; 125 126 static Kind getSwappedComparison(Kind Cmp) { 127 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 128 if ((Cmp & L) || (Cmp & G)) 129 return (Kind)(Cmp ^ (L|G)); 130 return Cmp; 131 } 132 133 static Kind getNegatedComparison(Kind Cmp) { 134 if ((Cmp & L) || (Cmp & G)) 135 return (Kind)((Cmp ^ (L | G)) ^ EQ); 136 if ((Cmp & NE) || (Cmp & EQ)) 137 return (Kind)(Cmp ^ (EQ | NE)); 138 return (Kind)0; 139 } 140 141 static bool isSigned(Kind Cmp) { 142 return (Cmp & (L | G) && !(Cmp & U)); 143 } 144 145 static bool isUnsigned(Kind Cmp) { 146 return (Cmp & U); 147 } 148 149 }; 150 151 /// \brief Find the register that contains the loop controlling 152 /// induction variable. 153 /// If successful, it will return true and set the \p Reg, \p IVBump 154 /// and \p IVOp arguments. Otherwise it will return false. 155 /// The returned induction register is the register R that follows the 156 /// following induction pattern: 157 /// loop: 158 /// R = phi ..., [ R.next, LatchBlock ] 159 /// R.next = R + #bump 160 /// if (R.next < #N) goto loop 161 /// IVBump is the immediate value added to R, and IVOp is the instruction 162 /// "R.next = R + #bump". 163 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 164 int64_t &IVBump, MachineInstr *&IVOp) const; 165 166 /// \brief Return the comparison kind for the specified opcode. 167 Comparison::Kind getComparisonKind(unsigned CondOpc, 168 MachineOperand *InitialValue, 169 const MachineOperand *Endvalue, 170 int64_t IVBump) const; 171 172 /// \brief Analyze the statements in a loop to determine if the loop 173 /// has a computable trip count and, if so, return a value that represents 174 /// the trip count expression. 175 CountValue *getLoopTripCount(MachineLoop *L, 176 SmallVectorImpl<MachineInstr *> &OldInsts); 177 178 /// \brief Return the expression that represents the number of times 179 /// a loop iterates. The function takes the operands that represent the 180 /// loop start value, loop end value, and induction value. Based upon 181 /// these operands, the function attempts to compute the trip count. 182 /// If the trip count is not directly available (as an immediate value, 183 /// or a register), the function will attempt to insert computation of it 184 /// to the loop's preheader. 185 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, 186 const MachineOperand *End, unsigned IVReg, 187 int64_t IVBump, Comparison::Kind Cmp) const; 188 189 /// \brief Return true if the instruction is not valid within a hardware 190 /// loop. 191 bool isInvalidLoopOperation(const MachineInstr *MI, 192 bool IsInnerHWLoop) const; 193 194 /// \brief Return true if the loop contains an instruction that inhibits 195 /// using the hardware loop. 196 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; 197 198 /// \brief Given a loop, check if we can convert it to a hardware loop. 199 /// If so, then perform the conversion and return true. 200 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); 201 202 /// \brief Return true if the instruction is now dead. 203 bool isDead(const MachineInstr *MI, 204 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 205 206 /// \brief Remove the instruction if it is now dead. 207 void removeIfDead(MachineInstr *MI); 208 209 /// \brief Make sure that the "bump" instruction executes before the 210 /// compare. We need that for the IV fixup, so that the compare 211 /// instruction would not use a bumped value that has not yet been 212 /// defined. If the instructions are out of order, try to reorder them. 213 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 214 215 /// \brief Return true if MO and MI pair is visited only once. If visited 216 /// more than once, this indicates there is recursion. In such a case, 217 /// return false. 218 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, 219 const MachineOperand *MO, 220 LoopFeederMap &LoopFeederPhi) const; 221 222 /// \brief Return true if the Phi may generate a value that may underflow, 223 /// or may wrap. 224 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, 225 MachineBasicBlock *MBB, MachineLoop *L, 226 LoopFeederMap &LoopFeederPhi) const; 227 228 /// \brief Return true if the induction variable may underflow an unsigned 229 /// value in the first iteration. 230 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, 231 const MachineOperand *EndVal, 232 MachineBasicBlock *MBB, MachineLoop *L, 233 LoopFeederMap &LoopFeederPhi) const; 234 235 /// \brief Check if the given operand has a compile-time known constant 236 /// value. Return true if yes, and false otherwise. When returning true, set 237 /// Val to the corresponding constant value. 238 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; 239 240 /// \brief Check if the operand has a compile-time known constant value. 241 bool isImmediate(const MachineOperand &MO) const { 242 int64_t V; 243 return checkForImmediate(MO, V); 244 } 245 246 /// \brief Return the immediate for the specified operand. 247 int64_t getImmediate(const MachineOperand &MO) const { 248 int64_t V; 249 if (!checkForImmediate(MO, V)) 250 llvm_unreachable("Invalid operand"); 251 return V; 252 } 253 254 /// \brief Reset the given machine operand to now refer to a new immediate 255 /// value. Assumes that the operand was already referencing an immediate 256 /// value, either directly, or via a register. 257 void setImmediate(MachineOperand &MO, int64_t Val); 258 259 /// \brief Fix the data flow of the induction varible. 260 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 261 /// | 262 /// +-> back to phi 263 /// where "bump" is the increment of the induction variable: 264 /// iv = iv + #const. 265 /// Due to some prior code transformations, the actual flow may look 266 /// like this: 267 /// phi -+-> bump ---> back to phi 268 /// | 269 /// +-> comparison-in-latch (against upper_bound-bump), 270 /// i.e. the comparison that controls the loop execution may be using 271 /// the value of the induction variable from before the increment. 272 /// 273 /// Return true if the loop's flow is the desired one (i.e. it's 274 /// either been fixed, or no fixing was necessary). 275 /// Otherwise, return false. This can happen if the induction variable 276 /// couldn't be identified, or if the value in the latch's comparison 277 /// cannot be adjusted to reflect the post-bump value. 278 bool fixupInductionVariable(MachineLoop *L); 279 280 /// \brief Find the block that either is the loop preheader, or could 281 /// speculatively be used as the preheader. 282 MachineBasicBlock *findLoopPreheader(MachineLoop *L) const; 283 284 /// \brief Given a loop, if it does not have a preheader, create one. 285 /// Return the block that is the preheader. 286 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 287 }; 288 289 char HexagonHardwareLoops::ID = 0; 290 #ifndef NDEBUG 291 int HexagonHardwareLoops::Counter = 0; 292 #endif 293 294 /// \brief Abstraction for a trip count of a loop. A smaller version 295 /// of the MachineOperand class without the concerns of changing the 296 /// operand representation. 297 class CountValue { 298 public: 299 enum CountValueType { 300 CV_Register, 301 CV_Immediate 302 }; 303 private: 304 CountValueType Kind; 305 union Values { 306 struct { 307 unsigned Reg; 308 unsigned Sub; 309 } R; 310 unsigned ImmVal; 311 } Contents; 312 313 public: 314 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 315 Kind = t; 316 if (Kind == CV_Register) { 317 Contents.R.Reg = v; 318 Contents.R.Sub = u; 319 } else { 320 Contents.ImmVal = v; 321 } 322 } 323 bool isReg() const { return Kind == CV_Register; } 324 bool isImm() const { return Kind == CV_Immediate; } 325 326 unsigned getReg() const { 327 assert(isReg() && "Wrong CountValue accessor"); 328 return Contents.R.Reg; 329 } 330 unsigned getSubReg() const { 331 assert(isReg() && "Wrong CountValue accessor"); 332 return Contents.R.Sub; 333 } 334 unsigned getImm() const { 335 assert(isImm() && "Wrong CountValue accessor"); 336 return Contents.ImmVal; 337 } 338 339 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { 340 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 341 if (isImm()) { OS << Contents.ImmVal; } 342 } 343 }; 344 } // end anonymous namespace 345 346 347 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 348 "Hexagon Hardware Loops", false, false) 349 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 350 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 351 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 352 "Hexagon Hardware Loops", false, false) 353 354 FunctionPass *llvm::createHexagonHardwareLoops() { 355 return new HexagonHardwareLoops(); 356 } 357 358 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 359 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 360 if (skipFunction(*MF.getFunction())) 361 return false; 362 363 bool Changed = false; 364 365 MLI = &getAnalysis<MachineLoopInfo>(); 366 MRI = &MF.getRegInfo(); 367 MDT = &getAnalysis<MachineDominatorTree>(); 368 TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); 369 370 for (auto &L : *MLI) 371 if (!L->getParentLoop()) { 372 bool L0Used = false; 373 bool L1Used = false; 374 Changed |= convertToHardwareLoop(L, L0Used, L1Used); 375 } 376 377 return Changed; 378 } 379 380 /// \brief Return the latch block if it's one of the exiting blocks. Otherwise, 381 /// return the exiting block. Return 'null' when multiple exiting blocks are 382 /// present. 383 static MachineBasicBlock* getExitingBlock(MachineLoop *L) { 384 if (MachineBasicBlock *Latch = L->getLoopLatch()) { 385 if (L->isLoopExiting(Latch)) 386 return Latch; 387 else 388 return L->getExitingBlock(); 389 } 390 return nullptr; 391 } 392 393 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 394 unsigned &Reg, 395 int64_t &IVBump, 396 MachineInstr *&IVOp 397 ) const { 398 MachineBasicBlock *Header = L->getHeader(); 399 MachineBasicBlock *Preheader = findLoopPreheader(L); 400 MachineBasicBlock *Latch = L->getLoopLatch(); 401 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 402 if (!Header || !Preheader || !Latch || !ExitingBlock) 403 return false; 404 405 // This pair represents an induction register together with an immediate 406 // value that will be added to it in each loop iteration. 407 typedef std::pair<unsigned,int64_t> RegisterBump; 408 409 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 410 // from an induction operation 411 // R.next = R + bump 412 // where bump is an immediate value. 413 typedef std::map<unsigned,RegisterBump> InductionMap; 414 415 InductionMap IndMap; 416 417 typedef MachineBasicBlock::instr_iterator instr_iterator; 418 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 419 I != E && I->isPHI(); ++I) { 420 MachineInstr *Phi = &*I; 421 422 // Have a PHI instruction. Get the operand that corresponds to the 423 // latch block, and see if is a result of an addition of form "reg+imm", 424 // where the "reg" is defined by the PHI node we are looking at. 425 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 426 if (Phi->getOperand(i+1).getMBB() != Latch) 427 continue; 428 429 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 430 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 431 unsigned UpdOpc = DI->getOpcode(); 432 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 433 434 if (isAdd) { 435 // If the register operand to the add is the PHI we're looking at, this 436 // meets the induction pattern. 437 unsigned IndReg = DI->getOperand(1).getReg(); 438 MachineOperand &Opnd2 = DI->getOperand(2); 439 int64_t V; 440 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 441 unsigned UpdReg = DI->getOperand(0).getReg(); 442 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 443 } 444 } 445 } // for (i) 446 } // for (instr) 447 448 SmallVector<MachineOperand,2> Cond; 449 MachineBasicBlock *TB = nullptr, *FB = nullptr; 450 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 451 if (NotAnalyzed) 452 return false; 453 454 unsigned PredR, PredPos, PredRegFlags; 455 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) 456 return false; 457 458 MachineInstr *PredI = MRI->getVRegDef(PredR); 459 if (!PredI->isCompare()) 460 return false; 461 462 unsigned CmpReg1 = 0, CmpReg2 = 0; 463 int CmpImm = 0, CmpMask = 0; 464 bool CmpAnalyzed = 465 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); 466 // Fail if the compare was not analyzed, or it's not comparing a register 467 // with an immediate value. Not checking the mask here, since we handle 468 // the individual compare opcodes (including A4_cmpb*) later on. 469 if (!CmpAnalyzed) 470 return false; 471 472 // Exactly one of the input registers to the comparison should be among 473 // the induction registers. 474 InductionMap::iterator IndMapEnd = IndMap.end(); 475 InductionMap::iterator F = IndMapEnd; 476 if (CmpReg1 != 0) { 477 InductionMap::iterator F1 = IndMap.find(CmpReg1); 478 if (F1 != IndMapEnd) 479 F = F1; 480 } 481 if (CmpReg2 != 0) { 482 InductionMap::iterator F2 = IndMap.find(CmpReg2); 483 if (F2 != IndMapEnd) { 484 if (F != IndMapEnd) 485 return false; 486 F = F2; 487 } 488 } 489 if (F == IndMapEnd) 490 return false; 491 492 Reg = F->second.first; 493 IVBump = F->second.second; 494 IVOp = MRI->getVRegDef(F->first); 495 return true; 496 } 497 498 // Return the comparison kind for the specified opcode. 499 HexagonHardwareLoops::Comparison::Kind 500 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, 501 MachineOperand *InitialValue, 502 const MachineOperand *EndValue, 503 int64_t IVBump) const { 504 Comparison::Kind Cmp = (Comparison::Kind)0; 505 switch (CondOpc) { 506 case Hexagon::C2_cmpeqi: 507 case Hexagon::C2_cmpeq: 508 case Hexagon::C2_cmpeqp: 509 Cmp = Comparison::EQ; 510 break; 511 case Hexagon::C4_cmpneq: 512 case Hexagon::C4_cmpneqi: 513 Cmp = Comparison::NE; 514 break; 515 case Hexagon::C4_cmplte: 516 Cmp = Comparison::LEs; 517 break; 518 case Hexagon::C4_cmplteu: 519 Cmp = Comparison::LEu; 520 break; 521 case Hexagon::C2_cmpgtui: 522 case Hexagon::C2_cmpgtu: 523 case Hexagon::C2_cmpgtup: 524 Cmp = Comparison::GTu; 525 break; 526 case Hexagon::C2_cmpgti: 527 case Hexagon::C2_cmpgt: 528 case Hexagon::C2_cmpgtp: 529 Cmp = Comparison::GTs; 530 break; 531 default: 532 return (Comparison::Kind)0; 533 } 534 return Cmp; 535 } 536 537 /// \brief Analyze the statements in a loop to determine if the loop has 538 /// a computable trip count and, if so, return a value that represents 539 /// the trip count expression. 540 /// 541 /// This function iterates over the phi nodes in the loop to check for 542 /// induction variable patterns that are used in the calculation for 543 /// the number of time the loop is executed. 544 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 545 SmallVectorImpl<MachineInstr *> &OldInsts) { 546 MachineBasicBlock *TopMBB = L->getTopBlock(); 547 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 548 assert(PI != TopMBB->pred_end() && 549 "Loop must have more than one incoming edge!"); 550 MachineBasicBlock *Backedge = *PI++; 551 if (PI == TopMBB->pred_end()) // dead loop? 552 return nullptr; 553 MachineBasicBlock *Incoming = *PI++; 554 if (PI != TopMBB->pred_end()) // multiple backedges? 555 return nullptr; 556 557 // Make sure there is one incoming and one backedge and determine which 558 // is which. 559 if (L->contains(Incoming)) { 560 if (L->contains(Backedge)) 561 return nullptr; 562 std::swap(Incoming, Backedge); 563 } else if (!L->contains(Backedge)) 564 return nullptr; 565 566 // Look for the cmp instruction to determine if we can get a useful trip 567 // count. The trip count can be either a register or an immediate. The 568 // location of the value depends upon the type (reg or imm). 569 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 570 if (!ExitingBlock) 571 return nullptr; 572 573 unsigned IVReg = 0; 574 int64_t IVBump = 0; 575 MachineInstr *IVOp; 576 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 577 if (!FoundIV) 578 return nullptr; 579 580 MachineBasicBlock *Preheader = findLoopPreheader(L); 581 582 MachineOperand *InitialValue = nullptr; 583 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 584 MachineBasicBlock *Latch = L->getLoopLatch(); 585 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 586 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 587 if (MBB == Preheader) 588 InitialValue = &IV_Phi->getOperand(i); 589 else if (MBB == Latch) 590 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 591 } 592 if (!InitialValue) 593 return nullptr; 594 595 SmallVector<MachineOperand,2> Cond; 596 MachineBasicBlock *TB = nullptr, *FB = nullptr; 597 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 598 if (NotAnalyzed) 599 return nullptr; 600 601 MachineBasicBlock *Header = L->getHeader(); 602 // TB must be non-null. If FB is also non-null, one of them must be 603 // the header. Otherwise, branch to TB could be exiting the loop, and 604 // the fall through can go to the header. 605 assert (TB && "Exit block without a branch?"); 606 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 607 MachineBasicBlock *LTB = 0, *LFB = 0; 608 SmallVector<MachineOperand,2> LCond; 609 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 610 if (NotAnalyzed) 611 return nullptr; 612 if (TB == Latch) 613 TB = (LTB == Header) ? LTB : LFB; 614 else 615 FB = (LTB == Header) ? LTB: LFB; 616 } 617 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 618 if (!TB || (FB && TB != Header && FB != Header)) 619 return nullptr; 620 621 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 622 // to put imm(0), followed by P in the vector Cond. 623 // If TB is not the header, it means that the "not-taken" path must lead 624 // to the header. 625 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); 626 unsigned PredReg, PredPos, PredRegFlags; 627 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) 628 return nullptr; 629 MachineInstr *CondI = MRI->getVRegDef(PredReg); 630 unsigned CondOpc = CondI->getOpcode(); 631 632 unsigned CmpReg1 = 0, CmpReg2 = 0; 633 int Mask = 0, ImmValue = 0; 634 bool AnalyzedCmp = 635 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); 636 if (!AnalyzedCmp) 637 return nullptr; 638 639 // The comparison operator type determines how we compute the loop 640 // trip count. 641 OldInsts.push_back(CondI); 642 OldInsts.push_back(IVOp); 643 644 // Sadly, the following code gets information based on the position 645 // of the operands in the compare instruction. This has to be done 646 // this way, because the comparisons check for a specific relationship 647 // between the operands (e.g. is-less-than), rather than to find out 648 // what relationship the operands are in (as on PPC). 649 Comparison::Kind Cmp; 650 bool isSwapped = false; 651 const MachineOperand &Op1 = CondI->getOperand(1); 652 const MachineOperand &Op2 = CondI->getOperand(2); 653 const MachineOperand *EndValue = nullptr; 654 655 if (Op1.isReg()) { 656 if (Op2.isImm() || Op1.getReg() == IVReg) 657 EndValue = &Op2; 658 else { 659 EndValue = &Op1; 660 isSwapped = true; 661 } 662 } 663 664 if (!EndValue) 665 return nullptr; 666 667 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); 668 if (!Cmp) 669 return nullptr; 670 if (Negated) 671 Cmp = Comparison::getNegatedComparison(Cmp); 672 if (isSwapped) 673 Cmp = Comparison::getSwappedComparison(Cmp); 674 675 if (InitialValue->isReg()) { 676 unsigned R = InitialValue->getReg(); 677 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 678 if (!MDT->properlyDominates(DefBB, Header)) 679 return nullptr; 680 OldInsts.push_back(MRI->getVRegDef(R)); 681 } 682 if (EndValue->isReg()) { 683 unsigned R = EndValue->getReg(); 684 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 685 if (!MDT->properlyDominates(DefBB, Header)) 686 return nullptr; 687 OldInsts.push_back(MRI->getVRegDef(R)); 688 } 689 690 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 691 } 692 693 /// \brief Helper function that returns the expression that represents the 694 /// number of times a loop iterates. The function takes the operands that 695 /// represent the loop start value, loop end value, and induction value. 696 /// Based upon these operands, the function attempts to compute the trip count. 697 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 698 const MachineOperand *Start, 699 const MachineOperand *End, 700 unsigned IVReg, 701 int64_t IVBump, 702 Comparison::Kind Cmp) const { 703 // Cannot handle comparison EQ, i.e. while (A == B). 704 if (Cmp == Comparison::EQ) 705 return nullptr; 706 707 // Check if either the start or end values are an assignment of an immediate. 708 // If so, use the immediate value rather than the register. 709 if (Start->isReg()) { 710 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 711 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || 712 StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) 713 Start = &StartValInstr->getOperand(1); 714 } 715 if (End->isReg()) { 716 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 717 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || 718 EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) 719 End = &EndValInstr->getOperand(1); 720 } 721 722 if (!Start->isReg() && !Start->isImm()) 723 return nullptr; 724 if (!End->isReg() && !End->isImm()) 725 return nullptr; 726 727 bool CmpLess = Cmp & Comparison::L; 728 bool CmpGreater = Cmp & Comparison::G; 729 bool CmpHasEqual = Cmp & Comparison::EQ; 730 731 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 732 if (CmpLess && IVBump < 0) 733 // Loop going while iv is "less" with the iv value going down. Must wrap. 734 return nullptr; 735 736 if (CmpGreater && IVBump > 0) 737 // Loop going while iv is "greater" with the iv value going up. Must wrap. 738 return nullptr; 739 740 // Phis that may feed into the loop. 741 LoopFeederMap LoopFeederPhi; 742 743 // Check if the initial value may be zero and can be decremented in the first 744 // iteration. If the value is zero, the endloop instruction will not decrement 745 // the loop counter, so we shouldn't generate a hardware loop in this case. 746 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, 747 LoopFeederPhi)) 748 return nullptr; 749 750 if (Start->isImm() && End->isImm()) { 751 // Both, start and end are immediates. 752 int64_t StartV = Start->getImm(); 753 int64_t EndV = End->getImm(); 754 int64_t Dist = EndV - StartV; 755 if (Dist == 0) 756 return nullptr; 757 758 bool Exact = (Dist % IVBump) == 0; 759 760 if (Cmp == Comparison::NE) { 761 if (!Exact) 762 return nullptr; 763 if ((Dist < 0) ^ (IVBump < 0)) 764 return nullptr; 765 } 766 767 // For comparisons that include the final value (i.e. include equality 768 // with the final value), we need to increase the distance by 1. 769 if (CmpHasEqual) 770 Dist = Dist > 0 ? Dist+1 : Dist-1; 771 772 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly, 773 // CmpGreater should imply Dist < 0. These conditions could actually 774 // fail, for example, in unreachable code (which may still appear to be 775 // reachable in the CFG). 776 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) 777 return nullptr; 778 779 // "Normalized" distance, i.e. with the bump set to +-1. 780 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump 781 : (-Dist + (-IVBump - 1)) / (-IVBump); 782 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 783 784 uint64_t Count = Dist1; 785 786 if (Count > 0xFFFFFFFFULL) 787 return nullptr; 788 789 return new CountValue(CountValue::CV_Immediate, Count); 790 } 791 792 // A general case: Start and End are some values, but the actual 793 // iteration count may not be available. If it is not, insert 794 // a computation of it into the preheader. 795 796 // If the induction variable bump is not a power of 2, quit. 797 // Othwerise we'd need a general integer division. 798 if (!isPowerOf2_64(std::abs(IVBump))) 799 return nullptr; 800 801 MachineBasicBlock *PH = findLoopPreheader(Loop); 802 assert (PH && "Should have a preheader by now"); 803 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 804 DebugLoc DL; 805 if (InsertPos != PH->end()) 806 DL = InsertPos->getDebugLoc(); 807 808 // If Start is an immediate and End is a register, the trip count 809 // will be "reg - imm". Hexagon's "subtract immediate" instruction 810 // is actually "reg + -imm". 811 812 // If the loop IV is going downwards, i.e. if the bump is negative, 813 // then the iteration count (computed as End-Start) will need to be 814 // negated. To avoid the negation, just swap Start and End. 815 if (IVBump < 0) { 816 std::swap(Start, End); 817 IVBump = -IVBump; 818 } 819 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 820 // Signedness, and "including equality" are preserved. 821 822 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 823 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 824 825 int64_t StartV = 0, EndV = 0; 826 if (Start->isImm()) 827 StartV = Start->getImm(); 828 if (End->isImm()) 829 EndV = End->getImm(); 830 831 int64_t AdjV = 0; 832 // To compute the iteration count, we would need this computation: 833 // Count = (End - Start + (IVBump-1)) / IVBump 834 // or, when CmpHasEqual: 835 // Count = (End - Start + (IVBump-1)+1) / IVBump 836 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 837 // generating an instruction specifically to add it if we can adjust 838 // the immediate values for Start or End. 839 840 if (CmpHasEqual) { 841 // Need to add 1 to the total iteration count. 842 if (Start->isImm()) 843 StartV--; 844 else if (End->isImm()) 845 EndV++; 846 else 847 AdjV += 1; 848 } 849 850 if (Cmp != Comparison::NE) { 851 if (Start->isImm()) 852 StartV -= (IVBump-1); 853 else if (End->isImm()) 854 EndV += (IVBump-1); 855 else 856 AdjV += (IVBump-1); 857 } 858 859 unsigned R = 0, SR = 0; 860 if (Start->isReg()) { 861 R = Start->getReg(); 862 SR = Start->getSubReg(); 863 } else { 864 R = End->getReg(); 865 SR = End->getSubReg(); 866 } 867 const TargetRegisterClass *RC = MRI->getRegClass(R); 868 // Hardware loops cannot handle 64-bit registers. If it's a double 869 // register, it has to have a subregister. 870 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 871 return nullptr; 872 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 873 874 // Compute DistR (register with the distance between Start and End). 875 unsigned DistR, DistSR; 876 877 // Avoid special case, where the start value is an imm(0). 878 if (Start->isImm() && StartV == 0) { 879 DistR = End->getReg(); 880 DistSR = End->getSubReg(); 881 } else { 882 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : 883 (RegToImm ? TII->get(Hexagon::A2_subri) : 884 TII->get(Hexagon::A2_addi)); 885 if (RegToReg || RegToImm) { 886 unsigned SubR = MRI->createVirtualRegister(IntRC); 887 MachineInstrBuilder SubIB = 888 BuildMI(*PH, InsertPos, DL, SubD, SubR); 889 890 if (RegToReg) 891 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 892 .addReg(Start->getReg(), 0, Start->getSubReg()); 893 else 894 SubIB.addImm(EndV) 895 .addReg(Start->getReg(), 0, Start->getSubReg()); 896 DistR = SubR; 897 } else { 898 // If the loop has been unrolled, we should use the original loop count 899 // instead of recalculating the value. This will avoid additional 900 // 'Add' instruction. 901 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 902 if (EndValInstr->getOpcode() == Hexagon::A2_addi && 903 EndValInstr->getOperand(2).getImm() == StartV) { 904 DistR = EndValInstr->getOperand(1).getReg(); 905 } else { 906 unsigned SubR = MRI->createVirtualRegister(IntRC); 907 MachineInstrBuilder SubIB = 908 BuildMI(*PH, InsertPos, DL, SubD, SubR); 909 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 910 .addImm(-StartV); 911 DistR = SubR; 912 } 913 } 914 DistSR = 0; 915 } 916 917 // From DistR, compute AdjR (register with the adjusted distance). 918 unsigned AdjR, AdjSR; 919 920 if (AdjV == 0) { 921 AdjR = DistR; 922 AdjSR = DistSR; 923 } else { 924 // Generate CountR = ADD DistR, AdjVal 925 unsigned AddR = MRI->createVirtualRegister(IntRC); 926 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); 927 BuildMI(*PH, InsertPos, DL, AddD, AddR) 928 .addReg(DistR, 0, DistSR) 929 .addImm(AdjV); 930 931 AdjR = AddR; 932 AdjSR = 0; 933 } 934 935 // From AdjR, compute CountR (register with the final count). 936 unsigned CountR, CountSR; 937 938 if (IVBump == 1) { 939 CountR = AdjR; 940 CountSR = AdjSR; 941 } else { 942 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 943 unsigned Shift = Log2_32(IVBump); 944 945 // Generate NormR = LSR DistR, Shift. 946 unsigned LsrR = MRI->createVirtualRegister(IntRC); 947 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); 948 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 949 .addReg(AdjR, 0, AdjSR) 950 .addImm(Shift); 951 952 CountR = LsrR; 953 CountSR = 0; 954 } 955 956 return new CountValue(CountValue::CV_Register, CountR, CountSR); 957 } 958 959 /// \brief Return true if the operation is invalid within hardware loop. 960 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, 961 bool IsInnerHWLoop) const { 962 963 // Call is not allowed because the callee may use a hardware loop except for 964 // the case when the call never returns. 965 if (MI->getDesc().isCall()) 966 return !TII->doesNotReturn(*MI); 967 968 // Check if the instruction defines a hardware loop register. 969 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 970 const MachineOperand &MO = MI->getOperand(i); 971 if (!MO.isReg() || !MO.isDef()) 972 continue; 973 unsigned R = MO.getReg(); 974 if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 || 975 R == Hexagon::LC1 || R == Hexagon::SA1)) 976 return true; 977 if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1)) 978 return true; 979 } 980 return false; 981 } 982 983 /// \brief Return true if the loop contains an instruction that inhibits 984 /// the use of the hardware loop instruction. 985 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, 986 bool IsInnerHWLoop) const { 987 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 988 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 989 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 990 MachineBasicBlock *MBB = Blocks[i]; 991 for (MachineBasicBlock::iterator 992 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 993 const MachineInstr *MI = &*MII; 994 if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { 995 DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump();); 996 return true; 997 } 998 } 999 } 1000 return false; 1001 } 1002 1003 /// \brief Returns true if the instruction is dead. This was essentially 1004 /// copied from DeadMachineInstructionElim::isDead, but with special cases 1005 /// for inline asm, physical registers and instructions with side effects 1006 /// removed. 1007 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 1008 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 1009 // Examine each operand. 1010 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1011 const MachineOperand &MO = MI->getOperand(i); 1012 if (!MO.isReg() || !MO.isDef()) 1013 continue; 1014 1015 unsigned Reg = MO.getReg(); 1016 if (MRI->use_nodbg_empty(Reg)) 1017 continue; 1018 1019 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 1020 1021 // This instruction has users, but if the only user is the phi node for the 1022 // parent block, and the only use of that phi node is this instruction, then 1023 // this instruction is dead: both it (and the phi node) can be removed. 1024 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 1025 use_nodbg_iterator End = MRI->use_nodbg_end(); 1026 if (std::next(I) != End || !I->getParent()->isPHI()) 1027 return false; 1028 1029 MachineInstr *OnePhi = I->getParent(); 1030 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 1031 const MachineOperand &OPO = OnePhi->getOperand(j); 1032 if (!OPO.isReg() || !OPO.isDef()) 1033 continue; 1034 1035 unsigned OPReg = OPO.getReg(); 1036 use_nodbg_iterator nextJ; 1037 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 1038 J != End; J = nextJ) { 1039 nextJ = std::next(J); 1040 MachineOperand &Use = *J; 1041 MachineInstr *UseMI = Use.getParent(); 1042 1043 // If the phi node has a user that is not MI, bail. 1044 if (MI != UseMI) 1045 return false; 1046 } 1047 } 1048 DeadPhis.push_back(OnePhi); 1049 } 1050 1051 // If there are no defs with uses, the instruction is dead. 1052 return true; 1053 } 1054 1055 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 1056 // This procedure was essentially copied from DeadMachineInstructionElim. 1057 1058 SmallVector<MachineInstr*, 1> DeadPhis; 1059 if (isDead(MI, DeadPhis)) { 1060 DEBUG(dbgs() << "HW looping will remove: " << *MI); 1061 1062 // It is possible that some DBG_VALUE instructions refer to this 1063 // instruction. Examine each def operand for such references; 1064 // if found, mark the DBG_VALUE as undef (but don't delete it). 1065 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1066 const MachineOperand &MO = MI->getOperand(i); 1067 if (!MO.isReg() || !MO.isDef()) 1068 continue; 1069 unsigned Reg = MO.getReg(); 1070 MachineRegisterInfo::use_iterator nextI; 1071 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 1072 E = MRI->use_end(); I != E; I = nextI) { 1073 nextI = std::next(I); // I is invalidated by the setReg 1074 MachineOperand &Use = *I; 1075 MachineInstr *UseMI = I->getParent(); 1076 if (UseMI == MI) 1077 continue; 1078 if (Use.isDebug()) 1079 UseMI->getOperand(0).setReg(0U); 1080 } 1081 } 1082 1083 MI->eraseFromParent(); 1084 for (unsigned i = 0; i < DeadPhis.size(); ++i) 1085 DeadPhis[i]->eraseFromParent(); 1086 } 1087 } 1088 1089 /// \brief Check if the loop is a candidate for converting to a hardware 1090 /// loop. If so, then perform the transformation. 1091 /// 1092 /// This function works on innermost loops first. A loop can be converted 1093 /// if it is a counting loop; either a register value or an immediate. 1094 /// 1095 /// The code makes several assumptions about the representation of the loop 1096 /// in llvm. 1097 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, 1098 bool &RecL0used, 1099 bool &RecL1used) { 1100 // This is just for sanity. 1101 assert(L->getHeader() && "Loop without a header?"); 1102 1103 bool Changed = false; 1104 bool L0Used = false; 1105 bool L1Used = false; 1106 1107 // Process nested loops first. 1108 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 1109 Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); 1110 L0Used |= RecL0used; 1111 L1Used |= RecL1used; 1112 } 1113 1114 // If a nested loop has been converted, then we can't convert this loop. 1115 if (Changed && L0Used && L1Used) 1116 return Changed; 1117 1118 unsigned LOOP_i; 1119 unsigned LOOP_r; 1120 unsigned ENDLOOP; 1121 1122 // Flag used to track loopN instruction: 1123 // 1 - Hardware loop is being generated for the inner most loop. 1124 // 0 - Hardware loop is being generated for the outer loop. 1125 unsigned IsInnerHWLoop = 1; 1126 1127 if (L0Used) { 1128 LOOP_i = Hexagon::J2_loop1i; 1129 LOOP_r = Hexagon::J2_loop1r; 1130 ENDLOOP = Hexagon::ENDLOOP1; 1131 IsInnerHWLoop = 0; 1132 } else { 1133 LOOP_i = Hexagon::J2_loop0i; 1134 LOOP_r = Hexagon::J2_loop0r; 1135 ENDLOOP = Hexagon::ENDLOOP0; 1136 } 1137 1138 #ifndef NDEBUG 1139 // Stop trying after reaching the limit (if any). 1140 int Limit = HWLoopLimit; 1141 if (Limit >= 0) { 1142 if (Counter >= HWLoopLimit) 1143 return false; 1144 Counter++; 1145 } 1146 #endif 1147 1148 // Does the loop contain any invalid instructions? 1149 if (containsInvalidInstruction(L, IsInnerHWLoop)) 1150 return false; 1151 1152 MachineBasicBlock *LastMBB = getExitingBlock(L); 1153 // Don't generate hw loop if the loop has more than one exit. 1154 if (!LastMBB) 1155 return false; 1156 1157 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1158 if (LastI == LastMBB->end()) 1159 return false; 1160 1161 // Is the induction variable bump feeding the latch condition? 1162 if (!fixupInductionVariable(L)) 1163 return false; 1164 1165 // Ensure the loop has a preheader: the loop instruction will be 1166 // placed there. 1167 MachineBasicBlock *Preheader = findLoopPreheader(L); 1168 if (!Preheader) { 1169 Preheader = createPreheaderForLoop(L); 1170 if (!Preheader) 1171 return false; 1172 } 1173 1174 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1175 1176 SmallVector<MachineInstr*, 2> OldInsts; 1177 // Are we able to determine the trip count for the loop? 1178 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1179 if (!TripCount) 1180 return false; 1181 1182 // Is the trip count available in the preheader? 1183 if (TripCount->isReg()) { 1184 // There will be a use of the register inserted into the preheader, 1185 // so make sure that the register is actually defined at that point. 1186 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1187 MachineBasicBlock *BBDef = TCDef->getParent(); 1188 if (!MDT->dominates(BBDef, Preheader)) 1189 return false; 1190 } 1191 1192 // Determine the loop start. 1193 MachineBasicBlock *TopBlock = L->getTopBlock(); 1194 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1195 MachineBasicBlock *LoopStart = 0; 1196 if (ExitingBlock != L->getLoopLatch()) { 1197 MachineBasicBlock *TB = 0, *FB = 0; 1198 SmallVector<MachineOperand, 2> Cond; 1199 1200 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) 1201 return false; 1202 1203 if (L->contains(TB)) 1204 LoopStart = TB; 1205 else if (L->contains(FB)) 1206 LoopStart = FB; 1207 else 1208 return false; 1209 } 1210 else 1211 LoopStart = TopBlock; 1212 1213 // Convert the loop to a hardware loop. 1214 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1215 DebugLoc DL; 1216 if (InsertPos != Preheader->end()) 1217 DL = InsertPos->getDebugLoc(); 1218 1219 if (TripCount->isReg()) { 1220 // Create a copy of the loop count register. 1221 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1222 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1223 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1224 // Add the Loop instruction to the beginning of the loop. 1225 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) 1226 .addReg(CountReg); 1227 } else { 1228 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1229 // Add the Loop immediate instruction to the beginning of the loop, 1230 // if the immediate fits in the instructions. Otherwise, we need to 1231 // create a new virtual register. 1232 int64_t CountImm = TripCount->getImm(); 1233 if (!TII->isValidOffset(LOOP_i, CountImm)) { 1234 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1235 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) 1236 .addImm(CountImm); 1237 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) 1238 .addMBB(LoopStart).addReg(CountReg); 1239 } else 1240 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) 1241 .addMBB(LoopStart).addImm(CountImm); 1242 } 1243 1244 // Make sure the loop start always has a reference in the CFG. We need 1245 // to create a BlockAddress operand to get this mechanism to work both the 1246 // MachineBasicBlock and BasicBlock objects need the flag set. 1247 LoopStart->setHasAddressTaken(); 1248 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1249 // object. 1250 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1251 1252 // Replace the loop branch with an endloop instruction. 1253 DebugLoc LastIDL = LastI->getDebugLoc(); 1254 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); 1255 1256 // The loop ends with either: 1257 // - a conditional branch followed by an unconditional branch, or 1258 // - a conditional branch to the loop start. 1259 if (LastI->getOpcode() == Hexagon::J2_jumpt || 1260 LastI->getOpcode() == Hexagon::J2_jumpf) { 1261 // Delete one and change/add an uncond. branch to out of the loop. 1262 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1263 LastI = LastMBB->erase(LastI); 1264 if (!L->contains(BranchTarget)) { 1265 if (LastI != LastMBB->end()) 1266 LastI = LastMBB->erase(LastI); 1267 SmallVector<MachineOperand, 0> Cond; 1268 TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); 1269 } 1270 } else { 1271 // Conditional branch to loop start; just delete it. 1272 LastMBB->erase(LastI); 1273 } 1274 delete TripCount; 1275 1276 // The induction operation and the comparison may now be 1277 // unneeded. If these are unneeded, then remove them. 1278 for (unsigned i = 0; i < OldInsts.size(); ++i) 1279 removeIfDead(OldInsts[i]); 1280 1281 ++NumHWLoops; 1282 1283 // Set RecL1used and RecL0used only after hardware loop has been 1284 // successfully generated. Doing it earlier can cause wrong loop instruction 1285 // to be used. 1286 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. 1287 RecL1used = true; 1288 else 1289 RecL0used = true; 1290 1291 return true; 1292 } 1293 1294 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1295 MachineInstr *CmpI) { 1296 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1297 1298 MachineBasicBlock *BB = BumpI->getParent(); 1299 if (CmpI->getParent() != BB) 1300 return false; 1301 1302 typedef MachineBasicBlock::instr_iterator instr_iterator; 1303 // Check if things are in order to begin with. 1304 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) 1305 if (&*I == CmpI) 1306 return true; 1307 1308 // Out of order. 1309 unsigned PredR = CmpI->getOperand(0).getReg(); 1310 bool FoundBump = false; 1311 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); 1312 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1313 MachineInstr *In = &*I; 1314 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1315 MachineOperand &MO = In->getOperand(i); 1316 if (MO.isReg() && MO.isUse()) { 1317 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1318 return false; 1319 } 1320 } 1321 1322 if (In == BumpI) { 1323 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); 1324 FoundBump = true; 1325 break; 1326 } 1327 } 1328 assert (FoundBump && "Cannot determine instruction order"); 1329 return FoundBump; 1330 } 1331 1332 /// This function is required to break recursion. Visiting phis in a loop may 1333 /// result in recursion during compilation. We break the recursion by making 1334 /// sure that we visit a MachineOperand and its definition in a 1335 /// MachineInstruction only once. If we attempt to visit more than once, then 1336 /// there is recursion, and will return false. 1337 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, 1338 MachineInstr *MI, 1339 const MachineOperand *MO, 1340 LoopFeederMap &LoopFeederPhi) const { 1341 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { 1342 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 1343 DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber();); 1344 // Ignore all BBs that form Loop. 1345 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1346 MachineBasicBlock *MBB = Blocks[i]; 1347 if (A == MBB) 1348 return false; 1349 } 1350 MachineInstr *Def = MRI->getVRegDef(MO->getReg()); 1351 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); 1352 return true; 1353 } else 1354 // Already visited node. 1355 return false; 1356 } 1357 1358 /// Return true if a Phi may generate a value that can underflow. 1359 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. 1360 bool HexagonHardwareLoops::phiMayWrapOrUnderflow( 1361 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, 1362 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { 1363 assert(Phi->isPHI() && "Expecting a Phi."); 1364 // Walk through each Phi, and its used operands. Make sure that 1365 // if there is recursion in Phi, we won't generate hardware loops. 1366 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) 1367 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) 1368 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, 1369 Phi->getParent(), L, LoopFeederPhi)) 1370 return true; 1371 return false; 1372 } 1373 1374 /// Return true if the induction variable can underflow in the first iteration. 1375 /// An example, is an initial unsigned value that is 0 and is decrement in the 1376 /// first itertion of a do-while loop. In this case, we cannot generate a 1377 /// hardware loop because the endloop instruction does not decrement the loop 1378 /// counter if it is <= 1. We only need to perform this analysis if the 1379 /// initial value is a register. 1380 /// 1381 /// This function assumes the initial value may underfow unless proven 1382 /// otherwise. If the type is signed, then we don't care because signed 1383 /// underflow is undefined. We attempt to prove the initial value is not 1384 /// zero by perfoming a crude analysis of the loop counter. This function 1385 /// checks if the initial value is used in any comparison prior to the loop 1386 /// and, if so, assumes the comparison is a range check. This is inexact, 1387 /// but will catch the simple cases. 1388 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( 1389 const MachineOperand *InitVal, const MachineOperand *EndVal, 1390 MachineBasicBlock *MBB, MachineLoop *L, 1391 LoopFeederMap &LoopFeederPhi) const { 1392 // Only check register values since they are unknown. 1393 if (!InitVal->isReg()) 1394 return false; 1395 1396 if (!EndVal->isImm()) 1397 return false; 1398 1399 // A register value that is assigned an immediate is a known value, and it 1400 // won't underflow in the first iteration. 1401 int64_t Imm; 1402 if (checkForImmediate(*InitVal, Imm)) 1403 return (EndVal->getImm() == Imm); 1404 1405 unsigned Reg = InitVal->getReg(); 1406 1407 // We don't know the value of a physical register. 1408 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1409 return true; 1410 1411 MachineInstr *Def = MRI->getVRegDef(Reg); 1412 if (!Def) 1413 return true; 1414 1415 // If the initial value is a Phi or copy and the operands may not underflow, 1416 // then the definition cannot be underflow either. 1417 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), 1418 L, LoopFeederPhi)) 1419 return false; 1420 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), 1421 EndVal, Def->getParent(), 1422 L, LoopFeederPhi)) 1423 return false; 1424 1425 // Iterate over the uses of the initial value. If the initial value is used 1426 // in a compare, then we assume this is a range check that ensures the loop 1427 // doesn't underflow. This is not an exact test and should be improved. 1428 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), 1429 E = MRI->use_instr_nodbg_end(); I != E; ++I) { 1430 MachineInstr *MI = &*I; 1431 unsigned CmpReg1 = 0, CmpReg2 = 0; 1432 int CmpMask = 0, CmpValue = 0; 1433 1434 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) 1435 continue; 1436 1437 MachineBasicBlock *TBB = 0, *FBB = 0; 1438 SmallVector<MachineOperand, 2> Cond; 1439 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) 1440 continue; 1441 1442 Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0); 1443 if (Cmp == 0) 1444 continue; 1445 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) 1446 Cmp = Comparison::getNegatedComparison(Cmp); 1447 if (CmpReg2 != 0 && CmpReg2 == Reg) 1448 Cmp = Comparison::getSwappedComparison(Cmp); 1449 1450 // Signed underflow is undefined. 1451 if (Comparison::isSigned(Cmp)) 1452 return false; 1453 1454 // Check if there is a comparison of the initial value. If the initial value 1455 // is greater than or not equal to another value, then assume this is a 1456 // range check. 1457 if ((Cmp & Comparison::G) || Cmp == Comparison::NE) 1458 return false; 1459 } 1460 1461 // OK - this is a hack that needs to be improved. We really need to analyze 1462 // the instructions performed on the initial value. This works on the simplest 1463 // cases only. 1464 if (!Def->isCopy() && !Def->isPHI()) 1465 return false; 1466 1467 return true; 1468 } 1469 1470 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, 1471 int64_t &Val) const { 1472 if (MO.isImm()) { 1473 Val = MO.getImm(); 1474 return true; 1475 } 1476 if (!MO.isReg()) 1477 return false; 1478 1479 // MO is a register. Check whether it is defined as an immediate value, 1480 // and if so, get the value of it in TV. That value will then need to be 1481 // processed to handle potential subregisters in MO. 1482 int64_t TV; 1483 1484 unsigned R = MO.getReg(); 1485 if (!TargetRegisterInfo::isVirtualRegister(R)) 1486 return false; 1487 MachineInstr *DI = MRI->getVRegDef(R); 1488 unsigned DOpc = DI->getOpcode(); 1489 switch (DOpc) { 1490 case TargetOpcode::COPY: 1491 case Hexagon::A2_tfrsi: 1492 case Hexagon::A2_tfrpi: 1493 case Hexagon::CONST32: 1494 case Hexagon::CONST64: { 1495 // Call recursively to avoid an extra check whether operand(1) is 1496 // indeed an immediate (it could be a global address, for example), 1497 // plus we can handle COPY at the same time. 1498 if (!checkForImmediate(DI->getOperand(1), TV)) 1499 return false; 1500 break; 1501 } 1502 case Hexagon::A2_combineii: 1503 case Hexagon::A4_combineir: 1504 case Hexagon::A4_combineii: 1505 case Hexagon::A4_combineri: 1506 case Hexagon::A2_combinew: { 1507 const MachineOperand &S1 = DI->getOperand(1); 1508 const MachineOperand &S2 = DI->getOperand(2); 1509 int64_t V1, V2; 1510 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) 1511 return false; 1512 TV = V2 | (V1 << 32); 1513 break; 1514 } 1515 case TargetOpcode::REG_SEQUENCE: { 1516 const MachineOperand &S1 = DI->getOperand(1); 1517 const MachineOperand &S3 = DI->getOperand(3); 1518 int64_t V1, V3; 1519 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) 1520 return false; 1521 unsigned Sub2 = DI->getOperand(2).getImm(); 1522 unsigned Sub4 = DI->getOperand(4).getImm(); 1523 if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg) 1524 TV = V1 | (V3 << 32); 1525 else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg) 1526 TV = V3 | (V1 << 32); 1527 else 1528 llvm_unreachable("Unexpected form of REG_SEQUENCE"); 1529 break; 1530 } 1531 1532 default: 1533 return false; 1534 } 1535 1536 // By now, we should have successfuly obtained the immediate value defining 1537 // the register referenced in MO. Handle a potential use of a subregister. 1538 switch (MO.getSubReg()) { 1539 case Hexagon::subreg_loreg: 1540 Val = TV & 0xFFFFFFFFULL; 1541 break; 1542 case Hexagon::subreg_hireg: 1543 Val = (TV >> 32) & 0xFFFFFFFFULL; 1544 break; 1545 default: 1546 Val = TV; 1547 break; 1548 } 1549 return true; 1550 } 1551 1552 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1553 if (MO.isImm()) { 1554 MO.setImm(Val); 1555 return; 1556 } 1557 1558 assert(MO.isReg()); 1559 unsigned R = MO.getReg(); 1560 MachineInstr *DI = MRI->getVRegDef(R); 1561 1562 const TargetRegisterClass *RC = MRI->getRegClass(R); 1563 unsigned NewR = MRI->createVirtualRegister(RC); 1564 MachineBasicBlock &B = *DI->getParent(); 1565 DebugLoc DL = DI->getDebugLoc(); 1566 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); 1567 MO.setReg(NewR); 1568 } 1569 1570 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { 1571 // These two instructions are not extendable. 1572 if (CmpOpc == Hexagon::A4_cmpbeqi) 1573 return isUInt<8>(Imm); 1574 if (CmpOpc == Hexagon::A4_cmpbgti) 1575 return isInt<8>(Imm); 1576 // The rest of the comparison-with-immediate instructions are extendable. 1577 return true; 1578 } 1579 1580 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1581 MachineBasicBlock *Header = L->getHeader(); 1582 MachineBasicBlock *Latch = L->getLoopLatch(); 1583 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1584 1585 if (!(Header && Latch && ExitingBlock)) 1586 return false; 1587 1588 // These data structures follow the same concept as the corresponding 1589 // ones in findInductionRegister (where some comments are). 1590 typedef std::pair<unsigned,int64_t> RegisterBump; 1591 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1592 typedef std::set<RegisterInduction> RegisterInductionSet; 1593 1594 // Register candidates for induction variables, with their associated bumps. 1595 RegisterInductionSet IndRegs; 1596 1597 // Look for induction patterns: 1598 // vreg1 = PHI ..., [ latch, vreg2 ] 1599 // vreg2 = ADD vreg1, imm 1600 typedef MachineBasicBlock::instr_iterator instr_iterator; 1601 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1602 I != E && I->isPHI(); ++I) { 1603 MachineInstr *Phi = &*I; 1604 1605 // Have a PHI instruction. 1606 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1607 if (Phi->getOperand(i+1).getMBB() != Latch) 1608 continue; 1609 1610 unsigned PhiReg = Phi->getOperand(i).getReg(); 1611 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1612 unsigned UpdOpc = DI->getOpcode(); 1613 bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp); 1614 1615 if (isAdd) { 1616 // If the register operand to the add/sub is the PHI we are looking 1617 // at, this meets the induction pattern. 1618 unsigned IndReg = DI->getOperand(1).getReg(); 1619 MachineOperand &Opnd2 = DI->getOperand(2); 1620 int64_t V; 1621 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { 1622 unsigned UpdReg = DI->getOperand(0).getReg(); 1623 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1624 } 1625 } 1626 } // for (i) 1627 } // for (instr) 1628 1629 if (IndRegs.empty()) 1630 return false; 1631 1632 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1633 SmallVector<MachineOperand,2> Cond; 1634 // AnalyzeBranch returns true if it fails to analyze branch. 1635 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); 1636 if (NotAnalyzed || Cond.empty()) 1637 return false; 1638 1639 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { 1640 MachineBasicBlock *LTB = 0, *LFB = 0; 1641 SmallVector<MachineOperand,2> LCond; 1642 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); 1643 if (NotAnalyzed) 1644 return false; 1645 1646 // Since latch is not the exiting block, the latch branch should be an 1647 // unconditional branch to the loop header. 1648 if (TB == Latch) 1649 TB = (LTB == Header) ? LTB : LFB; 1650 else 1651 FB = (LTB == Header) ? LTB : LFB; 1652 } 1653 if (TB != Header) { 1654 if (FB != Header) { 1655 // The latch/exit block does not go back to the header. 1656 return false; 1657 } 1658 // FB is the header (i.e., uncond. jump to branch header) 1659 // In this case, the LoopBody -> TB should not be a back edge otherwise 1660 // it could result in an infinite loop after conversion to hw_loop. 1661 // This case can happen when the Latch has two jumps like this: 1662 // Jmp_c OuterLoopHeader <-- TB 1663 // Jmp InnerLoopHeader <-- FB 1664 if (MDT->dominates(TB, FB)) 1665 return false; 1666 } 1667 1668 // Expecting a predicate register as a condition. It won't be a hardware 1669 // predicate register at this point yet, just a vreg. 1670 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1671 // into Cond, followed by the predicate register. For non-negated branches 1672 // it's just the register. 1673 unsigned CSz = Cond.size(); 1674 if (CSz != 1 && CSz != 2) 1675 return false; 1676 1677 if (!Cond[CSz-1].isReg()) 1678 return false; 1679 1680 unsigned P = Cond[CSz-1].getReg(); 1681 MachineInstr *PredDef = MRI->getVRegDef(P); 1682 1683 if (!PredDef->isCompare()) 1684 return false; 1685 1686 SmallSet<unsigned,2> CmpRegs; 1687 MachineOperand *CmpImmOp = nullptr; 1688 1689 // Go over all operands to the compare and look for immediate and register 1690 // operands. Assume that if the compare has a single register use and a 1691 // single immediate operand, then the register is being compared with the 1692 // immediate value. 1693 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1694 MachineOperand &MO = PredDef->getOperand(i); 1695 if (MO.isReg()) { 1696 // Skip all implicit references. In one case there was: 1697 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1698 if (MO.isImplicit()) 1699 continue; 1700 if (MO.isUse()) { 1701 if (!isImmediate(MO)) { 1702 CmpRegs.insert(MO.getReg()); 1703 continue; 1704 } 1705 // Consider the register to be the "immediate" operand. 1706 if (CmpImmOp) 1707 return false; 1708 CmpImmOp = &MO; 1709 } 1710 } else if (MO.isImm()) { 1711 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1712 return false; 1713 CmpImmOp = &MO; 1714 } 1715 } 1716 1717 if (CmpRegs.empty()) 1718 return false; 1719 1720 // Check if the compared register follows the order we want. Fix if needed. 1721 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1722 I != E; ++I) { 1723 // This is a success. If the register used in the comparison is one that 1724 // we have identified as a bumped (updated) induction register, there is 1725 // nothing to do. 1726 if (CmpRegs.count(I->first)) 1727 return true; 1728 1729 // Otherwise, if the register being compared comes out of a PHI node, 1730 // and has been recognized as following the induction pattern, and is 1731 // compared against an immediate, we can fix it. 1732 const RegisterBump &RB = I->second; 1733 if (CmpRegs.count(RB.first)) { 1734 if (!CmpImmOp) { 1735 // If both operands to the compare instruction are registers, see if 1736 // it can be changed to use induction register as one of the operands. 1737 MachineInstr *IndI = nullptr; 1738 MachineInstr *nonIndI = nullptr; 1739 MachineOperand *IndMO = nullptr; 1740 MachineOperand *nonIndMO = nullptr; 1741 1742 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { 1743 MachineOperand &MO = PredDef->getOperand(i); 1744 if (MO.isReg() && MO.getReg() == RB.first) { 1745 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1746 << *(MRI->getVRegDef(I->first))); 1747 if (IndI) 1748 return false; 1749 1750 IndI = MRI->getVRegDef(I->first); 1751 IndMO = &MO; 1752 } else if (MO.isReg()) { 1753 DEBUG(dbgs() << "\n DefMI(" << i << ") = " 1754 << *(MRI->getVRegDef(MO.getReg()))); 1755 if (nonIndI) 1756 return false; 1757 1758 nonIndI = MRI->getVRegDef(MO.getReg()); 1759 nonIndMO = &MO; 1760 } 1761 } 1762 if (IndI && nonIndI && 1763 nonIndI->getOpcode() == Hexagon::A2_addi && 1764 nonIndI->getOperand(2).isImm() && 1765 nonIndI->getOperand(2).getImm() == - RB.second) { 1766 bool Order = orderBumpCompare(IndI, PredDef); 1767 if (Order) { 1768 IndMO->setReg(I->first); 1769 nonIndMO->setReg(nonIndI->getOperand(1).getReg()); 1770 return true; 1771 } 1772 } 1773 return false; 1774 } 1775 1776 // It is not valid to do this transformation on an unsigned comparison 1777 // because it may underflow. 1778 Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0); 1779 if (!Cmp || Comparison::isUnsigned(Cmp)) 1780 return false; 1781 1782 // If the register is being compared against an immediate, try changing 1783 // the compare instruction to use induction register and adjust the 1784 // immediate operand. 1785 int64_t CmpImm = getImmediate(*CmpImmOp); 1786 int64_t V = RB.second; 1787 // Handle Overflow (64-bit). 1788 if (((V > 0) && (CmpImm > INT64_MAX - V)) || 1789 ((V < 0) && (CmpImm < INT64_MIN - V))) 1790 return false; 1791 CmpImm += V; 1792 // Most comparisons of register against an immediate value allow 1793 // the immediate to be constant-extended. There are some exceptions 1794 // though. Make sure the new combination will work. 1795 if (CmpImmOp->isImm()) 1796 if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) 1797 return false; 1798 1799 // Make sure that the compare happens after the bump. Otherwise, 1800 // after the fixup, the compare would use a yet-undefined register. 1801 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1802 bool Order = orderBumpCompare(BumpI, PredDef); 1803 if (!Order) 1804 return false; 1805 1806 // Finally, fix the compare instruction. 1807 setImmediate(*CmpImmOp, CmpImm); 1808 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1809 MachineOperand &MO = PredDef->getOperand(i); 1810 if (MO.isReg() && MO.getReg() == RB.first) { 1811 MO.setReg(I->first); 1812 return true; 1813 } 1814 } 1815 } 1816 } 1817 1818 return false; 1819 } 1820 1821 /// Find a preaheader of the given loop. 1822 MachineBasicBlock *HexagonHardwareLoops::findLoopPreheader(MachineLoop *L) 1823 const { 1824 if (MachineBasicBlock *PB = L->getLoopPreheader()) 1825 return PB; 1826 if (!SpecPreheader) 1827 return nullptr; 1828 MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch(); 1829 if (HB->pred_size() != 2 || HB->hasAddressTaken()) 1830 return nullptr; 1831 // Find the predecessor of the header that is not the latch block. 1832 MachineBasicBlock *Preheader = nullptr; 1833 for (MachineBasicBlock *P : HB->predecessors()) { 1834 if (P == LB) 1835 continue; 1836 // Sanity. 1837 if (Preheader) 1838 return nullptr; 1839 Preheader = P; 1840 } 1841 1842 // Check if the preheader candidate is a successor of any other loop 1843 // headers. We want to avoid having two loop setups in the same block. 1844 for (MachineBasicBlock *S : Preheader->successors()) { 1845 if (S == HB) 1846 continue; 1847 MachineLoop *T = MLI->getLoopFor(S); 1848 if (T && T->getHeader() == S) 1849 return nullptr; 1850 } 1851 return Preheader; 1852 } 1853 1854 1855 /// createPreheaderForLoop - Create a preheader for a given loop. 1856 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1857 MachineLoop *L) { 1858 if (MachineBasicBlock *TmpPH = findLoopPreheader(L)) 1859 return TmpPH; 1860 if (!HWCreatePreheader) 1861 return nullptr; 1862 1863 MachineBasicBlock *Header = L->getHeader(); 1864 MachineBasicBlock *Latch = L->getLoopLatch(); 1865 MachineBasicBlock *ExitingBlock = getExitingBlock(L); 1866 MachineFunction *MF = Header->getParent(); 1867 DebugLoc DL; 1868 1869 #ifndef NDEBUG 1870 if ((PHFn != "") && (PHFn != MF->getName())) 1871 return nullptr; 1872 #endif 1873 1874 if (!Latch || !ExitingBlock || Header->hasAddressTaken()) 1875 return nullptr; 1876 1877 typedef MachineBasicBlock::instr_iterator instr_iterator; 1878 1879 // Verify that all existing predecessors have analyzable branches 1880 // (or no branches at all). 1881 typedef std::vector<MachineBasicBlock*> MBBVector; 1882 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1883 SmallVector<MachineOperand,2> Tmp1; 1884 MachineBasicBlock *TB = nullptr, *FB = nullptr; 1885 1886 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) 1887 return nullptr; 1888 1889 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1890 MachineBasicBlock *PB = *I; 1891 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); 1892 if (NotAnalyzed) 1893 return nullptr; 1894 } 1895 1896 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1897 MF->insert(Header->getIterator(), NewPH); 1898 1899 if (Header->pred_size() > 2) { 1900 // Ensure that the header has only two predecessors: the preheader and 1901 // the loop latch. Any additional predecessors of the header should 1902 // join at the newly created preheader. Inspect all PHI nodes from the 1903 // header and create appropriate corresponding PHI nodes in the preheader. 1904 1905 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1906 I != E && I->isPHI(); ++I) { 1907 MachineInstr *PN = &*I; 1908 1909 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1910 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1911 NewPH->insert(NewPH->end(), NewPN); 1912 1913 unsigned PR = PN->getOperand(0).getReg(); 1914 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1915 unsigned NewPR = MRI->createVirtualRegister(RC); 1916 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1917 1918 // Copy all non-latch operands of a header's PHI node to the newly 1919 // created PHI node in the preheader. 1920 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1921 unsigned PredR = PN->getOperand(i).getReg(); 1922 unsigned PredRSub = PN->getOperand(i).getSubReg(); 1923 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1924 if (PredB == Latch) 1925 continue; 1926 1927 MachineOperand MO = MachineOperand::CreateReg(PredR, false); 1928 MO.setSubReg(PredRSub); 1929 NewPN->addOperand(MO); 1930 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1931 } 1932 1933 // Remove copied operands from the old PHI node and add the value 1934 // coming from the preheader's PHI. 1935 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1936 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1937 if (PredB != Latch) { 1938 PN->RemoveOperand(i+1); 1939 PN->RemoveOperand(i); 1940 } 1941 } 1942 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1943 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1944 } 1945 1946 } else { 1947 assert(Header->pred_size() == 2); 1948 1949 // The header has only two predecessors, but the non-latch predecessor 1950 // is not a preheader (e.g. it has other successors, etc.) 1951 // In such a case we don't need any extra PHI nodes in the new preheader, 1952 // all we need is to adjust existing PHIs in the header to now refer to 1953 // the new preheader. 1954 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1955 I != E && I->isPHI(); ++I) { 1956 MachineInstr *PN = &*I; 1957 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1958 MachineOperand &MO = PN->getOperand(i+1); 1959 if (MO.getMBB() != Latch) 1960 MO.setMBB(NewPH); 1961 } 1962 } 1963 } 1964 1965 // "Reroute" the CFG edges to link in the new preheader. 1966 // If any of the predecessors falls through to the header, insert a branch 1967 // to the new preheader in that place. 1968 SmallVector<MachineOperand,1> Tmp2; 1969 SmallVector<MachineOperand,1> EmptyCond; 1970 1971 TB = FB = nullptr; 1972 1973 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1974 MachineBasicBlock *PB = *I; 1975 if (PB != Latch) { 1976 Tmp2.clear(); 1977 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); 1978 (void)NotAnalyzed; // suppress compiler warning 1979 assert (!NotAnalyzed && "Should be analyzable!"); 1980 if (TB != Header && (Tmp2.empty() || FB != Header)) 1981 TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL); 1982 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1983 } 1984 } 1985 1986 // It can happen that the latch block will fall through into the header. 1987 // Insert an unconditional branch to the header. 1988 TB = FB = nullptr; 1989 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); 1990 (void)LatchNotAnalyzed; // suppress compiler warning 1991 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1992 if (!TB && !FB) 1993 TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL); 1994 1995 // Finally, the branch from the preheader to the header. 1996 TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL); 1997 NewPH->addSuccessor(Header); 1998 1999 MachineLoop *ParentLoop = L->getParentLoop(); 2000 if (ParentLoop) 2001 ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); 2002 2003 // Update the dominator information with the new preheader. 2004 if (MDT) { 2005 if (MachineDomTreeNode *HN = MDT->getNode(Header)) { 2006 if (MachineDomTreeNode *DHN = HN->getIDom()) { 2007 MDT->addNewBlock(NewPH, DHN->getBlock()); 2008 MDT->changeImmediateDominator(Header, NewPH); 2009 } 2010 } 2011 } 2012 2013 return NewPH; 2014 } 2015