xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonConstExtenders.cpp (revision 9500a24fce02fdbe30f7b22334edded76ee7feb4)
1 //===- HexagonConstExtenders.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "HexagonInstrInfo.h"
11 #include "HexagonRegisterInfo.h"
12 #include "HexagonSubtarget.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/CodeGen/MachineDominators.h"
15 #include "llvm/CodeGen/MachineFunctionPass.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Pass.h"
21 #include <map>
22 #include <set>
23 #include <utility>
24 #include <vector>
25 
26 #define DEBUG_TYPE "hexagon-cext-opt"
27 
28 using namespace llvm;
29 
30 static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold",
31   cl::init(3), cl::Hidden, cl::ZeroOrMore,
32   cl::desc("Minimum number of extenders to trigger replacement"));
33 
34 static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0),
35   cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements"));
36 
37 namespace llvm {
38   void initializeHexagonConstExtendersPass(PassRegistry&);
39   FunctionPass *createHexagonConstExtenders();
40 }
41 
42 static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) {
43   assert(isPowerOf2_32(A));
44   int32_t U = (V & -A) + O;
45   return U >= V ? U : U+A;
46 }
47 
48 static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) {
49   assert(isPowerOf2_32(A));
50   int32_t U = (V & -A) + O;
51   return U <= V ? U : U-A;
52 }
53 
54 namespace {
55   struct OffsetRange {
56     // The range of values between Min and Max that are of form Align*N+Offset,
57     // for some integer N. Min and Max are required to be of that form as well,
58     // except in the case of an empty range.
59     int32_t Min = INT_MIN, Max = INT_MAX;
60     uint8_t Align = 1;
61     uint8_t Offset = 0;
62 
63     OffsetRange() = default;
64     OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0)
65       : Min(L), Max(H), Align(A), Offset(O) {}
66     OffsetRange &intersect(OffsetRange A) {
67       if (Align < A.Align)
68         std::swap(*this, A);
69 
70       // Align >= A.Align.
71       if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) {
72         Min = adjustUp(std::max(Min, A.Min), Align, Offset);
73         Max = adjustDown(std::min(Max, A.Max), Align, Offset);
74       } else {
75         // Make an empty range.
76         Min = 0;
77         Max = -1;
78       }
79       // Canonicalize empty ranges.
80       if (Min > Max)
81         std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
82       return *this;
83     }
84     OffsetRange &shift(int32_t S) {
85       Min += S;
86       Max += S;
87       Offset = (Offset+S) % Align;
88       return *this;
89     }
90     OffsetRange &extendBy(int32_t D) {
91       // If D < 0, extend Min, otherwise extend Max.
92       assert(D % Align == 0);
93       if (D < 0)
94         Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
95       else
96         Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
97       return *this;
98     }
99     bool empty() const {
100       return Min > Max;
101     }
102     bool contains(int32_t V) const {
103       return Min <= V && V <= Max && (V-Offset) % Align == 0;
104     }
105     bool operator==(const OffsetRange &R) const {
106       return Min == R.Min && Max == R.Max && Align == R.Align;
107     }
108     bool operator!=(const OffsetRange &R) const {
109       return !operator==(R);
110     }
111     bool operator<(const OffsetRange &R) const {
112       if (Min != R.Min)
113         return Min < R.Min;
114       if (Max != R.Max)
115         return Max < R.Max;
116       return Align < R.Align;
117     }
118     static OffsetRange zero() { return {0, 0, 1}; }
119   };
120 
121   struct RangeTree {
122     struct Node {
123       Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
124       unsigned Height = 1;
125       unsigned Count = 1;
126       int32_t MaxEnd;
127       const OffsetRange &Range;
128       Node *Left = nullptr, *Right = nullptr;
129     };
130 
131     Node *Root = nullptr;
132 
133     void add(const OffsetRange &R) {
134       Root = add(Root, R);
135     }
136     void erase(const Node *N) {
137       Root = remove(Root, N);
138       delete N;
139     }
140     void order(SmallVectorImpl<Node*> &Seq) const {
141       order(Root, Seq);
142     }
143     SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
144       SmallVector<Node*,8> Nodes;
145       nodesWith(Root, P, CheckAlign, Nodes);
146       return Nodes;
147     }
148     void dump() const;
149     ~RangeTree() {
150       SmallVector<Node*,8> Nodes;
151       order(Nodes);
152       for (Node *N : Nodes)
153         delete N;
154     }
155 
156   private:
157     void dump(const Node *N) const;
158     void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
159     void nodesWith(Node *N, int32_t P, bool CheckA,
160                    SmallVectorImpl<Node*> &Seq) const;
161 
162     Node *add(Node *N, const OffsetRange &R);
163     Node *remove(Node *N, const Node *D);
164     Node *rotateLeft(Node *Lower, Node *Higher);
165     Node *rotateRight(Node *Lower, Node *Higher);
166     unsigned height(Node *N) {
167       return N != nullptr ? N->Height : 0;
168     }
169     Node *update(Node *N) {
170       assert(N != nullptr);
171       N->Height = 1 + std::max(height(N->Left), height(N->Right));
172       if (N->Left)
173         N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
174       if (N->Right)
175         N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
176       return N;
177     }
178     Node *rebalance(Node *N) {
179       assert(N != nullptr);
180       int32_t Balance = height(N->Right) - height(N->Left);
181       if (Balance < -1)
182         return rotateRight(N->Left, N);
183       if (Balance > 1)
184         return rotateLeft(N->Right, N);
185       return N;
186     }
187   };
188 
189   struct Loc {
190     MachineBasicBlock *Block = nullptr;
191     MachineBasicBlock::iterator At;
192 
193     Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
194       : Block(B), At(It) {
195       if (B->end() == It) {
196         Pos = -1;
197       } else {
198         assert(It->getParent() == B);
199         Pos = std::distance(B->begin(), It);
200       }
201     }
202     bool operator<(Loc A) const {
203       if (Block != A.Block)
204         return Block->getNumber() < A.Block->getNumber();
205       if (A.Pos == -1)
206         return Pos != A.Pos;
207       return Pos != -1 && Pos < A.Pos;
208     }
209   private:
210     int Pos = 0;
211   };
212 
213   struct HexagonConstExtenders : public MachineFunctionPass {
214     static char ID;
215     HexagonConstExtenders() : MachineFunctionPass(ID) {}
216 
217     void getAnalysisUsage(AnalysisUsage &AU) const override {
218       AU.addRequired<MachineDominatorTree>();
219       AU.addPreserved<MachineDominatorTree>();
220       MachineFunctionPass::getAnalysisUsage(AU);
221     }
222 
223     StringRef getPassName() const override {
224       return "Hexagon constant-extender optimization";
225     }
226     bool runOnMachineFunction(MachineFunction &MF) override;
227 
228   private:
229     struct Register {
230       Register() = default;
231       Register(unsigned R, unsigned S) : Reg(R), Sub(S) {}
232       Register(const MachineOperand &Op)
233         : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
234       Register &operator=(const MachineOperand &Op) {
235         if (Op.isReg()) {
236           Reg = Op.getReg();
237           Sub = Op.getSubReg();
238         } else if (Op.isFI()) {
239           Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex());
240         }
241         return *this;
242       }
243       bool isVReg() const {
244         return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) &&
245                TargetRegisterInfo::isVirtualRegister(Reg);
246       }
247       bool isSlot() const {
248         return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg);
249       }
250       operator MachineOperand() const {
251         if (isVReg())
252           return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
253                           /*Kill*/false, /*Dead*/false, /*Undef*/false,
254                           /*EarlyClobber*/false, Sub);
255         if (TargetRegisterInfo::isStackSlot(Reg)) {
256           int FI = TargetRegisterInfo::stackSlot2Index(Reg);
257           return MachineOperand::CreateFI(FI);
258         }
259         llvm_unreachable("Cannot create MachineOperand");
260       }
261       bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
262       bool operator!=(Register R) const { return !operator==(R); }
263       bool operator<(Register R) const {
264         // For std::map.
265         return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
266       }
267       unsigned Reg = 0, Sub = 0;
268     };
269 
270     struct ExtExpr {
271       // A subexpression in which the extender is used. In general, this
272       // represents an expression where adding D to the extender will be
273       // equivalent to adding D to the expression as a whole. In other
274       // words, expr(add(##V,D) = add(expr(##V),D).
275 
276       // The original motivation for this are the io/ur addressing modes,
277       // where the offset is extended. Consider the io example:
278       // In memw(Rs+##V), the ##V could be replaced by a register Rt to
279       // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
280       // register Rt must have exactly the value of ##V. If there was
281       // another instruction memw(Rs+##V+4), it would need a different Rt.
282       // Now, if Rt was initialized as "##V+Rs<<0", both of these
283       // instructions could use the same Rt, just with different offsets.
284       // Here it's clear that "initializer+4" should be the same as if
285       // the offset 4 was added to the ##V in the initializer.
286 
287       // The only kinds of expressions that support the requirement of
288       // commuting with addition are addition and subtraction from ##V.
289       // Include shifting the Rs to account for the ur addressing mode:
290       //   ##Val + Rs << S
291       //   ##Val - Rs
292       Register Rs;
293       unsigned S = 0;
294       bool Neg = false;
295 
296       ExtExpr() = default;
297       ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
298       // Expression is trivial if it does not modify the extender.
299       bool trivial() const {
300         return Rs.Reg == 0;
301       }
302       bool operator==(const ExtExpr &Ex) const {
303         return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
304       }
305       bool operator!=(const ExtExpr &Ex) const {
306         return !operator==(Ex);
307       }
308       bool operator<(const ExtExpr &Ex) const {
309         if (Rs != Ex.Rs)
310           return Rs < Ex.Rs;
311         if (S != Ex.S)
312           return S < Ex.S;
313         return !Neg && Ex.Neg;
314       }
315     };
316 
317     struct ExtDesc {
318       MachineInstr *UseMI = nullptr;
319       unsigned OpNum = -1u;
320       // The subexpression in which the extender is used (e.g. address
321       // computation).
322       ExtExpr Expr;
323       // Optional register that is assigned the value of Expr.
324       Register Rd;
325       // Def means that the output of the instruction may differ from the
326       // original by a constant c, and that the difference can be corrected
327       // by adding/subtracting c in all users of the defined register.
328       bool IsDef = false;
329 
330       MachineOperand &getOp() {
331         return UseMI->getOperand(OpNum);
332       }
333       const MachineOperand &getOp() const {
334         return UseMI->getOperand(OpNum);
335       }
336     };
337 
338     struct ExtRoot {
339       union {
340         const ConstantFP *CFP;  // MO_FPImmediate
341         const char *SymbolName; // MO_ExternalSymbol
342         const GlobalValue *GV;  // MO_GlobalAddress
343         const BlockAddress *BA; // MO_BlockAddress
344         int64_t ImmVal;         // MO_Immediate, MO_TargetIndex,
345                                 // and MO_ConstantPoolIndex
346       } V;
347       unsigned Kind;            // Same as in MachineOperand.
348       unsigned char TF;         // TargetFlags.
349 
350       ExtRoot(const MachineOperand &Op);
351       bool operator==(const ExtRoot &ER) const {
352         return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
353       }
354       bool operator!=(const ExtRoot &ER) const {
355         return !operator==(ER);
356       }
357       bool operator<(const ExtRoot &ER) const;
358     };
359 
360     struct ExtValue : public ExtRoot {
361       int32_t Offset;
362 
363       ExtValue(const MachineOperand &Op);
364       ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
365       ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
366       bool operator<(const ExtValue &EV) const;
367       bool operator==(const ExtValue &EV) const {
368         return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
369       }
370       bool operator!=(const ExtValue &EV) const {
371         return !operator==(EV);
372       }
373       explicit operator MachineOperand() const;
374     };
375 
376     using IndexList = SetVector<unsigned>;
377     using ExtenderInit = std::pair<ExtValue, ExtExpr>;
378     using AssignmentMap = std::map<ExtenderInit, IndexList>;
379     using LocDefMap = std::map<Loc, IndexList>;
380 
381     const HexagonInstrInfo *HII = nullptr;
382     const HexagonRegisterInfo *HRI = nullptr;
383     MachineDominatorTree *MDT = nullptr;
384     MachineRegisterInfo *MRI = nullptr;
385     std::vector<ExtDesc> Extenders;
386     std::vector<unsigned> NewRegs;
387 
388     bool isStoreImmediate(unsigned Opc) const;
389     bool isRegOffOpcode(unsigned ExtOpc) const ;
390     unsigned getRegOffOpcode(unsigned ExtOpc) const;
391     unsigned getDirectRegReplacement(unsigned ExtOpc) const;
392     OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
393     OffsetRange getOffsetRange(const ExtDesc &ED) const;
394     OffsetRange getOffsetRange(Register Rd) const;
395 
396     void recordExtender(MachineInstr &MI, unsigned OpNum);
397     void collectInstr(MachineInstr &MI);
398     void collect(MachineFunction &MF);
399     void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
400                      AssignmentMap &IMap);
401     void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
402                             LocDefMap &Defs);
403     Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
404     bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
405     bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
406                           Register ExtR, int32_t &Diff);
407     bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
408     bool replaceExtenders(const AssignmentMap &IMap);
409 
410     unsigned getOperandIndex(const MachineInstr &MI,
411                              const MachineOperand &Op) const;
412     const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
413     const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
414     const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
415 
416     friend struct PrintRegister;
417     friend struct PrintExpr;
418     friend struct PrintInit;
419     friend struct PrintIMap;
420     friend raw_ostream &operator<< (raw_ostream &OS,
421                                     const struct PrintRegister &P);
422     friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
423     friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
424     friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
425     friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
426     friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
427     friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
428     friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
429   };
430 
431   using HCE = HexagonConstExtenders;
432 
433   LLVM_ATTRIBUTE_UNUSED
434   raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
435     if (OR.Min > OR.Max)
436       OS << '!';
437     OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align)
438        << '+' << unsigned(OR.Offset);
439     return OS;
440   }
441 
442   struct PrintRegister {
443     PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
444       : Rs(R), HRI(I) {}
445     HCE::Register Rs;
446     const HexagonRegisterInfo &HRI;
447   };
448 
449   LLVM_ATTRIBUTE_UNUSED
450   raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
451     if (P.Rs.Reg != 0)
452       OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
453     else
454       OS << "noreg";
455     return OS;
456   }
457 
458   struct PrintExpr {
459     PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
460       : Ex(E), HRI(I) {}
461     const HCE::ExtExpr &Ex;
462     const HexagonRegisterInfo &HRI;
463   };
464 
465   LLVM_ATTRIBUTE_UNUSED
466   raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
467     OS << "## " << (P.Ex.Neg ? "- " : "+ ");
468     if (P.Ex.Rs.Reg != 0)
469       OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
470     else
471       OS << "__";
472     OS << " << " << P.Ex.S;
473     return OS;
474   }
475 
476   struct PrintInit {
477     PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
478       : ExtI(EI), HRI(I) {}
479     const HCE::ExtenderInit &ExtI;
480     const HexagonRegisterInfo &HRI;
481   };
482 
483   LLVM_ATTRIBUTE_UNUSED
484   raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
485     OS << '[' << P.ExtI.first << ", "
486        << PrintExpr(P.ExtI.second, P.HRI) << ']';
487     return OS;
488   }
489 
490   LLVM_ATTRIBUTE_UNUSED
491   raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
492     assert(ED.OpNum != -1u);
493     const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
494     const MachineFunction &MF = *MBB.getParent();
495     const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
496     OS << "bb#" << MBB.getNumber() << ": ";
497     if (ED.Rd.Reg != 0)
498       OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
499     else
500       OS << "__";
501     OS << " = " << PrintExpr(ED.Expr, HRI);
502     if (ED.IsDef)
503       OS << ", def";
504     return OS;
505   }
506 
507   LLVM_ATTRIBUTE_UNUSED
508   raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
509     switch (ER.Kind) {
510       case MachineOperand::MO_Immediate:
511         OS << "imm:" << ER.V.ImmVal;
512         break;
513       case MachineOperand::MO_FPImmediate:
514         OS << "fpi:" << *ER.V.CFP;
515         break;
516       case MachineOperand::MO_ExternalSymbol:
517         OS << "sym:" << *ER.V.SymbolName;
518         break;
519       case MachineOperand::MO_GlobalAddress:
520         OS << "gad:" << ER.V.GV->getName();
521         break;
522       case MachineOperand::MO_BlockAddress:
523         OS << "blk:" << *ER.V.BA;
524         break;
525       case MachineOperand::MO_TargetIndex:
526         OS << "tgi:" << ER.V.ImmVal;
527         break;
528       case MachineOperand::MO_ConstantPoolIndex:
529         OS << "cpi:" << ER.V.ImmVal;
530         break;
531       case MachineOperand::MO_JumpTableIndex:
532         OS << "jti:" << ER.V.ImmVal;
533         break;
534       default:
535         OS << "???:" << ER.V.ImmVal;
536         break;
537     }
538     return OS;
539   }
540 
541   LLVM_ATTRIBUTE_UNUSED
542   raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
543     OS << HCE::ExtRoot(EV) << "  off:" << EV.Offset;
544     return OS;
545   }
546 
547   struct PrintIMap {
548     PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
549       : IMap(M), HRI(I) {}
550     const HCE::AssignmentMap &IMap;
551     const HexagonRegisterInfo &HRI;
552   };
553 
554   LLVM_ATTRIBUTE_UNUSED
555   raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
556     OS << "{\n";
557     for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) {
558       OS << "  " << PrintInit(Q.first, P.HRI) << " -> {";
559       for (unsigned I : Q.second)
560         OS << ' ' << I;
561       OS << " }\n";
562     }
563     OS << "}\n";
564     return OS;
565   }
566 }
567 
568 INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
569       "Hexagon constant-extender optimization", false, false)
570 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
571 INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
572       "Hexagon constant-extender optimization", false, false)
573 
574 static unsigned ReplaceCounter = 0;
575 
576 char HCE::ID = 0;
577 
578 #ifndef NDEBUG
579 LLVM_DUMP_METHOD void RangeTree::dump() const {
580   dbgs() << "Root: " << Root << '\n';
581   if (Root)
582     dump(Root);
583 }
584 
585 LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const {
586   dbgs() << "Node: " << N << '\n';
587   dbgs() << "  Height: " << N->Height << '\n';
588   dbgs() << "  Count: " << N->Count << '\n';
589   dbgs() << "  MaxEnd: " << N->MaxEnd << '\n';
590   dbgs() << "  Range: " << N->Range << '\n';
591   dbgs() << "  Left: " << N->Left << '\n';
592   dbgs() << "  Right: " << N->Right << "\n\n";
593 
594   if (N->Left)
595     dump(N->Left);
596   if (N->Right)
597     dump(N->Right);
598 }
599 #endif
600 
601 void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
602   if (N == nullptr)
603     return;
604   order(N->Left, Seq);
605   Seq.push_back(N);
606   order(N->Right, Seq);
607 }
608 
609 void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
610       SmallVectorImpl<Node*> &Seq) const {
611   if (N == nullptr || N->MaxEnd < P)
612     return;
613   nodesWith(N->Left, P, CheckA, Seq);
614   if (N->Range.Min <= P) {
615     if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
616       Seq.push_back(N);
617     nodesWith(N->Right, P, CheckA, Seq);
618   }
619 }
620 
621 RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
622   if (N == nullptr)
623     return new Node(R);
624 
625   if (N->Range == R) {
626     N->Count++;
627     return N;
628   }
629 
630   if (R < N->Range)
631     N->Left = add(N->Left, R);
632   else
633     N->Right = add(N->Right, R);
634   return rebalance(update(N));
635 }
636 
637 RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
638   assert(N != nullptr);
639 
640   if (N != D) {
641     assert(N->Range != D->Range && "N and D should not be equal");
642     if (D->Range < N->Range)
643       N->Left = remove(N->Left, D);
644     else
645       N->Right = remove(N->Right, D);
646     return rebalance(update(N));
647   }
648 
649   // We got to the node we need to remove. If any of its children are
650   // missing, simply replace it with the other child.
651   if (N->Left == nullptr || N->Right == nullptr)
652     return (N->Left == nullptr) ? N->Right : N->Left;
653 
654   // Find the rightmost child of N->Left, remove it and plug it in place
655   // of N.
656   Node *M = N->Left;
657   while (M->Right)
658     M = M->Right;
659   M->Left = remove(N->Left, M);
660   M->Right = N->Right;
661   return rebalance(update(M));
662 }
663 
664 RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
665   assert(Higher->Right == Lower);
666   // The Lower node is on the right from Higher. Make sure that Lower's
667   // balance is greater to the right. Otherwise the rotation will create
668   // an unbalanced tree again.
669   if (height(Lower->Left) > height(Lower->Right))
670     Lower = rotateRight(Lower->Left, Lower);
671   assert(height(Lower->Left) <= height(Lower->Right));
672   Higher->Right = Lower->Left;
673   update(Higher);
674   Lower->Left = Higher;
675   update(Lower);
676   return Lower;
677 }
678 
679 RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
680   assert(Higher->Left == Lower);
681   // The Lower node is on the left from Higher. Make sure that Lower's
682   // balance is greater to the left. Otherwise the rotation will create
683   // an unbalanced tree again.
684   if (height(Lower->Left) < height(Lower->Right))
685     Lower = rotateLeft(Lower->Right, Lower);
686   assert(height(Lower->Left) >= height(Lower->Right));
687   Higher->Left = Lower->Right;
688   update(Higher);
689   Lower->Right = Higher;
690   update(Lower);
691   return Lower;
692 }
693 
694 
695 HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
696   // Always store ImmVal, since it's the field used for comparisons.
697   V.ImmVal = 0;
698   if (Op.isImm())
699     ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
700   else if (Op.isFPImm())
701     V.CFP = Op.getFPImm();
702   else if (Op.isSymbol())
703     V.SymbolName = Op.getSymbolName();
704   else if (Op.isGlobal())
705     V.GV = Op.getGlobal();
706   else if (Op.isBlockAddress())
707     V.BA = Op.getBlockAddress();
708   else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
709     V.ImmVal = Op.getIndex();
710   else
711     llvm_unreachable("Unexpected operand type");
712 
713   Kind = Op.getType();
714   TF = Op.getTargetFlags();
715 }
716 
717 bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
718   if (Kind != ER.Kind)
719     return Kind < ER.Kind;
720   switch (Kind) {
721     case MachineOperand::MO_Immediate:
722     case MachineOperand::MO_TargetIndex:
723     case MachineOperand::MO_ConstantPoolIndex:
724     case MachineOperand::MO_JumpTableIndex:
725       return V.ImmVal < ER.V.ImmVal;
726     case MachineOperand::MO_FPImmediate: {
727       const APFloat &ThisF = V.CFP->getValueAPF();
728       const APFloat &OtherF = ER.V.CFP->getValueAPF();
729       return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
730     }
731     case MachineOperand::MO_ExternalSymbol:
732       return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
733     case MachineOperand::MO_GlobalAddress: {
734       // Global values may not have names, so compare their positions
735       // in the parent module.
736       const Module &M = *V.GV->getParent();
737       auto FindPos = [&M] (const GlobalValue &V) {
738         unsigned P = 0;
739         for (const GlobalValue &T : M.global_values()) {
740           if (&T == &V)
741             return P;
742           P++;
743         }
744         llvm_unreachable("Global value not found in module");
745       };
746       return FindPos(*V.GV) < FindPos(*ER.V.GV);
747     }
748     case MachineOperand::MO_BlockAddress: {
749       const BasicBlock *ThisB = V.BA->getBasicBlock();
750       const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
751       assert(ThisB->getParent() == OtherB->getParent());
752       const Function &F = *ThisB->getParent();
753       return std::distance(F.begin(), ThisB->getIterator()) <
754              std::distance(F.begin(), OtherB->getIterator());
755     }
756   }
757   return V.ImmVal < ER.V.ImmVal;
758 }
759 
760 HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
761   if (Op.isImm())
762     Offset = Op.getImm();
763   else if (Op.isFPImm() || Op.isJTI())
764     Offset = 0;
765   else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
766            Op.isCPI() || Op.isTargetIndex())
767     Offset = Op.getOffset();
768   else
769     llvm_unreachable("Unexpected operand type");
770 }
771 
772 bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
773   const ExtRoot &ER = *this;
774   if (!(ER == ExtRoot(EV)))
775     return ER < EV;
776   return Offset < EV.Offset;
777 }
778 
779 HCE::ExtValue::operator MachineOperand() const {
780   switch (Kind) {
781     case MachineOperand::MO_Immediate:
782       return MachineOperand::CreateImm(V.ImmVal + Offset);
783     case MachineOperand::MO_FPImmediate:
784       assert(Offset == 0);
785       return MachineOperand::CreateFPImm(V.CFP);
786     case MachineOperand::MO_ExternalSymbol:
787       assert(Offset == 0);
788       return MachineOperand::CreateES(V.SymbolName, TF);
789     case MachineOperand::MO_GlobalAddress:
790       return MachineOperand::CreateGA(V.GV, Offset, TF);
791     case MachineOperand::MO_BlockAddress:
792       return MachineOperand::CreateBA(V.BA, Offset, TF);
793     case MachineOperand::MO_TargetIndex:
794       return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
795     case MachineOperand::MO_ConstantPoolIndex:
796       return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
797     case MachineOperand::MO_JumpTableIndex:
798       assert(Offset == 0);
799     default:
800       llvm_unreachable("Unhandled kind");
801  }
802 }
803 
804 bool HCE::isStoreImmediate(unsigned Opc) const {
805   switch (Opc) {
806     case Hexagon::S4_storeirbt_io:
807     case Hexagon::S4_storeirbf_io:
808     case Hexagon::S4_storeirht_io:
809     case Hexagon::S4_storeirhf_io:
810     case Hexagon::S4_storeirit_io:
811     case Hexagon::S4_storeirif_io:
812     case Hexagon::S4_storeirb_io:
813     case Hexagon::S4_storeirh_io:
814     case Hexagon::S4_storeiri_io:
815       return true;
816     default:
817       break;
818   }
819   return false;
820 }
821 
822 bool HCE::isRegOffOpcode(unsigned Opc) const {
823   switch (Opc) {
824     case Hexagon::L2_loadrub_io:
825     case Hexagon::L2_loadrb_io:
826     case Hexagon::L2_loadruh_io:
827     case Hexagon::L2_loadrh_io:
828     case Hexagon::L2_loadri_io:
829     case Hexagon::L2_loadrd_io:
830     case Hexagon::L2_loadbzw2_io:
831     case Hexagon::L2_loadbzw4_io:
832     case Hexagon::L2_loadbsw2_io:
833     case Hexagon::L2_loadbsw4_io:
834     case Hexagon::L2_loadalignh_io:
835     case Hexagon::L2_loadalignb_io:
836     case Hexagon::L2_ploadrubt_io:
837     case Hexagon::L2_ploadrubf_io:
838     case Hexagon::L2_ploadrbt_io:
839     case Hexagon::L2_ploadrbf_io:
840     case Hexagon::L2_ploadruht_io:
841     case Hexagon::L2_ploadruhf_io:
842     case Hexagon::L2_ploadrht_io:
843     case Hexagon::L2_ploadrhf_io:
844     case Hexagon::L2_ploadrit_io:
845     case Hexagon::L2_ploadrif_io:
846     case Hexagon::L2_ploadrdt_io:
847     case Hexagon::L2_ploadrdf_io:
848     case Hexagon::S2_storerb_io:
849     case Hexagon::S2_storerh_io:
850     case Hexagon::S2_storerf_io:
851     case Hexagon::S2_storeri_io:
852     case Hexagon::S2_storerd_io:
853     case Hexagon::S2_pstorerbt_io:
854     case Hexagon::S2_pstorerbf_io:
855     case Hexagon::S2_pstorerht_io:
856     case Hexagon::S2_pstorerhf_io:
857     case Hexagon::S2_pstorerft_io:
858     case Hexagon::S2_pstorerff_io:
859     case Hexagon::S2_pstorerit_io:
860     case Hexagon::S2_pstorerif_io:
861     case Hexagon::S2_pstorerdt_io:
862     case Hexagon::S2_pstorerdf_io:
863     case Hexagon::A2_addi:
864       return true;
865     default:
866       break;
867   }
868   return false;
869 }
870 
871 unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
872   // If there exists an instruction that takes a register and offset,
873   // that corresponds to the ExtOpc, return it, otherwise return 0.
874   using namespace Hexagon;
875   switch (ExtOpc) {
876     case A2_tfrsi:    return A2_addi;
877     default:
878       break;
879   }
880   const MCInstrDesc &D = HII->get(ExtOpc);
881   if (D.mayLoad() || D.mayStore()) {
882     uint64_t F = D.TSFlags;
883     unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
884     switch (AM) {
885       case HexagonII::Absolute:
886       case HexagonII::AbsoluteSet:
887       case HexagonII::BaseLongOffset:
888         switch (ExtOpc) {
889           case PS_loadrubabs:
890           case L4_loadrub_ap:
891           case L4_loadrub_ur:     return L2_loadrub_io;
892           case PS_loadrbabs:
893           case L4_loadrb_ap:
894           case L4_loadrb_ur:      return L2_loadrb_io;
895           case PS_loadruhabs:
896           case L4_loadruh_ap:
897           case L4_loadruh_ur:     return L2_loadruh_io;
898           case PS_loadrhabs:
899           case L4_loadrh_ap:
900           case L4_loadrh_ur:      return L2_loadrh_io;
901           case PS_loadriabs:
902           case L4_loadri_ap:
903           case L4_loadri_ur:      return L2_loadri_io;
904           case PS_loadrdabs:
905           case L4_loadrd_ap:
906           case L4_loadrd_ur:      return L2_loadrd_io;
907           case L4_loadbzw2_ap:
908           case L4_loadbzw2_ur:    return L2_loadbzw2_io;
909           case L4_loadbzw4_ap:
910           case L4_loadbzw4_ur:    return L2_loadbzw4_io;
911           case L4_loadbsw2_ap:
912           case L4_loadbsw2_ur:    return L2_loadbsw2_io;
913           case L4_loadbsw4_ap:
914           case L4_loadbsw4_ur:    return L2_loadbsw4_io;
915           case L4_loadalignh_ap:
916           case L4_loadalignh_ur:  return L2_loadalignh_io;
917           case L4_loadalignb_ap:
918           case L4_loadalignb_ur:  return L2_loadalignb_io;
919           case L4_ploadrubt_abs:  return L2_ploadrubt_io;
920           case L4_ploadrubf_abs:  return L2_ploadrubf_io;
921           case L4_ploadrbt_abs:   return L2_ploadrbt_io;
922           case L4_ploadrbf_abs:   return L2_ploadrbf_io;
923           case L4_ploadruht_abs:  return L2_ploadruht_io;
924           case L4_ploadruhf_abs:  return L2_ploadruhf_io;
925           case L4_ploadrht_abs:   return L2_ploadrht_io;
926           case L4_ploadrhf_abs:   return L2_ploadrhf_io;
927           case L4_ploadrit_abs:   return L2_ploadrit_io;
928           case L4_ploadrif_abs:   return L2_ploadrif_io;
929           case L4_ploadrdt_abs:   return L2_ploadrdt_io;
930           case L4_ploadrdf_abs:   return L2_ploadrdf_io;
931           case PS_storerbabs:
932           case S4_storerb_ap:
933           case S4_storerb_ur:     return S2_storerb_io;
934           case PS_storerhabs:
935           case S4_storerh_ap:
936           case S4_storerh_ur:     return S2_storerh_io;
937           case PS_storerfabs:
938           case S4_storerf_ap:
939           case S4_storerf_ur:     return S2_storerf_io;
940           case PS_storeriabs:
941           case S4_storeri_ap:
942           case S4_storeri_ur:     return S2_storeri_io;
943           case PS_storerdabs:
944           case S4_storerd_ap:
945           case S4_storerd_ur:     return S2_storerd_io;
946           case S4_pstorerbt_abs:  return S2_pstorerbt_io;
947           case S4_pstorerbf_abs:  return S2_pstorerbf_io;
948           case S4_pstorerht_abs:  return S2_pstorerht_io;
949           case S4_pstorerhf_abs:  return S2_pstorerhf_io;
950           case S4_pstorerft_abs:  return S2_pstorerft_io;
951           case S4_pstorerff_abs:  return S2_pstorerff_io;
952           case S4_pstorerit_abs:  return S2_pstorerit_io;
953           case S4_pstorerif_abs:  return S2_pstorerif_io;
954           case S4_pstorerdt_abs:  return S2_pstorerdt_io;
955           case S4_pstorerdf_abs:  return S2_pstorerdf_io;
956           default:
957             break;
958         }
959         break;
960       case HexagonII::BaseImmOffset:
961         if (!isStoreImmediate(ExtOpc))
962           return ExtOpc;
963         break;
964       default:
965         break;
966     }
967   }
968   return 0;
969 }
970 
971 unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
972   switch (ExtOpc) {
973     case Hexagon::A2_addi:          return Hexagon::A2_add;
974     case Hexagon::A2_andir:         return Hexagon::A2_and;
975     case Hexagon::A2_combineii:     return Hexagon::A4_combineri;
976     case Hexagon::A2_orir:          return Hexagon::A2_or;
977     case Hexagon::A2_paddif:        return Hexagon::A2_paddf;
978     case Hexagon::A2_paddit:        return Hexagon::A2_paddt;
979     case Hexagon::A2_subri:         return Hexagon::A2_sub;
980     case Hexagon::A2_tfrsi:         return TargetOpcode::COPY;
981     case Hexagon::A4_cmpbeqi:       return Hexagon::A4_cmpbeq;
982     case Hexagon::A4_cmpbgti:       return Hexagon::A4_cmpbgt;
983     case Hexagon::A4_cmpbgtui:      return Hexagon::A4_cmpbgtu;
984     case Hexagon::A4_cmpheqi:       return Hexagon::A4_cmpheq;
985     case Hexagon::A4_cmphgti:       return Hexagon::A4_cmphgt;
986     case Hexagon::A4_cmphgtui:      return Hexagon::A4_cmphgtu;
987     case Hexagon::A4_combineii:     return Hexagon::A4_combineir;
988     case Hexagon::A4_combineir:     return TargetOpcode::REG_SEQUENCE;
989     case Hexagon::A4_combineri:     return TargetOpcode::REG_SEQUENCE;
990     case Hexagon::A4_rcmpeqi:       return Hexagon::A4_rcmpeq;
991     case Hexagon::A4_rcmpneqi:      return Hexagon::A4_rcmpneq;
992     case Hexagon::C2_cmoveif:       return Hexagon::A2_tfrpf;
993     case Hexagon::C2_cmoveit:       return Hexagon::A2_tfrpt;
994     case Hexagon::C2_cmpeqi:        return Hexagon::C2_cmpeq;
995     case Hexagon::C2_cmpgti:        return Hexagon::C2_cmpgt;
996     case Hexagon::C2_cmpgtui:       return Hexagon::C2_cmpgtu;
997     case Hexagon::C2_muxii:         return Hexagon::C2_muxir;
998     case Hexagon::C2_muxir:         return Hexagon::C2_mux;
999     case Hexagon::C2_muxri:         return Hexagon::C2_mux;
1000     case Hexagon::C4_cmpltei:       return Hexagon::C4_cmplte;
1001     case Hexagon::C4_cmplteui:      return Hexagon::C4_cmplteu;
1002     case Hexagon::C4_cmpneqi:       return Hexagon::C4_cmpneq;
1003     case Hexagon::M2_accii:         return Hexagon::M2_acci;        // T -> T
1004     /* No M2_macsin */
1005     case Hexagon::M2_macsip:        return Hexagon::M2_maci;        // T -> T
1006     case Hexagon::M2_mpysin:        return Hexagon::M2_mpyi;
1007     case Hexagon::M2_mpysip:        return Hexagon::M2_mpyi;
1008     case Hexagon::M2_mpysmi:        return Hexagon::M2_mpyi;
1009     case Hexagon::M2_naccii:        return Hexagon::M2_nacci;       // T -> T
1010     case Hexagon::M4_mpyri_addi:    return Hexagon::M4_mpyri_addr;
1011     case Hexagon::M4_mpyri_addr:    return Hexagon::M4_mpyrr_addr;  // _ -> T
1012     case Hexagon::M4_mpyrr_addi:    return Hexagon::M4_mpyrr_addr;  // _ -> T
1013     case Hexagon::S4_addaddi:       return Hexagon::M2_acci;        // _ -> T
1014     case Hexagon::S4_addi_asl_ri:   return Hexagon::S2_asl_i_r_acc; // T -> T
1015     case Hexagon::S4_addi_lsr_ri:   return Hexagon::S2_lsr_i_r_acc; // T -> T
1016     case Hexagon::S4_andi_asl_ri:   return Hexagon::S2_asl_i_r_and; // T -> T
1017     case Hexagon::S4_andi_lsr_ri:   return Hexagon::S2_lsr_i_r_and; // T -> T
1018     case Hexagon::S4_ori_asl_ri:    return Hexagon::S2_asl_i_r_or;  // T -> T
1019     case Hexagon::S4_ori_lsr_ri:    return Hexagon::S2_lsr_i_r_or;  // T -> T
1020     case Hexagon::S4_subaddi:       return Hexagon::M2_subacc;      // _ -> T
1021     case Hexagon::S4_subi_asl_ri:   return Hexagon::S2_asl_i_r_nac; // T -> T
1022     case Hexagon::S4_subi_lsr_ri:   return Hexagon::S2_lsr_i_r_nac; // T -> T
1023 
1024     // Store-immediates:
1025     case Hexagon::S4_storeirbf_io:  return Hexagon::S2_pstorerbf_io;
1026     case Hexagon::S4_storeirb_io:   return Hexagon::S2_storerb_io;
1027     case Hexagon::S4_storeirbt_io:  return Hexagon::S2_pstorerbt_io;
1028     case Hexagon::S4_storeirhf_io:  return Hexagon::S2_pstorerhf_io;
1029     case Hexagon::S4_storeirh_io:   return Hexagon::S2_storerh_io;
1030     case Hexagon::S4_storeirht_io:  return Hexagon::S2_pstorerht_io;
1031     case Hexagon::S4_storeirif_io:  return Hexagon::S2_pstorerif_io;
1032     case Hexagon::S4_storeiri_io:   return Hexagon::S2_storeri_io;
1033     case Hexagon::S4_storeirit_io:  return Hexagon::S2_pstorerit_io;
1034 
1035     default:
1036       break;
1037   }
1038   return 0;
1039 }
1040 
1041 // Return the allowable deviation from the current value of Rb (i.e. the
1042 // range of values that can be added to the current value) which the
1043 // instruction MI can accommodate.
1044 // The instruction MI is a user of register Rb, which is defined via an
1045 // extender. It may be possible for MI to be tweaked to work for a register
1046 // defined with a slightly different value. For example
1047 //   ... = L2_loadrub_io Rb, 1
1048 // can be modifed to be
1049 //   ... = L2_loadrub_io Rb', 0
1050 // if Rb' = Rb+1.
1051 // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range
1052 // for L2_loadrub with offset 0. That means that Rb could be replaced with
1053 // Rc, where Rc-Rb belongs to [Min+1, Max+1].
1054 OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
1055   unsigned Opc = MI.getOpcode();
1056   // Instructions that are constant-extended may be replaced with something
1057   // else that no longer offers the same range as the original.
1058   if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
1059     return OffsetRange::zero();
1060 
1061   if (Opc == Hexagon::A2_addi) {
1062     const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
1063     if (Rb != Register(Op1) || !Op2.isImm())
1064       return OffsetRange::zero();
1065     OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
1066     return R.shift(Op2.getImm());
1067   }
1068 
1069   // HII::getBaseAndOffsetPosition returns the increment position as "offset".
1070   if (HII->isPostIncrement(MI))
1071     return OffsetRange::zero();
1072 
1073   const MCInstrDesc &D = HII->get(Opc);
1074   assert(D.mayLoad() || D.mayStore());
1075 
1076   unsigned BaseP, OffP;
1077   if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
1078       Rb != Register(MI.getOperand(BaseP)) ||
1079       !MI.getOperand(OffP).isImm())
1080     return OffsetRange::zero();
1081 
1082   uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1083                   HexagonII::MemAccesSizeMask;
1084   uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1085   unsigned L = Log2_32(A);
1086   unsigned S = 10+L;  // sint11_L
1087   int32_t Min = -alignDown((1<<S)-1, A);
1088 
1089   // The range will be shifted by Off. To prefer non-negative offsets,
1090   // adjust Max accordingly.
1091   int32_t Off = MI.getOperand(OffP).getImm();
1092   int32_t Max = Off >= 0 ? 0 : -Off;
1093 
1094   OffsetRange R = { Min, Max, A };
1095   return R.shift(Off);
1096 }
1097 
1098 // Return the allowable deviation from the current value of the extender ED,
1099 // for which the instruction corresponding to ED can be modified without
1100 // using an extender.
1101 // The instruction uses the extender directly. It will be replaced with
1102 // another instruction, say MJ, where the extender will be replaced with a
1103 // register. MJ can allow some variability with respect to the value of
1104 // that register, as is the case with indexed memory instructions.
1105 OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
1106   // The only way that there can be a non-zero range available is if
1107   // the instruction using ED will be converted to an indexed memory
1108   // instruction.
1109   unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
1110   switch (IdxOpc) {
1111     case 0:
1112       return OffsetRange::zero();
1113     case Hexagon::A2_addi:    // s16
1114       return { -32767, 32767, 1 };
1115     case Hexagon::A2_subri:   // s10
1116       return { -511, 511, 1 };
1117   }
1118 
1119   if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
1120     return OffsetRange::zero();
1121   const MCInstrDesc &D = HII->get(IdxOpc);
1122   uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1123                   HexagonII::MemAccesSizeMask;
1124   uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1125   unsigned L = Log2_32(A);
1126   unsigned S = 10+L;  // sint11_L
1127   int32_t Min = -alignDown((1<<S)-1, A);
1128   int32_t Max = 0;  // Force non-negative offsets.
1129   return { Min, Max, A };
1130 }
1131 
1132 // Get the allowable deviation from the current value of Rd by checking
1133 // all uses of Rd.
1134 OffsetRange HCE::getOffsetRange(Register Rd) const {
1135   OffsetRange Range;
1136   for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
1137     // Make sure that the register being used by this operand is identical
1138     // to the register that was defined: using a different subregister
1139     // precludes any non-trivial range.
1140     if (Rd != Register(Op))
1141       return OffsetRange::zero();
1142     Range.intersect(getOffsetRange(Rd, *Op.getParent()));
1143   }
1144   return Range;
1145 }
1146 
1147 void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
1148   unsigned Opc = MI.getOpcode();
1149   ExtDesc ED;
1150   ED.OpNum = OpNum;
1151 
1152   bool IsLoad = MI.mayLoad();
1153   bool IsStore = MI.mayStore();
1154 
1155   // Fixed stack slots have negative indexes, and they cannot be used
1156   // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat
1157   // unfortunate, but should not be a frequent thing.
1158   for (MachineOperand &Op : MI.operands())
1159     if (Op.isFI() && Op.getIndex() < 0)
1160       return;
1161 
1162   if (IsLoad || IsStore) {
1163     unsigned AM = HII->getAddrMode(MI);
1164     switch (AM) {
1165       // (Re: ##Off + Rb<<S) = Rd: ##Val
1166       case HexagonII::Absolute:       // (__: ## + __<<_)
1167         break;
1168       case HexagonII::AbsoluteSet:    // (Rd: ## + __<<_)
1169         ED.Rd = MI.getOperand(OpNum-1);
1170         ED.IsDef = true;
1171         break;
1172       case HexagonII::BaseImmOffset:  // (__: ## + Rs<<0)
1173         // Store-immediates are treated as non-memory operations, since
1174         // it's the value being stored that is extended (as opposed to
1175         // a part of the address).
1176         if (!isStoreImmediate(Opc))
1177           ED.Expr.Rs = MI.getOperand(OpNum-1);
1178         break;
1179       case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
1180         ED.Expr.Rs = MI.getOperand(OpNum-2);
1181         ED.Expr.S = MI.getOperand(OpNum-1).getImm();
1182         break;
1183       default:
1184         llvm_unreachable("Unhandled memory instruction");
1185     }
1186   } else {
1187     switch (Opc) {
1188       case Hexagon::A2_tfrsi:         // (Rd: ## + __<<_)
1189         ED.Rd = MI.getOperand(0);
1190         ED.IsDef = true;
1191         break;
1192       case Hexagon::A2_combineii:     // (Rd: ## + __<<_)
1193       case Hexagon::A4_combineir:
1194         ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
1195         ED.IsDef = true;
1196         break;
1197       case Hexagon::A4_combineri:     // (Rd: ## + __<<_)
1198         ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
1199         ED.IsDef = true;
1200         break;
1201       case Hexagon::A2_addi:          // (Rd: ## + Rs<<0)
1202         ED.Rd = MI.getOperand(0);
1203         ED.Expr.Rs = MI.getOperand(OpNum-1);
1204         break;
1205       case Hexagon::M2_accii:         // (__: ## + Rs<<0)
1206       case Hexagon::M2_naccii:
1207       case Hexagon::S4_addaddi:
1208         ED.Expr.Rs = MI.getOperand(OpNum-1);
1209         break;
1210       case Hexagon::A2_subri:         // (Rd: ## - Rs<<0)
1211         ED.Rd = MI.getOperand(0);
1212         ED.Expr.Rs = MI.getOperand(OpNum+1);
1213         ED.Expr.Neg = true;
1214         break;
1215       case Hexagon::S4_subaddi:       // (__: ## - Rs<<0)
1216         ED.Expr.Rs = MI.getOperand(OpNum+1);
1217         ED.Expr.Neg = true;
1218       default:                        // (__: ## + __<<_)
1219         break;
1220     }
1221   }
1222 
1223   ED.UseMI = &MI;
1224   Extenders.push_back(ED);
1225 }
1226 
1227 void HCE::collectInstr(MachineInstr &MI) {
1228   if (!HII->isConstExtended(MI))
1229     return;
1230 
1231   // Skip some non-convertible instructions.
1232   unsigned Opc = MI.getOpcode();
1233   switch (Opc) {
1234     case Hexagon::M2_macsin:  // There is no Rx -= mpyi(Rs,Rt).
1235     case Hexagon::C4_addipc:
1236     case Hexagon::S4_or_andi:
1237     case Hexagon::S4_or_andix:
1238     case Hexagon::S4_or_ori:
1239       return;
1240   }
1241   recordExtender(MI, HII->getCExtOpNum(MI));
1242 }
1243 
1244 void HCE::collect(MachineFunction &MF) {
1245   Extenders.clear();
1246   for (MachineBasicBlock &MBB : MF)
1247     for (MachineInstr &MI : MBB)
1248       collectInstr(MI);
1249 }
1250 
1251 void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
1252       AssignmentMap &IMap) {
1253   // Sanity check: make sure that all extenders in the range [Begin..End)
1254   // share the same root ER.
1255   for (unsigned I = Begin; I != End; ++I)
1256     assert(ER == ExtRoot(Extenders[I].getOp()));
1257 
1258   // Construct the list of ranges, such that for each P in Ranges[I],
1259   // a register Reg = ER+P can be used in place of Extender[I]. If the
1260   // instruction allows, uses in the form of Reg+Off are considered
1261   // (here, Off = required_value - P).
1262   std::vector<OffsetRange> Ranges(End-Begin);
1263 
1264   // For each extender that is a def, visit all uses of the defined register,
1265   // and produce an offset range that works for all uses. The def doesn't
1266   // have to be checked, because it can become dead if all uses can be updated
1267   // to use a different reg/offset.
1268   for (unsigned I = Begin; I != End; ++I) {
1269     const ExtDesc &ED = Extenders[I];
1270     if (!ED.IsDef)
1271       continue;
1272     ExtValue EV(ED);
1273     LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << "  " << ED << '\n');
1274     assert(ED.Rd.Reg != 0);
1275     Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
1276     // A2_tfrsi is a special case: it will be replaced with A2_addi, which
1277     // has a 16-bit signed offset. This means that A2_tfrsi not only has a
1278     // range coming from its uses, but also from the fact that its replacement
1279     // has a range as well.
1280     if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
1281       int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
1282       Ranges[I-Begin].extendBy(-D).extendBy(D);
1283     }
1284   }
1285 
1286   // Visit all non-def extenders. For each one, determine the offset range
1287   // available for it.
1288   for (unsigned I = Begin; I != End; ++I) {
1289     const ExtDesc &ED = Extenders[I];
1290     if (ED.IsDef)
1291       continue;
1292     ExtValue EV(ED);
1293     LLVM_DEBUG(dbgs() << "  " << I << ". " << EV << "  " << ED << '\n');
1294     OffsetRange Dev = getOffsetRange(ED);
1295     Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
1296   }
1297 
1298   // Here for each I there is a corresponding Range[I]. Construct the
1299   // inverse map, that to each range will assign the set of indexes in
1300   // [Begin..End) that this range corresponds to.
1301   std::map<OffsetRange, IndexList> RangeMap;
1302   for (unsigned I = Begin; I != End; ++I)
1303     RangeMap[Ranges[I-Begin]].insert(I);
1304 
1305   LLVM_DEBUG({
1306     dbgs() << "Ranges\n";
1307     for (unsigned I = Begin; I != End; ++I)
1308       dbgs() << "  " << I << ". " << Ranges[I-Begin] << '\n';
1309     dbgs() << "RangeMap\n";
1310     for (auto &P : RangeMap) {
1311       dbgs() << "  " << P.first << " ->";
1312       for (unsigned I : P.second)
1313         dbgs() << ' ' << I;
1314       dbgs() << '\n';
1315     }
1316   });
1317 
1318   // Select the definition points, and generate the assignment between
1319   // these points and the uses.
1320 
1321   // For each candidate offset, keep a pair CandData consisting of
1322   // the total number of ranges containing that candidate, and the
1323   // vector of corresponding RangeTree nodes.
1324   using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
1325   std::map<int32_t, CandData> CandMap;
1326 
1327   RangeTree Tree;
1328   for (const OffsetRange &R : Ranges)
1329     Tree.add(R);
1330   SmallVector<RangeTree::Node*,8> Nodes;
1331   Tree.order(Nodes);
1332 
1333   auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes,
1334                      uint8_t Align, uint8_t Offset) {
1335     for (RangeTree::Node *N : Nodes) {
1336       if (N->Range.Align <= Align || N->Range.Offset < Offset)
1337         continue;
1338       if ((N->Range.Offset - Offset) % Align != 0)
1339         continue;
1340       Align = N->Range.Align;
1341       Offset = N->Range.Offset;
1342     }
1343     return std::make_pair(Align, Offset);
1344   };
1345 
1346   // Construct the set of all potential definition points from the endpoints
1347   // of the ranges. If a given endpoint also belongs to a different range,
1348   // but with a higher alignment, also consider the more-highly-aligned
1349   // value of this endpoint.
1350   std::set<int32_t> CandSet;
1351   for (RangeTree::Node *N : Nodes) {
1352     const OffsetRange &R = N->Range;
1353     auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset);
1354     CandSet.insert(R.Min);
1355     if (R.Align < P0.first)
1356       CandSet.insert(adjustUp(R.Min, P0.first, P0.second));
1357     auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset);
1358     CandSet.insert(R.Max);
1359     if (R.Align < P1.first)
1360       CandSet.insert(adjustDown(R.Max, P1.first, P1.second));
1361   }
1362 
1363   // Build the assignment map: candidate C -> { list of extender indexes }.
1364   // This has to be done iteratively:
1365   // - pick the candidate that covers the maximum number of extenders,
1366   // - add the candidate to the map,
1367   // - remove the extenders from the pool.
1368   while (true) {
1369     using CMap = std::map<int32_t,unsigned>;
1370     CMap Counts;
1371     for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
1372       auto &&V = Tree.nodesWith(*It);
1373       unsigned N = std::accumulate(V.begin(), V.end(), 0u,
1374                     [](unsigned Acc, const RangeTree::Node *N) {
1375                       return Acc + N->Count;
1376                     });
1377       if (N != 0)
1378         Counts.insert({*It, N});
1379       It = (N != 0) ? std::next(It) : CandSet.erase(It);
1380     }
1381     if (Counts.empty())
1382       break;
1383 
1384     // Find the best candidate with respect to the number of extenders covered.
1385     auto BestIt = std::max_element(Counts.begin(), Counts.end(),
1386                     [](const CMap::value_type &A, const CMap::value_type &B) {
1387                       return A.second < B.second ||
1388                              (A.second == B.second && A < B);
1389                     });
1390     int32_t Best = BestIt->first;
1391     ExtValue BestV(ER, Best);
1392     for (RangeTree::Node *N : Tree.nodesWith(Best)) {
1393       for (unsigned I : RangeMap[N->Range])
1394         IMap[{BestV,Extenders[I].Expr}].insert(I);
1395       Tree.erase(N);
1396     }
1397   }
1398 
1399   LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));
1400 
1401   // There is some ambiguity in what initializer should be used, if the
1402   // descriptor's subexpression is non-trivial: it can be the entire
1403   // subexpression (which is what has been done so far), or it can be
1404   // the extender's value itself, if all corresponding extenders have the
1405   // exact value of the initializer (i.e. require offset of 0).
1406 
1407   // To reduce the number of initializers, merge such special cases.
1408   for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
1409     // Skip trivial initializers.
1410     if (P.first.second.trivial())
1411       continue;
1412     // If the corresponding trivial initializer does not exist, skip this
1413     // entry.
1414     const ExtValue &EV = P.first.first;
1415     AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
1416     if (F == IMap.end())
1417       continue;
1418 
1419     // Finally, check if all extenders have the same value as the initializer.
1420     // Make sure that extenders that are a part of a stack address are not
1421     // merged with those that aren't. Stack addresses need an offset field
1422     // (to be used by frame index elimination), while non-stack expressions
1423     // can be replaced with forms (such as rr) that do not have such a field.
1424     // Example:
1425     //
1426     // Collected 3 extenders
1427     //  =2. imm:0  off:32968  bb#2: %7 = ## + __ << 0, def
1428     //   0. imm:0  off:267  bb#0: __ = ## + SS#1 << 0
1429     //   1. imm:0  off:267  bb#1: __ = ## + SS#1 << 0
1430     // Ranges
1431     //   0. [-756,267]a1+0
1432     //   1. [-756,267]a1+0
1433     //   2. [201,65735]a1+0
1434     // RangeMap
1435     //   [-756,267]a1+0 -> 0 1
1436     //   [201,65735]a1+0 -> 2
1437     // IMap (before fixup) = {
1438     //   [imm:0  off:267, ## + __ << 0] -> { 2 }
1439     //   [imm:0  off:267, ## + SS#1 << 0] -> { 0 1 }
1440     // }
1441     // IMap (after fixup) = {
1442     //   [imm:0  off:267, ## + __ << 0] -> { 2 0 1 }
1443     //   [imm:0  off:267, ## + SS#1 << 0] -> { }
1444     // }
1445     // Inserted def in bb#0 for initializer: [imm:0  off:267, ## + __ << 0]
1446     //   %12:intregs = A2_tfrsi 267
1447     //
1448     // The result was
1449     //   %12:intregs = A2_tfrsi 267
1450     //   S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4
1451     // Which became
1452     //   r0 = #267
1453     //   if (p0.new) memb(r0+r29<<#4) = r2
1454 
1455     bool IsStack = any_of(F->second, [this](unsigned I) {
1456                       return Extenders[I].Expr.Rs.isSlot();
1457                    });
1458     auto SameValue = [&EV,this,IsStack](unsigned I) {
1459       const ExtDesc &ED = Extenders[I];
1460       return ED.Expr.Rs.isSlot() == IsStack &&
1461              ExtValue(ED).Offset == EV.Offset;
1462     };
1463     if (all_of(P.second, SameValue)) {
1464       F->second.insert(P.second.begin(), P.second.end());
1465       P.second.clear();
1466     }
1467   }
1468 
1469   LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
1470 }
1471 
1472 void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
1473       LocDefMap &Defs) {
1474   if (Refs.empty())
1475     return;
1476 
1477   // The placement calculation is somewhat simple right now: it finds a
1478   // single location for the def that dominates all refs. Since this may
1479   // place the def far from the uses, producing several locations for
1480   // defs that collectively dominate all refs could be better.
1481   // For now only do the single one.
1482   DenseSet<MachineBasicBlock*> Blocks;
1483   DenseSet<MachineInstr*> RefMIs;
1484   const ExtDesc &ED0 = Extenders[Refs[0]];
1485   MachineBasicBlock *DomB = ED0.UseMI->getParent();
1486   RefMIs.insert(ED0.UseMI);
1487   Blocks.insert(DomB);
1488   for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
1489     const ExtDesc &ED = Extenders[Refs[i]];
1490     MachineBasicBlock *MBB = ED.UseMI->getParent();
1491     RefMIs.insert(ED.UseMI);
1492     DomB = MDT->findNearestCommonDominator(DomB, MBB);
1493     Blocks.insert(MBB);
1494   }
1495 
1496 #ifndef NDEBUG
1497   // The block DomB should be dominated by the def of each register used
1498   // in the initializer.
1499   Register Rs = ExtI.second.Rs;  // Only one reg allowed now.
1500   const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;
1501 
1502   // This should be guaranteed given that the entire expression is used
1503   // at each instruction in Refs. Add an assertion just in case.
1504   assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
1505 #endif
1506 
1507   MachineBasicBlock::iterator It;
1508   if (Blocks.count(DomB)) {
1509     // Try to find the latest possible location for the def.
1510     MachineBasicBlock::iterator End = DomB->end();
1511     for (It = DomB->begin(); It != End; ++It)
1512       if (RefMIs.count(&*It))
1513         break;
1514     assert(It != End && "Should have found a ref in DomB");
1515   } else {
1516     // DomB does not contain any refs.
1517     It = DomB->getFirstTerminator();
1518   }
1519   Loc DefLoc(DomB, It);
1520   Defs.emplace(DefLoc, Refs);
1521 }
1522 
1523 HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
1524   unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1525   MachineBasicBlock &MBB = *DefL.Block;
1526   MachineBasicBlock::iterator At = DefL.At;
1527   DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
1528   const ExtValue &EV = ExtI.first;
1529   MachineOperand ExtOp(EV);
1530 
1531   const ExtExpr &Ex = ExtI.second;
1532   const MachineInstr *InitI = nullptr;
1533 
1534   if (Ex.Rs.isSlot()) {
1535     assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
1536     assert(!Ex.Neg && "Cannot subtract a stack slot");
1537     // DefR = PS_fi Rb,##EV
1538     InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
1539               .add(MachineOperand(Ex.Rs))
1540               .add(ExtOp);
1541   } else {
1542     assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register");
1543     if (Ex.trivial()) {
1544       // DefR = ##EV
1545       InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
1546                 .add(ExtOp);
1547     } else if (Ex.S == 0) {
1548       if (Ex.Neg) {
1549         // DefR = sub(##EV,Rb)
1550         InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1551                   .add(ExtOp)
1552                   .add(MachineOperand(Ex.Rs));
1553       } else {
1554         // DefR = add(Rb,##EV)
1555         InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1556                   .add(MachineOperand(Ex.Rs))
1557                   .add(ExtOp);
1558       }
1559     } else {
1560       unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
1561                                : Hexagon::S4_addi_asl_ri;
1562       // DefR = add(##EV,asl(Rb,S))
1563       InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
1564                 .add(ExtOp)
1565                 .add(MachineOperand(Ex.Rs))
1566                 .addImm(Ex.S);
1567     }
1568   }
1569 
1570   assert(InitI);
1571   (void)InitI;
1572   LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
1573                     << " for initializer: " << PrintInit(ExtI, *HRI) << "\n  "
1574                     << *InitI);
1575   return { DefR, 0 };
1576 }
1577 
1578 // Replace the extender at index Idx with the register ExtR.
1579 bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
1580   MachineInstr &MI = *ED.UseMI;
1581   MachineBasicBlock &MBB = *MI.getParent();
1582   MachineBasicBlock::iterator At = MI.getIterator();
1583   DebugLoc dl = MI.getDebugLoc();
1584   unsigned ExtOpc = MI.getOpcode();
1585 
1586   // With a few exceptions, direct replacement amounts to creating an
1587   // instruction with a corresponding register opcode, with all operands
1588   // the same, except for the register used in place of the extender.
1589   unsigned RegOpc = getDirectRegReplacement(ExtOpc);
1590 
1591   if (RegOpc == TargetOpcode::REG_SEQUENCE) {
1592     if (ExtOpc == Hexagon::A4_combineri)
1593       BuildMI(MBB, At, dl, HII->get(RegOpc))
1594         .add(MI.getOperand(0))
1595         .add(MI.getOperand(1))
1596         .addImm(Hexagon::isub_hi)
1597         .add(MachineOperand(ExtR))
1598         .addImm(Hexagon::isub_lo);
1599     else if (ExtOpc == Hexagon::A4_combineir)
1600       BuildMI(MBB, At, dl, HII->get(RegOpc))
1601         .add(MI.getOperand(0))
1602         .add(MachineOperand(ExtR))
1603         .addImm(Hexagon::isub_hi)
1604         .add(MI.getOperand(2))
1605         .addImm(Hexagon::isub_lo);
1606     else
1607       llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
1608     MBB.erase(MI);
1609     return true;
1610   }
1611   if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
1612     unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
1613                                                    : Hexagon::C2_cmpltu;
1614     BuildMI(MBB, At, dl, HII->get(NewOpc))
1615       .add(MI.getOperand(0))
1616       .add(MachineOperand(ExtR))
1617       .add(MI.getOperand(1));
1618     MBB.erase(MI);
1619     return true;
1620   }
1621 
1622   if (RegOpc != 0) {
1623     MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1624     unsigned RegN = ED.OpNum;
1625     // Copy all operands except the one that has the extender.
1626     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1627       if (i != RegN)
1628         MIB.add(MI.getOperand(i));
1629       else
1630         MIB.add(MachineOperand(ExtR));
1631     }
1632     MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1633     MBB.erase(MI);
1634     return true;
1635   }
1636 
1637   if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) {
1638     // For memory instructions, there is an asymmetry in the addressing
1639     // modes. Addressing modes allowing extenders can be replaced with
1640     // addressing modes that use registers, but the order of operands
1641     // (or even their number) may be different.
1642     // Replacements:
1643     //   BaseImmOffset (io)  -> BaseRegOffset (rr)
1644     //   BaseLongOffset (ur) -> BaseRegOffset (rr)
1645     unsigned RegOpc, Shift;
1646     unsigned AM = HII->getAddrMode(MI);
1647     if (AM == HexagonII::BaseImmOffset) {
1648       RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
1649       Shift = 0;
1650     } else if (AM == HexagonII::BaseLongOffset) {
1651       // Loads:  Rd = L4_loadri_ur Rs, S, ##
1652       // Stores: S4_storeri_ur Rs, S, ##, Rt
1653       RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
1654       Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
1655     } else {
1656       llvm_unreachable("Unexpected addressing mode");
1657     }
1658 #ifndef NDEBUG
1659     if (RegOpc == -1u) {
1660       dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
1661       llvm_unreachable("No corresponding rr instruction");
1662     }
1663 #endif
1664 
1665     unsigned BaseP, OffP;
1666     HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
1667 
1668     // Build an rr instruction: (RegOff + RegBase<<0)
1669     MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1670     // First, add the def for loads.
1671     if (MI.mayLoad())
1672       MIB.add(getLoadResultOp(MI));
1673     // Handle possible predication.
1674     if (HII->isPredicated(MI))
1675       MIB.add(getPredicateOp(MI));
1676     // Build the address.
1677     MIB.add(MachineOperand(ExtR));      // RegOff
1678     MIB.add(MI.getOperand(BaseP));      // RegBase
1679     MIB.addImm(Shift);                  // << Shift
1680     // Add the stored value for stores.
1681     if (MI.mayStore())
1682       MIB.add(getStoredValueOp(MI));
1683     MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1684     MBB.erase(MI);
1685     return true;
1686   }
1687 
1688 #ifndef NDEBUG
1689   dbgs() << '\n' << MI;
1690 #endif
1691   llvm_unreachable("Unhandled exact replacement");
1692   return false;
1693 }
1694 
1695 // Replace the extender ED with a form corresponding to the initializer ExtI.
1696 bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
1697       Register ExtR, int32_t &Diff) {
1698   MachineInstr &MI = *ED.UseMI;
1699   MachineBasicBlock &MBB = *MI.getParent();
1700   MachineBasicBlock::iterator At = MI.getIterator();
1701   DebugLoc dl = MI.getDebugLoc();
1702   unsigned ExtOpc = MI.getOpcode();
1703 
1704   if (ExtOpc == Hexagon::A2_tfrsi) {
1705     // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
1706     // another range. One range is the one that's common to all tfrsi's uses,
1707     // this one is the range of immediates in A2_addi. When calculating ranges,
1708     // the addi's 16-bit argument was included, so now we need to make it such
1709     // that the produced value is in the range for the uses alone.
1710     // Most of the time, simply adding Diff will make the addi produce exact
1711     // result, but if Diff is outside of the 16-bit range, some adjustment
1712     // will be needed.
1713     unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1714     assert(IdxOpc == Hexagon::A2_addi);
1715 
1716     // Clamp Diff to the 16 bit range.
1717     int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768);
1718     BuildMI(MBB, At, dl, HII->get(IdxOpc))
1719       .add(MI.getOperand(0))
1720       .add(MachineOperand(ExtR))
1721       .addImm(D);
1722     Diff -= D;
1723 #ifndef NDEBUG
1724     // Make sure the output is within allowable range for uses.
1725     // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV,
1726     // not DefV - Ext, as the getOffsetRange would calculate.
1727     OffsetRange Uses = getOffsetRange(MI.getOperand(0));
1728     if (!Uses.contains(-Diff))
1729       dbgs() << "Diff: " << -Diff << " out of range " << Uses
1730              << " for " << MI;
1731     assert(Uses.contains(-Diff));
1732 #endif
1733     MBB.erase(MI);
1734     return true;
1735   }
1736 
1737   const ExtValue &EV = ExtI.first; (void)EV;
1738   const ExtExpr &Ex = ExtI.second; (void)Ex;
1739 
1740   if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
1741     // If addi/subri are replaced with the exactly matching initializer,
1742     // they amount to COPY.
1743     // Check that the initializer is an exact match (for simplicity).
1744 #ifndef NDEBUG
1745     bool IsAddi = ExtOpc == Hexagon::A2_addi;
1746     const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
1747     const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
1748     assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
1749            "Initializer mismatch");
1750 #endif
1751     BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
1752       .add(MI.getOperand(0))
1753       .add(MachineOperand(ExtR));
1754     Diff = 0;
1755     MBB.erase(MI);
1756     return true;
1757   }
1758   if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
1759       ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
1760     // M2_accii:    add(Rt,add(Rs,V)) (tied)
1761     // M2_naccii:   sub(Rt,add(Rs,V))
1762     // S4_addaddi:  add(Rt,add(Rs,V))
1763     // S4_subaddi:  add(Rt,sub(V,Rs))
1764     // Check that Rs and V match the initializer expression. The Rs+V is the
1765     // combination that is considered "subexpression" for V, although Rx+V
1766     // would also be valid.
1767 #ifndef NDEBUG
1768     bool IsSub = ExtOpc == Hexagon::S4_subaddi;
1769     Register Rs = MI.getOperand(IsSub ? 3 : 2);
1770     ExtValue V = MI.getOperand(IsSub ? 2 : 3);
1771     assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch");
1772 #endif
1773     unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
1774                                                    : Hexagon::A2_add;
1775     BuildMI(MBB, At, dl, HII->get(NewOpc))
1776       .add(MI.getOperand(0))
1777       .add(MI.getOperand(1))
1778       .add(MachineOperand(ExtR));
1779     MBB.erase(MI);
1780     return true;
1781   }
1782 
1783   if (MI.mayLoad() || MI.mayStore()) {
1784     unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1785     assert(IdxOpc && "Expecting indexed opcode");
1786     MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
1787     // Construct the new indexed instruction.
1788     // First, add the def for loads.
1789     if (MI.mayLoad())
1790       MIB.add(getLoadResultOp(MI));
1791     // Handle possible predication.
1792     if (HII->isPredicated(MI))
1793       MIB.add(getPredicateOp(MI));
1794     // Build the address.
1795     MIB.add(MachineOperand(ExtR));
1796     MIB.addImm(Diff);
1797     // Add the stored value for stores.
1798     if (MI.mayStore())
1799       MIB.add(getStoredValueOp(MI));
1800     MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1801     MBB.erase(MI);
1802     return true;
1803   }
1804 
1805 #ifndef NDEBUG
1806   dbgs() << '\n' << PrintInit(ExtI, *HRI) << "  " << MI;
1807 #endif
1808   llvm_unreachable("Unhandled expr replacement");
1809   return false;
1810 }
1811 
1812 bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
1813   if (ReplaceLimit.getNumOccurrences()) {
1814     if (ReplaceLimit <= ReplaceCounter)
1815       return false;
1816     ++ReplaceCounter;
1817   }
1818   const ExtDesc &ED = Extenders[Idx];
1819   assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
1820   const ExtValue &DefV = ExtI.first;
1821   assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch");
1822   const ExtExpr &DefEx = ExtI.second;
1823 
1824   ExtValue EV(ED);
1825   int32_t Diff = EV.Offset - DefV.Offset;
1826   const MachineInstr &MI = *ED.UseMI;
1827   LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
1828                     << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');
1829 
1830   // These two addressing modes must be converted into indexed forms
1831   // regardless of what the initializer looks like.
1832   bool IsAbs = false, IsAbsSet = false;
1833   if (MI.mayLoad() || MI.mayStore()) {
1834     unsigned AM = HII->getAddrMode(MI);
1835     IsAbs = AM == HexagonII::Absolute;
1836     IsAbsSet = AM == HexagonII::AbsoluteSet;
1837   }
1838 
1839   // If it's a def, remember all operands that need to be updated.
1840   // If ED is a def, and Diff is not 0, then all uses of the register Rd
1841   // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
1842   // must follow the Rd in the operand list.
1843   std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
1844   if (ED.IsDef && Diff != 0) {
1845     for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
1846       MachineInstr &UI = *Op.getParent();
1847       RegOps.push_back({&UI, getOperandIndex(UI, Op)});
1848     }
1849   }
1850 
1851   // Replace the instruction.
1852   bool Replaced = false;
1853   if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
1854     Replaced = replaceInstrExact(ED, ExtR);
1855   else
1856     Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
1857 
1858   if (Diff != 0 && Replaced && ED.IsDef) {
1859     // Update offsets of the def's uses.
1860     for (std::pair<MachineInstr*,unsigned> P : RegOps) {
1861       unsigned J = P.second;
1862       assert(P.first->getNumOperands() > J+1 &&
1863              P.first->getOperand(J+1).isImm());
1864       MachineOperand &ImmOp = P.first->getOperand(J+1);
1865       ImmOp.setImm(ImmOp.getImm() + Diff);
1866     }
1867     // If it was an absolute-set instruction, the "set" part has been removed.
1868     // ExtR will now be the register with the extended value, and since all
1869     // users of Rd have been updated, all that needs to be done is to replace
1870     // Rd with ExtR.
1871     if (IsAbsSet) {
1872       assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
1873       MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
1874     }
1875   }
1876 
1877   return Replaced;
1878 }
1879 
1880 bool HCE::replaceExtenders(const AssignmentMap &IMap) {
1881   LocDefMap Defs;
1882   bool Changed = false;
1883 
1884   for (const std::pair<ExtenderInit,IndexList> &P : IMap) {
1885     const IndexList &Idxs = P.second;
1886     if (Idxs.size() < CountThreshold)
1887       continue;
1888 
1889     Defs.clear();
1890     calculatePlacement(P.first, Idxs, Defs);
1891     for (const std::pair<Loc,IndexList> &Q : Defs) {
1892       Register DefR = insertInitializer(Q.first, P.first);
1893       NewRegs.push_back(DefR.Reg);
1894       for (unsigned I : Q.second)
1895         Changed |= replaceInstr(I, DefR, P.first);
1896     }
1897   }
1898   return Changed;
1899 }
1900 
1901 unsigned HCE::getOperandIndex(const MachineInstr &MI,
1902       const MachineOperand &Op) const {
1903   for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
1904     if (&MI.getOperand(i) == &Op)
1905       return i;
1906   llvm_unreachable("Not an operand of MI");
1907 }
1908 
1909 const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
1910   assert(HII->isPredicated(MI));
1911   for (const MachineOperand &Op : MI.operands()) {
1912     if (!Op.isReg() || !Op.isUse() ||
1913         MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
1914       continue;
1915     assert(Op.getSubReg() == 0 && "Predicate register with a subregister");
1916     return Op;
1917   }
1918   llvm_unreachable("Predicate operand not found");
1919 }
1920 
1921 const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
1922   assert(MI.mayLoad());
1923   return MI.getOperand(0);
1924 }
1925 
1926 const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
1927   assert(MI.mayStore());
1928   return MI.getOperand(MI.getNumExplicitOperands()-1);
1929 }
1930 
1931 bool HCE::runOnMachineFunction(MachineFunction &MF) {
1932   if (skipFunction(MF.getFunction()))
1933     return false;
1934   LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));
1935 
1936   HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1937   HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1938   MDT = &getAnalysis<MachineDominatorTree>();
1939   MRI = &MF.getRegInfo();
1940   AssignmentMap IMap;
1941 
1942   collect(MF);
1943   llvm::sort(Extenders.begin(), Extenders.end(),
1944     [](const ExtDesc &A, const ExtDesc &B) {
1945       return ExtValue(A) < ExtValue(B);
1946     });
1947 
1948   bool Changed = false;
1949   LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
1950   for (unsigned I = 0, E = Extenders.size(); I != E; ) {
1951     unsigned B = I;
1952     const ExtRoot &T = Extenders[B].getOp();
1953     while (I != E && ExtRoot(Extenders[I].getOp()) == T)
1954       ++I;
1955 
1956     IMap.clear();
1957     assignInits(T, B, I, IMap);
1958     Changed |= replaceExtenders(IMap);
1959   }
1960 
1961   LLVM_DEBUG({
1962     if (Changed)
1963       MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
1964     else
1965       dbgs() << "No changes\n";
1966   });
1967   return Changed;
1968 }
1969 
1970 FunctionPass *llvm::createHexagonConstExtenders() {
1971   return new HexagonConstExtenders();
1972 }
1973