xref: /llvm-project/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp (revision fd91041ce1dcc7af9bbc80c43df40fa5cc93ab3b)
1 //===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "mcasmparser"
11 
12 #include "Hexagon.h"
13 #include "HexagonRegisterInfo.h"
14 #include "HexagonTargetStreamer.h"
15 #include "MCTargetDesc/HexagonBaseInfo.h"
16 #include "MCTargetDesc/HexagonMCAsmInfo.h"
17 #include "MCTargetDesc/HexagonMCChecker.h"
18 #include "MCTargetDesc/HexagonMCELFStreamer.h"
19 #include "MCTargetDesc/HexagonMCExpr.h"
20 #include "MCTargetDesc/HexagonMCShuffler.h"
21 #include "MCTargetDesc/HexagonMCTargetDesc.h"
22 #include "MCTargetDesc/HexagonShuffler.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCELFStreamer.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCParser/MCAsmLexer.h"
31 #include "llvm/MC/MCParser/MCAsmParser.h"
32 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
33 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCStreamer.h"
36 #include "llvm/MC/MCSubtargetInfo.h"
37 #include "llvm/MC/MCValue.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ELF.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/SourceMgr.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/raw_ostream.h"
46 
47 using namespace llvm;
48 
49 static cl::opt<bool> EnableFutureRegs("mfuture-regs",
50                                       cl::desc("Enable future registers"));
51 
52 static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis",
53 cl::desc("Warn for missing parenthesis around predicate registers"),
54 cl::init(true));
55 static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis",
56 cl::desc("Error for missing parenthesis around predicate registers"),
57 cl::init(false));
58 static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch",
59 cl::desc("Warn for mismatching a signed and unsigned value"),
60 cl::init(true));
61 static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register",
62 cl::desc("Warn for register names that arent contigious"),
63 cl::init(true));
64 static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register",
65 cl::desc("Error for register names that aren't contigious"),
66 cl::init(false));
67 
68 
69 namespace {
70 struct HexagonOperand;
71 
72 class HexagonAsmParser : public MCTargetAsmParser {
73 
74   HexagonTargetStreamer &getTargetStreamer() {
75     MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
76     return static_cast<HexagonTargetStreamer &>(TS);
77   }
78 
79   MCAsmParser &Parser;
80   MCAssembler *Assembler;
81   MCInstrInfo const &MCII;
82   MCInst MCB;
83   bool InBrackets;
84 
85   MCAsmParser &getParser() const { return Parser; }
86   MCAssembler *getAssembler() const { return Assembler; }
87   MCAsmLexer &getLexer() const { return Parser.getLexer(); }
88 
89   bool equalIsAsmAssignment() override { return false; }
90   bool isLabel(AsmToken &Token) override;
91 
92   void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
93   bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
94   bool ParseDirectiveFalign(unsigned Size, SMLoc L);
95 
96   virtual bool ParseRegister(unsigned &RegNo,
97                              SMLoc &StartLoc,
98                              SMLoc &EndLoc) override;
99   bool ParseDirectiveSubsection(SMLoc L);
100   bool ParseDirectiveValue(unsigned Size, SMLoc L);
101   bool ParseDirectiveComm(bool IsLocal, SMLoc L);
102   bool RegisterMatchesArch(unsigned MatchNum) const;
103 
104   bool matchBundleOptions();
105   bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
106   bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
107   void canonicalizeImmediates(MCInst &MCI);
108   bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
109                            OperandVector &InstOperands, uint64_t &ErrorInfo,
110                            bool MatchingInlineAsm);
111 
112   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
113                                OperandVector &Operands, MCStreamer &Out,
114                                uint64_t &ErrorInfo, bool MatchingInlineAsm) override;
115 
116   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override;
117   void OutOfRange(SMLoc IDLoc, long long Val, long long Max);
118   int processInstruction(MCInst &Inst, OperandVector const &Operands,
119                          SMLoc IDLoc);
120 
121   // Check if we have an assembler and, if so, set the ELF e_header flags.
122   void chksetELFHeaderEFlags(unsigned flags) {
123     if (getAssembler())
124       getAssembler()->setELFHeaderEFlags(flags);
125   }
126 
127   unsigned matchRegister(StringRef Name);
128 
129 /// @name Auto-generated Match Functions
130 /// {
131 
132 #define GET_ASSEMBLER_HEADER
133 #include "HexagonGenAsmMatcher.inc"
134 
135   /// }
136 
137 public:
138   HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser,
139                    const MCInstrInfo &MII, const MCTargetOptions &Options)
140     : MCTargetAsmParser(Options, _STI), Parser(_Parser),
141       MCII (MII), MCB(HexagonMCInstrInfo::createBundle()), InBrackets(false) {
142     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
143 
144   MCAsmParserExtension::Initialize(_Parser);
145 
146   Assembler = nullptr;
147   // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
148   if (!Parser.getStreamer().hasRawTextSupport()) {
149     MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
150     Assembler = &MES->getAssembler();
151   }
152   }
153 
154   bool mustExtend(OperandVector &Operands);
155   bool splitIdentifier(OperandVector &Operands);
156   bool parseOperand(OperandVector &Operands);
157   bool parseInstruction(OperandVector &Operands);
158   bool implicitExpressionLocation(OperandVector &Operands);
159   bool parseExpressionOrOperand(OperandVector &Operands);
160   bool parseExpression(MCExpr const *& Expr);
161   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
162                                 SMLoc NameLoc, OperandVector &Operands) override
163   {
164     llvm_unreachable("Unimplemented");
165   }
166   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
167                                 AsmToken ID, OperandVector &Operands) override;
168 
169   virtual bool ParseDirective(AsmToken DirectiveID) override;
170 };
171 
172 /// HexagonOperand - Instances of this class represent a parsed Hexagon machine
173 /// instruction.
174 struct HexagonOperand : public MCParsedAsmOperand {
175   enum KindTy { Token, Immediate, Register } Kind;
176 
177   SMLoc StartLoc, EndLoc;
178 
179   struct TokTy {
180     const char *Data;
181     unsigned Length;
182   };
183 
184   struct RegTy {
185     unsigned RegNum;
186   };
187 
188   struct ImmTy {
189     const MCExpr *Val;
190   };
191 
192   struct InstTy {
193     OperandVector *SubInsts;
194   };
195 
196   union {
197     struct TokTy Tok;
198     struct RegTy Reg;
199     struct ImmTy Imm;
200   };
201 
202   HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
203 
204 public:
205   HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() {
206     Kind = o.Kind;
207     StartLoc = o.StartLoc;
208     EndLoc = o.EndLoc;
209     switch (Kind) {
210     case Register:
211       Reg = o.Reg;
212       break;
213     case Immediate:
214       Imm = o.Imm;
215       break;
216     case Token:
217       Tok = o.Tok;
218       break;
219     }
220   }
221 
222   /// getStartLoc - Get the location of the first token of this operand.
223   SMLoc getStartLoc() const { return StartLoc; }
224 
225   /// getEndLoc - Get the location of the last token of this operand.
226   SMLoc getEndLoc() const { return EndLoc; }
227 
228   unsigned getReg() const {
229     assert(Kind == Register && "Invalid access!");
230     return Reg.RegNum;
231   }
232 
233   const MCExpr *getImm() const {
234     assert(Kind == Immediate && "Invalid access!");
235     return Imm.Val;
236   }
237 
238   bool isToken() const { return Kind == Token; }
239   bool isImm() const { return Kind == Immediate; }
240   bool isMem() const { llvm_unreachable("No isMem"); }
241   bool isReg() const { return Kind == Register; }
242 
243   bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
244                      bool isRelocatable, bool Extendable) const {
245     if (Kind == Immediate) {
246       const MCExpr *myMCExpr = &HexagonMCInstrInfo::getExpr(*getImm());
247       if (HexagonMCInstrInfo::mustExtend(*Imm.Val) && !Extendable)
248         return false;
249       int64_t Res;
250       if (myMCExpr->evaluateAsAbsolute(Res)) {
251         int bits = immBits + zeroBits;
252         // Field bit range is zerobits + bits
253         // zeroBits must be 0
254         if (Res & ((1 << zeroBits) - 1))
255           return false;
256         if (isSigned) {
257           if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
258             return true;
259         } else {
260           if (bits == 64)
261             return true;
262           if (Res >= 0)
263             return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false;
264           else {
265             const int64_t high_bit_set = 1ULL << 63;
266             const uint64_t mask = (high_bit_set >> (63 - bits));
267             return (((uint64_t)Res & mask) == mask) ? true : false;
268           }
269         }
270       } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
271         return true;
272       else if (myMCExpr->getKind() == MCExpr::Binary ||
273                myMCExpr->getKind() == MCExpr::Unary)
274         return true;
275     }
276     return false;
277   }
278 
279   bool isf32Ext() const { return false; }
280   bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); }
281   bool iss23_2Imm() const { return CheckImmRange(23, 2, true, true, false); }
282   bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); }
283   bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); }
284   bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); }
285   bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); }
286   bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); }
287   bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
288   bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
289   bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
290   bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
291   bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); }
292   bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); }
293   bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); }
294 
295   bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); }
296   bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); }
297   bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
298   bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); }
299   bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
300   bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
301   bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
302   bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
303   bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
304   bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
305   bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
306   bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
307   bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
308   bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); }
309   bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); }
310   bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); }
311   bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); }
312   bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); }
313   bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); }
314   bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); }
315   bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); }
316   bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); }
317   bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); }
318 
319   bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); }
320   bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); }
321 
322   bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); }
323   bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); }
324   bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); }
325   bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); }
326   bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); }
327   bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); }
328   bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); }
329   bool iss11_0Ext() const {
330     return CheckImmRange(11 + 26, 0, true, true, true);
331   }
332   bool iss11_1Ext() const {
333     return CheckImmRange(11 + 26, 1, true, true, true);
334   }
335   bool iss11_2Ext() const {
336     return CheckImmRange(11 + 26, 2, true, true, true);
337   }
338   bool iss11_3Ext() const {
339     return CheckImmRange(11 + 26, 3, true, true, true);
340   }
341 
342   bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
343   bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); }
344   bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); }
345   bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); }
346   bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); }
347   bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
348   bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); }
349   bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); }
350   bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); }
351   bool isu32MustExt() const { return isImm(); }
352 
353   void addRegOperands(MCInst &Inst, unsigned N) const {
354     assert(N == 1 && "Invalid number of operands!");
355     Inst.addOperand(MCOperand::createReg(getReg()));
356   }
357 
358   void addImmOperands(MCInst &Inst, unsigned N) const {
359     assert(N == 1 && "Invalid number of operands!");
360     Inst.addOperand(MCOperand::createExpr(getImm()));
361   }
362 
363   void addSignedImmOperands(MCInst &Inst, unsigned N) const {
364     assert(N == 1 && "Invalid number of operands!");
365     HexagonMCExpr *Expr =
366         const_cast<HexagonMCExpr *>(cast<HexagonMCExpr>(getImm()));
367     int64_t Value;
368     if (!Expr->evaluateAsAbsolute(Value)) {
369       Inst.addOperand(MCOperand::createExpr(Expr));
370       return;
371     }
372     int64_t Extended = SignExtend64(Value, 32);
373     if ((Extended < 0) != (Value < 0))
374       Expr->setSignMismatch();
375     Inst.addOperand(MCOperand::createExpr(Expr));
376   }
377 
378   void addf32ExtOperands(MCInst &Inst, unsigned N) const {
379     addImmOperands(Inst, N);
380   }
381 
382   void adds32ImmOperands(MCInst &Inst, unsigned N) const {
383     addSignedImmOperands(Inst, N);
384   }
385   void adds23_2ImmOperands(MCInst &Inst, unsigned N) const {
386     addSignedImmOperands(Inst, N);
387   }
388   void adds8ImmOperands(MCInst &Inst, unsigned N) const {
389     addSignedImmOperands(Inst, N);
390   }
391   void adds8Imm64Operands(MCInst &Inst, unsigned N) const {
392     addSignedImmOperands(Inst, N);
393   }
394   void adds6ImmOperands(MCInst &Inst, unsigned N) const {
395     addSignedImmOperands(Inst, N);
396   }
397   void adds4ImmOperands(MCInst &Inst, unsigned N) const {
398     addSignedImmOperands(Inst, N);
399   }
400   void adds4_0ImmOperands(MCInst &Inst, unsigned N) const {
401     addSignedImmOperands(Inst, N);
402   }
403   void adds4_1ImmOperands(MCInst &Inst, unsigned N) const {
404     addSignedImmOperands(Inst, N);
405   }
406   void adds4_2ImmOperands(MCInst &Inst, unsigned N) const {
407     addSignedImmOperands(Inst, N);
408   }
409   void adds4_3ImmOperands(MCInst &Inst, unsigned N) const {
410     addSignedImmOperands(Inst, N);
411   }
412   void adds3ImmOperands(MCInst &Inst, unsigned N) const {
413     addSignedImmOperands(Inst, N);
414   }
415 
416   void addu64ImmOperands(MCInst &Inst, unsigned N) const {
417     addImmOperands(Inst, N);
418   }
419   void addu32ImmOperands(MCInst &Inst, unsigned N) const {
420     addImmOperands(Inst, N);
421   }
422   void addu26_6ImmOperands(MCInst &Inst, unsigned N) const {
423     addImmOperands(Inst, N);
424   }
425   void addu16ImmOperands(MCInst &Inst, unsigned N) const {
426     addImmOperands(Inst, N);
427   }
428   void addu16_0ImmOperands(MCInst &Inst, unsigned N) const {
429     addImmOperands(Inst, N);
430   }
431   void addu16_1ImmOperands(MCInst &Inst, unsigned N) const {
432     addImmOperands(Inst, N);
433   }
434   void addu16_2ImmOperands(MCInst &Inst, unsigned N) const {
435     addImmOperands(Inst, N);
436   }
437   void addu16_3ImmOperands(MCInst &Inst, unsigned N) const {
438     addImmOperands(Inst, N);
439   }
440   void addu11_3ImmOperands(MCInst &Inst, unsigned N) const {
441     addImmOperands(Inst, N);
442   }
443   void addu10ImmOperands(MCInst &Inst, unsigned N) const {
444     addImmOperands(Inst, N);
445   }
446   void addu9ImmOperands(MCInst &Inst, unsigned N) const {
447     addImmOperands(Inst, N);
448   }
449   void addu8ImmOperands(MCInst &Inst, unsigned N) const {
450     addImmOperands(Inst, N);
451   }
452   void addu7ImmOperands(MCInst &Inst, unsigned N) const {
453     addImmOperands(Inst, N);
454   }
455   void addu6ImmOperands(MCInst &Inst, unsigned N) const {
456     addImmOperands(Inst, N);
457   }
458   void addu6_0ImmOperands(MCInst &Inst, unsigned N) const {
459     addImmOperands(Inst, N);
460   }
461   void addu6_1ImmOperands(MCInst &Inst, unsigned N) const {
462     addImmOperands(Inst, N);
463   }
464   void addu6_2ImmOperands(MCInst &Inst, unsigned N) const {
465     addImmOperands(Inst, N);
466   }
467   void addu6_3ImmOperands(MCInst &Inst, unsigned N) const {
468     addImmOperands(Inst, N);
469   }
470   void addu5ImmOperands(MCInst &Inst, unsigned N) const {
471     addImmOperands(Inst, N);
472   }
473   void addu4ImmOperands(MCInst &Inst, unsigned N) const {
474     addImmOperands(Inst, N);
475   }
476   void addu3ImmOperands(MCInst &Inst, unsigned N) const {
477     addImmOperands(Inst, N);
478   }
479   void addu2ImmOperands(MCInst &Inst, unsigned N) const {
480     addImmOperands(Inst, N);
481   }
482   void addu1ImmOperands(MCInst &Inst, unsigned N) const {
483     addImmOperands(Inst, N);
484   }
485 
486   void addm6ImmOperands(MCInst &Inst, unsigned N) const {
487     addImmOperands(Inst, N);
488   }
489   void addn8ImmOperands(MCInst &Inst, unsigned N) const {
490     addImmOperands(Inst, N);
491   }
492 
493   void adds16ExtOperands(MCInst &Inst, unsigned N) const {
494     addSignedImmOperands(Inst, N);
495   }
496   void adds12ExtOperands(MCInst &Inst, unsigned N) const {
497     addSignedImmOperands(Inst, N);
498   }
499   void adds10ExtOperands(MCInst &Inst, unsigned N) const {
500     addSignedImmOperands(Inst, N);
501   }
502   void adds9ExtOperands(MCInst &Inst, unsigned N) const {
503     addSignedImmOperands(Inst, N);
504   }
505   void adds8ExtOperands(MCInst &Inst, unsigned N) const {
506     addSignedImmOperands(Inst, N);
507   }
508   void adds6ExtOperands(MCInst &Inst, unsigned N) const {
509     addSignedImmOperands(Inst, N);
510   }
511   void adds11_0ExtOperands(MCInst &Inst, unsigned N) const {
512     addSignedImmOperands(Inst, N);
513   }
514   void adds11_1ExtOperands(MCInst &Inst, unsigned N) const {
515     addSignedImmOperands(Inst, N);
516   }
517   void adds11_2ExtOperands(MCInst &Inst, unsigned N) const {
518     addSignedImmOperands(Inst, N);
519   }
520   void adds11_3ExtOperands(MCInst &Inst, unsigned N) const {
521     addSignedImmOperands(Inst, N);
522   }
523 
524   void addu6ExtOperands(MCInst &Inst, unsigned N) const {
525     addImmOperands(Inst, N);
526   }
527   void addu7ExtOperands(MCInst &Inst, unsigned N) const {
528     addImmOperands(Inst, N);
529   }
530   void addu8ExtOperands(MCInst &Inst, unsigned N) const {
531     addImmOperands(Inst, N);
532   }
533   void addu9ExtOperands(MCInst &Inst, unsigned N) const {
534     addImmOperands(Inst, N);
535   }
536   void addu10ExtOperands(MCInst &Inst, unsigned N) const {
537     addImmOperands(Inst, N);
538   }
539   void addu6_0ExtOperands(MCInst &Inst, unsigned N) const {
540     addImmOperands(Inst, N);
541   }
542   void addu6_1ExtOperands(MCInst &Inst, unsigned N) const {
543     addImmOperands(Inst, N);
544   }
545   void addu6_2ExtOperands(MCInst &Inst, unsigned N) const {
546     addImmOperands(Inst, N);
547   }
548   void addu6_3ExtOperands(MCInst &Inst, unsigned N) const {
549     addImmOperands(Inst, N);
550   }
551   void addu32MustExtOperands(MCInst &Inst, unsigned N) const {
552     addImmOperands(Inst, N);
553   }
554 
555   void adds4_6ImmOperands(MCInst &Inst, unsigned N) const {
556     assert(N == 1 && "Invalid number of operands!");
557     const MCConstantExpr *CE =
558         dyn_cast<MCConstantExpr>(&HexagonMCInstrInfo::getExpr(*getImm()));
559     Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
560   }
561 
562   void adds3_6ImmOperands(MCInst &Inst, unsigned N) const {
563     assert(N == 1 && "Invalid number of operands!");
564     const MCConstantExpr *CE =
565         dyn_cast<MCConstantExpr>(&HexagonMCInstrInfo::getExpr(*getImm()));
566     Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
567   }
568 
569   StringRef getToken() const {
570     assert(Kind == Token && "Invalid access!");
571     return StringRef(Tok.Data, Tok.Length);
572   }
573 
574   virtual void print(raw_ostream &OS) const;
575 
576   static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) {
577     HexagonOperand *Op = new HexagonOperand(Token);
578     Op->Tok.Data = Str.data();
579     Op->Tok.Length = Str.size();
580     Op->StartLoc = S;
581     Op->EndLoc = S;
582     return std::unique_ptr<HexagonOperand>(Op);
583   }
584 
585   static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S,
586                                                    SMLoc E) {
587     HexagonOperand *Op = new HexagonOperand(Register);
588     Op->Reg.RegNum = RegNum;
589     Op->StartLoc = S;
590     Op->EndLoc = E;
591     return std::unique_ptr<HexagonOperand>(Op);
592   }
593 
594   static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S,
595                                                    SMLoc E) {
596     HexagonOperand *Op = new HexagonOperand(Immediate);
597     Op->Imm.Val = Val;
598     Op->StartLoc = S;
599     Op->EndLoc = E;
600     return std::unique_ptr<HexagonOperand>(Op);
601   }
602 };
603 
604 } // end anonymous namespace.
605 
606 void HexagonOperand::print(raw_ostream &OS) const {
607   switch (Kind) {
608   case Immediate:
609     getImm()->print(OS, nullptr);
610     break;
611   case Register:
612     OS << "<register R";
613     OS << getReg() << ">";
614     break;
615   case Token:
616     OS << "'" << getToken() << "'";
617     break;
618   }
619 }
620 
621 bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
622   DEBUG(dbgs() << "Bundle:");
623   DEBUG(MCB.dump_pretty(dbgs()));
624   DEBUG(dbgs() << "--\n");
625 
626   // Check the bundle for errors.
627   const MCRegisterInfo *RI = getContext().getRegisterInfo();
628   HexagonMCChecker Check(MCII, getSTI(), MCB, MCB, *RI);
629 
630   bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, getSTI(),
631                                                         getContext(), MCB,
632                                                         &Check);
633 
634   while (Check.getNextErrInfo() == true) {
635     unsigned Reg = Check.getErrRegister();
636     Twine R(RI->getName(Reg));
637 
638     uint64_t Err = Check.getError();
639     if (Err != HexagonMCErrInfo::CHECK_SUCCESS) {
640       if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err)
641         Error(IDLoc,
642               "unconditional branch cannot precede another branch in packet");
643 
644       if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err ||
645           HexagonMCErrInfo::CHECK_ERROR_NEWV & Err)
646         Error(IDLoc, "register `" + R +
647                          "' used with `.new' "
648                          "but not validly modified in the same packet");
649 
650       if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err)
651         Error(IDLoc, "register `" + R + "' modified more than once");
652 
653       if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err)
654         Error(IDLoc, "cannot write to read-only register `" + R + "'");
655 
656       if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err)
657         Error(IDLoc, "loop-setup and some branch instructions "
658                      "cannot be in the same packet");
659 
660       if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) {
661         Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1');
662         Error(IDLoc, "packet marked with `:endloop" + N + "' " +
663                          "cannot contain instructions that modify register " +
664                          "`" + R + "'");
665       }
666 
667       if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err)
668         Error(IDLoc,
669               "instruction cannot appear in packet with other instructions");
670 
671       if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err)
672         Error(IDLoc, "too many slots used in packet");
673 
674       if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) {
675         uint64_t Erm = Check.getShuffleError();
676 
677         if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm)
678           Error(IDLoc, "invalid instruction packet");
679         else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm)
680           Error(IDLoc, "invalid instruction packet: too many stores");
681         else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm)
682           Error(IDLoc, "invalid instruction packet: too many loads");
683         else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm)
684           Error(IDLoc, "too many branches in packet");
685         else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm)
686           Error(IDLoc, "invalid instruction packet: out of slots");
687         else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm)
688           Error(IDLoc, "invalid instruction packet: slot error");
689         else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm)
690           Error(IDLoc, "v60 packet violation");
691         else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm)
692           Error(IDLoc, "slot 0 instruction does not allow slot 1 store");
693         else
694           Error(IDLoc, "unknown error in instruction packet");
695       }
696     }
697 
698     unsigned Warn = Check.getWarning();
699     if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) {
700       if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn)
701         Warning(IDLoc, "register `" + R + "' used with `.cur' "
702                                           "but not used in the same packet");
703       else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn)
704         Warning(IDLoc, "register `" + R + "' used with `.tmp' "
705                                           "but not used in the same packet");
706     }
707   }
708 
709   if (CheckOk) {
710     MCB.setLoc(IDLoc);
711     if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
712       assert(!HexagonMCInstrInfo::isInnerLoop(MCB));
713       assert(!HexagonMCInstrInfo::isOuterLoop(MCB));
714       // Empty packets are valid yet aren't emitted
715       return false;
716     }
717     Out.EmitInstruction(MCB, getSTI());
718   } else {
719     // If compounding and duplexing didn't reduce the size below
720     // 4 or less we have a packet that is too big.
721     if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
722       Error(IDLoc, "invalid instruction packet: out of slots");
723       return true; // Error
724     }
725   }
726 
727   return false; // No error
728 }
729 
730 bool HexagonAsmParser::matchBundleOptions() {
731   MCAsmParser &Parser = getParser();
732   while (true) {
733     if (!Parser.getTok().is(AsmToken::Colon))
734       return false;
735     Lex();
736     StringRef Option = Parser.getTok().getString();
737     if (Option.compare_lower("endloop0") == 0)
738       HexagonMCInstrInfo::setInnerLoop(MCB);
739     else if (Option.compare_lower("endloop1") == 0)
740       HexagonMCInstrInfo::setOuterLoop(MCB);
741     else if (Option.compare_lower("mem_noshuf") == 0)
742       HexagonMCInstrInfo::setMemReorderDisabled(MCB);
743     else if (Option.compare_lower("mem_shuf") == 0)
744       HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB);
745     else
746       return true;
747     Lex();
748   }
749 }
750 
751 // For instruction aliases, immediates are generated rather than
752 // MCConstantExpr.  Convert them for uniform MCExpr.
753 // Also check for signed/unsigned mismatches and warn
754 void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
755   MCInst NewInst;
756   NewInst.setOpcode(MCI.getOpcode());
757   for (MCOperand &I : MCI)
758     if (I.isImm()) {
759       int64_t Value (I.getImm());
760       NewInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
761           MCConstantExpr::create(Value, getContext()), getContext())));
762     }
763     else {
764       if (I.isExpr() && cast<HexagonMCExpr>(I.getExpr())->signMismatch() &&
765           WarnSignedMismatch)
766         Warning (MCI.getLoc(), "Signed/Unsigned mismatch");
767       NewInst.addOperand(I);
768     }
769   MCI = NewInst;
770 }
771 
772 bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
773                                            OperandVector &InstOperands,
774                                            uint64_t &ErrorInfo,
775                                            bool MatchingInlineAsm) {
776   // Perform matching with tablegen asmmatcher generated function
777   int result =
778       MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
779   if (result == Match_Success) {
780     MCI.setLoc(IDLoc);
781     canonicalizeImmediates(MCI);
782     result = processInstruction(MCI, InstOperands, IDLoc);
783 
784     DEBUG(dbgs() << "Insn:");
785     DEBUG(MCI.dump_pretty(dbgs()));
786     DEBUG(dbgs() << "\n\n");
787 
788     MCI.setLoc(IDLoc);
789   }
790 
791   // Create instruction operand for bundle instruction
792   //   Break this into a separate function Code here is less readable
793   //   Think about how to get an instruction error to report correctly.
794   //   SMLoc will return the "{"
795   switch (result) {
796   default:
797     break;
798   case Match_Success:
799     return false;
800   case Match_MissingFeature:
801     return Error(IDLoc, "invalid instruction");
802   case Match_MnemonicFail:
803     return Error(IDLoc, "unrecognized instruction");
804   case Match_InvalidOperand:
805     SMLoc ErrorLoc = IDLoc;
806     if (ErrorInfo != ~0U) {
807       if (ErrorInfo >= InstOperands.size())
808         return Error(IDLoc, "too few operands for instruction");
809 
810       ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
811                      ->getStartLoc();
812       if (ErrorLoc == SMLoc())
813         ErrorLoc = IDLoc;
814     }
815     return Error(ErrorLoc, "invalid operand for instruction");
816   }
817   llvm_unreachable("Implement any new match types added!");
818 }
819 
820 bool HexagonAsmParser::mustExtend(OperandVector &Operands) {
821   unsigned Count = 0;
822   for (std::unique_ptr<MCParsedAsmOperand> &i : Operands)
823     if (i->isImm())
824       if (HexagonMCInstrInfo::mustExtend(
825               *static_cast<HexagonOperand *>(i.get())->Imm.Val))
826         ++Count;
827   // Multiple extenders should have been filtered by iss9Ext et. al.
828   assert(Count < 2 && "Multiple extenders");
829   return Count == 1;
830 }
831 
832 bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
833                                                OperandVector &Operands,
834                                                MCStreamer &Out,
835                                                uint64_t &ErrorInfo,
836                                                bool MatchingInlineAsm) {
837   if (!InBrackets) {
838     MCB.clear();
839     MCB.addOperand(MCOperand::createImm(0));
840   }
841   HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
842   if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
843     assert(Operands.size() == 1 && "Brackets should be by themselves");
844     if (InBrackets) {
845       getParser().Error(IDLoc, "Already in a packet");
846       return true;
847     }
848     InBrackets = true;
849     return false;
850   }
851   if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
852     assert(Operands.size() == 1 && "Brackets should be by themselves");
853     if (!InBrackets) {
854       getParser().Error(IDLoc, "Not in a packet");
855       return true;
856     }
857     InBrackets = false;
858     if (matchBundleOptions())
859       return true;
860     return finishBundle(IDLoc, Out);
861   }
862   MCInst *SubInst = new (getParser().getContext()) MCInst;
863   if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
864                           MatchingInlineAsm))
865     return true;
866   HexagonMCInstrInfo::extendIfNeeded(
867       getParser().getContext(), MCII, MCB, *SubInst);
868   MCB.addOperand(MCOperand::createInst(SubInst));
869   if (!InBrackets)
870     return finishBundle(IDLoc, Out);
871   return false;
872 }
873 
874 /// ParseDirective parses the Hexagon specific directives
875 bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
876   StringRef IDVal = DirectiveID.getIdentifier();
877   if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte"))
878     return ParseDirectiveValue(4, DirectiveID.getLoc());
879   if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" ||
880       IDVal.lower() == ".half")
881     return ParseDirectiveValue(2, DirectiveID.getLoc());
882   if (IDVal.lower() == ".falign")
883     return ParseDirectiveFalign(256, DirectiveID.getLoc());
884   if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
885     return ParseDirectiveComm(true, DirectiveID.getLoc());
886   if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
887     return ParseDirectiveComm(false, DirectiveID.getLoc());
888   if (IDVal.lower() == ".subsection")
889     return ParseDirectiveSubsection(DirectiveID.getLoc());
890 
891   return true;
892 }
893 bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
894   const MCExpr *Subsection = 0;
895   int64_t Res;
896 
897   assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
898          "Invalid subsection directive");
899   getParser().parseExpression(Subsection);
900 
901   if (!Subsection->evaluateAsAbsolute(Res))
902     return Error(L, "Cannot evaluate subsection number");
903 
904   if (getLexer().isNot(AsmToken::EndOfStatement))
905     return TokError("unexpected token in directive");
906 
907   // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
908   // negative subsections together and in the same order but at the opposite
909   // end of the section.  Only legacy hexagon-gcc created assembly code
910   // used negative subsections.
911   if ((Res < 0) && (Res > -8193))
912     Subsection = HexagonMCExpr::create(
913         MCConstantExpr::create(8192 + Res, getContext()), getContext());
914 
915   getStreamer().SubSection(Subsection);
916   return false;
917 }
918 
919 ///  ::= .falign [expression]
920 bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
921 
922   int64_t MaxBytesToFill = 15;
923 
924   // if there is an arguement
925   if (getLexer().isNot(AsmToken::EndOfStatement)) {
926     const MCExpr *Value;
927     SMLoc ExprLoc = L;
928 
929     // Make sure we have a number (false is returned if expression is a number)
930     if (getParser().parseExpression(Value) == false) {
931       // Make sure this is a number that is in range
932       const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
933       uint64_t IntValue = MCE->getValue();
934       if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
935         return Error(ExprLoc, "literal value out of range (256) for falign");
936       MaxBytesToFill = IntValue;
937       Lex();
938     } else {
939       return Error(ExprLoc, "not a valid expression for falign directive");
940     }
941   }
942 
943   getTargetStreamer().emitFAlign(16, MaxBytesToFill);
944   Lex();
945 
946   return false;
947 }
948 
949 ///  ::= .word [ expression (, expression)* ]
950 bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) {
951   if (getLexer().isNot(AsmToken::EndOfStatement)) {
952 
953     for (;;) {
954       const MCExpr *Value;
955       SMLoc ExprLoc = L;
956       if (getParser().parseExpression(Value))
957         return true;
958 
959       // Special case constant expressions to match code generator.
960       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
961         assert(Size <= 8 && "Invalid size");
962         uint64_t IntValue = MCE->getValue();
963         if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
964           return Error(ExprLoc, "literal value out of range for directive");
965         getStreamer().EmitIntValue(IntValue, Size);
966       } else
967         getStreamer().EmitValue(Value, Size);
968 
969       if (getLexer().is(AsmToken::EndOfStatement))
970         break;
971 
972       // FIXME: Improve diagnostic.
973       if (getLexer().isNot(AsmToken::Comma))
974         return TokError("unexpected token in directive");
975       Lex();
976     }
977   }
978 
979   Lex();
980   return false;
981 }
982 
983 // This is largely a copy of AsmParser's ParseDirectiveComm extended to
984 // accept a 3rd argument, AccessAlignment which indicates the smallest
985 // memory access made to the symbol, expressed in bytes.  If no
986 // AccessAlignment is specified it defaults to the Alignment Value.
987 // Hexagon's .lcomm:
988 //   .lcomm Symbol, Length, Alignment, AccessAlignment
989 bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
990   // FIXME: need better way to detect if AsmStreamer (upstream removed
991   // getKind())
992   if (getStreamer().hasRawTextSupport())
993     return true; // Only object file output requires special treatment.
994 
995   StringRef Name;
996   if (getParser().parseIdentifier(Name))
997     return TokError("expected identifier in directive");
998   // Handle the identifier as the key symbol.
999   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
1000 
1001   if (getLexer().isNot(AsmToken::Comma))
1002     return TokError("unexpected token in directive");
1003   Lex();
1004 
1005   int64_t Size;
1006   SMLoc SizeLoc = getLexer().getLoc();
1007   if (getParser().parseAbsoluteExpression(Size))
1008     return true;
1009 
1010   int64_t ByteAlignment = 1;
1011   SMLoc ByteAlignmentLoc;
1012   if (getLexer().is(AsmToken::Comma)) {
1013     Lex();
1014     ByteAlignmentLoc = getLexer().getLoc();
1015     if (getParser().parseAbsoluteExpression(ByteAlignment))
1016       return true;
1017     if (!isPowerOf2_64(ByteAlignment))
1018       return Error(ByteAlignmentLoc, "alignment must be a power of 2");
1019   }
1020 
1021   int64_t AccessAlignment = 0;
1022   if (getLexer().is(AsmToken::Comma)) {
1023     // The optional access argument specifies the size of the smallest memory
1024     //   access to be made to the symbol, expressed in bytes.
1025     SMLoc AccessAlignmentLoc;
1026     Lex();
1027     AccessAlignmentLoc = getLexer().getLoc();
1028     if (getParser().parseAbsoluteExpression(AccessAlignment))
1029       return true;
1030 
1031     if (!isPowerOf2_64(AccessAlignment))
1032       return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
1033   }
1034 
1035   if (getLexer().isNot(AsmToken::EndOfStatement))
1036     return TokError("unexpected token in '.comm' or '.lcomm' directive");
1037 
1038   Lex();
1039 
1040   // NOTE: a size of zero for a .comm should create a undefined symbol
1041   // but a size of .lcomm creates a bss symbol of size zero.
1042   if (Size < 0)
1043     return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
1044                           "be less than zero");
1045 
1046   // NOTE: The alignment in the directive is a power of 2 value, the assembler
1047   // may internally end up wanting an alignment in bytes.
1048   // FIXME: Diagnose overflow.
1049   if (ByteAlignment < 0)
1050     return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
1051                                    "alignment, can't be less than zero");
1052 
1053   if (!Sym->isUndefined())
1054     return Error(Loc, "invalid symbol redefinition");
1055 
1056   HexagonMCELFStreamer &HexagonELFStreamer =
1057       static_cast<HexagonMCELFStreamer &>(getStreamer());
1058   if (IsLocal) {
1059     HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment,
1060                                                       AccessAlignment);
1061     return false;
1062   }
1063 
1064   HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment,
1065                                                AccessAlignment);
1066   return false;
1067 }
1068 
1069 // validate register against architecture
1070 bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const {
1071   return true;
1072 }
1073 
1074 // extern "C" void LLVMInitializeHexagonAsmLexer();
1075 
1076 /// Force static initialization.
1077 extern "C" void LLVMInitializeHexagonAsmParser() {
1078   RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget);
1079 }
1080 
1081 #define GET_MATCHER_IMPLEMENTATION
1082 #define GET_REGISTER_MATCHER
1083 #include "HexagonGenAsmMatcher.inc"
1084 
1085 namespace {
1086 bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) {
1087   if (Index >= Operands.size())
1088     return false;
1089   MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
1090   if (!Operand.isToken())
1091     return false;
1092   return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String);
1093 }
1094 bool previousIsLoop(OperandVector &Operands, size_t Index) {
1095   return previousEqual(Operands, Index, "loop0") ||
1096          previousEqual(Operands, Index, "loop1") ||
1097          previousEqual(Operands, Index, "sp1loop0") ||
1098          previousEqual(Operands, Index, "sp2loop0") ||
1099          previousEqual(Operands, Index, "sp3loop0");
1100 }
1101 }
1102 
1103 bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
1104   AsmToken const &Token = getParser().getTok();
1105   StringRef String = Token.getString();
1106   SMLoc Loc = Token.getLoc();
1107   Lex();
1108   do {
1109     std::pair<StringRef, StringRef> HeadTail = String.split('.');
1110     if (!HeadTail.first.empty())
1111       Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc));
1112     if (!HeadTail.second.empty())
1113       Operands.push_back(HexagonOperand::CreateToken(
1114           String.substr(HeadTail.first.size(), 1), Loc));
1115     String = HeadTail.second;
1116   } while (!String.empty());
1117   return false;
1118 }
1119 
1120 bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
1121   unsigned Register;
1122   SMLoc Begin;
1123   SMLoc End;
1124   MCAsmLexer &Lexer = getLexer();
1125   if (!ParseRegister(Register, Begin, End)) {
1126     if (!ErrorMissingParenthesis)
1127       switch (Register) {
1128       default:
1129         break;
1130       case Hexagon::P0:
1131       case Hexagon::P1:
1132       case Hexagon::P2:
1133       case Hexagon::P3:
1134         if (previousEqual(Operands, 0, "if")) {
1135           if (WarnMissingParenthesis)
1136             Warning (Begin, "Missing parenthesis around predicate register");
1137           static char const *LParen = "(";
1138           static char const *RParen = ")";
1139           Operands.push_back(HexagonOperand::CreateToken(LParen, Begin));
1140           Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1141           const AsmToken &MaybeDotNew = Lexer.getTok();
1142           if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1143               MaybeDotNew.getString().equals_lower(".new"))
1144             splitIdentifier(Operands);
1145           Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1146           return false;
1147         }
1148         if (previousEqual(Operands, 0, "!") &&
1149             previousEqual(Operands, 1, "if")) {
1150           if (WarnMissingParenthesis)
1151             Warning (Begin, "Missing parenthesis around predicate register");
1152           static char const *LParen = "(";
1153           static char const *RParen = ")";
1154           Operands.insert(Operands.end () - 1,
1155                           HexagonOperand::CreateToken(LParen, Begin));
1156           Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1157           const AsmToken &MaybeDotNew = Lexer.getTok();
1158           if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1159               MaybeDotNew.getString().equals_lower(".new"))
1160             splitIdentifier(Operands);
1161           Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1162           return false;
1163         }
1164         break;
1165       }
1166     Operands.push_back(HexagonOperand::CreateReg(
1167         Register, Begin, End));
1168     return false;
1169   }
1170   return splitIdentifier(Operands);
1171 }
1172 
1173 bool HexagonAsmParser::isLabel(AsmToken &Token) {
1174   MCAsmLexer &Lexer = getLexer();
1175   AsmToken const &Second = Lexer.getTok();
1176   AsmToken Third = Lexer.peekTok();
1177   StringRef String = Token.getString();
1178   if (Token.is(AsmToken::TokenKind::LCurly) ||
1179       Token.is(AsmToken::TokenKind::RCurly))
1180     return false;
1181   if (!Token.is(AsmToken::TokenKind::Identifier))
1182     return true;
1183   if (!matchRegister(String.lower()))
1184     return true;
1185   (void)Second;
1186   assert(Second.is(AsmToken::Colon));
1187   StringRef Raw (String.data(), Third.getString().data() - String.data() +
1188                  Third.getString().size());
1189   std::string Collapsed = Raw;
1190   Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1191                   Collapsed.end());
1192   StringRef Whole = Collapsed;
1193   std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
1194   if (!matchRegister(DotSplit.first.lower()))
1195     return true;
1196   return false;
1197 }
1198 
1199 bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) {
1200   if (!Contigious && ErrorNoncontigiousRegister) {
1201     Error(Loc, "Register name is not contigious");
1202     return true;
1203   }
1204   if (!Contigious && WarnNoncontigiousRegister)
1205     Warning(Loc, "Register name is not contigious");
1206   return false;
1207 }
1208 
1209 bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
1210   MCAsmLexer &Lexer = getLexer();
1211   StartLoc = getLexer().getLoc();
1212   SmallVector<AsmToken, 5> Lookahead;
1213   StringRef RawString(Lexer.getTok().getString().data(), 0);
1214   bool Again = Lexer.is(AsmToken::Identifier);
1215   bool NeededWorkaround = false;
1216   while (Again) {
1217     AsmToken const &Token = Lexer.getTok();
1218     RawString = StringRef(RawString.data(),
1219                           Token.getString().data() - RawString.data () +
1220                           Token.getString().size());
1221     Lookahead.push_back(Token);
1222     Lexer.Lex();
1223     bool Contigious = Lexer.getTok().getString().data() ==
1224                       Lookahead.back().getString().data() +
1225                       Lookahead.back().getString().size();
1226     bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
1227                 Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
1228                 Lexer.is(AsmToken::Colon);
1229     bool Workaround = Lexer.is(AsmToken::Colon) ||
1230                       Lookahead.back().is(AsmToken::Colon);
1231     Again = (Contigious && Type) || (Workaround && Type);
1232     NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
1233   }
1234   std::string Collapsed = RawString;
1235   Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1236                   Collapsed.end());
1237   StringRef FullString = Collapsed;
1238   std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
1239   unsigned DotReg = matchRegister(DotSplit.first.lower());
1240   if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1241     if (DotSplit.second.empty()) {
1242       RegNo = DotReg;
1243       EndLoc = Lexer.getLoc();
1244       if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1245         return true;
1246       return false;
1247     } else {
1248       RegNo = DotReg;
1249       size_t First = RawString.find('.');
1250       StringRef DotString (RawString.data() + First, RawString.size() - First);
1251       Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
1252       EndLoc = Lexer.getLoc();
1253       if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1254         return true;
1255       return false;
1256     }
1257   }
1258   std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
1259   unsigned ColonReg = matchRegister(ColonSplit.first.lower());
1260   if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1261     Lexer.UnLex(Lookahead.back());
1262     Lookahead.pop_back();
1263     Lexer.UnLex(Lookahead.back());
1264     Lookahead.pop_back();
1265     RegNo = ColonReg;
1266     EndLoc = Lexer.getLoc();
1267     if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1268       return true;
1269     return false;
1270   }
1271   while (!Lookahead.empty()) {
1272     Lexer.UnLex(Lookahead.back());
1273     Lookahead.pop_back();
1274   }
1275   return true;
1276 }
1277 
1278 bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
1279   if (previousEqual(Operands, 0, "call"))
1280     return true;
1281   if (previousEqual(Operands, 0, "jump"))
1282     if (!getLexer().getTok().is(AsmToken::Colon))
1283       return true;
1284   if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
1285     return true;
1286   if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
1287       (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
1288     return true;
1289   return false;
1290 }
1291 
1292 bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) {
1293   llvm::SmallVector<AsmToken, 4> Tokens;
1294   MCAsmLexer &Lexer = getLexer();
1295   bool Done = false;
1296   static char const * Comma = ",";
1297   do {
1298     Tokens.emplace_back (Lexer.getTok());
1299     Lex();
1300     switch (Tokens.back().getKind())
1301     {
1302     case AsmToken::TokenKind::Hash:
1303       if (Tokens.size () > 1)
1304         if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) {
1305           Tokens.insert(Tokens.end() - 2,
1306                         AsmToken(AsmToken::TokenKind::Comma, Comma));
1307           Done = true;
1308         }
1309       break;
1310     case AsmToken::TokenKind::RCurly:
1311     case AsmToken::TokenKind::EndOfStatement:
1312     case AsmToken::TokenKind::Eof:
1313       Done = true;
1314       break;
1315     default:
1316       break;
1317     }
1318   } while (!Done);
1319   while (!Tokens.empty()) {
1320     Lexer.UnLex(Tokens.back());
1321     Tokens.pop_back();
1322   }
1323   return getParser().parseExpression(Expr);
1324 }
1325 
1326 bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
1327   if (implicitExpressionLocation(Operands)) {
1328     MCAsmParser &Parser = getParser();
1329     SMLoc Loc = Parser.getLexer().getLoc();
1330     MCExpr const *Expr = nullptr;
1331     bool Error = parseExpression(Expr);
1332     Expr = HexagonMCExpr::create(Expr, getContext());
1333     if (!Error)
1334       Operands.push_back(HexagonOperand::CreateImm(Expr, Loc, Loc));
1335     return Error;
1336   }
1337   return parseOperand(Operands);
1338 }
1339 
1340 /// Parse an instruction.
1341 bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
1342   MCAsmParser &Parser = getParser();
1343   MCAsmLexer &Lexer = getLexer();
1344   while (true) {
1345     AsmToken const &Token = Parser.getTok();
1346     switch (Token.getKind()) {
1347     case AsmToken::EndOfStatement: {
1348       Lex();
1349       return false;
1350     }
1351     case AsmToken::LCurly: {
1352       if (!Operands.empty())
1353         return true;
1354       Operands.push_back(
1355           HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1356       Lex();
1357       return false;
1358     }
1359     case AsmToken::RCurly: {
1360       if (Operands.empty()) {
1361         Operands.push_back(
1362             HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1363         Lex();
1364       }
1365       return false;
1366     }
1367     case AsmToken::Comma: {
1368       Lex();
1369       continue;
1370     }
1371     case AsmToken::EqualEqual:
1372     case AsmToken::ExclaimEqual:
1373     case AsmToken::GreaterEqual:
1374     case AsmToken::GreaterGreater:
1375     case AsmToken::LessEqual:
1376     case AsmToken::LessLess: {
1377       Operands.push_back(HexagonOperand::CreateToken(
1378           Token.getString().substr(0, 1), Token.getLoc()));
1379       Operands.push_back(HexagonOperand::CreateToken(
1380           Token.getString().substr(1, 1), Token.getLoc()));
1381       Lex();
1382       continue;
1383     }
1384     case AsmToken::Hash: {
1385       bool MustNotExtend = false;
1386       bool ImplicitExpression = implicitExpressionLocation(Operands);
1387       SMLoc ExprLoc = Lexer.getLoc();
1388       if (!ImplicitExpression)
1389         Operands.push_back(
1390           HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1391       Lex();
1392       bool MustExtend = false;
1393       bool HiOnly = false;
1394       bool LoOnly = false;
1395       if (Lexer.is(AsmToken::Hash)) {
1396         Lex();
1397         MustExtend = true;
1398       } else if (ImplicitExpression)
1399         MustNotExtend = true;
1400       AsmToken const &Token = Parser.getTok();
1401       if (Token.is(AsmToken::Identifier)) {
1402         StringRef String = Token.getString();
1403         if (String.lower() == "hi") {
1404           HiOnly = true;
1405         } else if (String.lower() == "lo") {
1406           LoOnly = true;
1407         }
1408         if (HiOnly || LoOnly) {
1409           AsmToken LParen = Lexer.peekTok();
1410           if (!LParen.is(AsmToken::LParen)) {
1411             HiOnly = false;
1412             LoOnly = false;
1413           } else {
1414             Lex();
1415           }
1416         }
1417       }
1418       MCExpr const *Expr = nullptr;
1419       if (parseExpression(Expr))
1420         return true;
1421       int64_t Value;
1422       MCContext &Context = Parser.getContext();
1423       assert(Expr != nullptr);
1424       if (Expr->evaluateAsAbsolute(Value)) {
1425         if (HiOnly)
1426           Expr = MCBinaryExpr::createLShr(
1427               Expr,  MCConstantExpr::create(16, Context), Context);
1428         if (HiOnly || LoOnly)
1429           Expr = MCBinaryExpr::createAnd(Expr,
1430               MCConstantExpr::create(0xffff, Context),
1431                                     Context);
1432       } else {
1433         MCValue Value;
1434         if (Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) {
1435           if (!Value.isAbsolute()) {
1436             switch(Value.getAccessVariant()) {
1437             case MCSymbolRefExpr::VariantKind::VK_TPREL:
1438             case MCSymbolRefExpr::VariantKind::VK_DTPREL:
1439               // Don't lazy extend these expression variants
1440               MustNotExtend = !MustExtend;
1441               break;
1442             default:
1443               break;
1444             }
1445           }
1446         }
1447       }
1448       Expr = HexagonMCExpr::create(Expr, Context);
1449       HexagonMCInstrInfo::setMustNotExtend(*Expr, MustNotExtend);
1450       HexagonMCInstrInfo::setMustExtend(*Expr, MustExtend);
1451       std::unique_ptr<HexagonOperand> Operand =
1452           HexagonOperand::CreateImm(Expr, ExprLoc, ExprLoc);
1453       Operands.push_back(std::move(Operand));
1454       continue;
1455     }
1456     default:
1457       break;
1458     }
1459     if (parseExpressionOrOperand(Operands))
1460       return true;
1461   }
1462 }
1463 
1464 bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1465                                         StringRef Name,
1466                                         AsmToken ID,
1467                                         OperandVector &Operands) {
1468   getLexer().UnLex(ID);
1469   return parseInstruction(Operands);
1470 }
1471 
1472 namespace {
1473 MCInst makeCombineInst(int opCode, MCOperand &Rdd,
1474                        MCOperand &MO1, MCOperand &MO2) {
1475   MCInst TmpInst;
1476   TmpInst.setOpcode(opCode);
1477   TmpInst.addOperand(Rdd);
1478   TmpInst.addOperand(MO1);
1479   TmpInst.addOperand(MO2);
1480 
1481   return TmpInst;
1482 }
1483 }
1484 
1485 // Define this matcher function after the auto-generated include so we
1486 // have the match class enum definitions.
1487 unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1488                                                       unsigned Kind) {
1489   HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
1490 
1491   switch (Kind) {
1492   case MCK_0: {
1493     int64_t Value;
1494     return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
1495                ? Match_Success
1496                : Match_InvalidOperand;
1497   }
1498   case MCK_1: {
1499     int64_t Value;
1500     return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
1501                ? Match_Success
1502                : Match_InvalidOperand;
1503   }
1504   case MCK__MINUS_1: {
1505     int64_t Value;
1506     return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1
1507                ? Match_Success
1508                : Match_InvalidOperand;
1509   }
1510   }
1511   if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
1512     StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
1513     if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
1514       return Match_Success;
1515     if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
1516       return Match_Success;
1517   }
1518 
1519   DEBUG(dbgs() << "Unmatched Operand:");
1520   DEBUG(Op->dump());
1521   DEBUG(dbgs() << "\n");
1522 
1523   return Match_InvalidOperand;
1524 }
1525 
1526 void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
1527   std::string errStr;
1528   raw_string_ostream ES(errStr);
1529   ES << "value " << Val << "(" << format_hex(Val, 0) << ") out of range: ";
1530   if (Max >= 0)
1531     ES << "0-" << Max;
1532   else
1533     ES << Max << "-" << (-Max - 1);
1534   Error(IDLoc, ES.str().c_str());
1535 }
1536 
1537 int HexagonAsmParser::processInstruction(MCInst &Inst,
1538                                          OperandVector const &Operands,
1539                                          SMLoc IDLoc) {
1540   MCContext &Context = getParser().getContext();
1541   const MCRegisterInfo *RI = getContext().getRegisterInfo();
1542   std::string r = "r";
1543   std::string v = "v";
1544   std::string Colon = ":";
1545 
1546   bool is32bit = false; // used to distinguish between CONST32 and CONST64
1547   switch (Inst.getOpcode()) {
1548   default:
1549     break;
1550 
1551   case Hexagon::A2_iconst: {
1552     Inst.setOpcode(Hexagon::A2_addi);
1553     MCOperand Reg = Inst.getOperand(0);
1554     MCOperand S16 = Inst.getOperand(1);
1555     HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
1556     HexagonMCInstrInfo::setS23_2_reloc(*S16.getExpr());
1557     Inst.clear();
1558     Inst.addOperand(Reg);
1559     Inst.addOperand(MCOperand::createReg(Hexagon::R0));
1560     Inst.addOperand(S16);
1561     break;
1562   }
1563   case Hexagon::M4_mpyrr_addr:
1564   case Hexagon::S4_addi_asl_ri:
1565   case Hexagon::S4_addi_lsr_ri:
1566   case Hexagon::S4_andi_asl_ri:
1567   case Hexagon::S4_andi_lsr_ri:
1568   case Hexagon::S4_ori_asl_ri:
1569   case Hexagon::S4_ori_lsr_ri:
1570   case Hexagon::S4_or_andix:
1571   case Hexagon::S4_subi_asl_ri:
1572   case Hexagon::S4_subi_lsr_ri: {
1573     MCOperand &Ry = Inst.getOperand(0);
1574     MCOperand &src = Inst.getOperand(2);
1575     if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
1576       return Match_InvalidOperand;
1577     break;
1578   }
1579 
1580   case Hexagon::C2_cmpgei: {
1581     MCOperand &MO = Inst.getOperand(2);
1582     MO.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1583         MO.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
1584     Inst.setOpcode(Hexagon::C2_cmpgti);
1585     break;
1586   }
1587 
1588   case Hexagon::C2_cmpgeui: {
1589     MCOperand &MO = Inst.getOperand(2);
1590     int64_t Value;
1591     bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
1592     (void)Success;
1593     assert(Success && "Assured by matcher");
1594     if (Value == 0) {
1595       MCInst TmpInst;
1596       MCOperand &Pd = Inst.getOperand(0);
1597       MCOperand &Rt = Inst.getOperand(1);
1598       TmpInst.setOpcode(Hexagon::C2_cmpeq);
1599       TmpInst.addOperand(Pd);
1600       TmpInst.addOperand(Rt);
1601       TmpInst.addOperand(Rt);
1602       Inst = TmpInst;
1603     } else {
1604       MO.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1605           MO.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
1606       Inst.setOpcode(Hexagon::C2_cmpgtui);
1607     }
1608     break;
1609   }
1610 
1611   // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
1612   case Hexagon::A2_tfrp: {
1613     MCOperand &MO = Inst.getOperand(1);
1614     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1615     std::string R1 = r + llvm::utostr(RegPairNum + 1);
1616     StringRef Reg1(R1);
1617     MO.setReg(matchRegister(Reg1));
1618     // Add a new operand for the second register in the pair.
1619     std::string R2 = r + llvm::utostr(RegPairNum);
1620     StringRef Reg2(R2);
1621     Inst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
1622     Inst.setOpcode(Hexagon::A2_combinew);
1623     break;
1624   }
1625 
1626   case Hexagon::A2_tfrpt:
1627   case Hexagon::A2_tfrpf: {
1628     MCOperand &MO = Inst.getOperand(2);
1629     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1630     std::string R1 = r + llvm::utostr(RegPairNum + 1);
1631     StringRef Reg1(R1);
1632     MO.setReg(matchRegister(Reg1));
1633     // Add a new operand for the second register in the pair.
1634     std::string R2 = r + llvm::utostr(RegPairNum);
1635     StringRef Reg2(R2);
1636     Inst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
1637     Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
1638                        ? Hexagon::C2_ccombinewt
1639                        : Hexagon::C2_ccombinewf);
1640     break;
1641   }
1642   case Hexagon::A2_tfrptnew:
1643   case Hexagon::A2_tfrpfnew: {
1644     MCOperand &MO = Inst.getOperand(2);
1645     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1646     std::string R1 = r + llvm::utostr(RegPairNum + 1);
1647     StringRef Reg1(R1);
1648     MO.setReg(matchRegister(Reg1));
1649     // Add a new operand for the second register in the pair.
1650     std::string R2 = r + llvm::utostr(RegPairNum);
1651     StringRef Reg2(R2);
1652     Inst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
1653     Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
1654                        ? Hexagon::C2_ccombinewnewt
1655                        : Hexagon::C2_ccombinewnewf);
1656     break;
1657   }
1658 
1659   // Translate a "$Vdd = $Vss" to "$Vdd = vcombine($Vs, $Vt)"
1660   case Hexagon::HEXAGON_V6_vassignpair: {
1661     MCOperand &MO = Inst.getOperand(1);
1662     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1663     std::string R1 = v + llvm::utostr(RegPairNum + 1);
1664     MO.setReg(MatchRegisterName(R1));
1665     // Add a new operand for the second register in the pair.
1666     std::string R2 = v + llvm::utostr(RegPairNum);
1667     Inst.addOperand(MCOperand::createReg(MatchRegisterName(R2)));
1668     Inst.setOpcode(Hexagon::V6_vcombine);
1669     break;
1670   }
1671 
1672   // Translate a "$Rx =  CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
1673   case Hexagon::CONST32:
1674   case Hexagon::CONST32_Float_Real:
1675   case Hexagon::CONST32_Int_Real:
1676   case Hexagon::FCONST32_nsdata:
1677     is32bit = true;
1678   // Translate a "$Rx:y =  CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
1679   case Hexagon::CONST64_Float_Real:
1680   case Hexagon::CONST64_Int_Real:
1681 
1682     // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
1683     if (!Parser.getStreamer().hasRawTextSupport()) {
1684       MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
1685       MCOperand &MO_1 = Inst.getOperand(1);
1686       MCOperand &MO_0 = Inst.getOperand(0);
1687 
1688       // push section onto section stack
1689       MES->PushSection();
1690 
1691       std::string myCharStr;
1692       MCSectionELF *mySection;
1693 
1694       // check if this as an immediate or a symbol
1695       int64_t Value;
1696       bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
1697       if (Absolute) {
1698         // Create a new section - one for each constant
1699         // Some or all of the zeros are replaced with the given immediate.
1700         if (is32bit) {
1701           std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
1702           myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
1703                           .drop_back(myImmStr.size())
1704                           .str() +
1705                       myImmStr;
1706         } else {
1707           std::string myImmStr = utohexstr(Value);
1708           myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
1709                           .drop_back(myImmStr.size())
1710                           .str() +
1711                       myImmStr;
1712         }
1713 
1714         mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1715                                                ELF::SHF_ALLOC | ELF::SHF_WRITE);
1716       } else if (MO_1.isExpr()) {
1717         // .lita - for expressions
1718         myCharStr = ".lita";
1719         mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1720                                                ELF::SHF_ALLOC | ELF::SHF_WRITE);
1721       } else
1722         llvm_unreachable("unexpected type of machine operand!");
1723 
1724       MES->SwitchSection(mySection);
1725       unsigned byteSize = is32bit ? 4 : 8;
1726       getStreamer().EmitCodeAlignment(byteSize, byteSize);
1727 
1728       MCSymbol *Sym;
1729 
1730       // for symbols, get rid of prepended ".gnu.linkonce.lx."
1731 
1732       // emit symbol if needed
1733       if (Absolute) {
1734         Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
1735         if (Sym->isUndefined()) {
1736           getStreamer().EmitLabel(Sym);
1737           getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
1738           getStreamer().EmitIntValue(Value, byteSize);
1739         }
1740       } else if (MO_1.isExpr()) {
1741         const char *StringStart = 0;
1742         const char *StringEnd = 0;
1743         if (*Operands[4]->getStartLoc().getPointer() == '#') {
1744           StringStart = Operands[5]->getStartLoc().getPointer();
1745           StringEnd = Operands[6]->getStartLoc().getPointer();
1746         } else { // no pound
1747           StringStart = Operands[4]->getStartLoc().getPointer();
1748           StringEnd = Operands[5]->getStartLoc().getPointer();
1749         }
1750 
1751         unsigned size = StringEnd - StringStart;
1752         std::string DotConst = ".CONST_";
1753         Sym = getContext().getOrCreateSymbol(DotConst +
1754                                              StringRef(StringStart, size));
1755 
1756         if (Sym->isUndefined()) {
1757           // case where symbol is not yet defined: emit symbol
1758           getStreamer().EmitLabel(Sym);
1759           getStreamer().EmitSymbolAttribute(Sym, MCSA_Local);
1760           getStreamer().EmitValue(MO_1.getExpr(), 4);
1761         }
1762       } else
1763         llvm_unreachable("unexpected type of machine operand!");
1764 
1765       MES->PopSection();
1766 
1767       if (Sym) {
1768         MCInst TmpInst;
1769         if (is32bit) // 32 bit
1770           TmpInst.setOpcode(Hexagon::L2_loadrigp);
1771         else // 64 bit
1772           TmpInst.setOpcode(Hexagon::L2_loadrdgp);
1773 
1774         TmpInst.addOperand(MO_0);
1775         TmpInst.addOperand(
1776             MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext())));
1777         Inst = TmpInst;
1778       }
1779     }
1780     break;
1781 
1782   // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
1783   case Hexagon::A2_tfrpi: {
1784     MCOperand &Rdd = Inst.getOperand(0);
1785     MCOperand &MO = Inst.getOperand(1);
1786     int64_t Value;
1787     int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
1788     MCOperand imm(MCOperand::createExpr(
1789         HexagonMCExpr::create(MCConstantExpr::create(sVal, Context), Context)));
1790     Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
1791     break;
1792   }
1793 
1794   // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
1795   case Hexagon::TFRI64_V4: {
1796     MCOperand &Rdd = Inst.getOperand(0);
1797     MCOperand &MO = Inst.getOperand(1);
1798     int64_t Value;
1799     if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1800       unsigned long long u64 = Value;
1801       signed int s8 = (u64 >> 32) & 0xFFFFFFFF;
1802       if (s8 < -128 || s8 > 127)
1803         OutOfRange(IDLoc, s8, -128);
1804       MCOperand imm(MCOperand::createExpr(HexagonMCExpr::create(
1805           MCConstantExpr::create(s8, Context), Context))); // upper 32
1806       auto Expr = HexagonMCExpr::create(
1807                   MCConstantExpr::create(u64 & 0xFFFFFFFF, Context),
1808                   Context);
1809       HexagonMCInstrInfo::setMustExtend(*Expr, HexagonMCInstrInfo::mustExtend(*MO.getExpr()));
1810       MCOperand imm2(MCOperand::createExpr(Expr)); // lower 32
1811       Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
1812     } else {
1813       MCOperand imm(MCOperand::createExpr(HexagonMCExpr::create(
1814           MCConstantExpr::create(0, Context), Context))); // upper 32
1815       Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
1816     }
1817     break;
1818   }
1819 
1820   // Handle $Rdd = combine(##imm, #imm)"
1821   case Hexagon::TFRI64_V2_ext: {
1822     MCOperand &Rdd = Inst.getOperand(0);
1823     MCOperand &MO1 = Inst.getOperand(1);
1824     MCOperand &MO2 = Inst.getOperand(2);
1825     int64_t Value;
1826     if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
1827       int s8 = Value;
1828       if (s8 < -128 || s8 > 127)
1829         OutOfRange(IDLoc, s8, -128);
1830     }
1831     Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
1832     break;
1833   }
1834 
1835   // Handle $Rdd = combine(#imm, ##imm)"
1836   case Hexagon::A4_combineii: {
1837     MCOperand &Rdd = Inst.getOperand(0);
1838     MCOperand &MO1 = Inst.getOperand(1);
1839     int64_t Value;
1840     if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
1841       int s8 = Value;
1842       if (s8 < -128 || s8 > 127)
1843         OutOfRange(IDLoc, s8, -128);
1844     }
1845     MCOperand &MO2 = Inst.getOperand(2);
1846     Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
1847     break;
1848   }
1849 
1850   case Hexagon::S2_tableidxb_goodsyntax: {
1851     Inst.setOpcode(Hexagon::S2_tableidxb);
1852     break;
1853   }
1854 
1855   case Hexagon::S2_tableidxh_goodsyntax: {
1856     MCInst TmpInst;
1857     MCOperand &Rx = Inst.getOperand(0);
1858     MCOperand &_dst_ = Inst.getOperand(1);
1859     MCOperand &Rs = Inst.getOperand(2);
1860     MCOperand &Imm4 = Inst.getOperand(3);
1861     MCOperand &Imm6 = Inst.getOperand(4);
1862     Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1863         Imm6.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
1864     TmpInst.setOpcode(Hexagon::S2_tableidxh);
1865     TmpInst.addOperand(Rx);
1866     TmpInst.addOperand(_dst_);
1867     TmpInst.addOperand(Rs);
1868     TmpInst.addOperand(Imm4);
1869     TmpInst.addOperand(Imm6);
1870     Inst = TmpInst;
1871     break;
1872   }
1873 
1874   case Hexagon::S2_tableidxw_goodsyntax: {
1875     MCInst TmpInst;
1876     MCOperand &Rx = Inst.getOperand(0);
1877     MCOperand &_dst_ = Inst.getOperand(1);
1878     MCOperand &Rs = Inst.getOperand(2);
1879     MCOperand &Imm4 = Inst.getOperand(3);
1880     MCOperand &Imm6 = Inst.getOperand(4);
1881     Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1882         Imm6.getExpr(), MCConstantExpr::create(2, Context), Context), Context));
1883     TmpInst.setOpcode(Hexagon::S2_tableidxw);
1884     TmpInst.addOperand(Rx);
1885     TmpInst.addOperand(_dst_);
1886     TmpInst.addOperand(Rs);
1887     TmpInst.addOperand(Imm4);
1888     TmpInst.addOperand(Imm6);
1889     Inst = TmpInst;
1890     break;
1891   }
1892 
1893   case Hexagon::S2_tableidxd_goodsyntax: {
1894     MCInst TmpInst;
1895     MCOperand &Rx = Inst.getOperand(0);
1896     MCOperand &_dst_ = Inst.getOperand(1);
1897     MCOperand &Rs = Inst.getOperand(2);
1898     MCOperand &Imm4 = Inst.getOperand(3);
1899     MCOperand &Imm6 = Inst.getOperand(4);
1900     Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1901         Imm6.getExpr(), MCConstantExpr::create(3, Context), Context), Context));
1902     TmpInst.setOpcode(Hexagon::S2_tableidxd);
1903     TmpInst.addOperand(Rx);
1904     TmpInst.addOperand(_dst_);
1905     TmpInst.addOperand(Rs);
1906     TmpInst.addOperand(Imm4);
1907     TmpInst.addOperand(Imm6);
1908     Inst = TmpInst;
1909     break;
1910   }
1911 
1912   case Hexagon::M2_mpyui: {
1913     Inst.setOpcode(Hexagon::M2_mpyi);
1914     break;
1915   }
1916   case Hexagon::M2_mpysmi: {
1917     MCInst TmpInst;
1918     MCOperand &Rd = Inst.getOperand(0);
1919     MCOperand &Rs = Inst.getOperand(1);
1920     MCOperand &Imm = Inst.getOperand(2);
1921     int64_t Value;
1922     MCExpr const &Expr = *Imm.getExpr();
1923     bool Absolute = Expr.evaluateAsAbsolute(Value);
1924     assert(Absolute);
1925     (void)Absolute;
1926     if (!HexagonMCInstrInfo::mustExtend(Expr)) {
1927       if (Value < 0 && Value > -256) {
1928         Imm.setExpr(HexagonMCExpr::create(
1929             MCConstantExpr::create(Value * -1, Context), Context));
1930         TmpInst.setOpcode(Hexagon::M2_mpysin);
1931       } else if (Value < 256 && Value >= 0)
1932         TmpInst.setOpcode(Hexagon::M2_mpysip);
1933       else
1934         return Match_InvalidOperand;
1935     } else {
1936       if (Value >= 0)
1937         TmpInst.setOpcode(Hexagon::M2_mpysip);
1938       else
1939         return Match_InvalidOperand;
1940     }
1941     TmpInst.addOperand(Rd);
1942     TmpInst.addOperand(Rs);
1943     TmpInst.addOperand(Imm);
1944     Inst = TmpInst;
1945     break;
1946   }
1947 
1948   case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
1949     MCOperand &Imm = Inst.getOperand(2);
1950     MCInst TmpInst;
1951     int64_t Value;
1952     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1953     assert(Absolute);
1954     (void)Absolute;
1955     if (Value == 0) { // convert to $Rd = $Rs
1956       TmpInst.setOpcode(Hexagon::A2_tfr);
1957       MCOperand &Rd = Inst.getOperand(0);
1958       MCOperand &Rs = Inst.getOperand(1);
1959       TmpInst.addOperand(Rd);
1960       TmpInst.addOperand(Rs);
1961     } else {
1962       Imm.setExpr(HexagonMCExpr::create(
1963           MCBinaryExpr::createSub(Imm.getExpr(),
1964                                   MCConstantExpr::create(1, Context), Context),
1965           Context));
1966       TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
1967       MCOperand &Rd = Inst.getOperand(0);
1968       MCOperand &Rs = Inst.getOperand(1);
1969       TmpInst.addOperand(Rd);
1970       TmpInst.addOperand(Rs);
1971       TmpInst.addOperand(Imm);
1972     }
1973     Inst = TmpInst;
1974     break;
1975   }
1976 
1977   case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
1978     MCOperand &Rdd = Inst.getOperand(0);
1979     MCOperand &Rss = Inst.getOperand(1);
1980     MCOperand &Imm = Inst.getOperand(2);
1981     int64_t Value;
1982     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1983     assert(Absolute);
1984     (void)Absolute;
1985     if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
1986       MCInst TmpInst;
1987       unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
1988       std::string R1 = r + llvm::utostr(RegPairNum + 1);
1989       StringRef Reg1(R1);
1990       Rss.setReg(matchRegister(Reg1));
1991       // Add a new operand for the second register in the pair.
1992       std::string R2 = r + llvm::utostr(RegPairNum);
1993       StringRef Reg2(R2);
1994       TmpInst.setOpcode(Hexagon::A2_combinew);
1995       TmpInst.addOperand(Rdd);
1996       TmpInst.addOperand(Rss);
1997       TmpInst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
1998       Inst = TmpInst;
1999     } else {
2000       Imm.setExpr(HexagonMCExpr::create(
2001           MCBinaryExpr::createSub(Imm.getExpr(),
2002                                   MCConstantExpr::create(1, Context), Context),
2003           Context));
2004       Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
2005     }
2006     break;
2007   }
2008 
2009   case Hexagon::A4_boundscheck: {
2010     MCOperand &Rs = Inst.getOperand(1);
2011     unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
2012     if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
2013       Inst.setOpcode(Hexagon::A4_boundscheck_hi);
2014       std::string Name =
2015           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2016       StringRef RegPair = Name;
2017       Rs.setReg(matchRegister(RegPair));
2018     } else { // raw:lo
2019       Inst.setOpcode(Hexagon::A4_boundscheck_lo);
2020       std::string Name =
2021           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2022       StringRef RegPair = Name;
2023       Rs.setReg(matchRegister(RegPair));
2024     }
2025     break;
2026   }
2027 
2028   case Hexagon::A2_addsp: {
2029     MCOperand &Rs = Inst.getOperand(1);
2030     unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
2031     if (RegNum & 1) { // Odd mapped to raw:hi
2032       Inst.setOpcode(Hexagon::A2_addsph);
2033       std::string Name =
2034           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2035       StringRef RegPair = Name;
2036       Rs.setReg(matchRegister(RegPair));
2037     } else { // Even mapped raw:lo
2038       Inst.setOpcode(Hexagon::A2_addspl);
2039       std::string Name =
2040           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2041       StringRef RegPair = Name;
2042       Rs.setReg(matchRegister(RegPair));
2043     }
2044     break;
2045   }
2046 
2047   case Hexagon::M2_vrcmpys_s1: {
2048     MCOperand &Rt = Inst.getOperand(2);
2049     unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2050     if (RegNum & 1) { // Odd mapped to sat:raw:hi
2051       Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
2052       std::string Name =
2053           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2054       StringRef RegPair = Name;
2055       Rt.setReg(matchRegister(RegPair));
2056     } else { // Even mapped sat:raw:lo
2057       Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
2058       std::string Name =
2059           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2060       StringRef RegPair = Name;
2061       Rt.setReg(matchRegister(RegPair));
2062     }
2063     break;
2064   }
2065 
2066   case Hexagon::M2_vrcmpys_acc_s1: {
2067     MCInst TmpInst;
2068     MCOperand &Rxx = Inst.getOperand(0);
2069     MCOperand &Rss = Inst.getOperand(2);
2070     MCOperand &Rt = Inst.getOperand(3);
2071     unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2072     if (RegNum & 1) { // Odd mapped to sat:raw:hi
2073       TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
2074       std::string Name =
2075           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2076       StringRef RegPair = Name;
2077       Rt.setReg(matchRegister(RegPair));
2078     } else { // Even mapped sat:raw:lo
2079       TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
2080       std::string Name =
2081           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2082       StringRef RegPair = Name;
2083       Rt.setReg(matchRegister(RegPair));
2084     }
2085     // Registers are in different positions
2086     TmpInst.addOperand(Rxx);
2087     TmpInst.addOperand(Rxx);
2088     TmpInst.addOperand(Rss);
2089     TmpInst.addOperand(Rt);
2090     Inst = TmpInst;
2091     break;
2092   }
2093 
2094   case Hexagon::M2_vrcmpys_s1rp: {
2095     MCOperand &Rt = Inst.getOperand(2);
2096     unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2097     if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
2098       Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
2099       std::string Name =
2100           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2101       StringRef RegPair = Name;
2102       Rt.setReg(matchRegister(RegPair));
2103     } else { // Even mapped rnd:sat:raw:lo
2104       Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
2105       std::string Name =
2106           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2107       StringRef RegPair = Name;
2108       Rt.setReg(matchRegister(RegPair));
2109     }
2110     break;
2111   }
2112 
2113   case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
2114     MCOperand &Imm = Inst.getOperand(2);
2115     int64_t Value;
2116     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2117     assert(Absolute);
2118     (void)Absolute;
2119     if (Value == 0)
2120       Inst.setOpcode(Hexagon::S2_vsathub);
2121     else {
2122       Imm.setExpr(HexagonMCExpr::create(
2123           MCBinaryExpr::createSub(Imm.getExpr(),
2124                                   MCConstantExpr::create(1, Context), Context),
2125           Context));
2126       Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
2127     }
2128     break;
2129   }
2130 
2131   case Hexagon::S5_vasrhrnd_goodsyntax: {
2132     MCOperand &Rdd = Inst.getOperand(0);
2133     MCOperand &Rss = Inst.getOperand(1);
2134     MCOperand &Imm = Inst.getOperand(2);
2135     int64_t Value;
2136     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2137     assert(Absolute);
2138     (void)Absolute;
2139     if (Value == 0) {
2140       MCInst TmpInst;
2141       unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
2142       std::string R1 = r + llvm::utostr(RegPairNum + 1);
2143       StringRef Reg1(R1);
2144       Rss.setReg(matchRegister(Reg1));
2145       // Add a new operand for the second register in the pair.
2146       std::string R2 = r + llvm::utostr(RegPairNum);
2147       StringRef Reg2(R2);
2148       TmpInst.setOpcode(Hexagon::A2_combinew);
2149       TmpInst.addOperand(Rdd);
2150       TmpInst.addOperand(Rss);
2151       TmpInst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
2152       Inst = TmpInst;
2153     } else {
2154       Imm.setExpr(HexagonMCExpr::create(
2155           MCBinaryExpr::createSub(Imm.getExpr(),
2156                                   MCConstantExpr::create(1, Context), Context),
2157           Context));
2158       Inst.setOpcode(Hexagon::S5_vasrhrnd);
2159     }
2160     break;
2161   }
2162 
2163   case Hexagon::A2_not: {
2164     MCInst TmpInst;
2165     MCOperand &Rd = Inst.getOperand(0);
2166     MCOperand &Rs = Inst.getOperand(1);
2167     TmpInst.setOpcode(Hexagon::A2_subri);
2168     TmpInst.addOperand(Rd);
2169     TmpInst.addOperand(MCOperand::createExpr(
2170         HexagonMCExpr::create(MCConstantExpr::create(-1, Context), Context)));
2171     TmpInst.addOperand(Rs);
2172     Inst = TmpInst;
2173     break;
2174   }
2175   } // switch
2176 
2177   return Match_Success;
2178 }
2179 
2180 
2181 unsigned HexagonAsmParser::matchRegister(StringRef Name) {
2182   if (unsigned Reg = MatchRegisterName(Name))
2183     return Reg;
2184   return MatchRegisterAltName(Name);
2185 }
2186