1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "commgep" 11 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/FoldingSet.h" 14 #include "llvm/ADT/GraphTraits.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/PostDominators.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instruction.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Use.h" 29 #include "llvm/IR/User.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstddef> 42 #include <cstdint> 43 #include <iterator> 44 #include <map> 45 #include <set> 46 #include <utility> 47 #include <vector> 48 49 using namespace llvm; 50 51 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 52 cl::Hidden, cl::ZeroOrMore); 53 54 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 55 cl::ZeroOrMore); 56 57 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 58 cl::Hidden, cl::ZeroOrMore); 59 60 namespace llvm { 61 62 void initializeHexagonCommonGEPPass(PassRegistry&); 63 64 } // end namespace llvm 65 66 namespace { 67 68 struct GepNode; 69 using NodeSet = std::set<GepNode *>; 70 using NodeToValueMap = std::map<GepNode *, Value *>; 71 using NodeVect = std::vector<GepNode *>; 72 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 73 using UseSet = std::set<Use *>; 74 using NodeToUsesMap = std::map<GepNode *, UseSet>; 75 76 // Numbering map for gep nodes. Used to keep track of ordering for 77 // gep nodes. 78 struct NodeOrdering { 79 NodeOrdering() = default; 80 81 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 82 void clear() { Map.clear(); } 83 84 bool operator()(const GepNode *N1, const GepNode *N2) const { 85 auto F1 = Map.find(N1), F2 = Map.find(N2); 86 assert(F1 != Map.end() && F2 != Map.end()); 87 return F1->second < F2->second; 88 } 89 90 private: 91 std::map<const GepNode *, unsigned> Map; 92 unsigned LastNum = 0; 93 }; 94 95 class HexagonCommonGEP : public FunctionPass { 96 public: 97 static char ID; 98 99 HexagonCommonGEP() : FunctionPass(ID) { 100 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 101 } 102 103 bool runOnFunction(Function &F) override; 104 StringRef getPassName() const override { return "Hexagon Common GEP"; } 105 106 void getAnalysisUsage(AnalysisUsage &AU) const override { 107 AU.addRequired<DominatorTreeWrapperPass>(); 108 AU.addPreserved<DominatorTreeWrapperPass>(); 109 AU.addRequired<PostDominatorTreeWrapperPass>(); 110 AU.addPreserved<PostDominatorTreeWrapperPass>(); 111 AU.addRequired<LoopInfoWrapperPass>(); 112 AU.addPreserved<LoopInfoWrapperPass>(); 113 FunctionPass::getAnalysisUsage(AU); 114 } 115 116 private: 117 using ValueToNodeMap = std::map<Value *, GepNode *>; 118 using ValueVect = std::vector<Value *>; 119 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 120 121 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 122 bool isHandledGepForm(GetElementPtrInst *GepI); 123 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 124 void collect(); 125 void common(); 126 127 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 128 NodeToValueMap &Loc); 129 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 130 NodeToValueMap &Loc); 131 bool isInvariantIn(Value *Val, Loop *L); 132 bool isInvariantIn(GepNode *Node, Loop *L); 133 bool isInMainPath(BasicBlock *B, Loop *L); 134 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 135 NodeToValueMap &Loc); 136 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 137 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 138 NodeToValueMap &Loc); 139 void computeNodePlacement(NodeToValueMap &Loc); 140 141 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 142 BasicBlock *LocB); 143 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 144 NodeChildrenMap &NCM); 145 void materialize(NodeToValueMap &Loc); 146 147 void removeDeadCode(); 148 149 NodeVect Nodes; 150 NodeToUsesMap Uses; 151 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 152 SpecificBumpPtrAllocator<GepNode> *Mem; 153 LLVMContext *Ctx; 154 LoopInfo *LI; 155 DominatorTree *DT; 156 PostDominatorTree *PDT; 157 Function *Fn; 158 }; 159 160 } // end anonymous namespace 161 162 char HexagonCommonGEP::ID = 0; 163 164 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 165 false, false) 166 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 167 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 169 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 170 false, false) 171 172 namespace { 173 174 struct GepNode { 175 enum { 176 None = 0, 177 Root = 0x01, 178 Internal = 0x02, 179 Used = 0x04, 180 InBounds = 0x08 181 }; 182 183 uint32_t Flags = 0; 184 union { 185 GepNode *Parent; 186 Value *BaseVal; 187 }; 188 Value *Idx = nullptr; 189 Type *PTy = nullptr; // Type of the pointer operand. 190 191 GepNode() : Parent(nullptr) {} 192 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 193 if (Flags & Root) 194 BaseVal = N->BaseVal; 195 else 196 Parent = N->Parent; 197 } 198 199 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 200 }; 201 202 Type *next_type(Type *Ty, Value *Idx) { 203 if (auto *PTy = dyn_cast<PointerType>(Ty)) 204 return PTy->getElementType(); 205 // Advance the type. 206 if (!Ty->isStructTy()) { 207 Type *NexTy = cast<SequentialType>(Ty)->getElementType(); 208 return NexTy; 209 } 210 // Otherwise it is a struct type. 211 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 212 assert(CI && "Struct type with non-constant index"); 213 int64_t i = CI->getValue().getSExtValue(); 214 Type *NextTy = cast<StructType>(Ty)->getElementType(i); 215 return NextTy; 216 } 217 218 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 219 OS << "{ {"; 220 bool Comma = false; 221 if (GN.Flags & GepNode::Root) { 222 OS << "root"; 223 Comma = true; 224 } 225 if (GN.Flags & GepNode::Internal) { 226 if (Comma) 227 OS << ','; 228 OS << "internal"; 229 Comma = true; 230 } 231 if (GN.Flags & GepNode::Used) { 232 if (Comma) 233 OS << ','; 234 OS << "used"; 235 } 236 if (GN.Flags & GepNode::InBounds) { 237 if (Comma) 238 OS << ','; 239 OS << "inbounds"; 240 } 241 OS << "} "; 242 if (GN.Flags & GepNode::Root) 243 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 244 else 245 OS << "Parent:" << GN.Parent; 246 247 OS << " Idx:"; 248 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 249 OS << CI->getValue().getSExtValue(); 250 else if (GN.Idx->hasName()) 251 OS << GN.Idx->getName(); 252 else 253 OS << "<anon> =" << *GN.Idx; 254 255 OS << " PTy:"; 256 if (GN.PTy->isStructTy()) { 257 StructType *STy = cast<StructType>(GN.PTy); 258 if (!STy->isLiteral()) 259 OS << GN.PTy->getStructName(); 260 else 261 OS << "<anon-struct>:" << *STy; 262 } 263 else 264 OS << *GN.PTy; 265 OS << " }"; 266 return OS; 267 } 268 269 template <typename NodeContainer> 270 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 271 using const_iterator = typename NodeContainer::const_iterator; 272 273 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 274 OS << *I << ' ' << **I << '\n'; 275 } 276 277 raw_ostream &operator<< (raw_ostream &OS, 278 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 279 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 280 dump_node_container(OS, S); 281 return OS; 282 } 283 284 raw_ostream &operator<< (raw_ostream &OS, 285 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 286 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 287 using const_iterator = NodeToUsesMap::const_iterator; 288 289 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 290 const UseSet &Us = I->second; 291 OS << I->first << " -> #" << Us.size() << '{'; 292 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 293 User *R = (*J)->getUser(); 294 if (R->hasName()) 295 OS << ' ' << R->getName(); 296 else 297 OS << " <?>(" << *R << ')'; 298 } 299 OS << " }\n"; 300 } 301 return OS; 302 } 303 304 struct in_set { 305 in_set(const NodeSet &S) : NS(S) {} 306 307 bool operator() (GepNode *N) const { 308 return NS.find(N) != NS.end(); 309 } 310 311 private: 312 const NodeSet &NS; 313 }; 314 315 } // end anonymous namespace 316 317 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 318 return A.Allocate(); 319 } 320 321 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 322 ValueVect &Order) { 323 // Compute block ordering for a typical DT-based traversal of the flow 324 // graph: "before visiting a block, all of its dominators must have been 325 // visited". 326 327 Order.push_back(Root); 328 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 329 getBlockTraversalOrder(DTN->getBlock(), Order); 330 } 331 332 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 333 // No vector GEPs. 334 if (!GepI->getType()->isPointerTy()) 335 return false; 336 // No GEPs without any indices. (Is this possible?) 337 if (GepI->idx_begin() == GepI->idx_end()) 338 return false; 339 return true; 340 } 341 342 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 343 ValueToNodeMap &NM) { 344 DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 345 GepNode *N = new (*Mem) GepNode; 346 Value *PtrOp = GepI->getPointerOperand(); 347 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 348 ValueToNodeMap::iterator F = NM.find(PtrOp); 349 if (F == NM.end()) { 350 N->BaseVal = PtrOp; 351 N->Flags |= GepNode::Root | InBounds; 352 } else { 353 // If PtrOp was a GEP instruction, it must have already been processed. 354 // The ValueToNodeMap entry for it is the last gep node in the generated 355 // chain. Link to it here. 356 N->Parent = F->second; 357 } 358 N->PTy = PtrOp->getType(); 359 N->Idx = *GepI->idx_begin(); 360 361 // Collect the list of users of this GEP instruction. Will add it to the 362 // last node created for it. 363 UseSet Us; 364 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 365 UI != UE; ++UI) { 366 // Check if this gep is used by anything other than other geps that 367 // we will process. 368 if (isa<GetElementPtrInst>(*UI)) { 369 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 370 if (isHandledGepForm(UserG)) 371 continue; 372 } 373 Us.insert(&UI.getUse()); 374 } 375 Nodes.push_back(N); 376 NodeOrder.insert(N); 377 378 // Skip the first index operand, since we only handle 0. This dereferences 379 // the pointer operand. 380 GepNode *PN = N; 381 Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType(); 382 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); 383 OI != OE; ++OI) { 384 Value *Op = *OI; 385 GepNode *Nx = new (*Mem) GepNode; 386 Nx->Parent = PN; // Link Nx to the previous node. 387 Nx->Flags |= GepNode::Internal | InBounds; 388 Nx->PTy = PtrTy; 389 Nx->Idx = Op; 390 Nodes.push_back(Nx); 391 NodeOrder.insert(Nx); 392 PN = Nx; 393 394 PtrTy = next_type(PtrTy, Op); 395 } 396 397 // After last node has been created, update the use information. 398 if (!Us.empty()) { 399 PN->Flags |= GepNode::Used; 400 Uses[PN].insert(Us.begin(), Us.end()); 401 } 402 403 // Link the last node with the originating GEP instruction. This is to 404 // help with linking chained GEP instructions. 405 NM.insert(std::make_pair(GepI, PN)); 406 } 407 408 void HexagonCommonGEP::collect() { 409 // Establish depth-first traversal order of the dominator tree. 410 ValueVect BO; 411 getBlockTraversalOrder(&Fn->front(), BO); 412 413 // The creation of gep nodes requires DT-traversal. When processing a GEP 414 // instruction that uses another GEP instruction as the base pointer, the 415 // gep node for the base pointer should already exist. 416 ValueToNodeMap NM; 417 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { 418 BasicBlock *B = cast<BasicBlock>(*I); 419 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { 420 if (!isa<GetElementPtrInst>(J)) 421 continue; 422 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); 423 if (isHandledGepForm(GepI)) 424 processGepInst(GepI, NM); 425 } 426 } 427 428 DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 429 } 430 431 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 432 NodeVect &Roots) { 433 using const_iterator = NodeVect::const_iterator; 434 435 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 436 GepNode *N = *I; 437 if (N->Flags & GepNode::Root) { 438 Roots.push_back(N); 439 continue; 440 } 441 GepNode *PN = N->Parent; 442 NCM[PN].push_back(N); 443 } 444 } 445 446 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 447 NodeSet &Nodes) { 448 NodeVect Work; 449 Work.push_back(Root); 450 Nodes.insert(Root); 451 452 while (!Work.empty()) { 453 NodeVect::iterator First = Work.begin(); 454 GepNode *N = *First; 455 Work.erase(First); 456 NodeChildrenMap::iterator CF = NCM.find(N); 457 if (CF != NCM.end()) { 458 Work.insert(Work.end(), CF->second.begin(), CF->second.end()); 459 Nodes.insert(CF->second.begin(), CF->second.end()); 460 } 461 } 462 } 463 464 namespace { 465 466 using NodeSymRel = std::set<NodeSet>; 467 using NodePair = std::pair<GepNode *, GepNode *>; 468 using NodePairSet = std::set<NodePair>; 469 470 } // end anonymous namespace 471 472 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 473 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) 474 if (I->count(N)) 475 return &*I; 476 return nullptr; 477 } 478 479 // Create an ordered pair of GepNode pointers. The pair will be used in 480 // determining equality. The only purpose of the ordering is to eliminate 481 // duplication due to the commutativity of equality/non-equality. 482 static NodePair node_pair(GepNode *N1, GepNode *N2) { 483 uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2); 484 if (P1 <= P2) 485 return std::make_pair(N1, N2); 486 return std::make_pair(N2, N1); 487 } 488 489 static unsigned node_hash(GepNode *N) { 490 // Include everything except flags and parent. 491 FoldingSetNodeID ID; 492 ID.AddPointer(N->Idx); 493 ID.AddPointer(N->PTy); 494 return ID.ComputeHash(); 495 } 496 497 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 498 NodePairSet &Ne) { 499 // Don't cache the result for nodes with different hashes. The hash 500 // comparison is fast enough. 501 if (node_hash(N1) != node_hash(N2)) 502 return false; 503 504 NodePair NP = node_pair(N1, N2); 505 NodePairSet::iterator FEq = Eq.find(NP); 506 if (FEq != Eq.end()) 507 return true; 508 NodePairSet::iterator FNe = Ne.find(NP); 509 if (FNe != Ne.end()) 510 return false; 511 // Not previously compared. 512 bool Root1 = N1->Flags & GepNode::Root; 513 bool Root2 = N2->Flags & GepNode::Root; 514 NodePair P = node_pair(N1, N2); 515 // If the Root flag has different values, the nodes are different. 516 // If both nodes are root nodes, but their base pointers differ, 517 // they are different. 518 if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) { 519 Ne.insert(P); 520 return false; 521 } 522 // Here the root flags are identical, and for root nodes the 523 // base pointers are equal, so the root nodes are equal. 524 // For non-root nodes, compare their parent nodes. 525 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 526 Eq.insert(P); 527 return true; 528 } 529 return false; 530 } 531 532 void HexagonCommonGEP::common() { 533 // The essence of this commoning is finding gep nodes that are equal. 534 // To do this we need to compare all pairs of nodes. To save time, 535 // first, partition the set of all nodes into sets of potentially equal 536 // nodes, and then compare pairs from within each partition. 537 using NodeSetMap = std::map<unsigned, NodeSet>; 538 NodeSetMap MaybeEq; 539 540 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 541 GepNode *N = *I; 542 unsigned H = node_hash(N); 543 MaybeEq[H].insert(N); 544 } 545 546 // Compute the equivalence relation for the gep nodes. Use two caches, 547 // one for equality and the other for non-equality. 548 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 549 NodePairSet Eq, Ne; // Caches. 550 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); 551 I != E; ++I) { 552 NodeSet &S = I->second; 553 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 554 GepNode *N = *NI; 555 // If node already has a class, then the class must have been created 556 // in a prior iteration of this loop. Since equality is transitive, 557 // nothing more will be added to that class, so skip it. 558 if (node_class(N, EqRel)) 559 continue; 560 561 // Create a new class candidate now. 562 NodeSet C; 563 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 564 if (node_eq(N, *NJ, Eq, Ne)) 565 C.insert(*NJ); 566 // If Tmp is empty, N would be the only element in it. Don't bother 567 // creating a class for it then. 568 if (!C.empty()) { 569 C.insert(N); // Finalize the set before adding it to the relation. 570 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 571 (void)Ins; 572 assert(Ins.second && "Cannot add a class"); 573 } 574 } 575 } 576 577 DEBUG({ 578 dbgs() << "Gep node equality:\n"; 579 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 580 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 581 582 dbgs() << "Gep equivalence classes:\n"; 583 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 584 dbgs() << '{'; 585 const NodeSet &S = *I; 586 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 587 if (J != S.begin()) 588 dbgs() << ','; 589 dbgs() << ' ' << *J; 590 } 591 dbgs() << " }\n"; 592 } 593 }); 594 595 // Create a projection from a NodeSet to the minimal element in it. 596 using ProjMap = std::map<const NodeSet *, GepNode *>; 597 ProjMap PM; 598 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 599 const NodeSet &S = *I; 600 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 601 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 602 (void)Ins; 603 assert(Ins.second && "Cannot add minimal element"); 604 605 // Update the min element's flags, and user list. 606 uint32_t Flags = 0; 607 UseSet &MinUs = Uses[Min]; 608 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { 609 GepNode *N = *J; 610 uint32_t NF = N->Flags; 611 // If N is used, append all original values of N to the list of 612 // original values of Min. 613 if (NF & GepNode::Used) 614 MinUs.insert(Uses[N].begin(), Uses[N].end()); 615 Flags |= NF; 616 } 617 if (MinUs.empty()) 618 Uses.erase(Min); 619 620 // The collected flags should include all the flags from the min element. 621 assert((Min->Flags & Flags) == Min->Flags); 622 Min->Flags = Flags; 623 } 624 625 // Commoning: for each non-root gep node, replace "Parent" with the 626 // selected (minimum) node from the corresponding equivalence class. 627 // If a given parent does not have an equivalence class, leave it 628 // unchanged (it means that it's the only element in its class). 629 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 630 GepNode *N = *I; 631 if (N->Flags & GepNode::Root) 632 continue; 633 const NodeSet *PC = node_class(N->Parent, EqRel); 634 if (!PC) 635 continue; 636 ProjMap::iterator F = PM.find(PC); 637 if (F == PM.end()) 638 continue; 639 // Found a replacement, use it. 640 GepNode *Rep = F->second; 641 N->Parent = Rep; 642 } 643 644 DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 645 646 // Finally, erase the nodes that are no longer used. 647 NodeSet Erase; 648 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 649 GepNode *N = *I; 650 const NodeSet *PC = node_class(N, EqRel); 651 if (!PC) 652 continue; 653 ProjMap::iterator F = PM.find(PC); 654 if (F == PM.end()) 655 continue; 656 if (N == F->second) 657 continue; 658 // Node for removal. 659 Erase.insert(*I); 660 } 661 NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase)); 662 Nodes.resize(std::distance(Nodes.begin(), NewE)); 663 664 DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 665 } 666 667 template <typename T> 668 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 669 DEBUG({ 670 dbgs() << "NCD of {"; 671 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); 672 I != E; ++I) { 673 if (!*I) 674 continue; 675 BasicBlock *B = cast<BasicBlock>(*I); 676 dbgs() << ' ' << B->getName(); 677 } 678 dbgs() << " }\n"; 679 }); 680 681 // Allow null basic blocks in Blocks. In such cases, return nullptr. 682 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 683 if (I == E || !*I) 684 return nullptr; 685 BasicBlock *Dom = cast<BasicBlock>(*I); 686 while (++I != E) { 687 BasicBlock *B = cast_or_null<BasicBlock>(*I); 688 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 689 if (!Dom) 690 return nullptr; 691 } 692 DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 693 return Dom; 694 } 695 696 template <typename T> 697 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 698 // If two blocks, A and B, dominate a block C, then A dominates B, 699 // or B dominates A. 700 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 701 // Find the first non-null block. 702 while (I != E && !*I) 703 ++I; 704 if (I == E) 705 return DT->getRoot(); 706 BasicBlock *DomB = cast<BasicBlock>(*I); 707 while (++I != E) { 708 if (!*I) 709 continue; 710 BasicBlock *B = cast<BasicBlock>(*I); 711 if (DT->dominates(B, DomB)) 712 continue; 713 if (!DT->dominates(DomB, B)) 714 return nullptr; 715 DomB = B; 716 } 717 return DomB; 718 } 719 720 // Find the first use in B of any value from Values. If no such use, 721 // return B->end(). 722 template <typename T> 723 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 724 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 725 726 using iterator = typename T::iterator; 727 728 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 729 Value *V = *I; 730 // If V is used in a PHI node, the use belongs to the incoming block, 731 // not the block with the PHI node. In the incoming block, the use 732 // would be considered as being at the end of it, so it cannot 733 // influence the position of the first use (which is assumed to be 734 // at the end to start with). 735 if (isa<PHINode>(V)) 736 continue; 737 if (!isa<Instruction>(V)) 738 continue; 739 Instruction *In = cast<Instruction>(V); 740 if (In->getParent() != B) 741 continue; 742 BasicBlock::iterator It = In->getIterator(); 743 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 744 FirstUse = It; 745 } 746 return FirstUse; 747 } 748 749 static bool is_empty(const BasicBlock *B) { 750 return B->empty() || (&*B->begin() == B->getTerminator()); 751 } 752 753 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 754 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 755 DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 756 // Recalculate the placement for Node, assuming that the locations of 757 // its children in Loc are valid. 758 // Return nullptr if there is no valid placement for Node (for example, it 759 // uses an index value that is not available at the location required 760 // to dominate all children, etc.). 761 762 // Find the nearest common dominator for: 763 // - all users, if the node is used, and 764 // - all children. 765 ValueVect Bs; 766 if (Node->Flags & GepNode::Used) { 767 // Append all blocks with uses of the original values to the 768 // block vector Bs. 769 NodeToUsesMap::iterator UF = Uses.find(Node); 770 assert(UF != Uses.end() && "Used node with no use information"); 771 UseSet &Us = UF->second; 772 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 773 Use *U = *I; 774 User *R = U->getUser(); 775 if (!isa<Instruction>(R)) 776 continue; 777 BasicBlock *PB = isa<PHINode>(R) 778 ? cast<PHINode>(R)->getIncomingBlock(*U) 779 : cast<Instruction>(R)->getParent(); 780 Bs.push_back(PB); 781 } 782 } 783 // Append the location of each child. 784 NodeChildrenMap::iterator CF = NCM.find(Node); 785 if (CF != NCM.end()) { 786 NodeVect &Cs = CF->second; 787 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 788 GepNode *CN = *I; 789 NodeToValueMap::iterator LF = Loc.find(CN); 790 // If the child is only used in GEP instructions (i.e. is not used in 791 // non-GEP instructions), the nearest dominator computed for it may 792 // have been null. In such case it won't have a location available. 793 if (LF == Loc.end()) 794 continue; 795 Bs.push_back(LF->second); 796 } 797 } 798 799 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 800 if (!DomB) 801 return nullptr; 802 // Check if the index used by Node dominates the computed dominator. 803 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 804 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 805 return nullptr; 806 807 // Avoid putting nodes into empty blocks. 808 while (is_empty(DomB)) { 809 DomTreeNode *N = (*DT)[DomB]->getIDom(); 810 if (!N) 811 break; 812 DomB = N->getBlock(); 813 } 814 815 // Otherwise, DomB is fine. Update the location map. 816 Loc[Node] = DomB; 817 return DomB; 818 } 819 820 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 821 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 822 DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 823 // Recalculate the placement of Node, after recursively recalculating the 824 // placements of all its children. 825 NodeChildrenMap::iterator CF = NCM.find(Node); 826 if (CF != NCM.end()) { 827 NodeVect &Cs = CF->second; 828 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 829 recalculatePlacementRec(*I, NCM, Loc); 830 } 831 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 832 DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 833 return LB; 834 } 835 836 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 837 if (isa<Constant>(Val) || isa<Argument>(Val)) 838 return true; 839 Instruction *In = dyn_cast<Instruction>(Val); 840 if (!In) 841 return false; 842 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 843 return DT->properlyDominates(DefB, HdrB); 844 } 845 846 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 847 if (Node->Flags & GepNode::Root) 848 if (!isInvariantIn(Node->BaseVal, L)) 849 return false; 850 return isInvariantIn(Node->Idx, L); 851 } 852 853 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 854 BasicBlock *HB = L->getHeader(); 855 BasicBlock *LB = L->getLoopLatch(); 856 // B must post-dominate the loop header or dominate the loop latch. 857 if (PDT->dominates(B, HB)) 858 return true; 859 if (LB && DT->dominates(B, LB)) 860 return true; 861 return false; 862 } 863 864 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 865 if (BasicBlock *PH = L->getLoopPreheader()) 866 return PH; 867 if (!OptSpeculate) 868 return nullptr; 869 DomTreeNode *DN = DT->getNode(L->getHeader()); 870 if (!DN) 871 return nullptr; 872 return DN->getIDom()->getBlock(); 873 } 874 875 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 876 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 877 // Find the "topmost" location for Node: it must be dominated by both, 878 // its parent (or the BaseVal, if it's a root node), and by the index 879 // value. 880 ValueVect Bs; 881 if (Node->Flags & GepNode::Root) { 882 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 883 Bs.push_back(PIn->getParent()); 884 } else { 885 Bs.push_back(Loc[Node->Parent]); 886 } 887 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 888 Bs.push_back(IIn->getParent()); 889 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 890 891 // Traverse the loop nest upwards until we find a loop in which Node 892 // is no longer invariant, or until we get to the upper limit of Node's 893 // placement. The traversal will also stop when a suitable "preheader" 894 // cannot be found for a given loop. The "preheader" may actually be 895 // a regular block outside of the loop (i.e. not guarded), in which case 896 // the Node will be speculated. 897 // For nodes that are not in the main path of the containing loop (i.e. 898 // are not executed in each iteration), do not move them out of the loop. 899 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 900 if (LocB) { 901 Loop *Lp = LI->getLoopFor(LocB); 902 while (Lp) { 903 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 904 break; 905 BasicBlock *NewLoc = preheader(DT, Lp); 906 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 907 break; 908 Lp = Lp->getParentLoop(); 909 LocB = NewLoc; 910 } 911 } 912 Loc[Node] = LocB; 913 914 // Recursively compute the locations of all children nodes. 915 NodeChildrenMap::iterator CF = NCM.find(Node); 916 if (CF != NCM.end()) { 917 NodeVect &Cs = CF->second; 918 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 919 adjustForInvariance(*I, NCM, Loc); 920 } 921 return LocB; 922 } 923 924 namespace { 925 926 struct LocationAsBlock { 927 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 928 929 const NodeToValueMap ⤅ 930 }; 931 932 raw_ostream &operator<< (raw_ostream &OS, 933 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 934 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 935 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); 936 I != E; ++I) { 937 OS << I->first << " -> "; 938 BasicBlock *B = cast<BasicBlock>(I->second); 939 OS << B->getName() << '(' << B << ')'; 940 OS << '\n'; 941 } 942 return OS; 943 } 944 945 inline bool is_constant(GepNode *N) { 946 return isa<ConstantInt>(N->Idx); 947 } 948 949 } // end anonymous namespace 950 951 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 952 NodeToValueMap &Loc) { 953 User *R = U->getUser(); 954 DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " 955 << *R << '\n'); 956 BasicBlock *PB = cast<Instruction>(R)->getParent(); 957 958 GepNode *N = Node; 959 GepNode *C = nullptr, *NewNode = nullptr; 960 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 961 // XXX if (single-use) dont-replicate; 962 GepNode *NewN = new (*Mem) GepNode(N); 963 Nodes.push_back(NewN); 964 Loc[NewN] = PB; 965 966 if (N == Node) 967 NewNode = NewN; 968 NewN->Flags &= ~GepNode::Used; 969 if (C) 970 C->Parent = NewN; 971 C = NewN; 972 N = N->Parent; 973 } 974 if (!NewNode) 975 return; 976 977 // Move over all uses that share the same user as U from Node to NewNode. 978 NodeToUsesMap::iterator UF = Uses.find(Node); 979 assert(UF != Uses.end()); 980 UseSet &Us = UF->second; 981 UseSet NewUs; 982 for (UseSet::iterator I = Us.begin(); I != Us.end(); ) { 983 User *S = (*I)->getUser(); 984 UseSet::iterator Nx = std::next(I); 985 if (S == R) { 986 NewUs.insert(*I); 987 Us.erase(I); 988 } 989 I = Nx; 990 } 991 if (Us.empty()) { 992 Node->Flags &= ~GepNode::Used; 993 Uses.erase(UF); 994 } 995 996 // Should at least have U in NewUs. 997 NewNode->Flags |= GepNode::Used; 998 DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 999 assert(!NewUs.empty()); 1000 Uses[NewNode] = NewUs; 1001 } 1002 1003 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 1004 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 1005 // First approximation: extract all chains. 1006 NodeSet Ns; 1007 nodes_for_root(Node, NCM, Ns); 1008 1009 DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1010 // Collect all used nodes together with the uses from loads and stores, 1011 // where the GEP node could be folded into the load/store instruction. 1012 NodeToUsesMap FNs; // Foldable nodes. 1013 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { 1014 GepNode *N = *I; 1015 if (!(N->Flags & GepNode::Used)) 1016 continue; 1017 NodeToUsesMap::iterator UF = Uses.find(N); 1018 assert(UF != Uses.end()); 1019 UseSet &Us = UF->second; 1020 // Loads/stores that use the node N. 1021 UseSet LSs; 1022 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 1023 Use *U = *J; 1024 User *R = U->getUser(); 1025 // We're interested in uses that provide the address. It can happen 1026 // that the value may also be provided via GEP, but we won't handle 1027 // those cases here for now. 1028 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1029 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1030 if (&Ld->getOperandUse(PtrX) == U) 1031 LSs.insert(U); 1032 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1033 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1034 if (&St->getOperandUse(PtrX) == U) 1035 LSs.insert(U); 1036 } 1037 } 1038 // Even if the total use count is 1, separating the chain may still be 1039 // beneficial, since the constant chain may be longer than the GEP alone 1040 // would be (e.g. if the parent node has a constant index and also has 1041 // other children). 1042 if (!LSs.empty()) 1043 FNs.insert(std::make_pair(N, LSs)); 1044 } 1045 1046 DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1047 1048 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { 1049 GepNode *N = I->first; 1050 UseSet &Us = I->second; 1051 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) 1052 separateChainForNode(N, *J, Loc); 1053 } 1054 } 1055 1056 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1057 // Compute the inverse of the Node.Parent links. Also, collect the set 1058 // of root nodes. 1059 NodeChildrenMap NCM; 1060 NodeVect Roots; 1061 invert_find_roots(Nodes, NCM, Roots); 1062 1063 // Compute the initial placement determined by the users' locations, and 1064 // the locations of the child nodes. 1065 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1066 recalculatePlacementRec(*I, NCM, Loc); 1067 1068 DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1069 1070 if (OptEnableInv) { 1071 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1072 adjustForInvariance(*I, NCM, Loc); 1073 1074 DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1075 << LocationAsBlock(Loc)); 1076 } 1077 if (OptEnableConst) { 1078 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1079 separateConstantChains(*I, NCM, Loc); 1080 } 1081 DEBUG(dbgs() << "Node use information:\n" << Uses); 1082 1083 // At the moment, there is no further refinement of the initial placement. 1084 // Such a refinement could include splitting the nodes if they are placed 1085 // too far from some of its users. 1086 1087 DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1088 } 1089 1090 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1091 BasicBlock *LocB) { 1092 DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1093 << " for nodes:\n" << NA); 1094 unsigned Num = NA.size(); 1095 GepNode *RN = NA[0]; 1096 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1097 1098 GetElementPtrInst *NewInst = nullptr; 1099 Value *Input = RN->BaseVal; 1100 Value **IdxList = new Value*[Num+1]; 1101 unsigned nax = 0; 1102 do { 1103 unsigned IdxC = 0; 1104 // If the type of the input of the first node is not a pointer, 1105 // we need to add an artificial i32 0 to the indices (because the 1106 // actual input in the IR will be a pointer). 1107 if (!NA[nax]->PTy->isPointerTy()) { 1108 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1109 IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0); 1110 } 1111 1112 // Keep adding indices from NA until we have to stop and generate 1113 // an "intermediate" GEP. 1114 while (++nax <= Num) { 1115 GepNode *N = NA[nax-1]; 1116 IdxList[IdxC++] = N->Idx; 1117 if (nax < Num) { 1118 // We have to stop, if the expected type of the output of this node 1119 // is not the same as the input type of the next node. 1120 Type *NextTy = next_type(N->PTy, N->Idx); 1121 if (NextTy != NA[nax]->PTy) 1122 break; 1123 } 1124 } 1125 ArrayRef<Value*> A(IdxList, IdxC); 1126 Type *InpTy = Input->getType(); 1127 Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType(); 1128 NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At); 1129 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1130 DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1131 Input = NewInst; 1132 } while (nax <= Num); 1133 1134 delete[] IdxList; 1135 return NewInst; 1136 } 1137 1138 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1139 NodeChildrenMap &NCM) { 1140 NodeVect Work; 1141 Work.push_back(Node); 1142 1143 while (!Work.empty()) { 1144 NodeVect::iterator First = Work.begin(); 1145 GepNode *N = *First; 1146 Work.erase(First); 1147 if (N->Flags & GepNode::Used) { 1148 NodeToUsesMap::iterator UF = Uses.find(N); 1149 assert(UF != Uses.end() && "No use information for used node"); 1150 UseSet &Us = UF->second; 1151 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) 1152 Values.push_back((*I)->getUser()); 1153 } 1154 NodeChildrenMap::iterator CF = NCM.find(N); 1155 if (CF != NCM.end()) { 1156 NodeVect &Cs = CF->second; 1157 Work.insert(Work.end(), Cs.begin(), Cs.end()); 1158 } 1159 } 1160 } 1161 1162 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1163 DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1164 NodeChildrenMap NCM; 1165 NodeVect Roots; 1166 // Compute the inversion again, since computing placement could alter 1167 // "parent" relation between nodes. 1168 invert_find_roots(Nodes, NCM, Roots); 1169 1170 while (!Roots.empty()) { 1171 NodeVect::iterator First = Roots.begin(); 1172 GepNode *Root = *First, *Last = *First; 1173 Roots.erase(First); 1174 1175 NodeVect NA; // Nodes to assemble. 1176 // Append to NA all child nodes up to (and including) the first child 1177 // that: 1178 // (1) has more than 1 child, or 1179 // (2) is used, or 1180 // (3) has a child located in a different block. 1181 bool LastUsed = false; 1182 unsigned LastCN = 0; 1183 // The location may be null if the computation failed (it can legitimately 1184 // happen for nodes created from dead GEPs). 1185 Value *LocV = Loc[Last]; 1186 if (!LocV) 1187 continue; 1188 BasicBlock *LastB = cast<BasicBlock>(LocV); 1189 do { 1190 NA.push_back(Last); 1191 LastUsed = (Last->Flags & GepNode::Used); 1192 if (LastUsed) 1193 break; 1194 NodeChildrenMap::iterator CF = NCM.find(Last); 1195 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1196 if (LastCN != 1) 1197 break; 1198 GepNode *Child = CF->second.front(); 1199 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1200 if (ChildB != nullptr && LastB != ChildB) 1201 break; 1202 Last = Child; 1203 } while (true); 1204 1205 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1206 if (LastUsed || LastCN > 0) { 1207 ValueVect Urs; 1208 getAllUsersForNode(Root, Urs, NCM); 1209 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1210 if (FirstUse != LastB->end()) 1211 InsertAt = FirstUse; 1212 } 1213 1214 // Generate a new instruction for NA. 1215 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1216 1217 // Convert all the children of Last node into roots, and append them 1218 // to the Roots list. 1219 if (LastCN > 0) { 1220 NodeVect &Cs = NCM[Last]; 1221 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 1222 GepNode *CN = *I; 1223 CN->Flags &= ~GepNode::Internal; 1224 CN->Flags |= GepNode::Root; 1225 CN->BaseVal = NewInst; 1226 Roots.push_back(CN); 1227 } 1228 } 1229 1230 // Lastly, if the Last node was used, replace all uses with the new GEP. 1231 // The uses reference the original GEP values. 1232 if (LastUsed) { 1233 NodeToUsesMap::iterator UF = Uses.find(Last); 1234 assert(UF != Uses.end() && "No use information found"); 1235 UseSet &Us = UF->second; 1236 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 1237 Use *U = *I; 1238 U->set(NewInst); 1239 } 1240 } 1241 } 1242 } 1243 1244 void HexagonCommonGEP::removeDeadCode() { 1245 ValueVect BO; 1246 BO.push_back(&Fn->front()); 1247 1248 for (unsigned i = 0; i < BO.size(); ++i) { 1249 BasicBlock *B = cast<BasicBlock>(BO[i]); 1250 for (auto DTN : children<DomTreeNode*>(DT->getNode(B))) 1251 BO.push_back(DTN->getBlock()); 1252 } 1253 1254 for (unsigned i = BO.size(); i > 0; --i) { 1255 BasicBlock *B = cast<BasicBlock>(BO[i-1]); 1256 BasicBlock::InstListType &IL = B->getInstList(); 1257 1258 using reverse_iterator = BasicBlock::InstListType::reverse_iterator; 1259 1260 ValueVect Ins; 1261 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) 1262 Ins.push_back(&*I); 1263 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { 1264 Instruction *In = cast<Instruction>(*I); 1265 if (isInstructionTriviallyDead(In)) 1266 In->eraseFromParent(); 1267 } 1268 } 1269 } 1270 1271 bool HexagonCommonGEP::runOnFunction(Function &F) { 1272 if (skipFunction(F)) 1273 return false; 1274 1275 // For now bail out on C++ exception handling. 1276 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) 1277 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) 1278 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1279 return false; 1280 1281 Fn = &F; 1282 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1283 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1284 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1285 Ctx = &F.getContext(); 1286 1287 Nodes.clear(); 1288 Uses.clear(); 1289 NodeOrder.clear(); 1290 1291 SpecificBumpPtrAllocator<GepNode> Allocator; 1292 Mem = &Allocator; 1293 1294 collect(); 1295 common(); 1296 1297 NodeToValueMap Loc; 1298 computeNodePlacement(Loc); 1299 materialize(Loc); 1300 removeDeadCode(); 1301 1302 #ifdef EXPENSIVE_CHECKS 1303 // Run this only when expensive checks are enabled. 1304 verifyFunction(F); 1305 #endif 1306 return true; 1307 } 1308 1309 namespace llvm { 1310 1311 FunctionPass *createHexagonCommonGEP() { 1312 return new HexagonCommonGEP(); 1313 } 1314 1315 } // end namespace llvm 1316