1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the Hexagon hardware 11 // loop instruction. The hardware loop can perform loop branches with a 12 // zero-cycle overhead. 13 // 14 // The pattern that defines the induction variable can changed depending on 15 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16 // normalizes induction variables, and the Loop Strength Reduction pass 17 // run by 'llc' may also make changes to the induction variable. 18 // The pattern detected by this phase is due to running Strength Reduction. 19 // 20 // Criteria for hardware loops: 21 // - Countable loops (w/ ind. var for a trip count) 22 // - Assumes loops are normalized by IndVarSimplify 23 // - Try inner-most loops first 24 // - No nested hardware loops. 25 // - No function calls in loops. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #define DEBUG_TYPE "hwloops" 30 #include "llvm/ADT/SmallSet.h" 31 #include "Hexagon.h" 32 #include "HexagonTargetMachine.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/PassSupport.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include <algorithm> 46 #include <vector> 47 48 using namespace llvm; 49 50 #ifndef NDEBUG 51 static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); 52 #endif 53 54 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); 55 56 namespace llvm { 57 void initializeHexagonHardwareLoopsPass(PassRegistry&); 58 } 59 60 namespace { 61 class CountValue; 62 struct HexagonHardwareLoops : public MachineFunctionPass { 63 MachineLoopInfo *MLI; 64 MachineRegisterInfo *MRI; 65 MachineDominatorTree *MDT; 66 const HexagonTargetMachine *TM; 67 const HexagonInstrInfo *TII; 68 const HexagonRegisterInfo *TRI; 69 #ifndef NDEBUG 70 static int Counter; 71 #endif 72 73 public: 74 static char ID; 75 76 HexagonHardwareLoops() : MachineFunctionPass(ID) { 77 initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); 78 } 79 80 virtual bool runOnMachineFunction(MachineFunction &MF); 81 82 const char *getPassName() const { return "Hexagon Hardware Loops"; } 83 84 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.addRequired<MachineDominatorTree>(); 86 AU.addRequired<MachineLoopInfo>(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 private: 91 /// Kinds of comparisons in the compare instructions. 92 struct Comparison { 93 enum Kind { 94 EQ = 0x01, 95 NE = 0x02, 96 L = 0x04, // Less-than property. 97 G = 0x08, // Greater-than property. 98 U = 0x40, // Unsigned property. 99 LTs = L, 100 LEs = L | EQ, 101 GTs = G, 102 GEs = G | EQ, 103 LTu = L | U, 104 LEu = L | EQ | U, 105 GTu = G | U, 106 GEu = G | EQ | U 107 }; 108 109 static Kind getSwappedComparison(Kind Cmp) { 110 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); 111 if ((Cmp & L) || (Cmp & G)) 112 return (Kind)(Cmp ^ (L|G)); 113 return Cmp; 114 } 115 }; 116 117 /// \brief Find the register that contains the loop controlling 118 /// induction variable. 119 /// If successful, it will return true and set the \p Reg, \p IVBump 120 /// and \p IVOp arguments. Otherwise it will return false. 121 /// The returned induction register is the register R that follows the 122 /// following induction pattern: 123 /// loop: 124 /// R = phi ..., [ R.next, LatchBlock ] 125 /// R.next = R + #bump 126 /// if (R.next < #N) goto loop 127 /// IVBump is the immediate value added to R, and IVOp is the instruction 128 /// "R.next = R + #bump". 129 bool findInductionRegister(MachineLoop *L, unsigned &Reg, 130 int64_t &IVBump, MachineInstr *&IVOp) const; 131 132 /// \brief Analyze the statements in a loop to determine if the loop 133 /// has a computable trip count and, if so, return a value that represents 134 /// the trip count expression. 135 CountValue *getLoopTripCount(MachineLoop *L, 136 SmallVectorImpl<MachineInstr *> &OldInsts); 137 138 /// \brief Return the expression that represents the number of times 139 /// a loop iterates. The function takes the operands that represent the 140 /// loop start value, loop end value, and induction value. Based upon 141 /// these operands, the function attempts to compute the trip count. 142 /// If the trip count is not directly available (as an immediate value, 143 /// or a register), the function will attempt to insert computation of it 144 /// to the loop's preheader. 145 CountValue *computeCount(MachineLoop *Loop, 146 const MachineOperand *Start, 147 const MachineOperand *End, 148 unsigned IVReg, 149 int64_t IVBump, 150 Comparison::Kind Cmp) const; 151 152 /// \brief Return true if the instruction is not valid within a hardware 153 /// loop. 154 bool isInvalidLoopOperation(const MachineInstr *MI) const; 155 156 /// \brief Return true if the loop contains an instruction that inhibits 157 /// using the hardware loop. 158 bool containsInvalidInstruction(MachineLoop *L) const; 159 160 /// \brief Given a loop, check if we can convert it to a hardware loop. 161 /// If so, then perform the conversion and return true. 162 bool convertToHardwareLoop(MachineLoop *L); 163 164 /// \brief Return true if the instruction is now dead. 165 bool isDead(const MachineInstr *MI, 166 SmallVectorImpl<MachineInstr *> &DeadPhis) const; 167 168 /// \brief Remove the instruction if it is now dead. 169 void removeIfDead(MachineInstr *MI); 170 171 /// \brief Make sure that the "bump" instruction executes before the 172 /// compare. We need that for the IV fixup, so that the compare 173 /// instruction would not use a bumped value that has not yet been 174 /// defined. If the instructions are out of order, try to reorder them. 175 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); 176 177 /// \brief Get the instruction that loads an immediate value into \p R, 178 /// or 0 if such an instruction does not exist. 179 MachineInstr *defWithImmediate(unsigned R); 180 181 /// \brief Get the immediate value referenced to by \p MO, either for 182 /// immediate operands, or for register operands, where the register 183 /// was defined with an immediate value. 184 int64_t getImmediate(MachineOperand &MO); 185 186 /// \brief Reset the given machine operand to now refer to a new immediate 187 /// value. Assumes that the operand was already referencing an immediate 188 /// value, either directly, or via a register. 189 void setImmediate(MachineOperand &MO, int64_t Val); 190 191 /// \brief Fix the data flow of the induction varible. 192 /// The desired flow is: phi ---> bump -+-> comparison-in-latch. 193 /// | 194 /// +-> back to phi 195 /// where "bump" is the increment of the induction variable: 196 /// iv = iv + #const. 197 /// Due to some prior code transformations, the actual flow may look 198 /// like this: 199 /// phi -+-> bump ---> back to phi 200 /// | 201 /// +-> comparison-in-latch (against upper_bound-bump), 202 /// i.e. the comparison that controls the loop execution may be using 203 /// the value of the induction variable from before the increment. 204 /// 205 /// Return true if the loop's flow is the desired one (i.e. it's 206 /// either been fixed, or no fixing was necessary). 207 /// Otherwise, return false. This can happen if the induction variable 208 /// couldn't be identified, or if the value in the latch's comparison 209 /// cannot be adjusted to reflect the post-bump value. 210 bool fixupInductionVariable(MachineLoop *L); 211 212 /// \brief Given a loop, if it does not have a preheader, create one. 213 /// Return the block that is the preheader. 214 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); 215 }; 216 217 char HexagonHardwareLoops::ID = 0; 218 #ifndef NDEBUG 219 int HexagonHardwareLoops::Counter = 0; 220 #endif 221 222 /// \brief Abstraction for a trip count of a loop. A smaller vesrsion 223 /// of the MachineOperand class without the concerns of changing the 224 /// operand representation. 225 class CountValue { 226 public: 227 enum CountValueType { 228 CV_Register, 229 CV_Immediate 230 }; 231 private: 232 CountValueType Kind; 233 union Values { 234 struct { 235 unsigned Reg; 236 unsigned Sub; 237 } R; 238 unsigned ImmVal; 239 } Contents; 240 241 public: 242 explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { 243 Kind = t; 244 if (Kind == CV_Register) { 245 Contents.R.Reg = v; 246 Contents.R.Sub = u; 247 } else { 248 Contents.ImmVal = v; 249 } 250 } 251 bool isReg() const { return Kind == CV_Register; } 252 bool isImm() const { return Kind == CV_Immediate; } 253 254 unsigned getReg() const { 255 assert(isReg() && "Wrong CountValue accessor"); 256 return Contents.R.Reg; 257 } 258 unsigned getSubReg() const { 259 assert(isReg() && "Wrong CountValue accessor"); 260 return Contents.R.Sub; 261 } 262 unsigned getImm() const { 263 assert(isImm() && "Wrong CountValue accessor"); 264 return Contents.ImmVal; 265 } 266 267 void print(raw_ostream &OS, const TargetMachine *TM = 0) const { 268 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; 269 if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } 270 if (isImm()) { OS << Contents.ImmVal; } 271 } 272 }; 273 } // end anonymous namespace 274 275 276 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", 277 "Hexagon Hardware Loops", false, false) 278 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 280 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", 281 "Hexagon Hardware Loops", false, false) 282 283 284 /// \brief Returns true if the instruction is a hardware loop instruction. 285 static bool isHardwareLoop(const MachineInstr *MI) { 286 return MI->getOpcode() == Hexagon::LOOP0_r || 287 MI->getOpcode() == Hexagon::LOOP0_i; 288 } 289 290 FunctionPass *llvm::createHexagonHardwareLoops() { 291 return new HexagonHardwareLoops(); 292 } 293 294 295 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { 296 DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); 297 298 bool Changed = false; 299 300 MLI = &getAnalysis<MachineLoopInfo>(); 301 MRI = &MF.getRegInfo(); 302 MDT = &getAnalysis<MachineDominatorTree>(); 303 TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget()); 304 TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo()); 305 TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo()); 306 307 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); 308 I != E; ++I) { 309 MachineLoop *L = *I; 310 if (!L->getParentLoop()) 311 Changed |= convertToHardwareLoop(L); 312 } 313 314 return Changed; 315 } 316 317 318 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, 319 unsigned &Reg, 320 int64_t &IVBump, 321 MachineInstr *&IVOp 322 ) const { 323 MachineBasicBlock *Header = L->getHeader(); 324 MachineBasicBlock *Preheader = L->getLoopPreheader(); 325 MachineBasicBlock *Latch = L->getLoopLatch(); 326 if (!Header || !Preheader || !Latch) 327 return false; 328 329 // This pair represents an induction register together with an immediate 330 // value that will be added to it in each loop iteration. 331 typedef std::pair<unsigned,int64_t> RegisterBump; 332 333 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived 334 // from an induction operation 335 // R.next = R + bump 336 // where bump is an immediate value. 337 typedef std::map<unsigned,RegisterBump> InductionMap; 338 339 InductionMap IndMap; 340 341 typedef MachineBasicBlock::instr_iterator instr_iterator; 342 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 343 I != E && I->isPHI(); ++I) { 344 MachineInstr *Phi = &*I; 345 346 // Have a PHI instruction. Get the operand that corresponds to the 347 // latch block, and see if is a result of an addition of form "reg+imm", 348 // where the "reg" is defined by the PHI node we are looking at. 349 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 350 if (Phi->getOperand(i+1).getMBB() != Latch) 351 continue; 352 353 unsigned PhiOpReg = Phi->getOperand(i).getReg(); 354 MachineInstr *DI = MRI->getVRegDef(PhiOpReg); 355 unsigned UpdOpc = DI->getOpcode(); 356 bool isAdd = (UpdOpc == Hexagon::ADD_ri); 357 358 if (isAdd) { 359 // If the register operand to the add is the PHI we're 360 // looking at, this meets the induction pattern. 361 unsigned IndReg = DI->getOperand(1).getReg(); 362 if (MRI->getVRegDef(IndReg) == Phi) { 363 unsigned UpdReg = DI->getOperand(0).getReg(); 364 int64_t V = DI->getOperand(2).getImm(); 365 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 366 } 367 } 368 } // for (i) 369 } // for (instr) 370 371 SmallVector<MachineOperand,2> Cond; 372 MachineBasicBlock *TB = 0, *FB = 0; 373 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 374 if (NotAnalyzed) 375 return false; 376 377 unsigned CSz = Cond.size(); 378 assert (CSz == 1 || CSz == 2); 379 unsigned PredR = Cond[CSz-1].getReg(); 380 381 MachineInstr *PredI = MRI->getVRegDef(PredR); 382 if (!PredI->isCompare()) 383 return false; 384 385 unsigned CmpReg1 = 0, CmpReg2 = 0; 386 int CmpImm = 0, CmpMask = 0; 387 bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, 388 CmpMask, CmpImm); 389 // Fail if the compare was not analyzed, or it's not comparing a register 390 // with an immediate value. Not checking the mask here, since we handle 391 // the individual compare opcodes (including CMPb) later on. 392 if (!CmpAnalyzed) 393 return false; 394 395 // Exactly one of the input registers to the comparison should be among 396 // the induction registers. 397 InductionMap::iterator IndMapEnd = IndMap.end(); 398 InductionMap::iterator F = IndMapEnd; 399 if (CmpReg1 != 0) { 400 InductionMap::iterator F1 = IndMap.find(CmpReg1); 401 if (F1 != IndMapEnd) 402 F = F1; 403 } 404 if (CmpReg2 != 0) { 405 InductionMap::iterator F2 = IndMap.find(CmpReg2); 406 if (F2 != IndMapEnd) { 407 if (F != IndMapEnd) 408 return false; 409 F = F2; 410 } 411 } 412 if (F == IndMapEnd) 413 return false; 414 415 Reg = F->second.first; 416 IVBump = F->second.second; 417 IVOp = MRI->getVRegDef(F->first); 418 return true; 419 } 420 421 422 /// \brief Analyze the statements in a loop to determine if the loop has 423 /// a computable trip count and, if so, return a value that represents 424 /// the trip count expression. 425 /// 426 /// This function iterates over the phi nodes in the loop to check for 427 /// induction variable patterns that are used in the calculation for 428 /// the number of time the loop is executed. 429 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, 430 SmallVectorImpl<MachineInstr *> &OldInsts) { 431 MachineBasicBlock *TopMBB = L->getTopBlock(); 432 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 433 assert(PI != TopMBB->pred_end() && 434 "Loop must have more than one incoming edge!"); 435 MachineBasicBlock *Backedge = *PI++; 436 if (PI == TopMBB->pred_end()) // dead loop? 437 return 0; 438 MachineBasicBlock *Incoming = *PI++; 439 if (PI != TopMBB->pred_end()) // multiple backedges? 440 return 0; 441 442 // Make sure there is one incoming and one backedge and determine which 443 // is which. 444 if (L->contains(Incoming)) { 445 if (L->contains(Backedge)) 446 return 0; 447 std::swap(Incoming, Backedge); 448 } else if (!L->contains(Backedge)) 449 return 0; 450 451 // Look for the cmp instruction to determine if we can get a useful trip 452 // count. The trip count can be either a register or an immediate. The 453 // location of the value depends upon the type (reg or imm). 454 MachineBasicBlock *Latch = L->getLoopLatch(); 455 if (!Latch) 456 return 0; 457 458 unsigned IVReg = 0; 459 int64_t IVBump = 0; 460 MachineInstr *IVOp; 461 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); 462 if (!FoundIV) 463 return 0; 464 465 MachineBasicBlock *Preheader = L->getLoopPreheader(); 466 467 MachineOperand *InitialValue = 0; 468 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); 469 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { 470 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); 471 if (MBB == Preheader) 472 InitialValue = &IV_Phi->getOperand(i); 473 else if (MBB == Latch) 474 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. 475 } 476 if (!InitialValue) 477 return 0; 478 479 SmallVector<MachineOperand,2> Cond; 480 MachineBasicBlock *TB = 0, *FB = 0; 481 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 482 if (NotAnalyzed) 483 return 0; 484 485 MachineBasicBlock *Header = L->getHeader(); 486 // TB must be non-null. If FB is also non-null, one of them must be 487 // the header. Otherwise, branch to TB could be exiting the loop, and 488 // the fall through can go to the header. 489 assert (TB && "Latch block without a branch?"); 490 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); 491 if (!TB || (FB && TB != Header && FB != Header)) 492 return 0; 493 494 // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch 495 // to put imm(0), followed by P in the vector Cond. 496 // If TB is not the header, it means that the "not-taken" path must lead 497 // to the header. 498 bool Negated = (Cond.size() > 1) ^ (TB != Header); 499 unsigned PredReg = Cond[Cond.size()-1].getReg(); 500 MachineInstr *CondI = MRI->getVRegDef(PredReg); 501 unsigned CondOpc = CondI->getOpcode(); 502 503 unsigned CmpReg1 = 0, CmpReg2 = 0; 504 int Mask = 0, ImmValue = 0; 505 bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, 506 Mask, ImmValue); 507 if (!AnalyzedCmp) 508 return 0; 509 510 // The comparison operator type determines how we compute the loop 511 // trip count. 512 OldInsts.push_back(CondI); 513 OldInsts.push_back(IVOp); 514 515 // Sadly, the following code gets information based on the position 516 // of the operands in the compare instruction. This has to be done 517 // this way, because the comparisons check for a specific relationship 518 // between the operands (e.g. is-less-than), rather than to find out 519 // what relationship the operands are in (as on PPC). 520 Comparison::Kind Cmp; 521 bool isSwapped = false; 522 const MachineOperand &Op1 = CondI->getOperand(1); 523 const MachineOperand &Op2 = CondI->getOperand(2); 524 const MachineOperand *EndValue = 0; 525 526 if (Op1.isReg()) { 527 if (Op2.isImm() || Op1.getReg() == IVReg) 528 EndValue = &Op2; 529 else { 530 EndValue = &Op1; 531 isSwapped = true; 532 } 533 } 534 535 if (!EndValue) 536 return 0; 537 538 switch (CondOpc) { 539 case Hexagon::CMPEQri: 540 case Hexagon::CMPEQrr: 541 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 542 break; 543 case Hexagon::CMPGTUri: 544 case Hexagon::CMPGTUrr: 545 Cmp = !Negated ? Comparison::GTu : Comparison::LEu; 546 break; 547 case Hexagon::CMPGTri: 548 case Hexagon::CMPGTrr: 549 Cmp = !Negated ? Comparison::GTs : Comparison::LEs; 550 break; 551 // Very limited support for byte/halfword compares. 552 case Hexagon::CMPbEQri_V4: 553 case Hexagon::CMPhEQri_V4: { 554 if (IVBump != 1) 555 return 0; 556 557 int64_t InitV, EndV; 558 // Since the comparisons are "ri", the EndValue should be an 559 // immediate. Check it just in case. 560 assert(EndValue->isImm() && "Unrecognized latch comparison"); 561 EndV = EndValue->getImm(); 562 // Allow InitialValue to be a register defined with an immediate. 563 if (InitialValue->isReg()) { 564 if (!defWithImmediate(InitialValue->getReg())) 565 return 0; 566 InitV = getImmediate(*InitialValue); 567 } else { 568 assert(InitialValue->isImm()); 569 InitV = InitialValue->getImm(); 570 } 571 if (InitV >= EndV) 572 return 0; 573 if (CondOpc == Hexagon::CMPbEQri_V4) { 574 if (!isInt<8>(InitV) || !isInt<8>(EndV)) 575 return 0; 576 } else { // Hexagon::CMPhEQri_V4 577 if (!isInt<16>(InitV) || !isInt<16>(EndV)) 578 return 0; 579 } 580 Cmp = !Negated ? Comparison::EQ : Comparison::NE; 581 break; 582 } 583 default: 584 return 0; 585 } 586 587 if (isSwapped) 588 Cmp = Comparison::getSwappedComparison(Cmp); 589 590 if (InitialValue->isReg()) { 591 unsigned R = InitialValue->getReg(); 592 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 593 if (!MDT->properlyDominates(DefBB, Header)) 594 return 0; 595 OldInsts.push_back(MRI->getVRegDef(R)); 596 } 597 if (EndValue->isReg()) { 598 unsigned R = EndValue->getReg(); 599 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); 600 if (!MDT->properlyDominates(DefBB, Header)) 601 return 0; 602 } 603 604 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); 605 } 606 607 /// \brief Helper function that returns the expression that represents the 608 /// number of times a loop iterates. The function takes the operands that 609 /// represent the loop start value, loop end value, and induction value. 610 /// Based upon these operands, the function attempts to compute the trip count. 611 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, 612 const MachineOperand *Start, 613 const MachineOperand *End, 614 unsigned IVReg, 615 int64_t IVBump, 616 Comparison::Kind Cmp) const { 617 // Cannot handle comparison EQ, i.e. while (A == B). 618 if (Cmp == Comparison::EQ) 619 return 0; 620 621 // Check if either the start or end values are an assignment of an immediate. 622 // If so, use the immediate value rather than the register. 623 if (Start->isReg()) { 624 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); 625 if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI) 626 Start = &StartValInstr->getOperand(1); 627 } 628 if (End->isReg()) { 629 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); 630 if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI) 631 End = &EndValInstr->getOperand(1); 632 } 633 634 assert (Start->isReg() || Start->isImm()); 635 assert (End->isReg() || End->isImm()); 636 637 bool CmpLess = Cmp & Comparison::L; 638 bool CmpGreater = Cmp & Comparison::G; 639 bool CmpHasEqual = Cmp & Comparison::EQ; 640 641 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. 642 // If loop executes while iv is "less" with the iv value going down, then 643 // the iv must wrap. 644 if (CmpLess && IVBump < 0) 645 return 0; 646 // If loop executes while iv is "greater" with the iv value going up, then 647 // the iv must wrap. 648 if (CmpGreater && IVBump > 0) 649 return 0; 650 651 if (Start->isImm() && End->isImm()) { 652 // Both, start and end are immediates. 653 int64_t StartV = Start->getImm(); 654 int64_t EndV = End->getImm(); 655 int64_t Dist = EndV - StartV; 656 if (Dist == 0) 657 return 0; 658 659 bool Exact = (Dist % IVBump) == 0; 660 661 if (Cmp == Comparison::NE) { 662 if (!Exact) 663 return 0; 664 if ((Dist < 0) ^ (IVBump < 0)) 665 return 0; 666 } 667 668 // For comparisons that include the final value (i.e. include equality 669 // with the final value), we need to increase the distance by 1. 670 if (CmpHasEqual) 671 Dist = Dist > 0 ? Dist+1 : Dist-1; 672 673 // assert (CmpLess => Dist > 0); 674 assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); 675 // assert (CmpGreater => Dist < 0); 676 assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); 677 678 // "Normalized" distance, i.e. with the bump set to +-1. 679 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump 680 : (-Dist + (-IVBump-1)) / (-IVBump); 681 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); 682 683 uint64_t Count = Dist1; 684 685 if (Count > 0xFFFFFFFFULL) 686 return 0; 687 688 return new CountValue(CountValue::CV_Immediate, Count); 689 } 690 691 // A general case: Start and End are some values, but the actual 692 // iteration count may not be available. If it is not, insert 693 // a computation of it into the preheader. 694 695 // If the induction variable bump is not a power of 2, quit. 696 // Othwerise we'd need a general integer division. 697 if (!isPowerOf2_64(abs64(IVBump))) 698 return 0; 699 700 MachineBasicBlock *PH = Loop->getLoopPreheader(); 701 assert (PH && "Should have a preheader by now"); 702 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); 703 DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() 704 : DebugLoc(); 705 706 // If Start is an immediate and End is a register, the trip count 707 // will be "reg - imm". Hexagon's "subtract immediate" instruction 708 // is actually "reg + -imm". 709 710 // If the loop IV is going downwards, i.e. if the bump is negative, 711 // then the iteration count (computed as End-Start) will need to be 712 // negated. To avoid the negation, just swap Start and End. 713 if (IVBump < 0) { 714 std::swap(Start, End); 715 IVBump = -IVBump; 716 } 717 // Cmp may now have a wrong direction, e.g. LEs may now be GEs. 718 // Signedness, and "including equality" are preserved. 719 720 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) 721 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) 722 723 int64_t StartV = 0, EndV = 0; 724 if (Start->isImm()) 725 StartV = Start->getImm(); 726 if (End->isImm()) 727 EndV = End->getImm(); 728 729 int64_t AdjV = 0; 730 // To compute the iteration count, we would need this computation: 731 // Count = (End - Start + (IVBump-1)) / IVBump 732 // or, when CmpHasEqual: 733 // Count = (End - Start + (IVBump-1)+1) / IVBump 734 // The "IVBump-1" part is the adjustment (AdjV). We can avoid 735 // generating an instruction specifically to add it if we can adjust 736 // the immediate values for Start or End. 737 738 if (CmpHasEqual) { 739 // Need to add 1 to the total iteration count. 740 if (Start->isImm()) 741 StartV--; 742 else if (End->isImm()) 743 EndV++; 744 else 745 AdjV += 1; 746 } 747 748 if (Cmp != Comparison::NE) { 749 if (Start->isImm()) 750 StartV -= (IVBump-1); 751 else if (End->isImm()) 752 EndV += (IVBump-1); 753 else 754 AdjV += (IVBump-1); 755 } 756 757 unsigned R = 0, SR = 0; 758 if (Start->isReg()) { 759 R = Start->getReg(); 760 SR = Start->getSubReg(); 761 } else { 762 R = End->getReg(); 763 SR = End->getSubReg(); 764 } 765 const TargetRegisterClass *RC = MRI->getRegClass(R); 766 // Hardware loops cannot handle 64-bit registers. If it's a double 767 // register, it has to have a subregister. 768 if (!SR && RC == &Hexagon::DoubleRegsRegClass) 769 return 0; 770 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; 771 772 // Compute DistR (register with the distance between Start and End). 773 unsigned DistR, DistSR; 774 775 // Avoid special case, where the start value is an imm(0). 776 if (Start->isImm() && StartV == 0) { 777 DistR = End->getReg(); 778 DistSR = End->getSubReg(); 779 } else { 780 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) : 781 (RegToImm ? TII->get(Hexagon::SUB_ri) : 782 TII->get(Hexagon::ADD_ri)); 783 unsigned SubR = MRI->createVirtualRegister(IntRC); 784 MachineInstrBuilder SubIB = 785 BuildMI(*PH, InsertPos, DL, SubD, SubR); 786 787 if (RegToReg) { 788 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 789 .addReg(Start->getReg(), 0, Start->getSubReg()); 790 } else if (RegToImm) { 791 SubIB.addImm(EndV) 792 .addReg(Start->getReg(), 0, Start->getSubReg()); 793 } else { // ImmToReg 794 SubIB.addReg(End->getReg(), 0, End->getSubReg()) 795 .addImm(-StartV); 796 } 797 DistR = SubR; 798 DistSR = 0; 799 } 800 801 // From DistR, compute AdjR (register with the adjusted distance). 802 unsigned AdjR, AdjSR; 803 804 if (AdjV == 0) { 805 AdjR = DistR; 806 AdjSR = DistSR; 807 } else { 808 // Generate CountR = ADD DistR, AdjVal 809 unsigned AddR = MRI->createVirtualRegister(IntRC); 810 const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri); 811 BuildMI(*PH, InsertPos, DL, AddD, AddR) 812 .addReg(DistR, 0, DistSR) 813 .addImm(AdjV); 814 815 AdjR = AddR; 816 AdjSR = 0; 817 } 818 819 // From AdjR, compute CountR (register with the final count). 820 unsigned CountR, CountSR; 821 822 if (IVBump == 1) { 823 CountR = AdjR; 824 CountSR = AdjSR; 825 } else { 826 // The IV bump is a power of two. Log_2(IV bump) is the shift amount. 827 unsigned Shift = Log2_32(IVBump); 828 829 // Generate NormR = LSR DistR, Shift. 830 unsigned LsrR = MRI->createVirtualRegister(IntRC); 831 const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri); 832 BuildMI(*PH, InsertPos, DL, LsrD, LsrR) 833 .addReg(AdjR, 0, AdjSR) 834 .addImm(Shift); 835 836 CountR = LsrR; 837 CountSR = 0; 838 } 839 840 return new CountValue(CountValue::CV_Register, CountR, CountSR); 841 } 842 843 844 /// \brief Return true if the operation is invalid within hardware loop. 845 bool HexagonHardwareLoops::isInvalidLoopOperation( 846 const MachineInstr *MI) const { 847 848 // call is not allowed because the callee may use a hardware loop 849 if (MI->getDesc().isCall()) 850 return true; 851 852 // do not allow nested hardware loops 853 if (isHardwareLoop(MI)) 854 return true; 855 856 // check if the instruction defines a hardware loop register 857 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 858 const MachineOperand &MO = MI->getOperand(i); 859 if (!MO.isReg() || !MO.isDef()) 860 continue; 861 unsigned R = MO.getReg(); 862 if (R == Hexagon::LC0 || R == Hexagon::LC1 || 863 R == Hexagon::SA0 || R == Hexagon::SA1) 864 return true; 865 } 866 return false; 867 } 868 869 870 /// \brief - Return true if the loop contains an instruction that inhibits 871 /// the use of the hardware loop function. 872 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { 873 const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks(); 874 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 875 MachineBasicBlock *MBB = Blocks[i]; 876 for (MachineBasicBlock::iterator 877 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 878 const MachineInstr *MI = &*MII; 879 if (isInvalidLoopOperation(MI)) 880 return true; 881 } 882 } 883 return false; 884 } 885 886 887 /// \brief Returns true if the instruction is dead. This was essentially 888 /// copied from DeadMachineInstructionElim::isDead, but with special cases 889 /// for inline asm, physical registers and instructions with side effects 890 /// removed. 891 bool HexagonHardwareLoops::isDead(const MachineInstr *MI, 892 SmallVectorImpl<MachineInstr *> &DeadPhis) const { 893 // Examine each operand. 894 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 895 const MachineOperand &MO = MI->getOperand(i); 896 if (!MO.isReg() || !MO.isDef()) 897 continue; 898 899 unsigned Reg = MO.getReg(); 900 if (MRI->use_nodbg_empty(Reg)) 901 continue; 902 903 typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; 904 905 // This instruction has users, but if the only user is the phi node for the 906 // parent block, and the only use of that phi node is this instruction, then 907 // this instruction is dead: both it (and the phi node) can be removed. 908 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); 909 use_nodbg_iterator End = MRI->use_nodbg_end(); 910 if (std::next(I) != End || !I->getParent()->isPHI()) 911 return false; 912 913 MachineInstr *OnePhi = I->getParent(); 914 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 915 const MachineOperand &OPO = OnePhi->getOperand(j); 916 if (!OPO.isReg() || !OPO.isDef()) 917 continue; 918 919 unsigned OPReg = OPO.getReg(); 920 use_nodbg_iterator nextJ; 921 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); 922 J != End; J = nextJ) { 923 nextJ = std::next(J); 924 MachineOperand &Use = *J; 925 MachineInstr *UseMI = Use.getParent(); 926 927 // If the phi node has a user that is not MI, bail... 928 if (MI != UseMI) 929 return false; 930 } 931 } 932 DeadPhis.push_back(OnePhi); 933 } 934 935 // If there are no defs with uses, the instruction is dead. 936 return true; 937 } 938 939 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { 940 // This procedure was essentially copied from DeadMachineInstructionElim. 941 942 SmallVector<MachineInstr*, 1> DeadPhis; 943 if (isDead(MI, DeadPhis)) { 944 DEBUG(dbgs() << "HW looping will remove: " << *MI); 945 946 // It is possible that some DBG_VALUE instructions refer to this 947 // instruction. Examine each def operand for such references; 948 // if found, mark the DBG_VALUE as undef (but don't delete it). 949 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 950 const MachineOperand &MO = MI->getOperand(i); 951 if (!MO.isReg() || !MO.isDef()) 952 continue; 953 unsigned Reg = MO.getReg(); 954 MachineRegisterInfo::use_iterator nextI; 955 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 956 E = MRI->use_end(); I != E; I = nextI) { 957 nextI = std::next(I); // I is invalidated by the setReg 958 MachineOperand &Use = *I; 959 MachineInstr *UseMI = I->getParent(); 960 if (UseMI == MI) 961 continue; 962 if (Use.isDebug()) 963 UseMI->getOperand(0).setReg(0U); 964 // This may also be a "instr -> phi -> instr" case which can 965 // be removed too. 966 } 967 } 968 969 MI->eraseFromParent(); 970 for (unsigned i = 0; i < DeadPhis.size(); ++i) 971 DeadPhis[i]->eraseFromParent(); 972 } 973 } 974 975 /// \brief Check if the loop is a candidate for converting to a hardware 976 /// loop. If so, then perform the transformation. 977 /// 978 /// This function works on innermost loops first. A loop can be converted 979 /// if it is a counting loop; either a register value or an immediate. 980 /// 981 /// The code makes several assumptions about the representation of the loop 982 /// in llvm. 983 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { 984 // This is just for sanity. 985 assert(L->getHeader() && "Loop without a header?"); 986 987 bool Changed = false; 988 // Process nested loops first. 989 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 990 Changed |= convertToHardwareLoop(*I); 991 992 // If a nested loop has been converted, then we can't convert this loop. 993 if (Changed) 994 return Changed; 995 996 #ifndef NDEBUG 997 // Stop trying after reaching the limit (if any). 998 int Limit = HWLoopLimit; 999 if (Limit >= 0) { 1000 if (Counter >= HWLoopLimit) 1001 return false; 1002 Counter++; 1003 } 1004 #endif 1005 1006 // Does the loop contain any invalid instructions? 1007 if (containsInvalidInstruction(L)) 1008 return false; 1009 1010 // Is the induction variable bump feeding the latch condition? 1011 if (!fixupInductionVariable(L)) 1012 return false; 1013 1014 MachineBasicBlock *LastMBB = L->getExitingBlock(); 1015 // Don't generate hw loop if the loop has more than one exit. 1016 if (LastMBB == 0) 1017 return false; 1018 1019 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 1020 if (LastI == LastMBB->end()) 1021 return false; 1022 1023 // Ensure the loop has a preheader: the loop instruction will be 1024 // placed there. 1025 bool NewPreheader = false; 1026 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1027 if (!Preheader) { 1028 Preheader = createPreheaderForLoop(L); 1029 if (!Preheader) 1030 return false; 1031 NewPreheader = true; 1032 } 1033 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 1034 1035 SmallVector<MachineInstr*, 2> OldInsts; 1036 // Are we able to determine the trip count for the loop? 1037 CountValue *TripCount = getLoopTripCount(L, OldInsts); 1038 if (TripCount == 0) 1039 return false; 1040 1041 // Is the trip count available in the preheader? 1042 if (TripCount->isReg()) { 1043 // There will be a use of the register inserted into the preheader, 1044 // so make sure that the register is actually defined at that point. 1045 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); 1046 MachineBasicBlock *BBDef = TCDef->getParent(); 1047 if (!NewPreheader) { 1048 if (!MDT->dominates(BBDef, Preheader)) 1049 return false; 1050 } else { 1051 // If we have just created a preheader, the dominator tree won't be 1052 // aware of it. Check if the definition of the register dominates 1053 // the header, but is not the header itself. 1054 if (!MDT->properlyDominates(BBDef, L->getHeader())) 1055 return false; 1056 } 1057 } 1058 1059 // Determine the loop start. 1060 MachineBasicBlock *LoopStart = L->getTopBlock(); 1061 if (L->getLoopLatch() != LastMBB) { 1062 // When the exit and latch are not the same, use the latch block as the 1063 // start. 1064 // The loop start address is used only after the 1st iteration, and the 1065 // loop latch may contains instrs. that need to be executed after the 1066 // first iteration. 1067 LoopStart = L->getLoopLatch(); 1068 // Make sure the latch is a successor of the exit, otherwise it won't work. 1069 if (!LastMBB->isSuccessor(LoopStart)) 1070 return false; 1071 } 1072 1073 // Convert the loop to a hardware loop. 1074 DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); 1075 DebugLoc DL; 1076 if (InsertPos != Preheader->end()) 1077 DL = InsertPos->getDebugLoc(); 1078 1079 if (TripCount->isReg()) { 1080 // Create a copy of the loop count register. 1081 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1082 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) 1083 .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); 1084 // Add the Loop instruction to the beginning of the loop. 1085 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) 1086 .addMBB(LoopStart) 1087 .addReg(CountReg); 1088 } else { 1089 assert(TripCount->isImm() && "Expecting immediate value for trip count"); 1090 // Add the Loop immediate instruction to the beginning of the loop, 1091 // if the immediate fits in the instructions. Otherwise, we need to 1092 // create a new virtual register. 1093 int64_t CountImm = TripCount->getImm(); 1094 if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) { 1095 unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); 1096 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg) 1097 .addImm(CountImm); 1098 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) 1099 .addMBB(LoopStart).addReg(CountReg); 1100 } else 1101 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i)) 1102 .addMBB(LoopStart).addImm(CountImm); 1103 } 1104 1105 // Make sure the loop start always has a reference in the CFG. We need 1106 // to create a BlockAddress operand to get this mechanism to work both the 1107 // MachineBasicBlock and BasicBlock objects need the flag set. 1108 LoopStart->setHasAddressTaken(); 1109 // This line is needed to set the hasAddressTaken flag on the BasicBlock 1110 // object. 1111 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 1112 1113 // Replace the loop branch with an endloop instruction. 1114 DebugLoc LastIDL = LastI->getDebugLoc(); 1115 BuildMI(*LastMBB, LastI, LastIDL, 1116 TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); 1117 1118 // The loop ends with either: 1119 // - a conditional branch followed by an unconditional branch, or 1120 // - a conditional branch to the loop start. 1121 if (LastI->getOpcode() == Hexagon::JMP_t || 1122 LastI->getOpcode() == Hexagon::JMP_f) { 1123 // Delete one and change/add an uncond. branch to out of the loop. 1124 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); 1125 LastI = LastMBB->erase(LastI); 1126 if (!L->contains(BranchTarget)) { 1127 if (LastI != LastMBB->end()) 1128 LastI = LastMBB->erase(LastI); 1129 SmallVector<MachineOperand, 0> Cond; 1130 TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL); 1131 } 1132 } else { 1133 // Conditional branch to loop start; just delete it. 1134 LastMBB->erase(LastI); 1135 } 1136 delete TripCount; 1137 1138 // The induction operation and the comparison may now be 1139 // unneeded. If these are unneeded, then remove them. 1140 for (unsigned i = 0; i < OldInsts.size(); ++i) 1141 removeIfDead(OldInsts[i]); 1142 1143 ++NumHWLoops; 1144 return true; 1145 } 1146 1147 1148 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, 1149 MachineInstr *CmpI) { 1150 assert (BumpI != CmpI && "Bump and compare in the same instruction?"); 1151 1152 MachineBasicBlock *BB = BumpI->getParent(); 1153 if (CmpI->getParent() != BB) 1154 return false; 1155 1156 typedef MachineBasicBlock::instr_iterator instr_iterator; 1157 // Check if things are in order to begin with. 1158 for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) 1159 if (&*I == CmpI) 1160 return true; 1161 1162 // Out of order. 1163 unsigned PredR = CmpI->getOperand(0).getReg(); 1164 bool FoundBump = false; 1165 instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt); 1166 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { 1167 MachineInstr *In = &*I; 1168 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { 1169 MachineOperand &MO = In->getOperand(i); 1170 if (MO.isReg() && MO.isUse()) { 1171 if (MO.getReg() == PredR) // Found an intervening use of PredR. 1172 return false; 1173 } 1174 } 1175 1176 if (In == BumpI) { 1177 instr_iterator After = BumpI; 1178 instr_iterator From = CmpI; 1179 BB->splice(std::next(After), BB, From); 1180 FoundBump = true; 1181 break; 1182 } 1183 } 1184 assert (FoundBump && "Cannot determine instruction order"); 1185 return FoundBump; 1186 } 1187 1188 1189 MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { 1190 MachineInstr *DI = MRI->getVRegDef(R); 1191 unsigned DOpc = DI->getOpcode(); 1192 switch (DOpc) { 1193 case Hexagon::TFRI: 1194 case Hexagon::TFRI64: 1195 case Hexagon::CONST32_Int_Real: 1196 case Hexagon::CONST64_Int_Real: 1197 return DI; 1198 } 1199 return 0; 1200 } 1201 1202 1203 int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { 1204 if (MO.isImm()) 1205 return MO.getImm(); 1206 assert(MO.isReg()); 1207 unsigned R = MO.getReg(); 1208 MachineInstr *DI = defWithImmediate(R); 1209 assert(DI && "Need an immediate operand"); 1210 // All currently supported "define-with-immediate" instructions have the 1211 // actual immediate value in the operand(1). 1212 int64_t v = DI->getOperand(1).getImm(); 1213 return v; 1214 } 1215 1216 1217 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { 1218 if (MO.isImm()) { 1219 MO.setImm(Val); 1220 return; 1221 } 1222 1223 assert(MO.isReg()); 1224 unsigned R = MO.getReg(); 1225 MachineInstr *DI = defWithImmediate(R); 1226 if (MRI->hasOneNonDBGUse(R)) { 1227 // If R has only one use, then just change its defining instruction to 1228 // the new immediate value. 1229 DI->getOperand(1).setImm(Val); 1230 return; 1231 } 1232 1233 const TargetRegisterClass *RC = MRI->getRegClass(R); 1234 unsigned NewR = MRI->createVirtualRegister(RC); 1235 MachineBasicBlock &B = *DI->getParent(); 1236 DebugLoc DL = DI->getDebugLoc(); 1237 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) 1238 .addImm(Val); 1239 MO.setReg(NewR); 1240 } 1241 1242 1243 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { 1244 MachineBasicBlock *Header = L->getHeader(); 1245 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1246 MachineBasicBlock *Latch = L->getLoopLatch(); 1247 1248 if (!Header || !Preheader || !Latch) 1249 return false; 1250 1251 // These data structures follow the same concept as the corresponding 1252 // ones in findInductionRegister (where some comments are). 1253 typedef std::pair<unsigned,int64_t> RegisterBump; 1254 typedef std::pair<unsigned,RegisterBump> RegisterInduction; 1255 typedef std::set<RegisterInduction> RegisterInductionSet; 1256 1257 // Register candidates for induction variables, with their associated bumps. 1258 RegisterInductionSet IndRegs; 1259 1260 // Look for induction patterns: 1261 // vreg1 = PHI ..., [ latch, vreg2 ] 1262 // vreg2 = ADD vreg1, imm 1263 typedef MachineBasicBlock::instr_iterator instr_iterator; 1264 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1265 I != E && I->isPHI(); ++I) { 1266 MachineInstr *Phi = &*I; 1267 1268 // Have a PHI instruction. 1269 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { 1270 if (Phi->getOperand(i+1).getMBB() != Latch) 1271 continue; 1272 1273 unsigned PhiReg = Phi->getOperand(i).getReg(); 1274 MachineInstr *DI = MRI->getVRegDef(PhiReg); 1275 unsigned UpdOpc = DI->getOpcode(); 1276 bool isAdd = (UpdOpc == Hexagon::ADD_ri); 1277 1278 if (isAdd) { 1279 // If the register operand to the add/sub is the PHI we are looking 1280 // at, this meets the induction pattern. 1281 unsigned IndReg = DI->getOperand(1).getReg(); 1282 if (MRI->getVRegDef(IndReg) == Phi) { 1283 unsigned UpdReg = DI->getOperand(0).getReg(); 1284 int64_t V = DI->getOperand(2).getImm(); 1285 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); 1286 } 1287 } 1288 } // for (i) 1289 } // for (instr) 1290 1291 if (IndRegs.empty()) 1292 return false; 1293 1294 MachineBasicBlock *TB = 0, *FB = 0; 1295 SmallVector<MachineOperand,2> Cond; 1296 // AnalyzeBranch returns true if it fails to analyze branch. 1297 bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); 1298 if (NotAnalyzed) 1299 return false; 1300 1301 // Check if the latch branch is unconditional. 1302 if (Cond.empty()) 1303 return false; 1304 1305 if (TB != Header && FB != Header) 1306 // The latch does not go back to the header. Not a latch we know and love. 1307 return false; 1308 1309 // Expecting a predicate register as a condition. It won't be a hardware 1310 // predicate register at this point yet, just a vreg. 1311 // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) 1312 // into Cond, followed by the predicate register. For non-negated branches 1313 // it's just the register. 1314 unsigned CSz = Cond.size(); 1315 if (CSz != 1 && CSz != 2) 1316 return false; 1317 1318 unsigned P = Cond[CSz-1].getReg(); 1319 MachineInstr *PredDef = MRI->getVRegDef(P); 1320 1321 if (!PredDef->isCompare()) 1322 return false; 1323 1324 SmallSet<unsigned,2> CmpRegs; 1325 MachineOperand *CmpImmOp = 0; 1326 1327 // Go over all operands to the compare and look for immediate and register 1328 // operands. Assume that if the compare has a single register use and a 1329 // single immediate operand, then the register is being compared with the 1330 // immediate value. 1331 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1332 MachineOperand &MO = PredDef->getOperand(i); 1333 if (MO.isReg()) { 1334 // Skip all implicit references. In one case there was: 1335 // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> 1336 if (MO.isImplicit()) 1337 continue; 1338 if (MO.isUse()) { 1339 unsigned R = MO.getReg(); 1340 if (!defWithImmediate(R)) { 1341 CmpRegs.insert(MO.getReg()); 1342 continue; 1343 } 1344 // Consider the register to be the "immediate" operand. 1345 if (CmpImmOp) 1346 return false; 1347 CmpImmOp = &MO; 1348 } 1349 } else if (MO.isImm()) { 1350 if (CmpImmOp) // A second immediate argument? Confusing. Bail out. 1351 return false; 1352 CmpImmOp = &MO; 1353 } 1354 } 1355 1356 if (CmpRegs.empty()) 1357 return false; 1358 1359 // Check if the compared register follows the order we want. Fix if needed. 1360 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); 1361 I != E; ++I) { 1362 // This is a success. If the register used in the comparison is one that 1363 // we have identified as a bumped (updated) induction register, there is 1364 // nothing to do. 1365 if (CmpRegs.count(I->first)) 1366 return true; 1367 1368 // Otherwise, if the register being compared comes out of a PHI node, 1369 // and has been recognized as following the induction pattern, and is 1370 // compared against an immediate, we can fix it. 1371 const RegisterBump &RB = I->second; 1372 if (CmpRegs.count(RB.first)) { 1373 if (!CmpImmOp) 1374 return false; 1375 1376 int64_t CmpImm = getImmediate(*CmpImmOp); 1377 int64_t V = RB.second; 1378 if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). 1379 return false; 1380 if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). 1381 return false; 1382 CmpImm += V; 1383 // Some forms of cmp-immediate allow u9 and s10. Assume the worst case 1384 // scenario, i.e. an 8-bit value. 1385 if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) 1386 return false; 1387 1388 // Make sure that the compare happens after the bump. Otherwise, 1389 // after the fixup, the compare would use a yet-undefined register. 1390 MachineInstr *BumpI = MRI->getVRegDef(I->first); 1391 bool Order = orderBumpCompare(BumpI, PredDef); 1392 if (!Order) 1393 return false; 1394 1395 // Finally, fix the compare instruction. 1396 setImmediate(*CmpImmOp, CmpImm); 1397 for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { 1398 MachineOperand &MO = PredDef->getOperand(i); 1399 if (MO.isReg() && MO.getReg() == RB.first) { 1400 MO.setReg(I->first); 1401 return true; 1402 } 1403 } 1404 } 1405 } 1406 1407 return false; 1408 } 1409 1410 1411 /// \brief Create a preheader for a given loop. 1412 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( 1413 MachineLoop *L) { 1414 if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) 1415 return TmpPH; 1416 1417 MachineBasicBlock *Header = L->getHeader(); 1418 MachineBasicBlock *Latch = L->getLoopLatch(); 1419 MachineFunction *MF = Header->getParent(); 1420 DebugLoc DL; 1421 1422 if (!Latch || Header->hasAddressTaken()) 1423 return 0; 1424 1425 typedef MachineBasicBlock::instr_iterator instr_iterator; 1426 1427 // Verify that all existing predecessors have analyzable branches 1428 // (or no branches at all). 1429 typedef std::vector<MachineBasicBlock*> MBBVector; 1430 MBBVector Preds(Header->pred_begin(), Header->pred_end()); 1431 SmallVector<MachineOperand,2> Tmp1; 1432 MachineBasicBlock *TB = 0, *FB = 0; 1433 1434 if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) 1435 return 0; 1436 1437 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1438 MachineBasicBlock *PB = *I; 1439 if (PB != Latch) { 1440 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); 1441 if (NotAnalyzed) 1442 return 0; 1443 } 1444 } 1445 1446 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); 1447 MF->insert(Header, NewPH); 1448 1449 if (Header->pred_size() > 2) { 1450 // Ensure that the header has only two predecessors: the preheader and 1451 // the loop latch. Any additional predecessors of the header should 1452 // join at the newly created preheader. Inspect all PHI nodes from the 1453 // header and create appropriate corresponding PHI nodes in the preheader. 1454 1455 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1456 I != E && I->isPHI(); ++I) { 1457 MachineInstr *PN = &*I; 1458 1459 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); 1460 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); 1461 NewPH->insert(NewPH->end(), NewPN); 1462 1463 unsigned PR = PN->getOperand(0).getReg(); 1464 const TargetRegisterClass *RC = MRI->getRegClass(PR); 1465 unsigned NewPR = MRI->createVirtualRegister(RC); 1466 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); 1467 1468 // Copy all non-latch operands of a header's PHI node to the newly 1469 // created PHI node in the preheader. 1470 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1471 unsigned PredR = PN->getOperand(i).getReg(); 1472 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1473 if (PredB == Latch) 1474 continue; 1475 1476 NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); 1477 NewPN->addOperand(MachineOperand::CreateMBB(PredB)); 1478 } 1479 1480 // Remove copied operands from the old PHI node and add the value 1481 // coming from the preheader's PHI. 1482 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 1483 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); 1484 if (PredB != Latch) { 1485 PN->RemoveOperand(i+1); 1486 PN->RemoveOperand(i); 1487 } 1488 } 1489 PN->addOperand(MachineOperand::CreateReg(NewPR, false)); 1490 PN->addOperand(MachineOperand::CreateMBB(NewPH)); 1491 } 1492 1493 } else { 1494 assert(Header->pred_size() == 2); 1495 1496 // The header has only two predecessors, but the non-latch predecessor 1497 // is not a preheader (e.g. it has other successors, etc.) 1498 // In such a case we don't need any extra PHI nodes in the new preheader, 1499 // all we need is to adjust existing PHIs in the header to now refer to 1500 // the new preheader. 1501 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); 1502 I != E && I->isPHI(); ++I) { 1503 MachineInstr *PN = &*I; 1504 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { 1505 MachineOperand &MO = PN->getOperand(i+1); 1506 if (MO.getMBB() != Latch) 1507 MO.setMBB(NewPH); 1508 } 1509 } 1510 } 1511 1512 // "Reroute" the CFG edges to link in the new preheader. 1513 // If any of the predecessors falls through to the header, insert a branch 1514 // to the new preheader in that place. 1515 SmallVector<MachineOperand,1> Tmp2; 1516 SmallVector<MachineOperand,1> EmptyCond; 1517 1518 TB = FB = 0; 1519 1520 for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { 1521 MachineBasicBlock *PB = *I; 1522 if (PB != Latch) { 1523 Tmp2.clear(); 1524 bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); 1525 (void)NotAnalyzed; // suppress compiler warning 1526 assert (!NotAnalyzed && "Should be analyzable!"); 1527 if (TB != Header && (Tmp2.empty() || FB != Header)) 1528 TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL); 1529 PB->ReplaceUsesOfBlockWith(Header, NewPH); 1530 } 1531 } 1532 1533 // It can happen that the latch block will fall through into the header. 1534 // Insert an unconditional branch to the header. 1535 TB = FB = 0; 1536 bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); 1537 (void)LatchNotAnalyzed; // suppress compiler warning 1538 assert (!LatchNotAnalyzed && "Should be analyzable!"); 1539 if (!TB && !FB) 1540 TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL); 1541 1542 // Finally, the branch from the preheader to the header. 1543 TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL); 1544 NewPH->addSuccessor(Header); 1545 1546 return NewPH; 1547 } 1548