xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp (revision 733fe3676c629b25edcae79d3ba3ccb24e6c6cb3)
1 //===--- HexagonCommonGEP.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "commgep"
11 
12 #include "llvm/Pass.h"
13 #include "llvm/ADT/FoldingSet.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Verifier.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 
29 #include <map>
30 #include <set>
31 #include <vector>
32 
33 #include "HexagonTargetMachine.h"
34 
35 using namespace llvm;
36 
37 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
38   cl::Hidden, cl::ZeroOrMore);
39 
40 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
41   cl::ZeroOrMore);
42 
43 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
44   cl::Hidden, cl::ZeroOrMore);
45 
46 namespace llvm {
47   void initializeHexagonCommonGEPPass(PassRegistry&);
48 }
49 
50 namespace {
51   struct GepNode;
52   typedef std::set<GepNode*> NodeSet;
53   typedef std::map<GepNode*,Value*> NodeToValueMap;
54   typedef std::vector<GepNode*> NodeVect;
55   typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
56   typedef std::set<Use*> UseSet;
57   typedef std::map<GepNode*,UseSet> NodeToUsesMap;
58 
59   // Numbering map for gep nodes. Used to keep track of ordering for
60   // gep nodes.
61   struct NodeOrdering {
62     NodeOrdering() : LastNum(0) {}
63 
64     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
65     void clear() { Map.clear(); }
66 
67     bool operator()(const GepNode *N1, const GepNode *N2) const {
68       auto F1 = Map.find(N1), F2 = Map.find(N2);
69       assert(F1 != Map.end() && F2 != Map.end());
70       return F1->second < F2->second;
71     }
72 
73   private:
74     std::map<const GepNode *, unsigned> Map;
75     unsigned LastNum;
76   };
77 
78   class HexagonCommonGEP : public FunctionPass {
79   public:
80     static char ID;
81     HexagonCommonGEP() : FunctionPass(ID) {
82       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
83     }
84     virtual bool runOnFunction(Function &F);
85     virtual const char *getPassName() const {
86       return "Hexagon Common GEP";
87     }
88 
89     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
90       AU.addRequired<DominatorTreeWrapperPass>();
91       AU.addPreserved<DominatorTreeWrapperPass>();
92       AU.addRequired<PostDominatorTreeWrapperPass>();
93       AU.addPreserved<PostDominatorTreeWrapperPass>();
94       AU.addRequired<LoopInfoWrapperPass>();
95       AU.addPreserved<LoopInfoWrapperPass>();
96       FunctionPass::getAnalysisUsage(AU);
97     }
98 
99   private:
100     typedef std::map<Value*,GepNode*> ValueToNodeMap;
101     typedef std::vector<Value*> ValueVect;
102     typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
103 
104     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
105     bool isHandledGepForm(GetElementPtrInst *GepI);
106     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
107     void collect();
108     void common();
109 
110     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
111                                      NodeToValueMap &Loc);
112     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
113                                         NodeToValueMap &Loc);
114     bool isInvariantIn(Value *Val, Loop *L);
115     bool isInvariantIn(GepNode *Node, Loop *L);
116     bool isInMainPath(BasicBlock *B, Loop *L);
117     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
118                                     NodeToValueMap &Loc);
119     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
120     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
121                                 NodeToValueMap &Loc);
122     void computeNodePlacement(NodeToValueMap &Loc);
123 
124     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
125                         BasicBlock *LocB);
126     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
127                             NodeChildrenMap &NCM);
128     void materialize(NodeToValueMap &Loc);
129 
130     void removeDeadCode();
131 
132     NodeVect Nodes;
133     NodeToUsesMap Uses;
134     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
135     SpecificBumpPtrAllocator<GepNode> *Mem;
136     LLVMContext *Ctx;
137     LoopInfo *LI;
138     DominatorTree *DT;
139     PostDominatorTree *PDT;
140     Function *Fn;
141   };
142 }
143 
144 
145 char HexagonCommonGEP::ID = 0;
146 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
147       false, false)
148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
149 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
150 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
151 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
152       false, false)
153 
154 namespace {
155   struct GepNode {
156     enum {
157       None      = 0,
158       Root      = 0x01,
159       Internal  = 0x02,
160       Used      = 0x04
161     };
162 
163     uint32_t Flags;
164     union {
165       GepNode *Parent;
166       Value *BaseVal;
167     };
168     Value *Idx;
169     Type *PTy;  // Type of the pointer operand.
170 
171     GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
172     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
173       if (Flags & Root)
174         BaseVal = N->BaseVal;
175       else
176         Parent = N->Parent;
177     }
178     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
179   };
180 
181 
182   Type *next_type(Type *Ty, Value *Idx) {
183     // Advance the type.
184     if (!Ty->isStructTy()) {
185       Type *NexTy = cast<SequentialType>(Ty)->getElementType();
186       return NexTy;
187     }
188     // Otherwise it is a struct type.
189     ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
190     assert(CI && "Struct type with non-constant index");
191     int64_t i = CI->getValue().getSExtValue();
192     Type *NextTy = cast<StructType>(Ty)->getElementType(i);
193     return NextTy;
194   }
195 
196 
197   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
198     OS << "{ {";
199     bool Comma = false;
200     if (GN.Flags & GepNode::Root) {
201       OS << "root";
202       Comma = true;
203     }
204     if (GN.Flags & GepNode::Internal) {
205       if (Comma)
206         OS << ',';
207       OS << "internal";
208       Comma = true;
209     }
210     if (GN.Flags & GepNode::Used) {
211       if (Comma)
212         OS << ',';
213       OS << "used";
214     }
215     OS << "} ";
216     if (GN.Flags & GepNode::Root)
217       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
218     else
219       OS << "Parent:" << GN.Parent;
220 
221     OS << " Idx:";
222     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
223       OS << CI->getValue().getSExtValue();
224     else if (GN.Idx->hasName())
225       OS << GN.Idx->getName();
226     else
227       OS << "<anon> =" << *GN.Idx;
228 
229     OS << " PTy:";
230     if (GN.PTy->isStructTy()) {
231       StructType *STy = cast<StructType>(GN.PTy);
232       if (!STy->isLiteral())
233         OS << GN.PTy->getStructName();
234       else
235         OS << "<anon-struct>:" << *STy;
236     }
237     else
238       OS << *GN.PTy;
239     OS << " }";
240     return OS;
241   }
242 
243 
244   template <typename NodeContainer>
245   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
246     typedef typename NodeContainer::const_iterator const_iterator;
247     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
248       OS << *I << ' ' << **I << '\n';
249   }
250 
251   raw_ostream &operator<< (raw_ostream &OS,
252                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
253   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
254     dump_node_container(OS, S);
255     return OS;
256   }
257 
258 
259   raw_ostream &operator<< (raw_ostream &OS,
260                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
261   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
262     typedef NodeToUsesMap::const_iterator const_iterator;
263     for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
264       const UseSet &Us = I->second;
265       OS << I->first << " -> #" << Us.size() << '{';
266       for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
267         User *R = (*J)->getUser();
268         if (R->hasName())
269           OS << ' ' << R->getName();
270         else
271           OS << " <?>(" << *R << ')';
272       }
273       OS << " }\n";
274     }
275     return OS;
276   }
277 
278 
279   struct in_set {
280     in_set(const NodeSet &S) : NS(S) {}
281     bool operator() (GepNode *N) const {
282       return NS.find(N) != NS.end();
283     }
284   private:
285     const NodeSet &NS;
286   };
287 }
288 
289 
290 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
291   return A.Allocate();
292 }
293 
294 
295 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
296       ValueVect &Order) {
297   // Compute block ordering for a typical DT-based traversal of the flow
298   // graph: "before visiting a block, all of its dominators must have been
299   // visited".
300 
301   Order.push_back(Root);
302   DomTreeNode *DTN = DT->getNode(Root);
303   typedef GraphTraits<DomTreeNode*> GTN;
304   typedef GTN::ChildIteratorType Iter;
305   for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
306     getBlockTraversalOrder((*I)->getBlock(), Order);
307 }
308 
309 
310 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
311   // No vector GEPs.
312   if (!GepI->getType()->isPointerTy())
313     return false;
314   // No GEPs without any indices.  (Is this possible?)
315   if (GepI->idx_begin() == GepI->idx_end())
316     return false;
317   return true;
318 }
319 
320 
321 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
322       ValueToNodeMap &NM) {
323   DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
324   GepNode *N = new (*Mem) GepNode;
325   Value *PtrOp = GepI->getPointerOperand();
326   ValueToNodeMap::iterator F = NM.find(PtrOp);
327   if (F == NM.end()) {
328     N->BaseVal = PtrOp;
329     N->Flags |= GepNode::Root;
330   } else {
331     // If PtrOp was a GEP instruction, it must have already been processed.
332     // The ValueToNodeMap entry for it is the last gep node in the generated
333     // chain. Link to it here.
334     N->Parent = F->second;
335   }
336   N->PTy = PtrOp->getType();
337   N->Idx = *GepI->idx_begin();
338 
339   // Collect the list of users of this GEP instruction. Will add it to the
340   // last node created for it.
341   UseSet Us;
342   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
343        UI != UE; ++UI) {
344     // Check if this gep is used by anything other than other geps that
345     // we will process.
346     if (isa<GetElementPtrInst>(*UI)) {
347       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
348       if (isHandledGepForm(UserG))
349         continue;
350     }
351     Us.insert(&UI.getUse());
352   }
353   Nodes.push_back(N);
354   NodeOrder.insert(N);
355 
356   // Skip the first index operand, since we only handle 0. This dereferences
357   // the pointer operand.
358   GepNode *PN = N;
359   Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
360   for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
361        OI != OE; ++OI) {
362     Value *Op = *OI;
363     GepNode *Nx = new (*Mem) GepNode;
364     Nx->Parent = PN;  // Link Nx to the previous node.
365     Nx->Flags |= GepNode::Internal;
366     Nx->PTy = PtrTy;
367     Nx->Idx = Op;
368     Nodes.push_back(Nx);
369     NodeOrder.insert(Nx);
370     PN = Nx;
371 
372     PtrTy = next_type(PtrTy, Op);
373   }
374 
375   // After last node has been created, update the use information.
376   if (!Us.empty()) {
377     PN->Flags |= GepNode::Used;
378     Uses[PN].insert(Us.begin(), Us.end());
379   }
380 
381   // Link the last node with the originating GEP instruction. This is to
382   // help with linking chained GEP instructions.
383   NM.insert(std::make_pair(GepI, PN));
384 }
385 
386 
387 void HexagonCommonGEP::collect() {
388   // Establish depth-first traversal order of the dominator tree.
389   ValueVect BO;
390   getBlockTraversalOrder(&Fn->front(), BO);
391 
392   // The creation of gep nodes requires DT-traversal. When processing a GEP
393   // instruction that uses another GEP instruction as the base pointer, the
394   // gep node for the base pointer should already exist.
395   ValueToNodeMap NM;
396   for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
397     BasicBlock *B = cast<BasicBlock>(*I);
398     for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
399       if (!isa<GetElementPtrInst>(J))
400         continue;
401       GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
402       if (isHandledGepForm(GepI))
403         processGepInst(GepI, NM);
404     }
405   }
406 
407   DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
408 }
409 
410 
411 namespace {
412   void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
413         NodeVect &Roots) {
414     typedef NodeVect::const_iterator const_iterator;
415     for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
416       GepNode *N = *I;
417       if (N->Flags & GepNode::Root) {
418         Roots.push_back(N);
419         continue;
420       }
421       GepNode *PN = N->Parent;
422       NCM[PN].push_back(N);
423     }
424   }
425 
426   void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
427     NodeVect Work;
428     Work.push_back(Root);
429     Nodes.insert(Root);
430 
431     while (!Work.empty()) {
432       NodeVect::iterator First = Work.begin();
433       GepNode *N = *First;
434       Work.erase(First);
435       NodeChildrenMap::iterator CF = NCM.find(N);
436       if (CF != NCM.end()) {
437         Work.insert(Work.end(), CF->second.begin(), CF->second.end());
438         Nodes.insert(CF->second.begin(), CF->second.end());
439       }
440     }
441   }
442 }
443 
444 
445 namespace {
446   typedef std::set<NodeSet> NodeSymRel;
447   typedef std::pair<GepNode*,GepNode*> NodePair;
448   typedef std::set<NodePair> NodePairSet;
449 
450   const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
451     for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
452       if (I->count(N))
453         return &*I;
454     return 0;
455   }
456 
457   // Create an ordered pair of GepNode pointers. The pair will be used in
458   // determining equality. The only purpose of the ordering is to eliminate
459   // duplication due to the commutativity of equality/non-equality.
460   NodePair node_pair(GepNode *N1, GepNode *N2) {
461     uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
462     if (P1 <= P2)
463       return std::make_pair(N1, N2);
464     return std::make_pair(N2, N1);
465   }
466 
467   unsigned node_hash(GepNode *N) {
468     // Include everything except flags and parent.
469     FoldingSetNodeID ID;
470     ID.AddPointer(N->Idx);
471     ID.AddPointer(N->PTy);
472     return ID.ComputeHash();
473   }
474 
475   bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
476     // Don't cache the result for nodes with different hashes. The hash
477     // comparison is fast enough.
478     if (node_hash(N1) != node_hash(N2))
479       return false;
480 
481     NodePair NP = node_pair(N1, N2);
482     NodePairSet::iterator FEq = Eq.find(NP);
483     if (FEq != Eq.end())
484       return true;
485     NodePairSet::iterator FNe = Ne.find(NP);
486     if (FNe != Ne.end())
487       return false;
488     // Not previously compared.
489     bool Root1 = N1->Flags & GepNode::Root;
490     bool Root2 = N2->Flags & GepNode::Root;
491     NodePair P = node_pair(N1, N2);
492     // If the Root flag has different values, the nodes are different.
493     // If both nodes are root nodes, but their base pointers differ,
494     // they are different.
495     if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
496       Ne.insert(P);
497       return false;
498     }
499     // Here the root flags are identical, and for root nodes the
500     // base pointers are equal, so the root nodes are equal.
501     // For non-root nodes, compare their parent nodes.
502     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
503       Eq.insert(P);
504       return true;
505     }
506     return false;
507   }
508 }
509 
510 
511 void HexagonCommonGEP::common() {
512   // The essence of this commoning is finding gep nodes that are equal.
513   // To do this we need to compare all pairs of nodes. To save time,
514   // first, partition the set of all nodes into sets of potentially equal
515   // nodes, and then compare pairs from within each partition.
516   typedef std::map<unsigned,NodeSet> NodeSetMap;
517   NodeSetMap MaybeEq;
518 
519   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
520     GepNode *N = *I;
521     unsigned H = node_hash(N);
522     MaybeEq[H].insert(N);
523   }
524 
525   // Compute the equivalence relation for the gep nodes.  Use two caches,
526   // one for equality and the other for non-equality.
527   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
528   NodePairSet Eq, Ne;  // Caches.
529   for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
530        I != E; ++I) {
531     NodeSet &S = I->second;
532     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
533       GepNode *N = *NI;
534       // If node already has a class, then the class must have been created
535       // in a prior iteration of this loop. Since equality is transitive,
536       // nothing more will be added to that class, so skip it.
537       if (node_class(N, EqRel))
538         continue;
539 
540       // Create a new class candidate now.
541       NodeSet C;
542       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
543         if (node_eq(N, *NJ, Eq, Ne))
544           C.insert(*NJ);
545       // If Tmp is empty, N would be the only element in it. Don't bother
546       // creating a class for it then.
547       if (!C.empty()) {
548         C.insert(N);  // Finalize the set before adding it to the relation.
549         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
550         (void)Ins;
551         assert(Ins.second && "Cannot add a class");
552       }
553     }
554   }
555 
556   DEBUG({
557     dbgs() << "Gep node equality:\n";
558     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
559       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
560 
561     dbgs() << "Gep equivalence classes:\n";
562     for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
563       dbgs() << '{';
564       const NodeSet &S = *I;
565       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
566         if (J != S.begin())
567           dbgs() << ',';
568         dbgs() << ' ' << *J;
569       }
570       dbgs() << " }\n";
571     }
572   });
573 
574 
575   // Create a projection from a NodeSet to the minimal element in it.
576   typedef std::map<const NodeSet*,GepNode*> ProjMap;
577   ProjMap PM;
578   for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
579     const NodeSet &S = *I;
580     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
581     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
582     (void)Ins;
583     assert(Ins.second && "Cannot add minimal element");
584 
585     // Update the min element's flags, and user list.
586     uint32_t Flags = 0;
587     UseSet &MinUs = Uses[Min];
588     for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
589       GepNode *N = *J;
590       uint32_t NF = N->Flags;
591       // If N is used, append all original values of N to the list of
592       // original values of Min.
593       if (NF & GepNode::Used)
594         MinUs.insert(Uses[N].begin(), Uses[N].end());
595       Flags |= NF;
596     }
597     if (MinUs.empty())
598       Uses.erase(Min);
599 
600     // The collected flags should include all the flags from the min element.
601     assert((Min->Flags & Flags) == Min->Flags);
602     Min->Flags = Flags;
603   }
604 
605   // Commoning: for each non-root gep node, replace "Parent" with the
606   // selected (minimum) node from the corresponding equivalence class.
607   // If a given parent does not have an equivalence class, leave it
608   // unchanged (it means that it's the only element in its class).
609   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
610     GepNode *N = *I;
611     if (N->Flags & GepNode::Root)
612       continue;
613     const NodeSet *PC = node_class(N->Parent, EqRel);
614     if (!PC)
615       continue;
616     ProjMap::iterator F = PM.find(PC);
617     if (F == PM.end())
618       continue;
619     // Found a replacement, use it.
620     GepNode *Rep = F->second;
621     N->Parent = Rep;
622   }
623 
624   DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
625 
626   // Finally, erase the nodes that are no longer used.
627   NodeSet Erase;
628   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
629     GepNode *N = *I;
630     const NodeSet *PC = node_class(N, EqRel);
631     if (!PC)
632       continue;
633     ProjMap::iterator F = PM.find(PC);
634     if (F == PM.end())
635       continue;
636     if (N == F->second)
637       continue;
638     // Node for removal.
639     Erase.insert(*I);
640   }
641   NodeVect::iterator NewE = remove_if(Nodes, in_set(Erase));
642   Nodes.resize(std::distance(Nodes.begin(), NewE));
643 
644   DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
645 }
646 
647 
648 namespace {
649   template <typename T>
650   BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
651     DEBUG({
652       dbgs() << "NCD of {";
653       for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
654            I != E; ++I) {
655         if (!*I)
656           continue;
657         BasicBlock *B = cast<BasicBlock>(*I);
658         dbgs() << ' ' << B->getName();
659       }
660       dbgs() << " }\n";
661     });
662 
663     // Allow null basic blocks in Blocks.  In such cases, return 0.
664     typename T::iterator I = Blocks.begin(), E = Blocks.end();
665     if (I == E || !*I)
666       return 0;
667     BasicBlock *Dom = cast<BasicBlock>(*I);
668     while (++I != E) {
669       BasicBlock *B = cast_or_null<BasicBlock>(*I);
670       Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
671       if (!Dom)
672         return 0;
673     }
674     DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
675     return Dom;
676   }
677 
678   template <typename T>
679   BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
680     // If two blocks, A and B, dominate a block C, then A dominates B,
681     // or B dominates A.
682     typename T::iterator I = Blocks.begin(), E = Blocks.end();
683     // Find the first non-null block.
684     while (I != E && !*I)
685       ++I;
686     if (I == E)
687       return DT->getRoot();
688     BasicBlock *DomB = cast<BasicBlock>(*I);
689     while (++I != E) {
690       if (!*I)
691         continue;
692       BasicBlock *B = cast<BasicBlock>(*I);
693       if (DT->dominates(B, DomB))
694         continue;
695       if (!DT->dominates(DomB, B))
696         return 0;
697       DomB = B;
698     }
699     return DomB;
700   }
701 
702   // Find the first use in B of any value from Values. If no such use,
703   // return B->end().
704   template <typename T>
705   BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
706     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
707     typedef typename T::iterator iterator;
708     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
709       Value *V = *I;
710       // If V is used in a PHI node, the use belongs to the incoming block,
711       // not the block with the PHI node. In the incoming block, the use
712       // would be considered as being at the end of it, so it cannot
713       // influence the position of the first use (which is assumed to be
714       // at the end to start with).
715       if (isa<PHINode>(V))
716         continue;
717       if (!isa<Instruction>(V))
718         continue;
719       Instruction *In = cast<Instruction>(V);
720       if (In->getParent() != B)
721         continue;
722       BasicBlock::iterator It = In->getIterator();
723       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
724         FirstUse = It;
725     }
726     return FirstUse;
727   }
728 
729   bool is_empty(const BasicBlock *B) {
730     return B->empty() || (&*B->begin() == B->getTerminator());
731   }
732 }
733 
734 
735 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
736       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
737   DEBUG(dbgs() << "Loc for node:" << Node << '\n');
738   // Recalculate the placement for Node, assuming that the locations of
739   // its children in Loc are valid.
740   // Return 0 if there is no valid placement for Node (for example, it
741   // uses an index value that is not available at the location required
742   // to dominate all children, etc.).
743 
744   // Find the nearest common dominator for:
745   // - all users, if the node is used, and
746   // - all children.
747   ValueVect Bs;
748   if (Node->Flags & GepNode::Used) {
749     // Append all blocks with uses of the original values to the
750     // block vector Bs.
751     NodeToUsesMap::iterator UF = Uses.find(Node);
752     assert(UF != Uses.end() && "Used node with no use information");
753     UseSet &Us = UF->second;
754     for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
755       Use *U = *I;
756       User *R = U->getUser();
757       if (!isa<Instruction>(R))
758         continue;
759       BasicBlock *PB = isa<PHINode>(R)
760           ? cast<PHINode>(R)->getIncomingBlock(*U)
761           : cast<Instruction>(R)->getParent();
762       Bs.push_back(PB);
763     }
764   }
765   // Append the location of each child.
766   NodeChildrenMap::iterator CF = NCM.find(Node);
767   if (CF != NCM.end()) {
768     NodeVect &Cs = CF->second;
769     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
770       GepNode *CN = *I;
771       NodeToValueMap::iterator LF = Loc.find(CN);
772       // If the child is only used in GEP instructions (i.e. is not used in
773       // non-GEP instructions), the nearest dominator computed for it may
774       // have been null. In such case it won't have a location available.
775       if (LF == Loc.end())
776         continue;
777       Bs.push_back(LF->second);
778     }
779   }
780 
781   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
782   if (!DomB)
783     return 0;
784   // Check if the index used by Node dominates the computed dominator.
785   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
786   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
787     return 0;
788 
789   // Avoid putting nodes into empty blocks.
790   while (is_empty(DomB)) {
791     DomTreeNode *N = (*DT)[DomB]->getIDom();
792     if (!N)
793       break;
794     DomB = N->getBlock();
795   }
796 
797   // Otherwise, DomB is fine. Update the location map.
798   Loc[Node] = DomB;
799   return DomB;
800 }
801 
802 
803 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
804       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
805   DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
806   // Recalculate the placement of Node, after recursively recalculating the
807   // placements of all its children.
808   NodeChildrenMap::iterator CF = NCM.find(Node);
809   if (CF != NCM.end()) {
810     NodeVect &Cs = CF->second;
811     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
812       recalculatePlacementRec(*I, NCM, Loc);
813   }
814   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
815   DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
816   return LB;
817 }
818 
819 
820 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
821   if (isa<Constant>(Val) || isa<Argument>(Val))
822     return true;
823   Instruction *In = dyn_cast<Instruction>(Val);
824   if (!In)
825     return false;
826   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
827   return DT->properlyDominates(DefB, HdrB);
828 }
829 
830 
831 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
832   if (Node->Flags & GepNode::Root)
833     if (!isInvariantIn(Node->BaseVal, L))
834       return false;
835   return isInvariantIn(Node->Idx, L);
836 }
837 
838 
839 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
840   BasicBlock *HB = L->getHeader();
841   BasicBlock *LB = L->getLoopLatch();
842   // B must post-dominate the loop header or dominate the loop latch.
843   if (PDT->dominates(B, HB))
844     return true;
845   if (LB && DT->dominates(B, LB))
846     return true;
847   return false;
848 }
849 
850 
851 namespace {
852   BasicBlock *preheader(DominatorTree *DT, Loop *L) {
853     if (BasicBlock *PH = L->getLoopPreheader())
854       return PH;
855     if (!OptSpeculate)
856       return 0;
857     DomTreeNode *DN = DT->getNode(L->getHeader());
858     if (!DN)
859       return 0;
860     return DN->getIDom()->getBlock();
861   }
862 }
863 
864 
865 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
866       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
867   // Find the "topmost" location for Node: it must be dominated by both,
868   // its parent (or the BaseVal, if it's a root node), and by the index
869   // value.
870   ValueVect Bs;
871   if (Node->Flags & GepNode::Root) {
872     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
873       Bs.push_back(PIn->getParent());
874   } else {
875     Bs.push_back(Loc[Node->Parent]);
876   }
877   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
878     Bs.push_back(IIn->getParent());
879   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
880 
881   // Traverse the loop nest upwards until we find a loop in which Node
882   // is no longer invariant, or until we get to the upper limit of Node's
883   // placement. The traversal will also stop when a suitable "preheader"
884   // cannot be found for a given loop. The "preheader" may actually be
885   // a regular block outside of the loop (i.e. not guarded), in which case
886   // the Node will be speculated.
887   // For nodes that are not in the main path of the containing loop (i.e.
888   // are not executed in each iteration), do not move them out of the loop.
889   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
890   if (LocB) {
891     Loop *Lp = LI->getLoopFor(LocB);
892     while (Lp) {
893       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
894         break;
895       BasicBlock *NewLoc = preheader(DT, Lp);
896       if (!NewLoc || !DT->dominates(TopB, NewLoc))
897         break;
898       Lp = Lp->getParentLoop();
899       LocB = NewLoc;
900     }
901   }
902   Loc[Node] = LocB;
903 
904   // Recursively compute the locations of all children nodes.
905   NodeChildrenMap::iterator CF = NCM.find(Node);
906   if (CF != NCM.end()) {
907     NodeVect &Cs = CF->second;
908     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
909       adjustForInvariance(*I, NCM, Loc);
910   }
911   return LocB;
912 }
913 
914 
915 namespace {
916   struct LocationAsBlock {
917     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
918     const NodeToValueMap &Map;
919   };
920 
921   raw_ostream &operator<< (raw_ostream &OS,
922                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
923   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
924     for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
925          I != E; ++I) {
926       OS << I->first << " -> ";
927       BasicBlock *B = cast<BasicBlock>(I->second);
928       OS << B->getName() << '(' << B << ')';
929       OS << '\n';
930     }
931     return OS;
932   }
933 
934   inline bool is_constant(GepNode *N) {
935     return isa<ConstantInt>(N->Idx);
936   }
937 }
938 
939 
940 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
941       NodeToValueMap &Loc) {
942   User *R = U->getUser();
943   DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
944                << *R << '\n');
945   BasicBlock *PB = cast<Instruction>(R)->getParent();
946 
947   GepNode *N = Node;
948   GepNode *C = 0, *NewNode = 0;
949   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
950     // XXX if (single-use) dont-replicate;
951     GepNode *NewN = new (*Mem) GepNode(N);
952     Nodes.push_back(NewN);
953     Loc[NewN] = PB;
954 
955     if (N == Node)
956       NewNode = NewN;
957     NewN->Flags &= ~GepNode::Used;
958     if (C)
959       C->Parent = NewN;
960     C = NewN;
961     N = N->Parent;
962   }
963   if (!NewNode)
964     return;
965 
966   // Move over all uses that share the same user as U from Node to NewNode.
967   NodeToUsesMap::iterator UF = Uses.find(Node);
968   assert(UF != Uses.end());
969   UseSet &Us = UF->second;
970   UseSet NewUs;
971   for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
972     User *S = (*I)->getUser();
973     UseSet::iterator Nx = std::next(I);
974     if (S == R) {
975       NewUs.insert(*I);
976       Us.erase(I);
977     }
978     I = Nx;
979   }
980   if (Us.empty()) {
981     Node->Flags &= ~GepNode::Used;
982     Uses.erase(UF);
983   }
984 
985   // Should at least have U in NewUs.
986   NewNode->Flags |= GepNode::Used;
987   DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
988   assert(!NewUs.empty());
989   Uses[NewNode] = NewUs;
990 }
991 
992 
993 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
994       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
995   // First approximation: extract all chains.
996   NodeSet Ns;
997   nodes_for_root(Node, NCM, Ns);
998 
999   DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1000   // Collect all used nodes together with the uses from loads and stores,
1001   // where the GEP node could be folded into the load/store instruction.
1002   NodeToUsesMap FNs; // Foldable nodes.
1003   for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1004     GepNode *N = *I;
1005     if (!(N->Flags & GepNode::Used))
1006       continue;
1007     NodeToUsesMap::iterator UF = Uses.find(N);
1008     assert(UF != Uses.end());
1009     UseSet &Us = UF->second;
1010     // Loads/stores that use the node N.
1011     UseSet LSs;
1012     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1013       Use *U = *J;
1014       User *R = U->getUser();
1015       // We're interested in uses that provide the address. It can happen
1016       // that the value may also be provided via GEP, but we won't handle
1017       // those cases here for now.
1018       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1019         unsigned PtrX = LoadInst::getPointerOperandIndex();
1020         if (&Ld->getOperandUse(PtrX) == U)
1021           LSs.insert(U);
1022       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1023         unsigned PtrX = StoreInst::getPointerOperandIndex();
1024         if (&St->getOperandUse(PtrX) == U)
1025           LSs.insert(U);
1026       }
1027     }
1028     // Even if the total use count is 1, separating the chain may still be
1029     // beneficial, since the constant chain may be longer than the GEP alone
1030     // would be (e.g. if the parent node has a constant index and also has
1031     // other children).
1032     if (!LSs.empty())
1033       FNs.insert(std::make_pair(N, LSs));
1034   }
1035 
1036   DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1037 
1038   for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1039     GepNode *N = I->first;
1040     UseSet &Us = I->second;
1041     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1042       separateChainForNode(N, *J, Loc);
1043   }
1044 }
1045 
1046 
1047 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1048   // Compute the inverse of the Node.Parent links. Also, collect the set
1049   // of root nodes.
1050   NodeChildrenMap NCM;
1051   NodeVect Roots;
1052   invert_find_roots(Nodes, NCM, Roots);
1053 
1054   // Compute the initial placement determined by the users' locations, and
1055   // the locations of the child nodes.
1056   for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1057     recalculatePlacementRec(*I, NCM, Loc);
1058 
1059   DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1060 
1061   if (OptEnableInv) {
1062     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1063       adjustForInvariance(*I, NCM, Loc);
1064 
1065     DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1066                  << LocationAsBlock(Loc));
1067   }
1068   if (OptEnableConst) {
1069     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1070       separateConstantChains(*I, NCM, Loc);
1071   }
1072   DEBUG(dbgs() << "Node use information:\n" << Uses);
1073 
1074   // At the moment, there is no further refinement of the initial placement.
1075   // Such a refinement could include splitting the nodes if they are placed
1076   // too far from some of its users.
1077 
1078   DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1079 }
1080 
1081 
1082 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1083       BasicBlock *LocB) {
1084   DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1085                << " for nodes:\n" << NA);
1086   unsigned Num = NA.size();
1087   GepNode *RN = NA[0];
1088   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1089 
1090   Value *NewInst = 0;
1091   Value *Input = RN->BaseVal;
1092   Value **IdxList = new Value*[Num+1];
1093   unsigned nax = 0;
1094   do {
1095     unsigned IdxC = 0;
1096     // If the type of the input of the first node is not a pointer,
1097     // we need to add an artificial i32 0 to the indices (because the
1098     // actual input in the IR will be a pointer).
1099     if (!NA[nax]->PTy->isPointerTy()) {
1100       Type *Int32Ty = Type::getInt32Ty(*Ctx);
1101       IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1102     }
1103 
1104     // Keep adding indices from NA until we have to stop and generate
1105     // an "intermediate" GEP.
1106     while (++nax <= Num) {
1107       GepNode *N = NA[nax-1];
1108       IdxList[IdxC++] = N->Idx;
1109       if (nax < Num) {
1110         // We have to stop, if the expected type of the output of this node
1111         // is not the same as the input type of the next node.
1112         Type *NextTy = next_type(N->PTy, N->Idx);
1113         if (NextTy != NA[nax]->PTy)
1114           break;
1115       }
1116     }
1117     ArrayRef<Value*> A(IdxList, IdxC);
1118     Type *InpTy = Input->getType();
1119     Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1120     NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1121     DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1122     Input = NewInst;
1123   } while (nax <= Num);
1124 
1125   delete[] IdxList;
1126   return NewInst;
1127 }
1128 
1129 
1130 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1131       NodeChildrenMap &NCM) {
1132   NodeVect Work;
1133   Work.push_back(Node);
1134 
1135   while (!Work.empty()) {
1136     NodeVect::iterator First = Work.begin();
1137     GepNode *N = *First;
1138     Work.erase(First);
1139     if (N->Flags & GepNode::Used) {
1140       NodeToUsesMap::iterator UF = Uses.find(N);
1141       assert(UF != Uses.end() && "No use information for used node");
1142       UseSet &Us = UF->second;
1143       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1144         Values.push_back((*I)->getUser());
1145     }
1146     NodeChildrenMap::iterator CF = NCM.find(N);
1147     if (CF != NCM.end()) {
1148       NodeVect &Cs = CF->second;
1149       Work.insert(Work.end(), Cs.begin(), Cs.end());
1150     }
1151   }
1152 }
1153 
1154 
1155 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1156   DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1157   NodeChildrenMap NCM;
1158   NodeVect Roots;
1159   // Compute the inversion again, since computing placement could alter
1160   // "parent" relation between nodes.
1161   invert_find_roots(Nodes, NCM, Roots);
1162 
1163   while (!Roots.empty()) {
1164     NodeVect::iterator First = Roots.begin();
1165     GepNode *Root = *First, *Last = *First;
1166     Roots.erase(First);
1167 
1168     NodeVect NA;  // Nodes to assemble.
1169     // Append to NA all child nodes up to (and including) the first child
1170     // that:
1171     // (1) has more than 1 child, or
1172     // (2) is used, or
1173     // (3) has a child located in a different block.
1174     bool LastUsed = false;
1175     unsigned LastCN = 0;
1176     // The location may be null if the computation failed (it can legitimately
1177     // happen for nodes created from dead GEPs).
1178     Value *LocV = Loc[Last];
1179     if (!LocV)
1180       continue;
1181     BasicBlock *LastB = cast<BasicBlock>(LocV);
1182     do {
1183       NA.push_back(Last);
1184       LastUsed = (Last->Flags & GepNode::Used);
1185       if (LastUsed)
1186         break;
1187       NodeChildrenMap::iterator CF = NCM.find(Last);
1188       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1189       if (LastCN != 1)
1190         break;
1191       GepNode *Child = CF->second.front();
1192       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1193       if (ChildB != 0 && LastB != ChildB)
1194         break;
1195       Last = Child;
1196     } while (true);
1197 
1198     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1199     if (LastUsed || LastCN > 0) {
1200       ValueVect Urs;
1201       getAllUsersForNode(Root, Urs, NCM);
1202       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1203       if (FirstUse != LastB->end())
1204         InsertAt = FirstUse;
1205     }
1206 
1207     // Generate a new instruction for NA.
1208     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1209 
1210     // Convert all the children of Last node into roots, and append them
1211     // to the Roots list.
1212     if (LastCN > 0) {
1213       NodeVect &Cs = NCM[Last];
1214       for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1215         GepNode *CN = *I;
1216         CN->Flags &= ~GepNode::Internal;
1217         CN->Flags |= GepNode::Root;
1218         CN->BaseVal = NewInst;
1219         Roots.push_back(CN);
1220       }
1221     }
1222 
1223     // Lastly, if the Last node was used, replace all uses with the new GEP.
1224     // The uses reference the original GEP values.
1225     if (LastUsed) {
1226       NodeToUsesMap::iterator UF = Uses.find(Last);
1227       assert(UF != Uses.end() && "No use information found");
1228       UseSet &Us = UF->second;
1229       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1230         Use *U = *I;
1231         U->set(NewInst);
1232       }
1233     }
1234   }
1235 }
1236 
1237 
1238 void HexagonCommonGEP::removeDeadCode() {
1239   ValueVect BO;
1240   BO.push_back(&Fn->front());
1241 
1242   for (unsigned i = 0; i < BO.size(); ++i) {
1243     BasicBlock *B = cast<BasicBlock>(BO[i]);
1244     DomTreeNode *N = DT->getNode(B);
1245     typedef GraphTraits<DomTreeNode*> GTN;
1246     typedef GTN::ChildIteratorType Iter;
1247     for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1248       BO.push_back((*I)->getBlock());
1249   }
1250 
1251   for (unsigned i = BO.size(); i > 0; --i) {
1252     BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1253     BasicBlock::InstListType &IL = B->getInstList();
1254     typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
1255     ValueVect Ins;
1256     for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1257       Ins.push_back(&*I);
1258     for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1259       Instruction *In = cast<Instruction>(*I);
1260       if (isInstructionTriviallyDead(In))
1261         In->eraseFromParent();
1262     }
1263   }
1264 }
1265 
1266 
1267 bool HexagonCommonGEP::runOnFunction(Function &F) {
1268   if (skipFunction(F))
1269     return false;
1270 
1271   // For now bail out on C++ exception handling.
1272   for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1273     for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1274       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1275         return false;
1276 
1277   Fn = &F;
1278   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1279   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1280   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1281   Ctx = &F.getContext();
1282 
1283   Nodes.clear();
1284   Uses.clear();
1285   NodeOrder.clear();
1286 
1287   SpecificBumpPtrAllocator<GepNode> Allocator;
1288   Mem = &Allocator;
1289 
1290   collect();
1291   common();
1292 
1293   NodeToValueMap Loc;
1294   computeNodePlacement(Loc);
1295   materialize(Loc);
1296   removeDeadCode();
1297 
1298 #ifdef EXPENSIVE_CHECKS
1299   // Run this only when expensive checks are enabled.
1300   verifyFunction(F);
1301 #endif
1302   return true;
1303 }
1304 
1305 
1306 namespace llvm {
1307   FunctionPass *createHexagonCommonGEP() {
1308     return new HexagonCommonGEP();
1309   }
1310 }
1311