xref: /llvm-project/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp (revision b9f1eae32886ef7fdf210c079a54d15ec937dfa0)
1 //===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "mcasmparser"
11 
12 #include "Hexagon.h"
13 #include "HexagonRegisterInfo.h"
14 #include "HexagonTargetStreamer.h"
15 #include "MCTargetDesc/HexagonBaseInfo.h"
16 #include "MCTargetDesc/HexagonMCAsmInfo.h"
17 #include "MCTargetDesc/HexagonMCChecker.h"
18 #include "MCTargetDesc/HexagonMCELFStreamer.h"
19 #include "MCTargetDesc/HexagonMCExpr.h"
20 #include "MCTargetDesc/HexagonMCShuffler.h"
21 #include "MCTargetDesc/HexagonMCTargetDesc.h"
22 #include "MCTargetDesc/HexagonShuffler.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCELFStreamer.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/MC/MCParser/MCAsmLexer.h"
32 #include "llvm/MC/MCParser/MCAsmParser.h"
33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
34 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
35 #include "llvm/MC/MCSectionELF.h"
36 #include "llvm/MC/MCStreamer.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ELF.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/SourceMgr.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <sstream>
47 
48 using namespace llvm;
49 
50 static cl::opt<bool> EnableFutureRegs("mfuture-regs",
51                                       cl::desc("Enable future registers"));
52 
53 static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis",
54 cl::desc("Warn for missing parenthesis around predicate registers"),
55 cl::init(true));
56 static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis",
57 cl::desc("Error for missing parenthesis around predicate registers"),
58 cl::init(false));
59 static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch",
60 cl::desc("Warn for mismatching a signed and unsigned value"),
61 cl::init(true));
62 static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register",
63 cl::desc("Warn for register names that arent contigious"),
64 cl::init(true));
65 static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register",
66 cl::desc("Error for register names that aren't contigious"),
67 cl::init(false));
68 
69 
70 namespace {
71 struct HexagonOperand;
72 
73 class HexagonAsmParser : public MCTargetAsmParser {
74 
75   HexagonTargetStreamer &getTargetStreamer() {
76     MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
77     return static_cast<HexagonTargetStreamer &>(TS);
78   }
79 
80   MCAsmParser &Parser;
81   MCAssembler *Assembler;
82   MCInstrInfo const &MCII;
83   MCInst MCB;
84   bool InBrackets;
85 
86   MCAsmParser &getParser() const { return Parser; }
87   MCAssembler *getAssembler() const { return Assembler; }
88   MCAsmLexer &getLexer() const { return Parser.getLexer(); }
89 
90   bool equalIsAsmAssignment() override { return false; }
91   bool isLabel(AsmToken &Token) override;
92 
93   void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
94   bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
95   bool ParseDirectiveFalign(unsigned Size, SMLoc L);
96 
97   virtual bool ParseRegister(unsigned &RegNo,
98                              SMLoc &StartLoc,
99                              SMLoc &EndLoc) override;
100   bool ParseDirectiveSubsection(SMLoc L);
101   bool ParseDirectiveValue(unsigned Size, SMLoc L);
102   bool ParseDirectiveComm(bool IsLocal, SMLoc L);
103   bool RegisterMatchesArch(unsigned MatchNum) const;
104 
105   bool matchBundleOptions();
106   bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
107   bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
108   void canonicalizeImmediates(MCInst &MCI);
109   bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
110                            OperandVector &InstOperands, uint64_t &ErrorInfo,
111                            bool MatchingInlineAsm);
112 
113   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
114                                OperandVector &Operands, MCStreamer &Out,
115                                uint64_t &ErrorInfo, bool MatchingInlineAsm) override;
116 
117   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override;
118   void OutOfRange(SMLoc IDLoc, long long Val, long long Max);
119   int processInstruction(MCInst &Inst, OperandVector const &Operands,
120                          SMLoc IDLoc);
121 
122   // Check if we have an assembler and, if so, set the ELF e_header flags.
123   void chksetELFHeaderEFlags(unsigned flags) {
124     if (getAssembler())
125       getAssembler()->setELFHeaderEFlags(flags);
126   }
127 
128 /// @name Auto-generated Match Functions
129 /// {
130 
131 #define GET_ASSEMBLER_HEADER
132 #include "HexagonGenAsmMatcher.inc"
133 
134   /// }
135 
136 public:
137   HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser,
138                    const MCInstrInfo &MII, const MCTargetOptions &Options)
139     : MCTargetAsmParser(Options, _STI), Parser(_Parser),
140       MCII (MII), MCB(HexagonMCInstrInfo::createBundle()), InBrackets(false) {
141     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
142 
143   MCAsmParserExtension::Initialize(_Parser);
144 
145   Assembler = nullptr;
146   // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
147   if (!Parser.getStreamer().hasRawTextSupport()) {
148     MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
149     Assembler = &MES->getAssembler();
150   }
151   }
152 
153   bool mustExtend(OperandVector &Operands);
154   bool splitIdentifier(OperandVector &Operands);
155   bool parseOperand(OperandVector &Operands);
156   bool parseInstruction(OperandVector &Operands);
157   bool implicitExpressionLocation(OperandVector &Operands);
158   bool parseExpressionOrOperand(OperandVector &Operands);
159   bool parseExpression(MCExpr const *& Expr);
160   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
161                                 SMLoc NameLoc, OperandVector &Operands) override
162   {
163     llvm_unreachable("Unimplemented");
164   }
165   virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
166                                 AsmToken ID, OperandVector &Operands) override;
167 
168   virtual bool ParseDirective(AsmToken DirectiveID) override;
169 };
170 
171 /// HexagonOperand - Instances of this class represent a parsed Hexagon machine
172 /// instruction.
173 struct HexagonOperand : public MCParsedAsmOperand {
174   enum KindTy { Token, Immediate, Register } Kind;
175 
176   SMLoc StartLoc, EndLoc;
177 
178   struct TokTy {
179     const char *Data;
180     unsigned Length;
181   };
182 
183   struct RegTy {
184     unsigned RegNum;
185   };
186 
187   struct ImmTy {
188     const MCExpr *Val;
189   };
190 
191   struct InstTy {
192     OperandVector *SubInsts;
193   };
194 
195   union {
196     struct TokTy Tok;
197     struct RegTy Reg;
198     struct ImmTy Imm;
199   };
200 
201   HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
202 
203 public:
204   HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() {
205     Kind = o.Kind;
206     StartLoc = o.StartLoc;
207     EndLoc = o.EndLoc;
208     switch (Kind) {
209     case Register:
210       Reg = o.Reg;
211       break;
212     case Immediate:
213       Imm = o.Imm;
214       break;
215     case Token:
216       Tok = o.Tok;
217       break;
218     }
219   }
220 
221   /// getStartLoc - Get the location of the first token of this operand.
222   SMLoc getStartLoc() const { return StartLoc; }
223 
224   /// getEndLoc - Get the location of the last token of this operand.
225   SMLoc getEndLoc() const { return EndLoc; }
226 
227   unsigned getReg() const {
228     assert(Kind == Register && "Invalid access!");
229     return Reg.RegNum;
230   }
231 
232   const MCExpr *getImm() const {
233     assert(Kind == Immediate && "Invalid access!");
234     return Imm.Val;
235   }
236 
237   bool isToken() const { return Kind == Token; }
238   bool isImm() const { return Kind == Immediate; }
239   bool isMem() const { llvm_unreachable("No isMem"); }
240   bool isReg() const { return Kind == Register; }
241 
242   bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
243                      bool isRelocatable, bool Extendable) const {
244     if (Kind == Immediate) {
245       const MCExpr *myMCExpr = &HexagonMCInstrInfo::getExpr(*getImm());
246       if (HexagonMCInstrInfo::mustExtend(*Imm.Val) && !Extendable)
247         return false;
248       int64_t Res;
249       if (myMCExpr->evaluateAsAbsolute(Res)) {
250         int bits = immBits + zeroBits;
251         // Field bit range is zerobits + bits
252         // zeroBits must be 0
253         if (Res & ((1 << zeroBits) - 1))
254           return false;
255         if (isSigned) {
256           if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
257             return true;
258         } else {
259           if (bits == 64)
260             return true;
261           if (Res >= 0)
262             return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false;
263           else {
264             const int64_t high_bit_set = 1ULL << 63;
265             const uint64_t mask = (high_bit_set >> (63 - bits));
266             return (((uint64_t)Res & mask) == mask) ? true : false;
267           }
268         }
269       } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
270         return true;
271       else if (myMCExpr->getKind() == MCExpr::Binary ||
272                myMCExpr->getKind() == MCExpr::Unary)
273         return true;
274     }
275     return false;
276   }
277 
278   bool isf32Ext() const { return false; }
279   bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); }
280   bool iss23_2Imm() const { return CheckImmRange(23, 2, true, true, false); }
281   bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); }
282   bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); }
283   bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); }
284   bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); }
285   bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); }
286   bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
287   bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
288   bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
289   bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
290   bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); }
291   bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); }
292   bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); }
293 
294   bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); }
295   bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); }
296   bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
297   bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); }
298   bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
299   bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
300   bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
301   bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
302   bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
303   bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
304   bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
305   bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
306   bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
307   bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); }
308   bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); }
309   bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); }
310   bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); }
311   bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); }
312   bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); }
313   bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); }
314   bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); }
315   bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); }
316   bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); }
317 
318   bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); }
319   bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); }
320 
321   bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); }
322   bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); }
323   bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); }
324   bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); }
325   bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); }
326   bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); }
327   bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); }
328   bool iss11_0Ext() const {
329     return CheckImmRange(11 + 26, 0, true, true, true);
330   }
331   bool iss11_1Ext() const {
332     return CheckImmRange(11 + 26, 1, true, true, true);
333   }
334   bool iss11_2Ext() const {
335     return CheckImmRange(11 + 26, 2, true, true, true);
336   }
337   bool iss11_3Ext() const {
338     return CheckImmRange(11 + 26, 3, true, true, true);
339   }
340 
341   bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
342   bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); }
343   bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); }
344   bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); }
345   bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); }
346   bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
347   bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); }
348   bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); }
349   bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); }
350   bool isu32MustExt() const { return isImm(); }
351 
352   void addRegOperands(MCInst &Inst, unsigned N) const {
353     assert(N == 1 && "Invalid number of operands!");
354     Inst.addOperand(MCOperand::createReg(getReg()));
355   }
356 
357   void addImmOperands(MCInst &Inst, unsigned N) const {
358     assert(N == 1 && "Invalid number of operands!");
359     Inst.addOperand(MCOperand::createExpr(getImm()));
360   }
361 
362   void addSignedImmOperands(MCInst &Inst, unsigned N) const {
363     assert(N == 1 && "Invalid number of operands!");
364     HexagonMCExpr *Expr =
365         const_cast<HexagonMCExpr *>(cast<HexagonMCExpr>(getImm()));
366     int64_t Value;
367     if (!Expr->evaluateAsAbsolute(Value)) {
368       Inst.addOperand(MCOperand::createExpr(Expr));
369       return;
370     }
371     int64_t Extended = SignExtend64(Value, 32);
372     if ((Extended < 0) != (Value < 0))
373       Expr->setSignMismatch();
374     Inst.addOperand(MCOperand::createExpr(Expr));
375   }
376 
377   void addf32ExtOperands(MCInst &Inst, unsigned N) const {
378     addImmOperands(Inst, N);
379   }
380 
381   void adds32ImmOperands(MCInst &Inst, unsigned N) const {
382     addSignedImmOperands(Inst, N);
383   }
384   void adds23_2ImmOperands(MCInst &Inst, unsigned N) const {
385     addSignedImmOperands(Inst, N);
386   }
387   void adds8ImmOperands(MCInst &Inst, unsigned N) const {
388     addSignedImmOperands(Inst, N);
389   }
390   void adds8Imm64Operands(MCInst &Inst, unsigned N) const {
391     addSignedImmOperands(Inst, N);
392   }
393   void adds6ImmOperands(MCInst &Inst, unsigned N) const {
394     addSignedImmOperands(Inst, N);
395   }
396   void adds4ImmOperands(MCInst &Inst, unsigned N) const {
397     addSignedImmOperands(Inst, N);
398   }
399   void adds4_0ImmOperands(MCInst &Inst, unsigned N) const {
400     addSignedImmOperands(Inst, N);
401   }
402   void adds4_1ImmOperands(MCInst &Inst, unsigned N) const {
403     addSignedImmOperands(Inst, N);
404   }
405   void adds4_2ImmOperands(MCInst &Inst, unsigned N) const {
406     addSignedImmOperands(Inst, N);
407   }
408   void adds4_3ImmOperands(MCInst &Inst, unsigned N) const {
409     addSignedImmOperands(Inst, N);
410   }
411   void adds3ImmOperands(MCInst &Inst, unsigned N) const {
412     addSignedImmOperands(Inst, N);
413   }
414 
415   void addu64ImmOperands(MCInst &Inst, unsigned N) const {
416     addImmOperands(Inst, N);
417   }
418   void addu32ImmOperands(MCInst &Inst, unsigned N) const {
419     addImmOperands(Inst, N);
420   }
421   void addu26_6ImmOperands(MCInst &Inst, unsigned N) const {
422     addImmOperands(Inst, N);
423   }
424   void addu16ImmOperands(MCInst &Inst, unsigned N) const {
425     addImmOperands(Inst, N);
426   }
427   void addu16_0ImmOperands(MCInst &Inst, unsigned N) const {
428     addImmOperands(Inst, N);
429   }
430   void addu16_1ImmOperands(MCInst &Inst, unsigned N) const {
431     addImmOperands(Inst, N);
432   }
433   void addu16_2ImmOperands(MCInst &Inst, unsigned N) const {
434     addImmOperands(Inst, N);
435   }
436   void addu16_3ImmOperands(MCInst &Inst, unsigned N) const {
437     addImmOperands(Inst, N);
438   }
439   void addu11_3ImmOperands(MCInst &Inst, unsigned N) const {
440     addImmOperands(Inst, N);
441   }
442   void addu10ImmOperands(MCInst &Inst, unsigned N) const {
443     addImmOperands(Inst, N);
444   }
445   void addu9ImmOperands(MCInst &Inst, unsigned N) const {
446     addImmOperands(Inst, N);
447   }
448   void addu8ImmOperands(MCInst &Inst, unsigned N) const {
449     addImmOperands(Inst, N);
450   }
451   void addu7ImmOperands(MCInst &Inst, unsigned N) const {
452     addImmOperands(Inst, N);
453   }
454   void addu6ImmOperands(MCInst &Inst, unsigned N) const {
455     addImmOperands(Inst, N);
456   }
457   void addu6_0ImmOperands(MCInst &Inst, unsigned N) const {
458     addImmOperands(Inst, N);
459   }
460   void addu6_1ImmOperands(MCInst &Inst, unsigned N) const {
461     addImmOperands(Inst, N);
462   }
463   void addu6_2ImmOperands(MCInst &Inst, unsigned N) const {
464     addImmOperands(Inst, N);
465   }
466   void addu6_3ImmOperands(MCInst &Inst, unsigned N) const {
467     addImmOperands(Inst, N);
468   }
469   void addu5ImmOperands(MCInst &Inst, unsigned N) const {
470     addImmOperands(Inst, N);
471   }
472   void addu4ImmOperands(MCInst &Inst, unsigned N) const {
473     addImmOperands(Inst, N);
474   }
475   void addu3ImmOperands(MCInst &Inst, unsigned N) const {
476     addImmOperands(Inst, N);
477   }
478   void addu2ImmOperands(MCInst &Inst, unsigned N) const {
479     addImmOperands(Inst, N);
480   }
481   void addu1ImmOperands(MCInst &Inst, unsigned N) const {
482     addImmOperands(Inst, N);
483   }
484 
485   void addm6ImmOperands(MCInst &Inst, unsigned N) const {
486     addImmOperands(Inst, N);
487   }
488   void addn8ImmOperands(MCInst &Inst, unsigned N) const {
489     addImmOperands(Inst, N);
490   }
491 
492   void adds16ExtOperands(MCInst &Inst, unsigned N) const {
493     addSignedImmOperands(Inst, N);
494   }
495   void adds12ExtOperands(MCInst &Inst, unsigned N) const {
496     addSignedImmOperands(Inst, N);
497   }
498   void adds10ExtOperands(MCInst &Inst, unsigned N) const {
499     addSignedImmOperands(Inst, N);
500   }
501   void adds9ExtOperands(MCInst &Inst, unsigned N) const {
502     addSignedImmOperands(Inst, N);
503   }
504   void adds8ExtOperands(MCInst &Inst, unsigned N) const {
505     addSignedImmOperands(Inst, N);
506   }
507   void adds6ExtOperands(MCInst &Inst, unsigned N) const {
508     addSignedImmOperands(Inst, N);
509   }
510   void adds11_0ExtOperands(MCInst &Inst, unsigned N) const {
511     addSignedImmOperands(Inst, N);
512   }
513   void adds11_1ExtOperands(MCInst &Inst, unsigned N) const {
514     addSignedImmOperands(Inst, N);
515   }
516   void adds11_2ExtOperands(MCInst &Inst, unsigned N) const {
517     addSignedImmOperands(Inst, N);
518   }
519   void adds11_3ExtOperands(MCInst &Inst, unsigned N) const {
520     addSignedImmOperands(Inst, N);
521   }
522 
523   void addu6ExtOperands(MCInst &Inst, unsigned N) const {
524     addImmOperands(Inst, N);
525   }
526   void addu7ExtOperands(MCInst &Inst, unsigned N) const {
527     addImmOperands(Inst, N);
528   }
529   void addu8ExtOperands(MCInst &Inst, unsigned N) const {
530     addImmOperands(Inst, N);
531   }
532   void addu9ExtOperands(MCInst &Inst, unsigned N) const {
533     addImmOperands(Inst, N);
534   }
535   void addu10ExtOperands(MCInst &Inst, unsigned N) const {
536     addImmOperands(Inst, N);
537   }
538   void addu6_0ExtOperands(MCInst &Inst, unsigned N) const {
539     addImmOperands(Inst, N);
540   }
541   void addu6_1ExtOperands(MCInst &Inst, unsigned N) const {
542     addImmOperands(Inst, N);
543   }
544   void addu6_2ExtOperands(MCInst &Inst, unsigned N) const {
545     addImmOperands(Inst, N);
546   }
547   void addu6_3ExtOperands(MCInst &Inst, unsigned N) const {
548     addImmOperands(Inst, N);
549   }
550   void addu32MustExtOperands(MCInst &Inst, unsigned N) const {
551     addImmOperands(Inst, N);
552   }
553 
554   void adds4_6ImmOperands(MCInst &Inst, unsigned N) const {
555     assert(N == 1 && "Invalid number of operands!");
556     const MCConstantExpr *CE =
557         dyn_cast<MCConstantExpr>(&HexagonMCInstrInfo::getExpr(*getImm()));
558     Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
559   }
560 
561   void adds3_6ImmOperands(MCInst &Inst, unsigned N) const {
562     assert(N == 1 && "Invalid number of operands!");
563     const MCConstantExpr *CE =
564         dyn_cast<MCConstantExpr>(&HexagonMCInstrInfo::getExpr(*getImm()));
565     Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
566   }
567 
568   StringRef getToken() const {
569     assert(Kind == Token && "Invalid access!");
570     return StringRef(Tok.Data, Tok.Length);
571   }
572 
573   virtual void print(raw_ostream &OS) const;
574 
575   static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) {
576     HexagonOperand *Op = new HexagonOperand(Token);
577     Op->Tok.Data = Str.data();
578     Op->Tok.Length = Str.size();
579     Op->StartLoc = S;
580     Op->EndLoc = S;
581     return std::unique_ptr<HexagonOperand>(Op);
582   }
583 
584   static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S,
585                                                    SMLoc E) {
586     HexagonOperand *Op = new HexagonOperand(Register);
587     Op->Reg.RegNum = RegNum;
588     Op->StartLoc = S;
589     Op->EndLoc = E;
590     return std::unique_ptr<HexagonOperand>(Op);
591   }
592 
593   static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S,
594                                                    SMLoc E) {
595     HexagonOperand *Op = new HexagonOperand(Immediate);
596     Op->Imm.Val = Val;
597     Op->StartLoc = S;
598     Op->EndLoc = E;
599     return std::unique_ptr<HexagonOperand>(Op);
600   }
601 };
602 
603 } // end anonymous namespace.
604 
605 void HexagonOperand::print(raw_ostream &OS) const {
606   switch (Kind) {
607   case Immediate:
608     getImm()->print(OS, nullptr);
609     break;
610   case Register:
611     OS << "<register R";
612     OS << getReg() << ">";
613     break;
614   case Token:
615     OS << "'" << getToken() << "'";
616     break;
617   }
618 }
619 
620 /// @name Auto-generated Match Functions
621 static unsigned MatchRegisterName(StringRef Name);
622 
623 bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
624   DEBUG(dbgs() << "Bundle:");
625   DEBUG(MCB.dump_pretty(dbgs()));
626   DEBUG(dbgs() << "--\n");
627 
628   // Check the bundle for errors.
629   const MCRegisterInfo *RI = getContext().getRegisterInfo();
630   HexagonMCChecker Check(MCII, getSTI(), MCB, MCB, *RI);
631 
632   bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, getSTI(),
633                                                         getContext(), MCB,
634                                                         &Check);
635 
636   while (Check.getNextErrInfo() == true) {
637     unsigned Reg = Check.getErrRegister();
638     Twine R(RI->getName(Reg));
639 
640     uint64_t Err = Check.getError();
641     if (Err != HexagonMCErrInfo::CHECK_SUCCESS) {
642       if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err)
643         Error(IDLoc,
644               "unconditional branch cannot precede another branch in packet");
645 
646       if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err ||
647           HexagonMCErrInfo::CHECK_ERROR_NEWV & Err)
648         Error(IDLoc, "register `" + R +
649                          "' used with `.new' "
650                          "but not validly modified in the same packet");
651 
652       if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err)
653         Error(IDLoc, "register `" + R + "' modified more than once");
654 
655       if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err)
656         Error(IDLoc, "cannot write to read-only register `" + R + "'");
657 
658       if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err)
659         Error(IDLoc, "loop-setup and some branch instructions "
660                      "cannot be in the same packet");
661 
662       if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) {
663         Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1');
664         Error(IDLoc, "packet marked with `:endloop" + N + "' " +
665                          "cannot contain instructions that modify register " +
666                          "`" + R + "'");
667       }
668 
669       if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err)
670         Error(IDLoc,
671               "instruction cannot appear in packet with other instructions");
672 
673       if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err)
674         Error(IDLoc, "too many slots used in packet");
675 
676       if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) {
677         uint64_t Erm = Check.getShuffleError();
678 
679         if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm)
680           Error(IDLoc, "invalid instruction packet");
681         else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm)
682           Error(IDLoc, "invalid instruction packet: too many stores");
683         else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm)
684           Error(IDLoc, "invalid instruction packet: too many loads");
685         else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm)
686           Error(IDLoc, "too many branches in packet");
687         else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm)
688           Error(IDLoc, "invalid instruction packet: out of slots");
689         else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm)
690           Error(IDLoc, "invalid instruction packet: slot error");
691         else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm)
692           Error(IDLoc, "v60 packet violation");
693         else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm)
694           Error(IDLoc, "slot 0 instruction does not allow slot 1 store");
695         else
696           Error(IDLoc, "unknown error in instruction packet");
697       }
698     }
699 
700     unsigned Warn = Check.getWarning();
701     if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) {
702       if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn)
703         Warning(IDLoc, "register `" + R + "' used with `.cur' "
704                                           "but not used in the same packet");
705       else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn)
706         Warning(IDLoc, "register `" + R + "' used with `.tmp' "
707                                           "but not used in the same packet");
708     }
709   }
710 
711   if (CheckOk) {
712     MCB.setLoc(IDLoc);
713     if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
714       assert(!HexagonMCInstrInfo::isInnerLoop(MCB));
715       assert(!HexagonMCInstrInfo::isOuterLoop(MCB));
716       // Empty packets are valid yet aren't emitted
717       return false;
718     }
719     Out.EmitInstruction(MCB, getSTI());
720   } else {
721     // If compounding and duplexing didn't reduce the size below
722     // 4 or less we have a packet that is too big.
723     if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
724       Error(IDLoc, "invalid instruction packet: out of slots");
725       return true; // Error
726     }
727   }
728 
729   return false; // No error
730 }
731 
732 bool HexagonAsmParser::matchBundleOptions() {
733   MCAsmParser &Parser = getParser();
734   MCAsmLexer &Lexer = getLexer();
735   while (true) {
736     if (!Parser.getTok().is(AsmToken::Colon))
737       return false;
738     Lexer.Lex();
739     StringRef Option = Parser.getTok().getString();
740     if (Option.compare_lower("endloop0") == 0)
741       HexagonMCInstrInfo::setInnerLoop(MCB);
742     else if (Option.compare_lower("endloop1") == 0)
743       HexagonMCInstrInfo::setOuterLoop(MCB);
744     else if (Option.compare_lower("mem_noshuf") == 0)
745       HexagonMCInstrInfo::setMemReorderDisabled(MCB);
746     else if (Option.compare_lower("mem_shuf") == 0)
747       HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB);
748     else
749       return true;
750     Lexer.Lex();
751   }
752 }
753 
754 // For instruction aliases, immediates are generated rather than
755 // MCConstantExpr.  Convert them for uniform MCExpr.
756 // Also check for signed/unsigned mismatches and warn
757 void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
758   MCInst NewInst;
759   NewInst.setOpcode(MCI.getOpcode());
760   for (MCOperand &I : MCI)
761     if (I.isImm()) {
762       int64_t Value (I.getImm());
763       NewInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
764           MCConstantExpr::create(Value, getContext()), getContext())));
765     }
766     else {
767       if (I.isExpr() && cast<HexagonMCExpr>(I.getExpr())->signMismatch() &&
768           WarnSignedMismatch)
769         Warning (MCI.getLoc(), "Signed/Unsigned mismatch");
770       NewInst.addOperand(I);
771     }
772   MCI = NewInst;
773 }
774 
775 bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
776                                            OperandVector &InstOperands,
777                                            uint64_t &ErrorInfo,
778                                            bool MatchingInlineAsm) {
779   // Perform matching with tablegen asmmatcher generated function
780   int result =
781       MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
782   if (result == Match_Success) {
783     MCI.setLoc(IDLoc);
784     canonicalizeImmediates(MCI);
785     result = processInstruction(MCI, InstOperands, IDLoc);
786 
787     DEBUG(dbgs() << "Insn:");
788     DEBUG(MCI.dump_pretty(dbgs()));
789     DEBUG(dbgs() << "\n\n");
790 
791     MCI.setLoc(IDLoc);
792   }
793 
794   // Create instruction operand for bundle instruction
795   //   Break this into a separate function Code here is less readable
796   //   Think about how to get an instruction error to report correctly.
797   //   SMLoc will return the "{"
798   switch (result) {
799   default:
800     break;
801   case Match_Success:
802     return false;
803   case Match_MissingFeature:
804     return Error(IDLoc, "invalid instruction");
805   case Match_MnemonicFail:
806     return Error(IDLoc, "unrecognized instruction");
807   case Match_InvalidOperand:
808     SMLoc ErrorLoc = IDLoc;
809     if (ErrorInfo != ~0U) {
810       if (ErrorInfo >= InstOperands.size())
811         return Error(IDLoc, "too few operands for instruction");
812 
813       ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
814                      ->getStartLoc();
815       if (ErrorLoc == SMLoc())
816         ErrorLoc = IDLoc;
817     }
818     return Error(ErrorLoc, "invalid operand for instruction");
819   }
820   llvm_unreachable("Implement any new match types added!");
821 }
822 
823 bool HexagonAsmParser::mustExtend(OperandVector &Operands) {
824   unsigned Count = 0;
825   for (std::unique_ptr<MCParsedAsmOperand> &i : Operands)
826     if (i->isImm())
827       if (HexagonMCInstrInfo::mustExtend(
828               *static_cast<HexagonOperand *>(i.get())->Imm.Val))
829         ++Count;
830   // Multiple extenders should have been filtered by iss9Ext et. al.
831   assert(Count < 2 && "Multiple extenders");
832   return Count == 1;
833 }
834 
835 bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
836                                                OperandVector &Operands,
837                                                MCStreamer &Out,
838                                                uint64_t &ErrorInfo,
839                                                bool MatchingInlineAsm) {
840   if (!InBrackets) {
841     MCB.clear();
842     MCB.addOperand(MCOperand::createImm(0));
843   }
844   HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
845   if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
846     assert(Operands.size() == 1 && "Brackets should be by themselves");
847     if (InBrackets) {
848       getParser().Error(IDLoc, "Already in a packet");
849       return true;
850     }
851     InBrackets = true;
852     return false;
853   }
854   if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
855     assert(Operands.size() == 1 && "Brackets should be by themselves");
856     if (!InBrackets) {
857       getParser().Error(IDLoc, "Not in a packet");
858       return true;
859     }
860     InBrackets = false;
861     if (matchBundleOptions())
862       return true;
863     return finishBundle(IDLoc, Out);
864   }
865   MCInst *SubInst = new (getParser().getContext()) MCInst;
866   if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
867                           MatchingInlineAsm))
868     return true;
869   HexagonMCInstrInfo::extendIfNeeded(
870       getParser().getContext(), MCII, MCB, *SubInst);
871   MCB.addOperand(MCOperand::createInst(SubInst));
872   if (!InBrackets)
873     return finishBundle(IDLoc, Out);
874   return false;
875 }
876 
877 /// ParseDirective parses the Hexagon specific directives
878 bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
879   StringRef IDVal = DirectiveID.getIdentifier();
880   if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte"))
881     return ParseDirectiveValue(4, DirectiveID.getLoc());
882   if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" ||
883       IDVal.lower() == ".half")
884     return ParseDirectiveValue(2, DirectiveID.getLoc());
885   if (IDVal.lower() == ".falign")
886     return ParseDirectiveFalign(256, DirectiveID.getLoc());
887   if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
888     return ParseDirectiveComm(true, DirectiveID.getLoc());
889   if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
890     return ParseDirectiveComm(false, DirectiveID.getLoc());
891   if (IDVal.lower() == ".subsection")
892     return ParseDirectiveSubsection(DirectiveID.getLoc());
893 
894   return true;
895 }
896 bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
897   const MCExpr *Subsection = 0;
898   int64_t Res;
899 
900   assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
901          "Invalid subsection directive");
902   getParser().parseExpression(Subsection);
903 
904   if (!Subsection->evaluateAsAbsolute(Res))
905     return Error(L, "Cannot evaluate subsection number");
906 
907   if (getLexer().isNot(AsmToken::EndOfStatement))
908     return TokError("unexpected token in directive");
909 
910   // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
911   // negative subsections together and in the same order but at the opposite
912   // end of the section.  Only legacy hexagon-gcc created assembly code
913   // used negative subsections.
914   if ((Res < 0) && (Res > -8193))
915     Subsection = HexagonMCExpr::create(
916         MCConstantExpr::create(8192 + Res, getContext()), getContext());
917 
918   getStreamer().SubSection(Subsection);
919   return false;
920 }
921 
922 ///  ::= .falign [expression]
923 bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
924 
925   int64_t MaxBytesToFill = 15;
926 
927   // if there is an arguement
928   if (getLexer().isNot(AsmToken::EndOfStatement)) {
929     const MCExpr *Value;
930     SMLoc ExprLoc = L;
931 
932     // Make sure we have a number (false is returned if expression is a number)
933     if (getParser().parseExpression(Value) == false) {
934       // Make sure this is a number that is in range
935       const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
936       uint64_t IntValue = MCE->getValue();
937       if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
938         return Error(ExprLoc, "literal value out of range (256) for falign");
939       MaxBytesToFill = IntValue;
940       Lex();
941     } else {
942       return Error(ExprLoc, "not a valid expression for falign directive");
943     }
944   }
945 
946   getTargetStreamer().emitFAlign(16, MaxBytesToFill);
947   Lex();
948 
949   return false;
950 }
951 
952 ///  ::= .word [ expression (, expression)* ]
953 bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) {
954   if (getLexer().isNot(AsmToken::EndOfStatement)) {
955 
956     for (;;) {
957       const MCExpr *Value;
958       SMLoc ExprLoc = L;
959       if (getParser().parseExpression(Value))
960         return true;
961 
962       // Special case constant expressions to match code generator.
963       if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
964         assert(Size <= 8 && "Invalid size");
965         uint64_t IntValue = MCE->getValue();
966         if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
967           return Error(ExprLoc, "literal value out of range for directive");
968         getStreamer().EmitIntValue(IntValue, Size);
969       } else
970         getStreamer().EmitValue(Value, Size);
971 
972       if (getLexer().is(AsmToken::EndOfStatement))
973         break;
974 
975       // FIXME: Improve diagnostic.
976       if (getLexer().isNot(AsmToken::Comma))
977         return TokError("unexpected token in directive");
978       Lex();
979     }
980   }
981 
982   Lex();
983   return false;
984 }
985 
986 // This is largely a copy of AsmParser's ParseDirectiveComm extended to
987 // accept a 3rd argument, AccessAlignment which indicates the smallest
988 // memory access made to the symbol, expressed in bytes.  If no
989 // AccessAlignment is specified it defaults to the Alignment Value.
990 // Hexagon's .lcomm:
991 //   .lcomm Symbol, Length, Alignment, AccessAlignment
992 bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
993   // FIXME: need better way to detect if AsmStreamer (upstream removed
994   // getKind())
995   if (getStreamer().hasRawTextSupport())
996     return true; // Only object file output requires special treatment.
997 
998   StringRef Name;
999   if (getParser().parseIdentifier(Name))
1000     return TokError("expected identifier in directive");
1001   // Handle the identifier as the key symbol.
1002   MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
1003 
1004   if (getLexer().isNot(AsmToken::Comma))
1005     return TokError("unexpected token in directive");
1006   Lex();
1007 
1008   int64_t Size;
1009   SMLoc SizeLoc = getLexer().getLoc();
1010   if (getParser().parseAbsoluteExpression(Size))
1011     return true;
1012 
1013   int64_t ByteAlignment = 1;
1014   SMLoc ByteAlignmentLoc;
1015   if (getLexer().is(AsmToken::Comma)) {
1016     Lex();
1017     ByteAlignmentLoc = getLexer().getLoc();
1018     if (getParser().parseAbsoluteExpression(ByteAlignment))
1019       return true;
1020     if (!isPowerOf2_64(ByteAlignment))
1021       return Error(ByteAlignmentLoc, "alignment must be a power of 2");
1022   }
1023 
1024   int64_t AccessAlignment = 0;
1025   if (getLexer().is(AsmToken::Comma)) {
1026     // The optional access argument specifies the size of the smallest memory
1027     //   access to be made to the symbol, expressed in bytes.
1028     SMLoc AccessAlignmentLoc;
1029     Lex();
1030     AccessAlignmentLoc = getLexer().getLoc();
1031     if (getParser().parseAbsoluteExpression(AccessAlignment))
1032       return true;
1033 
1034     if (!isPowerOf2_64(AccessAlignment))
1035       return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
1036   }
1037 
1038   if (getLexer().isNot(AsmToken::EndOfStatement))
1039     return TokError("unexpected token in '.comm' or '.lcomm' directive");
1040 
1041   Lex();
1042 
1043   // NOTE: a size of zero for a .comm should create a undefined symbol
1044   // but a size of .lcomm creates a bss symbol of size zero.
1045   if (Size < 0)
1046     return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
1047                           "be less than zero");
1048 
1049   // NOTE: The alignment in the directive is a power of 2 value, the assembler
1050   // may internally end up wanting an alignment in bytes.
1051   // FIXME: Diagnose overflow.
1052   if (ByteAlignment < 0)
1053     return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
1054                                    "alignment, can't be less than zero");
1055 
1056   if (!Sym->isUndefined())
1057     return Error(Loc, "invalid symbol redefinition");
1058 
1059   HexagonMCELFStreamer &HexagonELFStreamer =
1060       static_cast<HexagonMCELFStreamer &>(getStreamer());
1061   if (IsLocal) {
1062     HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment,
1063                                                       AccessAlignment);
1064     return false;
1065   }
1066 
1067   HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment,
1068                                                AccessAlignment);
1069   return false;
1070 }
1071 
1072 // validate register against architecture
1073 bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const {
1074   return true;
1075 }
1076 
1077 // extern "C" void LLVMInitializeHexagonAsmLexer();
1078 
1079 /// Force static initialization.
1080 extern "C" void LLVMInitializeHexagonAsmParser() {
1081   RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget);
1082 }
1083 
1084 #define GET_MATCHER_IMPLEMENTATION
1085 #define GET_REGISTER_MATCHER
1086 #include "HexagonGenAsmMatcher.inc"
1087 
1088 namespace {
1089 bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) {
1090   if (Index >= Operands.size())
1091     return false;
1092   MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
1093   if (!Operand.isToken())
1094     return false;
1095   return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String);
1096 }
1097 bool previousIsLoop(OperandVector &Operands, size_t Index) {
1098   return previousEqual(Operands, Index, "loop0") ||
1099          previousEqual(Operands, Index, "loop1") ||
1100          previousEqual(Operands, Index, "sp1loop0") ||
1101          previousEqual(Operands, Index, "sp2loop0") ||
1102          previousEqual(Operands, Index, "sp3loop0");
1103 }
1104 }
1105 
1106 bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
1107   AsmToken const &Token = getParser().getTok();
1108   StringRef String = Token.getString();
1109   SMLoc Loc = Token.getLoc();
1110   getLexer().Lex();
1111   do {
1112     std::pair<StringRef, StringRef> HeadTail = String.split('.');
1113     if (!HeadTail.first.empty())
1114       Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc));
1115     if (!HeadTail.second.empty())
1116       Operands.push_back(HexagonOperand::CreateToken(
1117           String.substr(HeadTail.first.size(), 1), Loc));
1118     String = HeadTail.second;
1119   } while (!String.empty());
1120   return false;
1121 }
1122 
1123 bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
1124   unsigned Register;
1125   SMLoc Begin;
1126   SMLoc End;
1127   MCAsmLexer &Lexer = getLexer();
1128   if (!ParseRegister(Register, Begin, End)) {
1129     if (!ErrorMissingParenthesis)
1130       switch (Register) {
1131       default:
1132         break;
1133       case Hexagon::P0:
1134       case Hexagon::P1:
1135       case Hexagon::P2:
1136       case Hexagon::P3:
1137         if (previousEqual(Operands, 0, "if")) {
1138           if (WarnMissingParenthesis)
1139             Warning (Begin, "Missing parenthesis around predicate register");
1140           static char const *LParen = "(";
1141           static char const *RParen = ")";
1142           Operands.push_back(HexagonOperand::CreateToken(LParen, Begin));
1143           Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1144           AsmToken MaybeDotNew = Lexer.getTok();
1145           if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1146               MaybeDotNew.getString().equals_lower(".new"))
1147             splitIdentifier(Operands);
1148           Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1149           return false;
1150         }
1151         if (previousEqual(Operands, 0, "!") &&
1152             previousEqual(Operands, 1, "if")) {
1153           if (WarnMissingParenthesis)
1154             Warning (Begin, "Missing parenthesis around predicate register");
1155           static char const *LParen = "(";
1156           static char const *RParen = ")";
1157           Operands.insert(Operands.end () - 1,
1158                           HexagonOperand::CreateToken(LParen, Begin));
1159           Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1160           AsmToken MaybeDotNew = Lexer.getTok();
1161           if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1162               MaybeDotNew.getString().equals_lower(".new"))
1163             splitIdentifier(Operands);
1164           Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1165           return false;
1166         }
1167         break;
1168       }
1169     Operands.push_back(HexagonOperand::CreateReg(
1170         Register, Begin, End));
1171     return false;
1172   }
1173   return splitIdentifier(Operands);
1174 }
1175 
1176 bool HexagonAsmParser::isLabel(AsmToken &Token) {
1177   MCAsmLexer &Lexer = getLexer();
1178   AsmToken const &Second = Lexer.getTok();
1179   AsmToken Third = Lexer.peekTok();
1180   StringRef String = Token.getString();
1181   if (Token.is(AsmToken::TokenKind::LCurly) ||
1182       Token.is(AsmToken::TokenKind::RCurly))
1183     return false;
1184   if (!Token.is(AsmToken::TokenKind::Identifier))
1185     return true;
1186   if (!MatchRegisterName(String.lower()))
1187     return true;
1188   (void)Second;
1189   assert(Second.is(AsmToken::Colon));
1190   StringRef Raw (String.data(), Third.getString().data() - String.data() +
1191                  Third.getString().size());
1192   std::string Collapsed = Raw;
1193   Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1194                   Collapsed.end());
1195   StringRef Whole = Collapsed;
1196   std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
1197   if (!MatchRegisterName(DotSplit.first.lower()))
1198     return true;
1199   return false;
1200 }
1201 
1202 bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) {
1203   if (!Contigious && ErrorNoncontigiousRegister) {
1204     Error(Loc, "Register name is not contigious");
1205     return true;
1206   }
1207   if (!Contigious && WarnNoncontigiousRegister)
1208     Warning(Loc, "Register name is not contigious");
1209   return false;
1210 }
1211 
1212 bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
1213   MCAsmLexer &Lexer = getLexer();
1214   StartLoc = getLexer().getLoc();
1215   SmallVector<AsmToken, 5> Lookahead;
1216   StringRef RawString(Lexer.getTok().getString().data(), 0);
1217   bool Again = Lexer.is(AsmToken::Identifier);
1218   bool NeededWorkaround = false;
1219   while (Again) {
1220     AsmToken const &Token = Lexer.getTok();
1221     RawString = StringRef(RawString.data(),
1222                           Token.getString().data() - RawString.data () +
1223                           Token.getString().size());
1224     Lookahead.push_back(Token);
1225     Lexer.Lex();
1226     bool Contigious = Lexer.getTok().getString().data() ==
1227                       Lookahead.back().getString().data() +
1228                       Lookahead.back().getString().size();
1229     bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
1230                 Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
1231                 Lexer.is(AsmToken::Colon);
1232     bool Workaround = Lexer.is(AsmToken::Colon) ||
1233                       Lookahead.back().is(AsmToken::Colon);
1234     Again = (Contigious && Type) || (Workaround && Type);
1235     NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
1236   }
1237   std::string Collapsed = RawString;
1238   Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1239                   Collapsed.end());
1240   StringRef FullString = Collapsed;
1241   std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
1242   unsigned DotReg = MatchRegisterName(DotSplit.first.lower());
1243   if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1244     if (DotSplit.second.empty()) {
1245       RegNo = DotReg;
1246       EndLoc = Lexer.getLoc();
1247       if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1248         return true;
1249       return false;
1250     } else {
1251       RegNo = DotReg;
1252       size_t First = RawString.find('.');
1253       StringRef DotString (RawString.data() + First, RawString.size() - First);
1254       Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
1255       EndLoc = Lexer.getLoc();
1256       if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1257         return true;
1258       return false;
1259     }
1260   }
1261   std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
1262   unsigned ColonReg = MatchRegisterName(ColonSplit.first.lower());
1263   if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1264     Lexer.UnLex(Lookahead.back());
1265     Lookahead.pop_back();
1266     Lexer.UnLex(Lookahead.back());
1267     Lookahead.pop_back();
1268     RegNo = ColonReg;
1269     EndLoc = Lexer.getLoc();
1270     if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1271       return true;
1272     return false;
1273   }
1274   while (!Lookahead.empty()) {
1275     Lexer.UnLex(Lookahead.back());
1276     Lookahead.pop_back();
1277   }
1278   return true;
1279 }
1280 
1281 bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
1282   if (previousEqual(Operands, 0, "call"))
1283     return true;
1284   if (previousEqual(Operands, 0, "jump"))
1285     if (!getLexer().getTok().is(AsmToken::Colon))
1286       return true;
1287   if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
1288     return true;
1289   if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
1290       (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
1291     return true;
1292   return false;
1293 }
1294 
1295 bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) {
1296   llvm::SmallVector<AsmToken, 4> Tokens;
1297   MCAsmLexer &Lexer = getLexer();
1298   bool Done = false;
1299   static char const * Comma = ",";
1300   do {
1301     Tokens.emplace_back (Lexer.getTok());
1302     Lexer.Lex();
1303     switch (Tokens.back().getKind())
1304     {
1305     case AsmToken::TokenKind::Hash:
1306       if (Tokens.size () > 1)
1307         if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) {
1308           Tokens.insert(Tokens.end() - 2,
1309                         AsmToken(AsmToken::TokenKind::Comma, Comma));
1310           Done = true;
1311         }
1312       break;
1313     case AsmToken::TokenKind::RCurly:
1314     case AsmToken::TokenKind::EndOfStatement:
1315     case AsmToken::TokenKind::Eof:
1316       Done = true;
1317       break;
1318     default:
1319       break;
1320     }
1321   } while (!Done);
1322   while (!Tokens.empty()) {
1323     Lexer.UnLex(Tokens.back());
1324     Tokens.pop_back();
1325   }
1326   return getParser().parseExpression(Expr);
1327 }
1328 
1329 bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
1330   if (implicitExpressionLocation(Operands)) {
1331     MCAsmParser &Parser = getParser();
1332     SMLoc Loc = Parser.getLexer().getLoc();
1333     MCExpr const *Expr = nullptr;
1334     bool Error = parseExpression(Expr);
1335     Expr = HexagonMCExpr::create(Expr, getContext());
1336     if (!Error)
1337       Operands.push_back(HexagonOperand::CreateImm(Expr, Loc, Loc));
1338     return Error;
1339   }
1340   return parseOperand(Operands);
1341 }
1342 
1343 /// Parse an instruction.
1344 bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
1345   MCAsmParser &Parser = getParser();
1346   MCAsmLexer &Lexer = getLexer();
1347   while (true) {
1348     AsmToken const &Token = Parser.getTok();
1349     switch (Token.getKind()) {
1350     case AsmToken::EndOfStatement: {
1351       Lexer.Lex();
1352       return false;
1353     }
1354     case AsmToken::LCurly: {
1355       if (!Operands.empty())
1356         return true;
1357       Operands.push_back(
1358           HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1359       Lexer.Lex();
1360       return false;
1361     }
1362     case AsmToken::RCurly: {
1363       if (Operands.empty()) {
1364         Operands.push_back(
1365             HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1366         Lexer.Lex();
1367       }
1368       return false;
1369     }
1370     case AsmToken::Comma: {
1371       Lexer.Lex();
1372       continue;
1373     }
1374     case AsmToken::EqualEqual:
1375     case AsmToken::ExclaimEqual:
1376     case AsmToken::GreaterEqual:
1377     case AsmToken::GreaterGreater:
1378     case AsmToken::LessEqual:
1379     case AsmToken::LessLess: {
1380       Operands.push_back(HexagonOperand::CreateToken(
1381           Token.getString().substr(0, 1), Token.getLoc()));
1382       Operands.push_back(HexagonOperand::CreateToken(
1383           Token.getString().substr(1, 1), Token.getLoc()));
1384       Lexer.Lex();
1385       continue;
1386     }
1387     case AsmToken::Hash: {
1388       bool MustNotExtend = false;
1389       bool ImplicitExpression = implicitExpressionLocation(Operands);
1390       SMLoc ExprLoc = Lexer.getLoc();
1391       if (!ImplicitExpression)
1392         Operands.push_back(
1393           HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1394       Lexer.Lex();
1395       bool MustExtend = false;
1396       bool HiOnly = false;
1397       bool LoOnly = false;
1398       if (Lexer.is(AsmToken::Hash)) {
1399         Lexer.Lex();
1400         MustExtend = true;
1401       } else if (ImplicitExpression)
1402         MustNotExtend = true;
1403       AsmToken const &Token = Parser.getTok();
1404       if (Token.is(AsmToken::Identifier)) {
1405         StringRef String = Token.getString();
1406         AsmToken IDToken = Token;
1407         if (String.lower() == "hi") {
1408           HiOnly = true;
1409         } else if (String.lower() == "lo") {
1410           LoOnly = true;
1411         }
1412         if (HiOnly || LoOnly) {
1413           AsmToken LParen = Lexer.peekTok();
1414           if (!LParen.is(AsmToken::LParen)) {
1415             HiOnly = false;
1416             LoOnly = false;
1417           } else {
1418             Lexer.Lex();
1419           }
1420         }
1421       }
1422       MCExpr const *Expr = nullptr;
1423       if (parseExpression(Expr))
1424         return true;
1425       int64_t Value;
1426       MCContext &Context = Parser.getContext();
1427       assert(Expr != nullptr);
1428       if (Expr->evaluateAsAbsolute(Value)) {
1429         if (HiOnly)
1430           Expr = MCBinaryExpr::createLShr(
1431               Expr,  MCConstantExpr::create(16, Context), Context);
1432         if (HiOnly || LoOnly)
1433           Expr = MCBinaryExpr::createAnd(Expr,
1434               MCConstantExpr::create(0xffff, Context),
1435                                     Context);
1436       }
1437       Expr = HexagonMCExpr::create(Expr, Context);
1438       HexagonMCInstrInfo::setMustNotExtend(*Expr, MustNotExtend);
1439       HexagonMCInstrInfo::setMustExtend(*Expr, MustExtend);
1440       std::unique_ptr<HexagonOperand> Operand =
1441           HexagonOperand::CreateImm(Expr, ExprLoc, ExprLoc);
1442       Operands.push_back(std::move(Operand));
1443       continue;
1444     }
1445     default:
1446       break;
1447     }
1448     if (parseExpressionOrOperand(Operands))
1449       return true;
1450   }
1451 }
1452 
1453 bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1454                                         StringRef Name,
1455                                         AsmToken ID,
1456                                         OperandVector &Operands) {
1457   getLexer().UnLex(ID);
1458   return parseInstruction(Operands);
1459 }
1460 
1461 namespace {
1462 MCInst makeCombineInst(int opCode, MCOperand &Rdd,
1463                        MCOperand &MO1, MCOperand &MO2) {
1464   MCInst TmpInst;
1465   TmpInst.setOpcode(opCode);
1466   TmpInst.addOperand(Rdd);
1467   TmpInst.addOperand(MO1);
1468   TmpInst.addOperand(MO2);
1469 
1470   return TmpInst;
1471 }
1472 }
1473 
1474 // Define this matcher function after the auto-generated include so we
1475 // have the match class enum definitions.
1476 unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1477                                                       unsigned Kind) {
1478   HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
1479 
1480   switch (Kind) {
1481   case MCK_0: {
1482     int64_t Value;
1483     return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
1484                ? Match_Success
1485                : Match_InvalidOperand;
1486   }
1487   case MCK_1: {
1488     int64_t Value;
1489     return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
1490                ? Match_Success
1491                : Match_InvalidOperand;
1492   }
1493   case MCK__MINUS_1: {
1494     int64_t Value;
1495     return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1
1496                ? Match_Success
1497                : Match_InvalidOperand;
1498   }
1499   }
1500   if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
1501     StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
1502     if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
1503       return Match_Success;
1504     if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
1505       return Match_Success;
1506   }
1507 
1508   DEBUG(dbgs() << "Unmatched Operand:");
1509   DEBUG(Op->dump());
1510   DEBUG(dbgs() << "\n");
1511 
1512   return Match_InvalidOperand;
1513 }
1514 
1515 void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
1516   std::string errStr;
1517   raw_string_ostream ES(errStr);
1518   ES << "value " << Val << "(" << format_hex(Val, 0) << ") out of range: ";
1519   if (Max >= 0)
1520     ES << "0-" << Max;
1521   else
1522     ES << Max << "-" << (-Max - 1);
1523   Error(IDLoc, ES.str().c_str());
1524 }
1525 
1526 int HexagonAsmParser::processInstruction(MCInst &Inst,
1527                                          OperandVector const &Operands,
1528                                          SMLoc IDLoc) {
1529   MCContext &Context = getParser().getContext();
1530   const MCRegisterInfo *RI = getContext().getRegisterInfo();
1531   std::string r = "r";
1532   std::string v = "v";
1533   std::string Colon = ":";
1534 
1535   bool is32bit = false; // used to distinguish between CONST32 and CONST64
1536   switch (Inst.getOpcode()) {
1537   default:
1538     break;
1539 
1540   case Hexagon::A2_iconst: {
1541     Inst.setOpcode(Hexagon::A2_addi);
1542     MCOperand Reg = Inst.getOperand(0);
1543     MCOperand S16 = Inst.getOperand(1);
1544     HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
1545     HexagonMCInstrInfo::setS23_2_reloc(*S16.getExpr());
1546     Inst.clear();
1547     Inst.addOperand(Reg);
1548     Inst.addOperand(MCOperand::createReg(Hexagon::R0));
1549     Inst.addOperand(S16);
1550     break;
1551   }
1552   case Hexagon::M4_mpyrr_addr:
1553   case Hexagon::S4_addi_asl_ri:
1554   case Hexagon::S4_addi_lsr_ri:
1555   case Hexagon::S4_andi_asl_ri:
1556   case Hexagon::S4_andi_lsr_ri:
1557   case Hexagon::S4_ori_asl_ri:
1558   case Hexagon::S4_ori_lsr_ri:
1559   case Hexagon::S4_or_andix:
1560   case Hexagon::S4_subi_asl_ri:
1561   case Hexagon::S4_subi_lsr_ri: {
1562     MCOperand &Ry = Inst.getOperand(0);
1563     MCOperand &src = Inst.getOperand(2);
1564     if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
1565       return Match_InvalidOperand;
1566     break;
1567   }
1568 
1569   case Hexagon::C2_cmpgei: {
1570     MCOperand &MO = Inst.getOperand(2);
1571     MO.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1572         MO.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
1573     Inst.setOpcode(Hexagon::C2_cmpgti);
1574     break;
1575   }
1576 
1577   case Hexagon::C2_cmpgeui: {
1578     MCOperand &MO = Inst.getOperand(2);
1579     int64_t Value;
1580     bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
1581     (void)Success;
1582     assert(Success && "Assured by matcher");
1583     if (Value == 0) {
1584       MCInst TmpInst;
1585       MCOperand &Pd = Inst.getOperand(0);
1586       MCOperand &Rt = Inst.getOperand(1);
1587       TmpInst.setOpcode(Hexagon::C2_cmpeq);
1588       TmpInst.addOperand(Pd);
1589       TmpInst.addOperand(Rt);
1590       TmpInst.addOperand(Rt);
1591       Inst = TmpInst;
1592     } else {
1593       MO.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1594           MO.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
1595       Inst.setOpcode(Hexagon::C2_cmpgtui);
1596     }
1597     break;
1598   }
1599 
1600   // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
1601   case Hexagon::A2_tfrp: {
1602     MCOperand &MO = Inst.getOperand(1);
1603     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1604     std::string R1 = r + llvm::utostr(RegPairNum + 1);
1605     StringRef Reg1(R1);
1606     MO.setReg(MatchRegisterName(Reg1));
1607     // Add a new operand for the second register in the pair.
1608     std::string R2 = r + llvm::utostr(RegPairNum);
1609     StringRef Reg2(R2);
1610     Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1611     Inst.setOpcode(Hexagon::A2_combinew);
1612     break;
1613   }
1614 
1615   case Hexagon::A2_tfrpt:
1616   case Hexagon::A2_tfrpf: {
1617     MCOperand &MO = Inst.getOperand(2);
1618     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1619     std::string R1 = r + llvm::utostr(RegPairNum + 1);
1620     StringRef Reg1(R1);
1621     MO.setReg(MatchRegisterName(Reg1));
1622     // Add a new operand for the second register in the pair.
1623     std::string R2 = r + llvm::utostr(RegPairNum);
1624     StringRef Reg2(R2);
1625     Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1626     Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
1627                        ? Hexagon::C2_ccombinewt
1628                        : Hexagon::C2_ccombinewf);
1629     break;
1630   }
1631   case Hexagon::A2_tfrptnew:
1632   case Hexagon::A2_tfrpfnew: {
1633     MCOperand &MO = Inst.getOperand(2);
1634     unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1635     std::string R1 = r + llvm::utostr(RegPairNum + 1);
1636     StringRef Reg1(R1);
1637     MO.setReg(MatchRegisterName(Reg1));
1638     // Add a new operand for the second register in the pair.
1639     std::string R2 = r + llvm::utostr(RegPairNum);
1640     StringRef Reg2(R2);
1641     Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1642     Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
1643                        ? Hexagon::C2_ccombinewnewt
1644                        : Hexagon::C2_ccombinewnewf);
1645     break;
1646   }
1647 
1648   // Translate a "$Rx =  CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
1649   case Hexagon::CONST32:
1650   case Hexagon::CONST32_Float_Real:
1651   case Hexagon::CONST32_Int_Real:
1652   case Hexagon::FCONST32_nsdata:
1653     is32bit = true;
1654   // Translate a "$Rx:y =  CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
1655   case Hexagon::CONST64_Float_Real:
1656   case Hexagon::CONST64_Int_Real:
1657 
1658     // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
1659     if (!Parser.getStreamer().hasRawTextSupport()) {
1660       MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
1661       MCOperand &MO_1 = Inst.getOperand(1);
1662       MCOperand &MO_0 = Inst.getOperand(0);
1663 
1664       // push section onto section stack
1665       MES->PushSection();
1666 
1667       std::string myCharStr;
1668       MCSectionELF *mySection;
1669 
1670       // check if this as an immediate or a symbol
1671       int64_t Value;
1672       bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
1673       if (Absolute) {
1674         // Create a new section - one for each constant
1675         // Some or all of the zeros are replaced with the given immediate.
1676         if (is32bit) {
1677           std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
1678           myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
1679                           .drop_back(myImmStr.size())
1680                           .str() +
1681                       myImmStr;
1682         } else {
1683           std::string myImmStr = utohexstr(Value);
1684           myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
1685                           .drop_back(myImmStr.size())
1686                           .str() +
1687                       myImmStr;
1688         }
1689 
1690         mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1691                                                ELF::SHF_ALLOC | ELF::SHF_WRITE);
1692       } else if (MO_1.isExpr()) {
1693         // .lita - for expressions
1694         myCharStr = ".lita";
1695         mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1696                                                ELF::SHF_ALLOC | ELF::SHF_WRITE);
1697       } else
1698         llvm_unreachable("unexpected type of machine operand!");
1699 
1700       MES->SwitchSection(mySection);
1701       unsigned byteSize = is32bit ? 4 : 8;
1702       getStreamer().EmitCodeAlignment(byteSize, byteSize);
1703 
1704       MCSymbol *Sym;
1705 
1706       // for symbols, get rid of prepended ".gnu.linkonce.lx."
1707 
1708       // emit symbol if needed
1709       if (Absolute) {
1710         Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
1711         if (Sym->isUndefined()) {
1712           getStreamer().EmitLabel(Sym);
1713           getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
1714           getStreamer().EmitIntValue(Value, byteSize);
1715         }
1716       } else if (MO_1.isExpr()) {
1717         const char *StringStart = 0;
1718         const char *StringEnd = 0;
1719         if (*Operands[4]->getStartLoc().getPointer() == '#') {
1720           StringStart = Operands[5]->getStartLoc().getPointer();
1721           StringEnd = Operands[6]->getStartLoc().getPointer();
1722         } else { // no pound
1723           StringStart = Operands[4]->getStartLoc().getPointer();
1724           StringEnd = Operands[5]->getStartLoc().getPointer();
1725         }
1726 
1727         unsigned size = StringEnd - StringStart;
1728         std::string DotConst = ".CONST_";
1729         Sym = getContext().getOrCreateSymbol(DotConst +
1730                                              StringRef(StringStart, size));
1731 
1732         if (Sym->isUndefined()) {
1733           // case where symbol is not yet defined: emit symbol
1734           getStreamer().EmitLabel(Sym);
1735           getStreamer().EmitSymbolAttribute(Sym, MCSA_Local);
1736           getStreamer().EmitValue(MO_1.getExpr(), 4);
1737         }
1738       } else
1739         llvm_unreachable("unexpected type of machine operand!");
1740 
1741       MES->PopSection();
1742 
1743       if (Sym) {
1744         MCInst TmpInst;
1745         if (is32bit) // 32 bit
1746           TmpInst.setOpcode(Hexagon::L2_loadrigp);
1747         else // 64 bit
1748           TmpInst.setOpcode(Hexagon::L2_loadrdgp);
1749 
1750         TmpInst.addOperand(MO_0);
1751         TmpInst.addOperand(
1752             MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext())));
1753         Inst = TmpInst;
1754       }
1755     }
1756     break;
1757 
1758   // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
1759   case Hexagon::A2_tfrpi: {
1760     MCOperand &Rdd = Inst.getOperand(0);
1761     MCOperand &MO = Inst.getOperand(1);
1762     int64_t Value;
1763     int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
1764     MCOperand imm(MCOperand::createExpr(
1765         HexagonMCExpr::create(MCConstantExpr::create(sVal, Context), Context)));
1766     Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
1767     break;
1768   }
1769 
1770   // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
1771   case Hexagon::TFRI64_V4: {
1772     MCOperand &Rdd = Inst.getOperand(0);
1773     MCOperand &MO = Inst.getOperand(1);
1774     int64_t Value;
1775     if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1776       unsigned long long u64 = Value;
1777       signed int s8 = (u64 >> 32) & 0xFFFFFFFF;
1778       if (s8 < -128 || s8 > 127)
1779         OutOfRange(IDLoc, s8, -128);
1780       MCOperand imm(MCOperand::createExpr(HexagonMCExpr::create(
1781           MCConstantExpr::create(s8, Context), Context))); // upper 32
1782       auto Expr = HexagonMCExpr::create(
1783                   MCConstantExpr::create(u64 & 0xFFFFFFFF, Context),
1784                   Context);
1785       HexagonMCInstrInfo::setMustExtend(*Expr, HexagonMCInstrInfo::mustExtend(*MO.getExpr()));
1786       MCOperand imm2(MCOperand::createExpr(Expr)); // lower 32
1787       Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
1788     } else {
1789       MCOperand imm(MCOperand::createExpr(HexagonMCExpr::create(
1790           MCConstantExpr::create(0, Context), Context))); // upper 32
1791       Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
1792     }
1793     break;
1794   }
1795 
1796   // Handle $Rdd = combine(##imm, #imm)"
1797   case Hexagon::TFRI64_V2_ext: {
1798     MCOperand &Rdd = Inst.getOperand(0);
1799     MCOperand &MO1 = Inst.getOperand(1);
1800     MCOperand &MO2 = Inst.getOperand(2);
1801     int64_t Value;
1802     if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
1803       int s8 = Value;
1804       if (s8 < -128 || s8 > 127)
1805         OutOfRange(IDLoc, s8, -128);
1806     }
1807     Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
1808     break;
1809   }
1810 
1811   // Handle $Rdd = combine(#imm, ##imm)"
1812   case Hexagon::A4_combineii: {
1813     MCOperand &Rdd = Inst.getOperand(0);
1814     MCOperand &MO1 = Inst.getOperand(1);
1815     int64_t Value;
1816     if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
1817       int s8 = Value;
1818       if (s8 < -128 || s8 > 127)
1819         OutOfRange(IDLoc, s8, -128);
1820     }
1821     MCOperand &MO2 = Inst.getOperand(2);
1822     Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
1823     break;
1824   }
1825 
1826   case Hexagon::S2_tableidxb_goodsyntax: {
1827     Inst.setOpcode(Hexagon::S2_tableidxb);
1828     break;
1829   }
1830 
1831   case Hexagon::S2_tableidxh_goodsyntax: {
1832     MCInst TmpInst;
1833     MCOperand &Rx = Inst.getOperand(0);
1834     MCOperand &_dst_ = Inst.getOperand(1);
1835     MCOperand &Rs = Inst.getOperand(2);
1836     MCOperand &Imm4 = Inst.getOperand(3);
1837     MCOperand &Imm6 = Inst.getOperand(4);
1838     Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1839         Imm6.getExpr(), MCConstantExpr::create(1, Context), Context), Context));
1840     TmpInst.setOpcode(Hexagon::S2_tableidxh);
1841     TmpInst.addOperand(Rx);
1842     TmpInst.addOperand(_dst_);
1843     TmpInst.addOperand(Rs);
1844     TmpInst.addOperand(Imm4);
1845     TmpInst.addOperand(Imm6);
1846     Inst = TmpInst;
1847     break;
1848   }
1849 
1850   case Hexagon::S2_tableidxw_goodsyntax: {
1851     MCInst TmpInst;
1852     MCOperand &Rx = Inst.getOperand(0);
1853     MCOperand &_dst_ = Inst.getOperand(1);
1854     MCOperand &Rs = Inst.getOperand(2);
1855     MCOperand &Imm4 = Inst.getOperand(3);
1856     MCOperand &Imm6 = Inst.getOperand(4);
1857     Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1858         Imm6.getExpr(), MCConstantExpr::create(2, Context), Context), Context));
1859     TmpInst.setOpcode(Hexagon::S2_tableidxw);
1860     TmpInst.addOperand(Rx);
1861     TmpInst.addOperand(_dst_);
1862     TmpInst.addOperand(Rs);
1863     TmpInst.addOperand(Imm4);
1864     TmpInst.addOperand(Imm6);
1865     Inst = TmpInst;
1866     break;
1867   }
1868 
1869   case Hexagon::S2_tableidxd_goodsyntax: {
1870     MCInst TmpInst;
1871     MCOperand &Rx = Inst.getOperand(0);
1872     MCOperand &_dst_ = Inst.getOperand(1);
1873     MCOperand &Rs = Inst.getOperand(2);
1874     MCOperand &Imm4 = Inst.getOperand(3);
1875     MCOperand &Imm6 = Inst.getOperand(4);
1876     Imm6.setExpr(HexagonMCExpr::create(MCBinaryExpr::createSub(
1877         Imm6.getExpr(), MCConstantExpr::create(3, Context), Context), Context));
1878     TmpInst.setOpcode(Hexagon::S2_tableidxd);
1879     TmpInst.addOperand(Rx);
1880     TmpInst.addOperand(_dst_);
1881     TmpInst.addOperand(Rs);
1882     TmpInst.addOperand(Imm4);
1883     TmpInst.addOperand(Imm6);
1884     Inst = TmpInst;
1885     break;
1886   }
1887 
1888   case Hexagon::M2_mpyui: {
1889     Inst.setOpcode(Hexagon::M2_mpyi);
1890     break;
1891   }
1892   case Hexagon::M2_mpysmi: {
1893     MCInst TmpInst;
1894     MCOperand &Rd = Inst.getOperand(0);
1895     MCOperand &Rs = Inst.getOperand(1);
1896     MCOperand &Imm = Inst.getOperand(2);
1897     int64_t Value;
1898     MCExpr const &Expr = *Imm.getExpr();
1899     bool Absolute = Expr.evaluateAsAbsolute(Value);
1900     assert(Absolute);
1901     (void)Absolute;
1902     if (!HexagonMCInstrInfo::mustExtend(Expr)) {
1903       if (Value < 0 && Value > -256) {
1904         Imm.setExpr(HexagonMCExpr::create(
1905             MCConstantExpr::create(Value * -1, Context), Context));
1906         TmpInst.setOpcode(Hexagon::M2_mpysin);
1907       } else if (Value < 256 && Value >= 0)
1908         TmpInst.setOpcode(Hexagon::M2_mpysip);
1909       else
1910         return Match_InvalidOperand;
1911     } else {
1912       if (Value >= 0)
1913         TmpInst.setOpcode(Hexagon::M2_mpysip);
1914       else
1915         return Match_InvalidOperand;
1916     }
1917     TmpInst.addOperand(Rd);
1918     TmpInst.addOperand(Rs);
1919     TmpInst.addOperand(Imm);
1920     Inst = TmpInst;
1921     break;
1922   }
1923 
1924   case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
1925     MCOperand &Imm = Inst.getOperand(2);
1926     MCInst TmpInst;
1927     int64_t Value;
1928     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1929     assert(Absolute);
1930     (void)Absolute;
1931     if (Value == 0) { // convert to $Rd = $Rs
1932       TmpInst.setOpcode(Hexagon::A2_tfr);
1933       MCOperand &Rd = Inst.getOperand(0);
1934       MCOperand &Rs = Inst.getOperand(1);
1935       TmpInst.addOperand(Rd);
1936       TmpInst.addOperand(Rs);
1937     } else {
1938       Imm.setExpr(HexagonMCExpr::create(
1939           MCBinaryExpr::createSub(Imm.getExpr(),
1940                                   MCConstantExpr::create(1, Context), Context),
1941           Context));
1942       TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
1943       MCOperand &Rd = Inst.getOperand(0);
1944       MCOperand &Rs = Inst.getOperand(1);
1945       TmpInst.addOperand(Rd);
1946       TmpInst.addOperand(Rs);
1947       TmpInst.addOperand(Imm);
1948     }
1949     Inst = TmpInst;
1950     break;
1951   }
1952 
1953   case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
1954     MCOperand &Rdd = Inst.getOperand(0);
1955     MCOperand &Rss = Inst.getOperand(1);
1956     MCOperand &Imm = Inst.getOperand(2);
1957     int64_t Value;
1958     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1959     assert(Absolute);
1960     (void)Absolute;
1961     if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
1962       MCInst TmpInst;
1963       unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
1964       std::string R1 = r + llvm::utostr(RegPairNum + 1);
1965       StringRef Reg1(R1);
1966       Rss.setReg(MatchRegisterName(Reg1));
1967       // Add a new operand for the second register in the pair.
1968       std::string R2 = r + llvm::utostr(RegPairNum);
1969       StringRef Reg2(R2);
1970       TmpInst.setOpcode(Hexagon::A2_combinew);
1971       TmpInst.addOperand(Rdd);
1972       TmpInst.addOperand(Rss);
1973       TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1974       Inst = TmpInst;
1975     } else {
1976       Imm.setExpr(HexagonMCExpr::create(
1977           MCBinaryExpr::createSub(Imm.getExpr(),
1978                                   MCConstantExpr::create(1, Context), Context),
1979           Context));
1980       Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
1981     }
1982     break;
1983   }
1984 
1985   case Hexagon::A4_boundscheck: {
1986     MCOperand &Rs = Inst.getOperand(1);
1987     unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
1988     if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
1989       Inst.setOpcode(Hexagon::A4_boundscheck_hi);
1990       std::string Name =
1991           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
1992       StringRef RegPair = Name;
1993       Rs.setReg(MatchRegisterName(RegPair));
1994     } else { // raw:lo
1995       Inst.setOpcode(Hexagon::A4_boundscheck_lo);
1996       std::string Name =
1997           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
1998       StringRef RegPair = Name;
1999       Rs.setReg(MatchRegisterName(RegPair));
2000     }
2001     break;
2002   }
2003 
2004   case Hexagon::A2_addsp: {
2005     MCOperand &Rs = Inst.getOperand(1);
2006     unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
2007     if (RegNum & 1) { // Odd mapped to raw:hi
2008       Inst.setOpcode(Hexagon::A2_addsph);
2009       std::string Name =
2010           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2011       StringRef RegPair = Name;
2012       Rs.setReg(MatchRegisterName(RegPair));
2013     } else { // Even mapped raw:lo
2014       Inst.setOpcode(Hexagon::A2_addspl);
2015       std::string Name =
2016           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2017       StringRef RegPair = Name;
2018       Rs.setReg(MatchRegisterName(RegPair));
2019     }
2020     break;
2021   }
2022 
2023   case Hexagon::M2_vrcmpys_s1: {
2024     MCOperand &Rt = Inst.getOperand(2);
2025     unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2026     if (RegNum & 1) { // Odd mapped to sat:raw:hi
2027       Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
2028       std::string Name =
2029           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2030       StringRef RegPair = Name;
2031       Rt.setReg(MatchRegisterName(RegPair));
2032     } else { // Even mapped sat:raw:lo
2033       Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
2034       std::string Name =
2035           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2036       StringRef RegPair = Name;
2037       Rt.setReg(MatchRegisterName(RegPair));
2038     }
2039     break;
2040   }
2041 
2042   case Hexagon::M2_vrcmpys_acc_s1: {
2043     MCInst TmpInst;
2044     MCOperand &Rxx = Inst.getOperand(0);
2045     MCOperand &Rss = Inst.getOperand(2);
2046     MCOperand &Rt = Inst.getOperand(3);
2047     unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2048     if (RegNum & 1) { // Odd mapped to sat:raw:hi
2049       TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
2050       std::string Name =
2051           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2052       StringRef RegPair = Name;
2053       Rt.setReg(MatchRegisterName(RegPair));
2054     } else { // Even mapped sat:raw:lo
2055       TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
2056       std::string Name =
2057           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2058       StringRef RegPair = Name;
2059       Rt.setReg(MatchRegisterName(RegPair));
2060     }
2061     // Registers are in different positions
2062     TmpInst.addOperand(Rxx);
2063     TmpInst.addOperand(Rxx);
2064     TmpInst.addOperand(Rss);
2065     TmpInst.addOperand(Rt);
2066     Inst = TmpInst;
2067     break;
2068   }
2069 
2070   case Hexagon::M2_vrcmpys_s1rp: {
2071     MCOperand &Rt = Inst.getOperand(2);
2072     unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2073     if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
2074       Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
2075       std::string Name =
2076           r + llvm::utostr(RegNum) + Colon + llvm::utostr(RegNum - 1);
2077       StringRef RegPair = Name;
2078       Rt.setReg(MatchRegisterName(RegPair));
2079     } else { // Even mapped rnd:sat:raw:lo
2080       Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
2081       std::string Name =
2082           r + llvm::utostr(RegNum + 1) + Colon + llvm::utostr(RegNum);
2083       StringRef RegPair = Name;
2084       Rt.setReg(MatchRegisterName(RegPair));
2085     }
2086     break;
2087   }
2088 
2089   case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
2090     MCOperand &Imm = Inst.getOperand(2);
2091     int64_t Value;
2092     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2093     assert(Absolute);
2094     (void)Absolute;
2095     if (Value == 0)
2096       Inst.setOpcode(Hexagon::S2_vsathub);
2097     else {
2098       Imm.setExpr(HexagonMCExpr::create(
2099           MCBinaryExpr::createSub(Imm.getExpr(),
2100                                   MCConstantExpr::create(1, Context), Context),
2101           Context));
2102       Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
2103     }
2104     break;
2105   }
2106 
2107   case Hexagon::S5_vasrhrnd_goodsyntax: {
2108     MCOperand &Rdd = Inst.getOperand(0);
2109     MCOperand &Rss = Inst.getOperand(1);
2110     MCOperand &Imm = Inst.getOperand(2);
2111     int64_t Value;
2112     bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2113     assert(Absolute);
2114     (void)Absolute;
2115     if (Value == 0) {
2116       MCInst TmpInst;
2117       unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
2118       std::string R1 = r + llvm::utostr(RegPairNum + 1);
2119       StringRef Reg1(R1);
2120       Rss.setReg(MatchRegisterName(Reg1));
2121       // Add a new operand for the second register in the pair.
2122       std::string R2 = r + llvm::utostr(RegPairNum);
2123       StringRef Reg2(R2);
2124       TmpInst.setOpcode(Hexagon::A2_combinew);
2125       TmpInst.addOperand(Rdd);
2126       TmpInst.addOperand(Rss);
2127       TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
2128       Inst = TmpInst;
2129     } else {
2130       Imm.setExpr(HexagonMCExpr::create(
2131           MCBinaryExpr::createSub(Imm.getExpr(),
2132                                   MCConstantExpr::create(1, Context), Context),
2133           Context));
2134       Inst.setOpcode(Hexagon::S5_vasrhrnd);
2135     }
2136     break;
2137   }
2138 
2139   case Hexagon::A2_not: {
2140     MCInst TmpInst;
2141     MCOperand &Rd = Inst.getOperand(0);
2142     MCOperand &Rs = Inst.getOperand(1);
2143     TmpInst.setOpcode(Hexagon::A2_subri);
2144     TmpInst.addOperand(Rd);
2145     TmpInst.addOperand(MCOperand::createExpr(
2146         HexagonMCExpr::create(MCConstantExpr::create(-1, Context), Context)));
2147     TmpInst.addOperand(Rs);
2148     Inst = TmpInst;
2149     break;
2150   }
2151   } // switch
2152 
2153   return Match_Success;
2154 }
2155