1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "DirectXIRPasses/PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Bitcode/BitcodeCommon.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/Bitstream/BitCodes.h" 21 #include "llvm/Bitstream/BitstreamWriter.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/UseListOrder.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Object/IRSymtab.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/ModRef.h" 52 #include "llvm/Support/SHA1.h" 53 #include "llvm/TargetParser/Triple.h" 54 55 namespace llvm { 56 namespace dxil { 57 58 // Generates an enum to use as an index in the Abbrev array of Metadata record. 59 enum MetadataAbbrev : unsigned { 60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 61 #include "llvm/IR/Metadata.def" 62 LastPlusOne 63 }; 64 65 class DXILBitcodeWriter { 66 67 /// These are manifest constants used by the bitcode writer. They do not need 68 /// to be kept in sync with the reader, but need to be consistent within this 69 /// file. 70 enum { 71 // VALUE_SYMTAB_BLOCK abbrev id's. 72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 73 VST_ENTRY_7_ABBREV, 74 VST_ENTRY_6_ABBREV, 75 VST_BBENTRY_6_ABBREV, 76 77 // CONSTANTS_BLOCK abbrev id's. 78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 79 CONSTANTS_INTEGER_ABBREV, 80 CONSTANTS_CE_CAST_Abbrev, 81 CONSTANTS_NULL_Abbrev, 82 83 // FUNCTION_BLOCK abbrev id's. 84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 85 FUNCTION_INST_BINOP_ABBREV, 86 FUNCTION_INST_BINOP_FLAGS_ABBREV, 87 FUNCTION_INST_CAST_ABBREV, 88 FUNCTION_INST_RET_VOID_ABBREV, 89 FUNCTION_INST_RET_VAL_ABBREV, 90 FUNCTION_INST_UNREACHABLE_ABBREV, 91 FUNCTION_INST_GEP_ABBREV, 92 }; 93 94 // Cache some types 95 Type *I8Ty; 96 Type *I8PtrTy; 97 98 /// The stream created and owned by the client. 99 BitstreamWriter &Stream; 100 101 StringTableBuilder &StrtabBuilder; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 /// Saves the offset of the VSTOffset record that must eventually be 118 /// backpatched with the offset of the actual VST. 119 uint64_t VSTOffsetPlaceholder = 0; 120 121 /// Pointer to the buffer allocated by caller for bitcode writing. 122 const SmallVectorImpl<char> &Buffer; 123 124 /// The start bit of the identification block. 125 uint64_t BitcodeStartBit; 126 127 /// This maps values to their typed pointers 128 PointerTypeMap PointerMap; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 135 : I8Ty(Type::getInt8Ty(M.getContext())), 136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 138 BitcodeStartBit(Stream.GetCurrentBitNo()), 139 PointerMap(PointerTypeAnalysis::run(M)) { 140 GlobalValueId = VE.getValues().size(); 141 // Enumerate the typed pointers 142 for (auto El : PointerMap) 143 VE.EnumerateType(El.second); 144 } 145 146 /// Emit the current module to the bitstream. 147 void write(); 148 149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 151 StringRef Str, unsigned AbbrevToUse); 152 static void writeIdentificationBlock(BitstreamWriter &Stream); 153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 155 156 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 158 static unsigned getEncodedLinkage(const GlobalValue &GV); 159 static unsigned getEncodedVisibility(const GlobalValue &GV); 160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 162 static unsigned getEncodedCastOpcode(unsigned Opcode); 163 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 164 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 166 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 167 static uint64_t getOptimizationFlags(const Value *V); 168 169 private: 170 void writeModuleVersion(); 171 void writePerModuleGlobalValueSummary(); 172 173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 174 GlobalValueSummary *Summary, 175 unsigned ValueID, 176 unsigned FSCallsAbbrev, 177 unsigned FSCallsProfileAbbrev, 178 const Function &F); 179 void writeModuleLevelReferences(const GlobalVariable &V, 180 SmallVector<uint64_t, 64> &NameVals, 181 unsigned FSModRefsAbbrev, 182 unsigned FSModVTableRefsAbbrev); 183 184 void assignValueId(GlobalValue::GUID ValGUID) { 185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 186 } 187 188 unsigned getValueId(GlobalValue::GUID ValGUID) { 189 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 190 // Expect that any GUID value had a value Id assigned by an 191 // earlier call to assignValueId. 192 assert(VMI != GUIDToValueIdMap.end() && 193 "GUID does not have assigned value Id"); 194 return VMI->second; 195 } 196 197 // Helper to get the valueId for the type of value recorded in VI. 198 unsigned getValueId(ValueInfo VI) { 199 if (!VI.haveGVs() || !VI.getValue()) 200 return getValueId(VI.getGUID()); 201 return VE.getValueID(VI.getValue()); 202 } 203 204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 205 206 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 207 208 size_t addToStrtab(StringRef Str); 209 210 unsigned createDILocationAbbrev(); 211 unsigned createGenericDINodeAbbrev(); 212 213 void writeAttributeGroupTable(); 214 void writeAttributeTable(); 215 void writeTypeTable(); 216 void writeComdats(); 217 void writeValueSymbolTableForwardDecl(); 218 void writeModuleInfo(); 219 void writeValueAsMetadata(const ValueAsMetadata *MD, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned &Abbrev); 225 void writeGenericDINode(const GenericDINode *N, 226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 227 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 228 } 229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGenericSubrange(const DIGenericSubrange *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev) { 234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 235 } 236 void writeDIEnumerator(const DIEnumerator *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIStringType(const DIStringType *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 242 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 243 } 244 void writeDIDerivedType(const DIDerivedType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDICompositeType(const DICompositeType *N, 247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 248 void writeDISubroutineType(const DISubroutineType *N, 249 SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 252 unsigned Abbrev); 253 void writeDICompileUnit(const DICompileUnit *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDISubprogram(const DISubprogram *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlock(const DILexicalBlock *N, 258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 259 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 260 SmallVectorImpl<uint64_t> &Record, 261 unsigned Abbrev); 262 void writeDICommonBlock(const DICommonBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 265 } 266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev); 268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 269 unsigned Abbrev) { 270 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 271 } 272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 273 unsigned Abbrev) { 274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 275 } 276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev) { 278 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 279 } 280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev) { 282 // DIAssignID is experimental feature to track variable location in IR.. 283 // FIXME: translate DIAssignID to debug info DXIL supports. 284 // See https://github.com/llvm/llvm-project/issues/58989 285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); 286 } 287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 290 SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 293 SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 void writeDIGlobalVariable(const DIGlobalVariable *N, 296 SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDILocalVariable(const DILocalVariable *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev) { 302 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 303 } 304 void writeDIExpression(const DIExpression *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev) { 309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 310 } 311 void writeDIObjCProperty(const DIObjCProperty *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIImportedEntity(const DIImportedEntity *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 unsigned createNamedMetadataAbbrev(); 317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 318 unsigned createMetadataStringsAbbrev(); 319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 320 SmallVectorImpl<uint64_t> &Record); 321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 322 SmallVectorImpl<uint64_t> &Record, 323 std::vector<unsigned> *MDAbbrevs = nullptr, 324 std::vector<uint64_t> *IndexPos = nullptr); 325 void writeModuleMetadata(); 326 void writeFunctionMetadata(const Function &F); 327 void writeFunctionMetadataAttachment(const Function &F); 328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 329 const GlobalObject &GO); 330 void writeModuleMetadataKinds(); 331 void writeOperandBundleTags(); 332 void writeSyncScopeNames(); 333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 334 void writeModuleConstants(); 335 bool pushValueAndType(const Value *V, unsigned InstID, 336 SmallVectorImpl<unsigned> &Vals); 337 void writeOperandBundles(const CallBase &CB, unsigned InstID); 338 void pushValue(const Value *V, unsigned InstID, 339 SmallVectorImpl<unsigned> &Vals); 340 void pushValueSigned(const Value *V, unsigned InstID, 341 SmallVectorImpl<uint64_t> &Vals); 342 void writeInstruction(const Instruction &I, unsigned InstID, 343 SmallVectorImpl<unsigned> &Vals); 344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 345 void writeGlobalValueSymbolTable( 346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 347 void writeFunction(const Function &F); 348 void writeBlockInfo(); 349 350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 351 352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 353 354 unsigned getTypeID(Type *T, const Value *V = nullptr); 355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 356 /// 357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 358 /// GlobalObject, but in the bitcode writer we need the pointer element type. 359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 360 }; 361 362 } // namespace dxil 363 } // namespace llvm 364 365 using namespace llvm; 366 using namespace llvm::dxil; 367 368 //////////////////////////////////////////////////////////////////////////////// 369 /// Begin dxil::BitcodeWriter Implementation 370 //////////////////////////////////////////////////////////////////////////////// 371 372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 373 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 374 // Emit the file header. 375 Stream->Emit((unsigned)'B', 8); 376 Stream->Emit((unsigned)'C', 8); 377 Stream->Emit(0x0, 4); 378 Stream->Emit(0xC, 4); 379 Stream->Emit(0xE, 4); 380 Stream->Emit(0xD, 4); 381 } 382 383 dxil::BitcodeWriter::~BitcodeWriter() { } 384 385 /// Write the specified module to the specified output stream. 386 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 387 SmallVector<char, 0> Buffer; 388 Buffer.reserve(256 * 1024); 389 390 // If this is darwin or another generic macho target, reserve space for the 391 // header. 392 Triple TT(M.getTargetTriple()); 393 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 394 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 395 396 BitcodeWriter Writer(Buffer); 397 Writer.writeModule(M); 398 399 // Write the generated bitstream to "Out". 400 if (!Buffer.empty()) 401 Out.write((char *)&Buffer.front(), Buffer.size()); 402 } 403 404 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 405 Stream->EnterSubblock(Block, 3); 406 407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 408 Abbv->Add(BitCodeAbbrevOp(Record)); 409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 410 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 411 412 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 413 414 Stream->ExitBlock(); 415 } 416 417 void BitcodeWriter::writeModule(const Module &M) { 418 419 // The Mods vector is used by irsymtab::build, which requires non-const 420 // Modules in case it needs to materialize metadata. But the bitcode writer 421 // requires that the module is materialized, so we can cast to non-const here, 422 // after checking that it is in fact materialized. 423 assert(M.isMaterialized()); 424 Mods.push_back(const_cast<Module *>(&M)); 425 426 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 427 ModuleWriter.write(); 428 } 429 430 //////////////////////////////////////////////////////////////////////////////// 431 /// Begin dxil::BitcodeWriterBase Implementation 432 //////////////////////////////////////////////////////////////////////////////// 433 434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 435 switch (Opcode) { 436 default: 437 llvm_unreachable("Unknown cast instruction!"); 438 case Instruction::Trunc: 439 return bitc::CAST_TRUNC; 440 case Instruction::ZExt: 441 return bitc::CAST_ZEXT; 442 case Instruction::SExt: 443 return bitc::CAST_SEXT; 444 case Instruction::FPToUI: 445 return bitc::CAST_FPTOUI; 446 case Instruction::FPToSI: 447 return bitc::CAST_FPTOSI; 448 case Instruction::UIToFP: 449 return bitc::CAST_UITOFP; 450 case Instruction::SIToFP: 451 return bitc::CAST_SITOFP; 452 case Instruction::FPTrunc: 453 return bitc::CAST_FPTRUNC; 454 case Instruction::FPExt: 455 return bitc::CAST_FPEXT; 456 case Instruction::PtrToInt: 457 return bitc::CAST_PTRTOINT; 458 case Instruction::IntToPtr: 459 return bitc::CAST_INTTOPTR; 460 case Instruction::BitCast: 461 return bitc::CAST_BITCAST; 462 case Instruction::AddrSpaceCast: 463 return bitc::CAST_ADDRSPACECAST; 464 } 465 } 466 467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 468 switch (Opcode) { 469 default: 470 llvm_unreachable("Unknown binary instruction!"); 471 case Instruction::FNeg: 472 return bitc::UNOP_FNEG; 473 } 474 } 475 476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 477 switch (Opcode) { 478 default: 479 llvm_unreachable("Unknown binary instruction!"); 480 case Instruction::Add: 481 case Instruction::FAdd: 482 return bitc::BINOP_ADD; 483 case Instruction::Sub: 484 case Instruction::FSub: 485 return bitc::BINOP_SUB; 486 case Instruction::Mul: 487 case Instruction::FMul: 488 return bitc::BINOP_MUL; 489 case Instruction::UDiv: 490 return bitc::BINOP_UDIV; 491 case Instruction::FDiv: 492 case Instruction::SDiv: 493 return bitc::BINOP_SDIV; 494 case Instruction::URem: 495 return bitc::BINOP_UREM; 496 case Instruction::FRem: 497 case Instruction::SRem: 498 return bitc::BINOP_SREM; 499 case Instruction::Shl: 500 return bitc::BINOP_SHL; 501 case Instruction::LShr: 502 return bitc::BINOP_LSHR; 503 case Instruction::AShr: 504 return bitc::BINOP_ASHR; 505 case Instruction::And: 506 return bitc::BINOP_AND; 507 case Instruction::Or: 508 return bitc::BINOP_OR; 509 case Instruction::Xor: 510 return bitc::BINOP_XOR; 511 } 512 } 513 514 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 515 if (!T->isPointerTy() && 516 // For Constant, always check PointerMap to make sure OpaquePointer in 517 // things like constant struct/array works. 518 (!V || !isa<Constant>(V))) 519 return VE.getTypeID(T); 520 auto It = PointerMap.find(V); 521 if (It != PointerMap.end()) 522 return VE.getTypeID(It->second); 523 // For Constant, return T when cannot find in PointerMap. 524 // FIXME: support ConstantPointerNull which could map to more than one 525 // TypedPointerType. 526 // See https://github.com/llvm/llvm-project/issues/57942. 527 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 528 return VE.getTypeID(T); 529 return VE.getTypeID(I8PtrTy); 530 } 531 532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 533 const GlobalObject *G) { 534 auto It = PointerMap.find(G); 535 if (It != PointerMap.end()) { 536 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 537 return VE.getTypeID(PtrTy->getElementType()); 538 } 539 return VE.getTypeID(T); 540 } 541 542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 543 switch (Op) { 544 default: 545 llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: 547 return bitc::RMW_XCHG; 548 case AtomicRMWInst::Add: 549 return bitc::RMW_ADD; 550 case AtomicRMWInst::Sub: 551 return bitc::RMW_SUB; 552 case AtomicRMWInst::And: 553 return bitc::RMW_AND; 554 case AtomicRMWInst::Nand: 555 return bitc::RMW_NAND; 556 case AtomicRMWInst::Or: 557 return bitc::RMW_OR; 558 case AtomicRMWInst::Xor: 559 return bitc::RMW_XOR; 560 case AtomicRMWInst::Max: 561 return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: 563 return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: 565 return bitc::RMW_UMAX; 566 case AtomicRMWInst::UMin: 567 return bitc::RMW_UMIN; 568 case AtomicRMWInst::FAdd: 569 return bitc::RMW_FADD; 570 case AtomicRMWInst::FSub: 571 return bitc::RMW_FSUB; 572 case AtomicRMWInst::FMax: 573 return bitc::RMW_FMAX; 574 case AtomicRMWInst::FMin: 575 return bitc::RMW_FMIN; 576 } 577 } 578 579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 580 switch (Ordering) { 581 case AtomicOrdering::NotAtomic: 582 return bitc::ORDERING_NOTATOMIC; 583 case AtomicOrdering::Unordered: 584 return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: 586 return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: 588 return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: 590 return bitc::ORDERING_RELEASE; 591 case AtomicOrdering::AcquireRelease: 592 return bitc::ORDERING_ACQREL; 593 case AtomicOrdering::SequentiallyConsistent: 594 return bitc::ORDERING_SEQCST; 595 } 596 llvm_unreachable("Invalid ordering"); 597 } 598 599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 600 unsigned Code, StringRef Str, 601 unsigned AbbrevToUse) { 602 SmallVector<unsigned, 64> Vals; 603 604 // Code: [strchar x N] 605 for (char C : Str) { 606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 607 AbbrevToUse = 0; 608 Vals.push_back(C); 609 } 610 611 // Emit the finished record. 612 Stream.EmitRecord(Code, Vals, AbbrevToUse); 613 } 614 615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 616 switch (Kind) { 617 case Attribute::Alignment: 618 return bitc::ATTR_KIND_ALIGNMENT; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::InlineHint: 632 return bitc::ATTR_KIND_INLINE_HINT; 633 case Attribute::InReg: 634 return bitc::ATTR_KIND_IN_REG; 635 case Attribute::JumpTable: 636 return bitc::ATTR_KIND_JUMP_TABLE; 637 case Attribute::MinSize: 638 return bitc::ATTR_KIND_MIN_SIZE; 639 case Attribute::Naked: 640 return bitc::ATTR_KIND_NAKED; 641 case Attribute::Nest: 642 return bitc::ATTR_KIND_NEST; 643 case Attribute::NoAlias: 644 return bitc::ATTR_KIND_NO_ALIAS; 645 case Attribute::NoBuiltin: 646 return bitc::ATTR_KIND_NO_BUILTIN; 647 case Attribute::NoCapture: 648 return bitc::ATTR_KIND_NO_CAPTURE; 649 case Attribute::NoDuplicate: 650 return bitc::ATTR_KIND_NO_DUPLICATE; 651 case Attribute::NoImplicitFloat: 652 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 653 case Attribute::NoInline: 654 return bitc::ATTR_KIND_NO_INLINE; 655 case Attribute::NonLazyBind: 656 return bitc::ATTR_KIND_NON_LAZY_BIND; 657 case Attribute::NonNull: 658 return bitc::ATTR_KIND_NON_NULL; 659 case Attribute::Dereferenceable: 660 return bitc::ATTR_KIND_DEREFERENCEABLE; 661 case Attribute::DereferenceableOrNull: 662 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 663 case Attribute::NoRedZone: 664 return bitc::ATTR_KIND_NO_RED_ZONE; 665 case Attribute::NoReturn: 666 return bitc::ATTR_KIND_NO_RETURN; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptimizeForSize: 670 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 671 case Attribute::OptimizeNone: 672 return bitc::ATTR_KIND_OPTIMIZE_NONE; 673 case Attribute::ReadNone: 674 return bitc::ATTR_KIND_READ_NONE; 675 case Attribute::ReadOnly: 676 return bitc::ATTR_KIND_READ_ONLY; 677 case Attribute::Returned: 678 return bitc::ATTR_KIND_RETURNED; 679 case Attribute::ReturnsTwice: 680 return bitc::ATTR_KIND_RETURNS_TWICE; 681 case Attribute::SExt: 682 return bitc::ATTR_KIND_S_EXT; 683 case Attribute::StackAlignment: 684 return bitc::ATTR_KIND_STACK_ALIGNMENT; 685 case Attribute::StackProtect: 686 return bitc::ATTR_KIND_STACK_PROTECT; 687 case Attribute::StackProtectReq: 688 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 689 case Attribute::StackProtectStrong: 690 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 691 case Attribute::SafeStack: 692 return bitc::ATTR_KIND_SAFESTACK; 693 case Attribute::StructRet: 694 return bitc::ATTR_KIND_STRUCT_RET; 695 case Attribute::SanitizeAddress: 696 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 697 case Attribute::SanitizeThread: 698 return bitc::ATTR_KIND_SANITIZE_THREAD; 699 case Attribute::SanitizeMemory: 700 return bitc::ATTR_KIND_SANITIZE_MEMORY; 701 case Attribute::UWTable: 702 return bitc::ATTR_KIND_UW_TABLE; 703 case Attribute::ZExt: 704 return bitc::ATTR_KIND_Z_EXT; 705 case Attribute::EndAttrKinds: 706 llvm_unreachable("Can not encode end-attribute kinds marker."); 707 case Attribute::None: 708 llvm_unreachable("Can not encode none-attribute."); 709 case Attribute::EmptyKey: 710 case Attribute::TombstoneKey: 711 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 712 default: 713 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 714 "should be stripped in DXILPrepare"); 715 } 716 717 llvm_unreachable("Trying to encode unknown attribute"); 718 } 719 720 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 721 uint64_t V) { 722 if ((int64_t)V >= 0) 723 Vals.push_back(V << 1); 724 else 725 Vals.push_back((-V << 1) | 1); 726 } 727 728 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 729 const APInt &A) { 730 // We have an arbitrary precision integer value to write whose 731 // bit width is > 64. However, in canonical unsigned integer 732 // format it is likely that the high bits are going to be zero. 733 // So, we only write the number of active words. 734 unsigned NumWords = A.getActiveWords(); 735 const uint64_t *RawData = A.getRawData(); 736 for (unsigned i = 0; i < NumWords; i++) 737 emitSignedInt64(Vals, RawData[i]); 738 } 739 740 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 741 uint64_t Flags = 0; 742 743 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 744 if (OBO->hasNoSignedWrap()) 745 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 746 if (OBO->hasNoUnsignedWrap()) 747 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 748 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 749 if (PEO->isExact()) 750 Flags |= 1 << bitc::PEO_EXACT; 751 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 752 if (FPMO->hasAllowReassoc() || FPMO->hasAllowContract()) 753 Flags |= bitc::UnsafeAlgebra; 754 if (FPMO->hasNoNaNs()) 755 Flags |= bitc::NoNaNs; 756 if (FPMO->hasNoInfs()) 757 Flags |= bitc::NoInfs; 758 if (FPMO->hasNoSignedZeros()) 759 Flags |= bitc::NoSignedZeros; 760 if (FPMO->hasAllowReciprocal()) 761 Flags |= bitc::AllowReciprocal; 762 } 763 764 return Flags; 765 } 766 767 unsigned 768 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 769 switch (Linkage) { 770 case GlobalValue::ExternalLinkage: 771 return 0; 772 case GlobalValue::WeakAnyLinkage: 773 return 16; 774 case GlobalValue::AppendingLinkage: 775 return 2; 776 case GlobalValue::InternalLinkage: 777 return 3; 778 case GlobalValue::LinkOnceAnyLinkage: 779 return 18; 780 case GlobalValue::ExternalWeakLinkage: 781 return 7; 782 case GlobalValue::CommonLinkage: 783 return 8; 784 case GlobalValue::PrivateLinkage: 785 return 9; 786 case GlobalValue::WeakODRLinkage: 787 return 17; 788 case GlobalValue::LinkOnceODRLinkage: 789 return 19; 790 case GlobalValue::AvailableExternallyLinkage: 791 return 12; 792 } 793 llvm_unreachable("Invalid linkage"); 794 } 795 796 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 797 return getEncodedLinkage(GV.getLinkage()); 798 } 799 800 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 801 switch (GV.getVisibility()) { 802 case GlobalValue::DefaultVisibility: 803 return 0; 804 case GlobalValue::HiddenVisibility: 805 return 1; 806 case GlobalValue::ProtectedVisibility: 807 return 2; 808 } 809 llvm_unreachable("Invalid visibility"); 810 } 811 812 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 813 switch (GV.getDLLStorageClass()) { 814 case GlobalValue::DefaultStorageClass: 815 return 0; 816 case GlobalValue::DLLImportStorageClass: 817 return 1; 818 case GlobalValue::DLLExportStorageClass: 819 return 2; 820 } 821 llvm_unreachable("Invalid DLL storage class"); 822 } 823 824 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 825 switch (GV.getThreadLocalMode()) { 826 case GlobalVariable::NotThreadLocal: 827 return 0; 828 case GlobalVariable::GeneralDynamicTLSModel: 829 return 1; 830 case GlobalVariable::LocalDynamicTLSModel: 831 return 2; 832 case GlobalVariable::InitialExecTLSModel: 833 return 3; 834 case GlobalVariable::LocalExecTLSModel: 835 return 4; 836 } 837 llvm_unreachable("Invalid TLS model"); 838 } 839 840 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 841 switch (C.getSelectionKind()) { 842 case Comdat::Any: 843 return bitc::COMDAT_SELECTION_KIND_ANY; 844 case Comdat::ExactMatch: 845 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 846 case Comdat::Largest: 847 return bitc::COMDAT_SELECTION_KIND_LARGEST; 848 case Comdat::NoDeduplicate: 849 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 850 case Comdat::SameSize: 851 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 852 } 853 llvm_unreachable("Invalid selection kind"); 854 } 855 856 //////////////////////////////////////////////////////////////////////////////// 857 /// Begin DXILBitcodeWriter Implementation 858 //////////////////////////////////////////////////////////////////////////////// 859 860 void DXILBitcodeWriter::writeAttributeGroupTable() { 861 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 862 VE.getAttributeGroups(); 863 if (AttrGrps.empty()) 864 return; 865 866 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 867 868 SmallVector<uint64_t, 64> Record; 869 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 870 unsigned AttrListIndex = Pair.first; 871 AttributeSet AS = Pair.second; 872 Record.push_back(VE.getAttributeGroupID(Pair)); 873 Record.push_back(AttrListIndex); 874 875 for (Attribute Attr : AS) { 876 if (Attr.isEnumAttribute()) { 877 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 878 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 879 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 880 Record.push_back(0); 881 Record.push_back(Val); 882 } else if (Attr.isIntAttribute()) { 883 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { 884 MemoryEffects ME = Attr.getMemoryEffects(); 885 if (ME.doesNotAccessMemory()) { 886 Record.push_back(0); 887 Record.push_back(bitc::ATTR_KIND_READ_NONE); 888 } else { 889 if (ME.onlyReadsMemory()) { 890 Record.push_back(0); 891 Record.push_back(bitc::ATTR_KIND_READ_ONLY); 892 } 893 if (ME.onlyAccessesArgPointees()) { 894 Record.push_back(0); 895 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); 896 } 897 } 898 } else { 899 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 900 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 901 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 902 Record.push_back(1); 903 Record.push_back(Val); 904 Record.push_back(Attr.getValueAsInt()); 905 } 906 } else { 907 StringRef Kind = Attr.getKindAsString(); 908 StringRef Val = Attr.getValueAsString(); 909 910 Record.push_back(Val.empty() ? 3 : 4); 911 Record.append(Kind.begin(), Kind.end()); 912 Record.push_back(0); 913 if (!Val.empty()) { 914 Record.append(Val.begin(), Val.end()); 915 Record.push_back(0); 916 } 917 } 918 } 919 920 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 921 Record.clear(); 922 } 923 924 Stream.ExitBlock(); 925 } 926 927 void DXILBitcodeWriter::writeAttributeTable() { 928 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 929 if (Attrs.empty()) 930 return; 931 932 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 933 934 SmallVector<uint64_t, 64> Record; 935 for (AttributeList AL : Attrs) { 936 for (unsigned i : AL.indexes()) { 937 AttributeSet AS = AL.getAttributes(i); 938 if (AS.hasAttributes()) 939 Record.push_back(VE.getAttributeGroupID({i, AS})); 940 } 941 942 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 943 Record.clear(); 944 } 945 946 Stream.ExitBlock(); 947 } 948 949 /// WriteTypeTable - Write out the type table for a module. 950 void DXILBitcodeWriter::writeTypeTable() { 951 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 952 953 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 954 SmallVector<uint64_t, 64> TypeVals; 955 956 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 957 958 // Abbrev for TYPE_CODE_POINTER. 959 auto Abbv = std::make_shared<BitCodeAbbrev>(); 960 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 962 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 963 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 964 965 // Abbrev for TYPE_CODE_FUNCTION. 966 Abbv = std::make_shared<BitCodeAbbrev>(); 967 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 971 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 972 973 // Abbrev for TYPE_CODE_STRUCT_ANON. 974 Abbv = std::make_shared<BitCodeAbbrev>(); 975 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 979 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 980 981 // Abbrev for TYPE_CODE_STRUCT_NAME. 982 Abbv = std::make_shared<BitCodeAbbrev>(); 983 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 985 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 986 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 987 988 // Abbrev for TYPE_CODE_STRUCT_NAMED. 989 Abbv = std::make_shared<BitCodeAbbrev>(); 990 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 994 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 995 996 // Abbrev for TYPE_CODE_ARRAY. 997 Abbv = std::make_shared<BitCodeAbbrev>(); 998 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1001 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1002 1003 // Emit an entry count so the reader can reserve space. 1004 TypeVals.push_back(TypeList.size()); 1005 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1006 TypeVals.clear(); 1007 1008 // Loop over all of the types, emitting each in turn. 1009 for (Type *T : TypeList) { 1010 int AbbrevToUse = 0; 1011 unsigned Code = 0; 1012 1013 switch (T->getTypeID()) { 1014 case Type::BFloatTyID: 1015 case Type::X86_AMXTyID: 1016 case Type::TokenTyID: 1017 case Type::TargetExtTyID: 1018 llvm_unreachable("These should never be used!!!"); 1019 break; 1020 case Type::VoidTyID: 1021 Code = bitc::TYPE_CODE_VOID; 1022 break; 1023 case Type::HalfTyID: 1024 Code = bitc::TYPE_CODE_HALF; 1025 break; 1026 case Type::FloatTyID: 1027 Code = bitc::TYPE_CODE_FLOAT; 1028 break; 1029 case Type::DoubleTyID: 1030 Code = bitc::TYPE_CODE_DOUBLE; 1031 break; 1032 case Type::X86_FP80TyID: 1033 Code = bitc::TYPE_CODE_X86_FP80; 1034 break; 1035 case Type::FP128TyID: 1036 Code = bitc::TYPE_CODE_FP128; 1037 break; 1038 case Type::PPC_FP128TyID: 1039 Code = bitc::TYPE_CODE_PPC_FP128; 1040 break; 1041 case Type::LabelTyID: 1042 Code = bitc::TYPE_CODE_LABEL; 1043 break; 1044 case Type::MetadataTyID: 1045 Code = bitc::TYPE_CODE_METADATA; 1046 break; 1047 case Type::IntegerTyID: 1048 // INTEGER: [width] 1049 Code = bitc::TYPE_CODE_INTEGER; 1050 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1051 break; 1052 case Type::TypedPointerTyID: { 1053 TypedPointerType *PTy = cast<TypedPointerType>(T); 1054 // POINTER: [pointee type, address space] 1055 Code = bitc::TYPE_CODE_POINTER; 1056 TypeVals.push_back(getTypeID(PTy->getElementType())); 1057 unsigned AddressSpace = PTy->getAddressSpace(); 1058 TypeVals.push_back(AddressSpace); 1059 if (AddressSpace == 0) 1060 AbbrevToUse = PtrAbbrev; 1061 break; 1062 } 1063 case Type::PointerTyID: { 1064 // POINTER: [pointee type, address space] 1065 // Emitting an empty struct type for the pointer's type allows this to be 1066 // order-independent. Non-struct types must be emitted in bitcode before 1067 // they can be referenced. 1068 TypeVals.push_back(false); 1069 Code = bitc::TYPE_CODE_OPAQUE; 1070 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1071 "dxilOpaquePtrReservedName", StructNameAbbrev); 1072 break; 1073 } 1074 case Type::FunctionTyID: { 1075 FunctionType *FT = cast<FunctionType>(T); 1076 // FUNCTION: [isvararg, retty, paramty x N] 1077 Code = bitc::TYPE_CODE_FUNCTION; 1078 TypeVals.push_back(FT->isVarArg()); 1079 TypeVals.push_back(getTypeID(FT->getReturnType())); 1080 for (Type *PTy : FT->params()) 1081 TypeVals.push_back(getTypeID(PTy)); 1082 AbbrevToUse = FunctionAbbrev; 1083 break; 1084 } 1085 case Type::StructTyID: { 1086 StructType *ST = cast<StructType>(T); 1087 // STRUCT: [ispacked, eltty x N] 1088 TypeVals.push_back(ST->isPacked()); 1089 // Output all of the element types. 1090 for (Type *ElTy : ST->elements()) 1091 TypeVals.push_back(getTypeID(ElTy)); 1092 1093 if (ST->isLiteral()) { 1094 Code = bitc::TYPE_CODE_STRUCT_ANON; 1095 AbbrevToUse = StructAnonAbbrev; 1096 } else { 1097 if (ST->isOpaque()) { 1098 Code = bitc::TYPE_CODE_OPAQUE; 1099 } else { 1100 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1101 AbbrevToUse = StructNamedAbbrev; 1102 } 1103 1104 // Emit the name if it is present. 1105 if (!ST->getName().empty()) 1106 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1107 StructNameAbbrev); 1108 } 1109 break; 1110 } 1111 case Type::ArrayTyID: { 1112 ArrayType *AT = cast<ArrayType>(T); 1113 // ARRAY: [numelts, eltty] 1114 Code = bitc::TYPE_CODE_ARRAY; 1115 TypeVals.push_back(AT->getNumElements()); 1116 TypeVals.push_back(getTypeID(AT->getElementType())); 1117 AbbrevToUse = ArrayAbbrev; 1118 break; 1119 } 1120 case Type::FixedVectorTyID: 1121 case Type::ScalableVectorTyID: { 1122 VectorType *VT = cast<VectorType>(T); 1123 // VECTOR [numelts, eltty] 1124 Code = bitc::TYPE_CODE_VECTOR; 1125 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1126 TypeVals.push_back(getTypeID(VT->getElementType())); 1127 break; 1128 } 1129 } 1130 1131 // Emit the finished record. 1132 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1133 TypeVals.clear(); 1134 } 1135 1136 Stream.ExitBlock(); 1137 } 1138 1139 void DXILBitcodeWriter::writeComdats() { 1140 SmallVector<uint16_t, 64> Vals; 1141 for (const Comdat *C : VE.getComdats()) { 1142 // COMDAT: [selection_kind, name] 1143 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1144 size_t Size = C->getName().size(); 1145 assert(isUInt<16>(Size)); 1146 Vals.push_back(Size); 1147 for (char Chr : C->getName()) 1148 Vals.push_back((unsigned char)Chr); 1149 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1150 Vals.clear(); 1151 } 1152 } 1153 1154 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1155 1156 /// Emit top-level description of module, including target triple, inline asm, 1157 /// descriptors for global variables, and function prototype info. 1158 /// Returns the bit offset to backpatch with the location of the real VST. 1159 void DXILBitcodeWriter::writeModuleInfo() { 1160 // Emit various pieces of data attached to a module. 1161 if (!M.getTargetTriple().empty()) 1162 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1163 0 /*TODO*/); 1164 const std::string &DL = M.getDataLayoutStr(); 1165 if (!DL.empty()) 1166 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1167 if (!M.getModuleInlineAsm().empty()) 1168 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1169 0 /*TODO*/); 1170 1171 // Emit information about sections and GC, computing how many there are. Also 1172 // compute the maximum alignment value. 1173 std::map<std::string, unsigned> SectionMap; 1174 std::map<std::string, unsigned> GCMap; 1175 MaybeAlign MaxAlignment; 1176 unsigned MaxGlobalType = 0; 1177 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1178 if (A) 1179 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1180 }; 1181 for (const GlobalVariable &GV : M.globals()) { 1182 UpdateMaxAlignment(GV.getAlign()); 1183 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1184 // Global Variable types. 1185 MaxGlobalType = std::max( 1186 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1187 if (GV.hasSection()) { 1188 // Give section names unique ID's. 1189 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1190 if (!Entry) { 1191 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1192 GV.getSection(), 0 /*TODO*/); 1193 Entry = SectionMap.size(); 1194 } 1195 } 1196 } 1197 for (const Function &F : M) { 1198 UpdateMaxAlignment(F.getAlign()); 1199 if (F.hasSection()) { 1200 // Give section names unique ID's. 1201 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1202 if (!Entry) { 1203 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1204 0 /*TODO*/); 1205 Entry = SectionMap.size(); 1206 } 1207 } 1208 if (F.hasGC()) { 1209 // Same for GC names. 1210 unsigned &Entry = GCMap[F.getGC()]; 1211 if (!Entry) { 1212 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1213 0 /*TODO*/); 1214 Entry = GCMap.size(); 1215 } 1216 } 1217 } 1218 1219 // Emit abbrev for globals, now that we know # sections and max alignment. 1220 unsigned SimpleGVarAbbrev = 0; 1221 if (!M.global_empty()) { 1222 // Add an abbrev for common globals with no visibility or thread 1223 // localness. 1224 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1225 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1227 Log2_32_Ceil(MaxGlobalType + 1))); 1228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1229 //| explicitType << 1 1230 //| constant 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1233 if (!MaxAlignment) // Alignment. 1234 Abbv->Add(BitCodeAbbrevOp(0)); 1235 else { 1236 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1238 Log2_32_Ceil(MaxEncAlignment + 1))); 1239 } 1240 if (SectionMap.empty()) // Section. 1241 Abbv->Add(BitCodeAbbrevOp(0)); 1242 else 1243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1244 Log2_32_Ceil(SectionMap.size() + 1))); 1245 // Don't bother emitting vis + thread local. 1246 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1247 } 1248 1249 // Emit the global variable information. 1250 SmallVector<unsigned, 64> Vals; 1251 for (const GlobalVariable &GV : M.globals()) { 1252 unsigned AbbrevToUse = 0; 1253 1254 // GLOBALVAR: [type, isconst, initid, 1255 // linkage, alignment, section, visibility, threadlocal, 1256 // unnamed_addr, externally_initialized, dllstorageclass, 1257 // comdat] 1258 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1259 Vals.push_back( 1260 GV.getType()->getAddressSpace() << 2 | 2 | 1261 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1262 // unsigned int and bool 1263 Vals.push_back( 1264 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1265 Vals.push_back(getEncodedLinkage(GV)); 1266 Vals.push_back(getEncodedAlign(GV.getAlign())); 1267 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1268 : 0); 1269 if (GV.isThreadLocal() || 1270 GV.getVisibility() != GlobalValue::DefaultVisibility || 1271 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1272 GV.isExternallyInitialized() || 1273 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1274 GV.hasComdat()) { 1275 Vals.push_back(getEncodedVisibility(GV)); 1276 Vals.push_back(getEncodedThreadLocalMode(GV)); 1277 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1278 Vals.push_back(GV.isExternallyInitialized()); 1279 Vals.push_back(getEncodedDLLStorageClass(GV)); 1280 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1281 } else { 1282 AbbrevToUse = SimpleGVarAbbrev; 1283 } 1284 1285 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1286 Vals.clear(); 1287 } 1288 1289 // Emit the function proto information. 1290 for (const Function &F : M) { 1291 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1292 // section, visibility, gc, unnamed_addr, prologuedata, 1293 // dllstorageclass, comdat, prefixdata, personalityfn] 1294 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1295 Vals.push_back(F.getCallingConv()); 1296 Vals.push_back(F.isDeclaration()); 1297 Vals.push_back(getEncodedLinkage(F)); 1298 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1299 Vals.push_back(getEncodedAlign(F.getAlign())); 1300 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1301 : 0); 1302 Vals.push_back(getEncodedVisibility(F)); 1303 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1304 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1305 Vals.push_back( 1306 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1307 Vals.push_back(getEncodedDLLStorageClass(F)); 1308 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1309 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1310 : 0); 1311 Vals.push_back( 1312 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1313 1314 unsigned AbbrevToUse = 0; 1315 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1316 Vals.clear(); 1317 } 1318 1319 // Emit the alias information. 1320 for (const GlobalAlias &A : M.aliases()) { 1321 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1322 Vals.push_back(getTypeID(A.getValueType(), &A)); 1323 Vals.push_back(VE.getValueID(A.getAliasee())); 1324 Vals.push_back(getEncodedLinkage(A)); 1325 Vals.push_back(getEncodedVisibility(A)); 1326 Vals.push_back(getEncodedDLLStorageClass(A)); 1327 Vals.push_back(getEncodedThreadLocalMode(A)); 1328 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1329 unsigned AbbrevToUse = 0; 1330 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1331 Vals.clear(); 1332 } 1333 } 1334 1335 void DXILBitcodeWriter::writeValueAsMetadata( 1336 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1337 // Mimic an MDNode with a value as one operand. 1338 Value *V = MD->getValue(); 1339 Type *Ty = V->getType(); 1340 if (Function *F = dyn_cast<Function>(V)) 1341 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1342 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1343 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1344 Record.push_back(getTypeID(Ty, V)); 1345 Record.push_back(VE.getValueID(V)); 1346 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1347 Record.clear(); 1348 } 1349 1350 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1351 SmallVectorImpl<uint64_t> &Record, 1352 unsigned Abbrev) { 1353 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1354 Metadata *MD = N->getOperand(i); 1355 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1356 "Unexpected function-local metadata"); 1357 Record.push_back(VE.getMetadataOrNullID(MD)); 1358 } 1359 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1360 : bitc::METADATA_NODE, 1361 Record, Abbrev); 1362 Record.clear(); 1363 } 1364 1365 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1366 SmallVectorImpl<uint64_t> &Record, 1367 unsigned &Abbrev) { 1368 if (!Abbrev) 1369 Abbrev = createDILocationAbbrev(); 1370 Record.push_back(N->isDistinct()); 1371 Record.push_back(N->getLine()); 1372 Record.push_back(N->getColumn()); 1373 Record.push_back(VE.getMetadataID(N->getScope())); 1374 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1375 1376 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1377 Record.clear(); 1378 } 1379 1380 static uint64_t rotateSign(APInt Val) { 1381 int64_t I = Val.getSExtValue(); 1382 uint64_t U = I; 1383 return I < 0 ? ~(U << 1) : U << 1; 1384 } 1385 1386 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1387 SmallVectorImpl<uint64_t> &Record, 1388 unsigned Abbrev) { 1389 Record.push_back(N->isDistinct()); 1390 1391 // TODO: Do we need to handle DIExpression here? What about cases where Count 1392 // isn't specified but UpperBound and such are? 1393 ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>(); 1394 assert(Count && "Count is missing or not ConstantInt"); 1395 Record.push_back(Count->getValue().getSExtValue()); 1396 1397 // TODO: Similarly, DIExpression is allowed here now 1398 DISubrange::BoundType LowerBound = N->getLowerBound(); 1399 assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) && 1400 "Lower bound provided but not ConstantInt"); 1401 Record.push_back( 1402 LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0); 1403 1404 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1405 Record.clear(); 1406 } 1407 1408 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1409 SmallVectorImpl<uint64_t> &Record, 1410 unsigned Abbrev) { 1411 Record.push_back(N->isDistinct()); 1412 Record.push_back(rotateSign(N->getValue())); 1413 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1414 1415 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1416 Record.clear(); 1417 } 1418 1419 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1420 SmallVectorImpl<uint64_t> &Record, 1421 unsigned Abbrev) { 1422 Record.push_back(N->isDistinct()); 1423 Record.push_back(N->getTag()); 1424 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1425 Record.push_back(N->getSizeInBits()); 1426 Record.push_back(N->getAlignInBits()); 1427 Record.push_back(N->getEncoding()); 1428 1429 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1430 Record.clear(); 1431 } 1432 1433 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1434 SmallVectorImpl<uint64_t> &Record, 1435 unsigned Abbrev) { 1436 Record.push_back(N->isDistinct()); 1437 Record.push_back(N->getTag()); 1438 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1439 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1440 Record.push_back(N->getLine()); 1441 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1442 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1443 Record.push_back(N->getSizeInBits()); 1444 Record.push_back(N->getAlignInBits()); 1445 Record.push_back(N->getOffsetInBits()); 1446 Record.push_back(N->getFlags()); 1447 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1448 1449 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1450 Record.clear(); 1451 } 1452 1453 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1454 SmallVectorImpl<uint64_t> &Record, 1455 unsigned Abbrev) { 1456 Record.push_back(N->isDistinct()); 1457 Record.push_back(N->getTag()); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1459 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1460 Record.push_back(N->getLine()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1463 Record.push_back(N->getSizeInBits()); 1464 Record.push_back(N->getAlignInBits()); 1465 Record.push_back(N->getOffsetInBits()); 1466 Record.push_back(N->getFlags()); 1467 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1468 Record.push_back(N->getRuntimeLang()); 1469 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1470 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1471 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1472 1473 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1474 Record.clear(); 1475 } 1476 1477 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1478 SmallVectorImpl<uint64_t> &Record, 1479 unsigned Abbrev) { 1480 Record.push_back(N->isDistinct()); 1481 Record.push_back(N->getFlags()); 1482 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1483 1484 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1485 Record.clear(); 1486 } 1487 1488 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1489 SmallVectorImpl<uint64_t> &Record, 1490 unsigned Abbrev) { 1491 Record.push_back(N->isDistinct()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1494 1495 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1496 Record.clear(); 1497 } 1498 1499 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1500 SmallVectorImpl<uint64_t> &Record, 1501 unsigned Abbrev) { 1502 Record.push_back(N->isDistinct()); 1503 Record.push_back(N->getSourceLanguage()); 1504 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1506 Record.push_back(N->isOptimized()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1508 Record.push_back(N->getRuntimeVersion()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1510 Record.push_back(N->getEmissionKind()); 1511 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1512 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1513 Record.push_back(/* subprograms */ 0); 1514 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1515 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1516 Record.push_back(N->getDWOId()); 1517 1518 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1523 SmallVectorImpl<uint64_t> &Record, 1524 unsigned Abbrev) { 1525 Record.push_back(N->isDistinct()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1528 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1530 Record.push_back(N->getLine()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1532 Record.push_back(N->isLocalToUnit()); 1533 Record.push_back(N->isDefinition()); 1534 Record.push_back(N->getScopeLine()); 1535 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1536 Record.push_back(N->getVirtuality()); 1537 Record.push_back(N->getVirtualIndex()); 1538 Record.push_back(N->getFlags()); 1539 Record.push_back(N->isOptimized()); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1544 1545 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1550 SmallVectorImpl<uint64_t> &Record, 1551 unsigned Abbrev) { 1552 Record.push_back(N->isDistinct()); 1553 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1555 Record.push_back(N->getLine()); 1556 Record.push_back(N->getColumn()); 1557 1558 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1559 Record.clear(); 1560 } 1561 1562 void DXILBitcodeWriter::writeDILexicalBlockFile( 1563 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1564 unsigned Abbrev) { 1565 Record.push_back(N->isDistinct()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1568 Record.push_back(N->getDiscriminator()); 1569 1570 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1571 Record.clear(); 1572 } 1573 1574 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1575 SmallVectorImpl<uint64_t> &Record, 1576 unsigned Abbrev) { 1577 Record.push_back(N->isDistinct()); 1578 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1581 Record.push_back(/* line number */ 0); 1582 1583 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1584 Record.clear(); 1585 } 1586 1587 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1588 SmallVectorImpl<uint64_t> &Record, 1589 unsigned Abbrev) { 1590 Record.push_back(N->isDistinct()); 1591 for (auto &I : N->operands()) 1592 Record.push_back(VE.getMetadataOrNullID(I)); 1593 1594 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1595 Record.clear(); 1596 } 1597 1598 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1599 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1600 unsigned Abbrev) { 1601 Record.push_back(N->isDistinct()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1604 1605 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1606 Record.clear(); 1607 } 1608 1609 void DXILBitcodeWriter::writeDITemplateValueParameter( 1610 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1611 unsigned Abbrev) { 1612 Record.push_back(N->isDistinct()); 1613 Record.push_back(N->getTag()); 1614 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1617 1618 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1619 Record.clear(); 1620 } 1621 1622 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1623 SmallVectorImpl<uint64_t> &Record, 1624 unsigned Abbrev) { 1625 Record.push_back(N->isDistinct()); 1626 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1630 Record.push_back(N->getLine()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1632 Record.push_back(N->isLocalToUnit()); 1633 Record.push_back(N->isDefinition()); 1634 Record.push_back(/* N->getRawVariable() */ 0); 1635 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1636 1637 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1638 Record.clear(); 1639 } 1640 1641 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1642 SmallVectorImpl<uint64_t> &Record, 1643 unsigned Abbrev) { 1644 Record.push_back(N->isDistinct()); 1645 Record.push_back(N->getTag()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1649 Record.push_back(N->getLine()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1651 Record.push_back(N->getArg()); 1652 Record.push_back(N->getFlags()); 1653 1654 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1655 Record.clear(); 1656 } 1657 1658 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1659 SmallVectorImpl<uint64_t> &Record, 1660 unsigned Abbrev) { 1661 Record.reserve(N->getElements().size() + 1); 1662 1663 Record.push_back(N->isDistinct()); 1664 Record.append(N->elements_begin(), N->elements_end()); 1665 1666 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1667 Record.clear(); 1668 } 1669 1670 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1671 SmallVectorImpl<uint64_t> &Record, 1672 unsigned Abbrev) { 1673 llvm_unreachable("DXIL does not support objc!!!"); 1674 } 1675 1676 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(N->getTag()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1683 Record.push_back(N->getLine()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1685 1686 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1687 Record.clear(); 1688 } 1689 1690 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1691 // Abbrev for METADATA_LOCATION. 1692 // 1693 // Assume the column is usually under 128, and always output the inlined-at 1694 // location (it's never more expensive than building an array size 1). 1695 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1696 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1702 return Stream.EmitAbbrev(std::move(Abbv)); 1703 } 1704 1705 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1706 // Abbrev for METADATA_GENERIC_DEBUG. 1707 // 1708 // Assume the column is usually under 128, and always output the inlined-at 1709 // location (it's never more expensive than building an array size 1). 1710 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1711 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1718 return Stream.EmitAbbrev(std::move(Abbv)); 1719 } 1720 1721 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1722 SmallVectorImpl<uint64_t> &Record, 1723 std::vector<unsigned> *MDAbbrevs, 1724 std::vector<uint64_t> *IndexPos) { 1725 if (MDs.empty()) 1726 return; 1727 1728 // Initialize MDNode abbreviations. 1729 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1730 #include "llvm/IR/Metadata.def" 1731 1732 for (const Metadata *MD : MDs) { 1733 if (IndexPos) 1734 IndexPos->push_back(Stream.GetCurrentBitNo()); 1735 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1736 assert(N->isResolved() && "Expected forward references to be resolved"); 1737 1738 switch (N->getMetadataID()) { 1739 default: 1740 llvm_unreachable("Invalid MDNode subclass"); 1741 #define HANDLE_MDNODE_LEAF(CLASS) \ 1742 case Metadata::CLASS##Kind: \ 1743 if (MDAbbrevs) \ 1744 write##CLASS(cast<CLASS>(N), Record, \ 1745 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1746 else \ 1747 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1748 continue; 1749 #include "llvm/IR/Metadata.def" 1750 } 1751 } 1752 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1753 } 1754 } 1755 1756 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1758 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1761 return Stream.EmitAbbrev(std::move(Abbv)); 1762 } 1763 1764 void DXILBitcodeWriter::writeMetadataStrings( 1765 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1766 if (Strings.empty()) 1767 return; 1768 1769 unsigned MDSAbbrev = createMetadataStringsAbbrev(); 1770 1771 for (const Metadata *MD : Strings) { 1772 const MDString *MDS = cast<MDString>(MD); 1773 // Code: [strchar x N] 1774 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1775 1776 // Emit the finished record. 1777 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev); 1778 Record.clear(); 1779 } 1780 } 1781 1782 void DXILBitcodeWriter::writeModuleMetadata() { 1783 if (!VE.hasMDs() && M.named_metadata_empty()) 1784 return; 1785 1786 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1787 1788 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1789 // block and load any metadata. 1790 std::vector<unsigned> MDAbbrevs; 1791 1792 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1793 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1794 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1795 createGenericDINodeAbbrev(); 1796 1797 unsigned NameAbbrev = 0; 1798 if (!M.named_metadata_empty()) { 1799 // Abbrev for METADATA_NAME. 1800 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1801 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1804 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1805 } 1806 1807 SmallVector<uint64_t, 64> Record; 1808 writeMetadataStrings(VE.getMDStrings(), Record); 1809 1810 std::vector<uint64_t> IndexPos; 1811 IndexPos.reserve(VE.getNonMDStrings().size()); 1812 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1813 1814 // Write named metadata. 1815 for (const NamedMDNode &NMD : M.named_metadata()) { 1816 // Write name. 1817 StringRef Str = NMD.getName(); 1818 Record.append(Str.bytes_begin(), Str.bytes_end()); 1819 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1820 Record.clear(); 1821 1822 // Write named metadata operands. 1823 for (const MDNode *N : NMD.operands()) 1824 Record.push_back(VE.getMetadataID(N)); 1825 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1826 Record.clear(); 1827 } 1828 1829 Stream.ExitBlock(); 1830 } 1831 1832 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1833 if (!VE.hasMDs()) 1834 return; 1835 1836 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1837 SmallVector<uint64_t, 64> Record; 1838 writeMetadataStrings(VE.getMDStrings(), Record); 1839 writeMetadataRecords(VE.getNonMDStrings(), Record); 1840 Stream.ExitBlock(); 1841 } 1842 1843 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1844 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1845 1846 SmallVector<uint64_t, 64> Record; 1847 1848 // Write metadata attachments 1849 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1850 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1851 F.getAllMetadata(MDs); 1852 if (!MDs.empty()) { 1853 for (const auto &I : MDs) { 1854 Record.push_back(I.first); 1855 Record.push_back(VE.getMetadataID(I.second)); 1856 } 1857 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1858 Record.clear(); 1859 } 1860 1861 for (const BasicBlock &BB : F) 1862 for (const Instruction &I : BB) { 1863 MDs.clear(); 1864 I.getAllMetadataOtherThanDebugLoc(MDs); 1865 1866 // If no metadata, ignore instruction. 1867 if (MDs.empty()) 1868 continue; 1869 1870 Record.push_back(VE.getInstructionID(&I)); 1871 1872 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1873 Record.push_back(MDs[i].first); 1874 Record.push_back(VE.getMetadataID(MDs[i].second)); 1875 } 1876 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1877 Record.clear(); 1878 } 1879 1880 Stream.ExitBlock(); 1881 } 1882 1883 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1884 SmallVector<uint64_t, 64> Record; 1885 1886 // Write metadata kinds 1887 // METADATA_KIND - [n x [id, name]] 1888 SmallVector<StringRef, 8> Names; 1889 M.getMDKindNames(Names); 1890 1891 if (Names.empty()) 1892 return; 1893 1894 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1895 1896 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1897 Record.push_back(MDKindID); 1898 StringRef KName = Names[MDKindID]; 1899 Record.append(KName.begin(), KName.end()); 1900 1901 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1902 Record.clear(); 1903 } 1904 1905 Stream.ExitBlock(); 1906 } 1907 1908 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1909 bool isGlobal) { 1910 if (FirstVal == LastVal) 1911 return; 1912 1913 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1914 1915 unsigned AggregateAbbrev = 0; 1916 unsigned String8Abbrev = 0; 1917 unsigned CString7Abbrev = 0; 1918 unsigned CString6Abbrev = 0; 1919 // If this is a constant pool for the module, emit module-specific abbrevs. 1920 if (isGlobal) { 1921 // Abbrev for CST_CODE_AGGREGATE. 1922 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1923 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1925 Abbv->Add( 1926 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1927 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1928 1929 // Abbrev for CST_CODE_STRING. 1930 Abbv = std::make_shared<BitCodeAbbrev>(); 1931 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1934 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1935 // Abbrev for CST_CODE_CSTRING. 1936 Abbv = std::make_shared<BitCodeAbbrev>(); 1937 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1940 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1941 // Abbrev for CST_CODE_CSTRING. 1942 Abbv = std::make_shared<BitCodeAbbrev>(); 1943 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1946 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1947 } 1948 1949 SmallVector<uint64_t, 64> Record; 1950 1951 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1952 Type *LastTy = nullptr; 1953 for (unsigned i = FirstVal; i != LastVal; ++i) { 1954 const Value *V = Vals[i].first; 1955 // If we need to switch types, do so now. 1956 if (V->getType() != LastTy) { 1957 LastTy = V->getType(); 1958 Record.push_back(getTypeID(LastTy, V)); 1959 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1960 CONSTANTS_SETTYPE_ABBREV); 1961 Record.clear(); 1962 } 1963 1964 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1965 Record.push_back(unsigned(IA->hasSideEffects()) | 1966 unsigned(IA->isAlignStack()) << 1 | 1967 unsigned(IA->getDialect() & 1) << 2); 1968 1969 // Add the asm string. 1970 const std::string &AsmStr = IA->getAsmString(); 1971 Record.push_back(AsmStr.size()); 1972 Record.append(AsmStr.begin(), AsmStr.end()); 1973 1974 // Add the constraint string. 1975 const std::string &ConstraintStr = IA->getConstraintString(); 1976 Record.push_back(ConstraintStr.size()); 1977 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1978 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1979 Record.clear(); 1980 continue; 1981 } 1982 const Constant *C = cast<Constant>(V); 1983 unsigned Code = -1U; 1984 unsigned AbbrevToUse = 0; 1985 if (C->isNullValue()) { 1986 Code = bitc::CST_CODE_NULL; 1987 } else if (isa<UndefValue>(C)) { 1988 Code = bitc::CST_CODE_UNDEF; 1989 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1990 if (IV->getBitWidth() <= 64) { 1991 uint64_t V = IV->getSExtValue(); 1992 emitSignedInt64(Record, V); 1993 Code = bitc::CST_CODE_INTEGER; 1994 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1995 } else { // Wide integers, > 64 bits in size. 1996 // We have an arbitrary precision integer value to write whose 1997 // bit width is > 64. However, in canonical unsigned integer 1998 // format it is likely that the high bits are going to be zero. 1999 // So, we only write the number of active words. 2000 unsigned NWords = IV->getValue().getActiveWords(); 2001 const uint64_t *RawWords = IV->getValue().getRawData(); 2002 for (unsigned i = 0; i != NWords; ++i) { 2003 emitSignedInt64(Record, RawWords[i]); 2004 } 2005 Code = bitc::CST_CODE_WIDE_INTEGER; 2006 } 2007 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2008 Code = bitc::CST_CODE_FLOAT; 2009 Type *Ty = CFP->getType(); 2010 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2011 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2012 } else if (Ty->isX86_FP80Ty()) { 2013 // api needed to prevent premature destruction 2014 // bits are not in the same order as a normal i80 APInt, compensate. 2015 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2016 const uint64_t *p = api.getRawData(); 2017 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2018 Record.push_back(p[0] & 0xffffLL); 2019 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2020 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2021 const uint64_t *p = api.getRawData(); 2022 Record.push_back(p[0]); 2023 Record.push_back(p[1]); 2024 } else { 2025 assert(0 && "Unknown FP type!"); 2026 } 2027 } else if (isa<ConstantDataSequential>(C) && 2028 cast<ConstantDataSequential>(C)->isString()) { 2029 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2030 // Emit constant strings specially. 2031 unsigned NumElts = Str->getNumElements(); 2032 // If this is a null-terminated string, use the denser CSTRING encoding. 2033 if (Str->isCString()) { 2034 Code = bitc::CST_CODE_CSTRING; 2035 --NumElts; // Don't encode the null, which isn't allowed by char6. 2036 } else { 2037 Code = bitc::CST_CODE_STRING; 2038 AbbrevToUse = String8Abbrev; 2039 } 2040 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2041 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2042 for (unsigned i = 0; i != NumElts; ++i) { 2043 unsigned char V = Str->getElementAsInteger(i); 2044 Record.push_back(V); 2045 isCStr7 &= (V & 128) == 0; 2046 if (isCStrChar6) 2047 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2048 } 2049 2050 if (isCStrChar6) 2051 AbbrevToUse = CString6Abbrev; 2052 else if (isCStr7) 2053 AbbrevToUse = CString7Abbrev; 2054 } else if (const ConstantDataSequential *CDS = 2055 dyn_cast<ConstantDataSequential>(C)) { 2056 Code = bitc::CST_CODE_DATA; 2057 Type *EltTy = CDS->getElementType(); 2058 if (isa<IntegerType>(EltTy)) { 2059 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2060 Record.push_back(CDS->getElementAsInteger(i)); 2061 } else if (EltTy->isFloatTy()) { 2062 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2063 union { 2064 float F; 2065 uint32_t I; 2066 }; 2067 F = CDS->getElementAsFloat(i); 2068 Record.push_back(I); 2069 } 2070 } else { 2071 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2072 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2073 union { 2074 double F; 2075 uint64_t I; 2076 }; 2077 F = CDS->getElementAsDouble(i); 2078 Record.push_back(I); 2079 } 2080 } 2081 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2082 isa<ConstantVector>(C)) { 2083 Code = bitc::CST_CODE_AGGREGATE; 2084 for (const Value *Op : C->operands()) 2085 Record.push_back(VE.getValueID(Op)); 2086 AbbrevToUse = AggregateAbbrev; 2087 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2088 switch (CE->getOpcode()) { 2089 default: 2090 if (Instruction::isCast(CE->getOpcode())) { 2091 Code = bitc::CST_CODE_CE_CAST; 2092 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2093 Record.push_back( 2094 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2095 Record.push_back(VE.getValueID(C->getOperand(0))); 2096 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2097 } else { 2098 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2099 Code = bitc::CST_CODE_CE_BINOP; 2100 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2101 Record.push_back(VE.getValueID(C->getOperand(0))); 2102 Record.push_back(VE.getValueID(C->getOperand(1))); 2103 uint64_t Flags = getOptimizationFlags(CE); 2104 if (Flags != 0) 2105 Record.push_back(Flags); 2106 } 2107 break; 2108 case Instruction::GetElementPtr: { 2109 Code = bitc::CST_CODE_CE_GEP; 2110 const auto *GO = cast<GEPOperator>(C); 2111 if (GO->isInBounds()) 2112 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2113 Record.push_back(getTypeID(GO->getSourceElementType())); 2114 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2115 Record.push_back( 2116 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2117 Record.push_back(VE.getValueID(C->getOperand(i))); 2118 } 2119 break; 2120 } 2121 case Instruction::Select: 2122 Code = bitc::CST_CODE_CE_SELECT; 2123 Record.push_back(VE.getValueID(C->getOperand(0))); 2124 Record.push_back(VE.getValueID(C->getOperand(1))); 2125 Record.push_back(VE.getValueID(C->getOperand(2))); 2126 break; 2127 case Instruction::ExtractElement: 2128 Code = bitc::CST_CODE_CE_EXTRACTELT; 2129 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2130 Record.push_back(VE.getValueID(C->getOperand(0))); 2131 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2132 Record.push_back(VE.getValueID(C->getOperand(1))); 2133 break; 2134 case Instruction::InsertElement: 2135 Code = bitc::CST_CODE_CE_INSERTELT; 2136 Record.push_back(VE.getValueID(C->getOperand(0))); 2137 Record.push_back(VE.getValueID(C->getOperand(1))); 2138 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2139 Record.push_back(VE.getValueID(C->getOperand(2))); 2140 break; 2141 case Instruction::ShuffleVector: 2142 // If the return type and argument types are the same, this is a 2143 // standard shufflevector instruction. If the types are different, 2144 // then the shuffle is widening or truncating the input vectors, and 2145 // the argument type must also be encoded. 2146 if (C->getType() == C->getOperand(0)->getType()) { 2147 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2148 } else { 2149 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2150 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2151 } 2152 Record.push_back(VE.getValueID(C->getOperand(0))); 2153 Record.push_back(VE.getValueID(C->getOperand(1))); 2154 Record.push_back(VE.getValueID(C->getOperand(2))); 2155 break; 2156 } 2157 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2158 Code = bitc::CST_CODE_BLOCKADDRESS; 2159 Record.push_back(getTypeID(BA->getFunction()->getType())); 2160 Record.push_back(VE.getValueID(BA->getFunction())); 2161 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2162 } else { 2163 #ifndef NDEBUG 2164 C->dump(); 2165 #endif 2166 llvm_unreachable("Unknown constant!"); 2167 } 2168 Stream.EmitRecord(Code, Record, AbbrevToUse); 2169 Record.clear(); 2170 } 2171 2172 Stream.ExitBlock(); 2173 } 2174 2175 void DXILBitcodeWriter::writeModuleConstants() { 2176 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2177 2178 // Find the first constant to emit, which is the first non-globalvalue value. 2179 // We know globalvalues have been emitted by WriteModuleInfo. 2180 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2181 if (!isa<GlobalValue>(Vals[i].first)) { 2182 writeConstants(i, Vals.size(), true); 2183 return; 2184 } 2185 } 2186 } 2187 2188 /// pushValueAndType - The file has to encode both the value and type id for 2189 /// many values, because we need to know what type to create for forward 2190 /// references. However, most operands are not forward references, so this type 2191 /// field is not needed. 2192 /// 2193 /// This function adds V's value ID to Vals. If the value ID is higher than the 2194 /// instruction ID, then it is a forward reference, and it also includes the 2195 /// type ID. The value ID that is written is encoded relative to the InstID. 2196 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2197 SmallVectorImpl<unsigned> &Vals) { 2198 unsigned ValID = VE.getValueID(V); 2199 // Make encoding relative to the InstID. 2200 Vals.push_back(InstID - ValID); 2201 if (ValID >= InstID) { 2202 Vals.push_back(getTypeID(V->getType(), V)); 2203 return true; 2204 } 2205 return false; 2206 } 2207 2208 /// pushValue - Like pushValueAndType, but where the type of the value is 2209 /// omitted (perhaps it was already encoded in an earlier operand). 2210 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2211 SmallVectorImpl<unsigned> &Vals) { 2212 unsigned ValID = VE.getValueID(V); 2213 Vals.push_back(InstID - ValID); 2214 } 2215 2216 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2217 SmallVectorImpl<uint64_t> &Vals) { 2218 unsigned ValID = VE.getValueID(V); 2219 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2220 emitSignedInt64(Vals, diff); 2221 } 2222 2223 /// WriteInstruction - Emit an instruction 2224 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2225 SmallVectorImpl<unsigned> &Vals) { 2226 unsigned Code = 0; 2227 unsigned AbbrevToUse = 0; 2228 VE.setInstructionID(&I); 2229 switch (I.getOpcode()) { 2230 default: 2231 if (Instruction::isCast(I.getOpcode())) { 2232 Code = bitc::FUNC_CODE_INST_CAST; 2233 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2234 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2235 Vals.push_back(getTypeID(I.getType(), &I)); 2236 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2237 } else { 2238 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2239 Code = bitc::FUNC_CODE_INST_BINOP; 2240 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2241 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2242 pushValue(I.getOperand(1), InstID, Vals); 2243 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2244 uint64_t Flags = getOptimizationFlags(&I); 2245 if (Flags != 0) { 2246 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2247 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2248 Vals.push_back(Flags); 2249 } 2250 } 2251 break; 2252 2253 case Instruction::GetElementPtr: { 2254 Code = bitc::FUNC_CODE_INST_GEP; 2255 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2256 auto &GEPInst = cast<GetElementPtrInst>(I); 2257 Vals.push_back(GEPInst.isInBounds()); 2258 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2259 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2260 pushValueAndType(I.getOperand(i), InstID, Vals); 2261 break; 2262 } 2263 case Instruction::ExtractValue: { 2264 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2265 pushValueAndType(I.getOperand(0), InstID, Vals); 2266 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2267 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2268 break; 2269 } 2270 case Instruction::InsertValue: { 2271 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2272 pushValueAndType(I.getOperand(0), InstID, Vals); 2273 pushValueAndType(I.getOperand(1), InstID, Vals); 2274 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2275 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2276 break; 2277 } 2278 case Instruction::Select: 2279 Code = bitc::FUNC_CODE_INST_VSELECT; 2280 pushValueAndType(I.getOperand(1), InstID, Vals); 2281 pushValue(I.getOperand(2), InstID, Vals); 2282 pushValueAndType(I.getOperand(0), InstID, Vals); 2283 break; 2284 case Instruction::ExtractElement: 2285 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2286 pushValueAndType(I.getOperand(0), InstID, Vals); 2287 pushValueAndType(I.getOperand(1), InstID, Vals); 2288 break; 2289 case Instruction::InsertElement: 2290 Code = bitc::FUNC_CODE_INST_INSERTELT; 2291 pushValueAndType(I.getOperand(0), InstID, Vals); 2292 pushValue(I.getOperand(1), InstID, Vals); 2293 pushValueAndType(I.getOperand(2), InstID, Vals); 2294 break; 2295 case Instruction::ShuffleVector: 2296 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2297 pushValueAndType(I.getOperand(0), InstID, Vals); 2298 pushValue(I.getOperand(1), InstID, Vals); 2299 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2300 Vals); 2301 break; 2302 case Instruction::ICmp: 2303 case Instruction::FCmp: { 2304 // compare returning Int1Ty or vector of Int1Ty 2305 Code = bitc::FUNC_CODE_INST_CMP2; 2306 pushValueAndType(I.getOperand(0), InstID, Vals); 2307 pushValue(I.getOperand(1), InstID, Vals); 2308 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2309 uint64_t Flags = getOptimizationFlags(&I); 2310 if (Flags != 0) 2311 Vals.push_back(Flags); 2312 break; 2313 } 2314 2315 case Instruction::Ret: { 2316 Code = bitc::FUNC_CODE_INST_RET; 2317 unsigned NumOperands = I.getNumOperands(); 2318 if (NumOperands == 0) 2319 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2320 else if (NumOperands == 1) { 2321 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2322 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2323 } else { 2324 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2325 pushValueAndType(I.getOperand(i), InstID, Vals); 2326 } 2327 } break; 2328 case Instruction::Br: { 2329 Code = bitc::FUNC_CODE_INST_BR; 2330 const BranchInst &II = cast<BranchInst>(I); 2331 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2332 if (II.isConditional()) { 2333 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2334 pushValue(II.getCondition(), InstID, Vals); 2335 } 2336 } break; 2337 case Instruction::Switch: { 2338 Code = bitc::FUNC_CODE_INST_SWITCH; 2339 const SwitchInst &SI = cast<SwitchInst>(I); 2340 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2341 pushValue(SI.getCondition(), InstID, Vals); 2342 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2343 for (auto Case : SI.cases()) { 2344 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2345 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2346 } 2347 } break; 2348 case Instruction::IndirectBr: 2349 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2350 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2351 // Encode the address operand as relative, but not the basic blocks. 2352 pushValue(I.getOperand(0), InstID, Vals); 2353 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2354 Vals.push_back(VE.getValueID(I.getOperand(i))); 2355 break; 2356 2357 case Instruction::Invoke: { 2358 const InvokeInst *II = cast<InvokeInst>(&I); 2359 const Value *Callee = II->getCalledOperand(); 2360 FunctionType *FTy = II->getFunctionType(); 2361 Code = bitc::FUNC_CODE_INST_INVOKE; 2362 2363 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2364 Vals.push_back(II->getCallingConv() | 1 << 13); 2365 Vals.push_back(VE.getValueID(II->getNormalDest())); 2366 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2367 Vals.push_back(getTypeID(FTy)); 2368 pushValueAndType(Callee, InstID, Vals); 2369 2370 // Emit value #'s for the fixed parameters. 2371 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2372 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2373 2374 // Emit type/value pairs for varargs params. 2375 if (FTy->isVarArg()) { 2376 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2377 ++i) 2378 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2379 } 2380 break; 2381 } 2382 case Instruction::Resume: 2383 Code = bitc::FUNC_CODE_INST_RESUME; 2384 pushValueAndType(I.getOperand(0), InstID, Vals); 2385 break; 2386 case Instruction::Unreachable: 2387 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2388 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2389 break; 2390 2391 case Instruction::PHI: { 2392 const PHINode &PN = cast<PHINode>(I); 2393 Code = bitc::FUNC_CODE_INST_PHI; 2394 // With the newer instruction encoding, forward references could give 2395 // negative valued IDs. This is most common for PHIs, so we use 2396 // signed VBRs. 2397 SmallVector<uint64_t, 128> Vals64; 2398 Vals64.push_back(getTypeID(PN.getType())); 2399 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2400 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2401 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2402 } 2403 // Emit a Vals64 vector and exit. 2404 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2405 Vals64.clear(); 2406 return; 2407 } 2408 2409 case Instruction::LandingPad: { 2410 const LandingPadInst &LP = cast<LandingPadInst>(I); 2411 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2412 Vals.push_back(getTypeID(LP.getType())); 2413 Vals.push_back(LP.isCleanup()); 2414 Vals.push_back(LP.getNumClauses()); 2415 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2416 if (LP.isCatch(I)) 2417 Vals.push_back(LandingPadInst::Catch); 2418 else 2419 Vals.push_back(LandingPadInst::Filter); 2420 pushValueAndType(LP.getClause(I), InstID, Vals); 2421 } 2422 break; 2423 } 2424 2425 case Instruction::Alloca: { 2426 Code = bitc::FUNC_CODE_INST_ALLOCA; 2427 const AllocaInst &AI = cast<AllocaInst>(I); 2428 Vals.push_back(getTypeID(AI.getAllocatedType())); 2429 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2430 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2431 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2432 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2433 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2434 AlignRecord |= 1 << 6; 2435 Vals.push_back(AlignRecord); 2436 break; 2437 } 2438 2439 case Instruction::Load: 2440 if (cast<LoadInst>(I).isAtomic()) { 2441 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2442 pushValueAndType(I.getOperand(0), InstID, Vals); 2443 } else { 2444 Code = bitc::FUNC_CODE_INST_LOAD; 2445 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2446 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2447 } 2448 Vals.push_back(getTypeID(I.getType())); 2449 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2450 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2451 if (cast<LoadInst>(I).isAtomic()) { 2452 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2453 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2454 } 2455 break; 2456 case Instruction::Store: 2457 if (cast<StoreInst>(I).isAtomic()) 2458 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2459 else 2460 Code = bitc::FUNC_CODE_INST_STORE; 2461 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2462 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2463 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2464 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2465 if (cast<StoreInst>(I).isAtomic()) { 2466 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2467 Vals.push_back( 2468 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2469 } 2470 break; 2471 case Instruction::AtomicCmpXchg: 2472 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2473 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2474 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2475 pushValue(I.getOperand(2), InstID, Vals); // newval. 2476 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2477 Vals.push_back( 2478 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2479 Vals.push_back( 2480 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2481 Vals.push_back( 2482 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2483 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2484 break; 2485 case Instruction::AtomicRMW: 2486 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2487 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2488 pushValue(I.getOperand(1), InstID, Vals); // val. 2489 Vals.push_back( 2490 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2491 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2492 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2493 Vals.push_back( 2494 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2495 break; 2496 case Instruction::Fence: 2497 Code = bitc::FUNC_CODE_INST_FENCE; 2498 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2499 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2500 break; 2501 case Instruction::Call: { 2502 const CallInst &CI = cast<CallInst>(I); 2503 FunctionType *FTy = CI.getFunctionType(); 2504 2505 Code = bitc::FUNC_CODE_INST_CALL; 2506 2507 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2508 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2509 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2510 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2511 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2512 2513 // Emit value #'s for the fixed parameters. 2514 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2515 // Check for labels (can happen with asm labels). 2516 if (FTy->getParamType(i)->isLabelTy()) 2517 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2518 else 2519 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2520 } 2521 2522 // Emit type/value pairs for varargs params. 2523 if (FTy->isVarArg()) { 2524 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2525 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2526 } 2527 break; 2528 } 2529 case Instruction::VAArg: 2530 Code = bitc::FUNC_CODE_INST_VAARG; 2531 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2532 pushValue(I.getOperand(0), InstID, Vals); // valist. 2533 Vals.push_back(getTypeID(I.getType())); // restype. 2534 break; 2535 } 2536 2537 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2538 Vals.clear(); 2539 } 2540 2541 // Emit names for globals/functions etc. 2542 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2543 const ValueSymbolTable &VST) { 2544 if (VST.empty()) 2545 return; 2546 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2547 2548 SmallVector<unsigned, 64> NameVals; 2549 2550 // HLSL Change 2551 // Read the named values from a sorted list instead of the original list 2552 // to ensure the binary is the same no matter what values ever existed. 2553 SmallVector<const ValueName *, 16> SortedTable; 2554 2555 for (auto &VI : VST) { 2556 SortedTable.push_back(VI.second->getValueName()); 2557 } 2558 // The keys are unique, so there shouldn't be stability issues. 2559 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2560 return A->first() < B->first(); 2561 }); 2562 2563 for (const ValueName *SI : SortedTable) { 2564 auto &Name = *SI; 2565 2566 // Figure out the encoding to use for the name. 2567 bool is7Bit = true; 2568 bool isChar6 = true; 2569 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2570 C != E; ++C) { 2571 if (isChar6) 2572 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2573 if ((unsigned char)*C & 128) { 2574 is7Bit = false; 2575 break; // don't bother scanning the rest. 2576 } 2577 } 2578 2579 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2580 2581 // VST_ENTRY: [valueid, namechar x N] 2582 // VST_BBENTRY: [bbid, namechar x N] 2583 unsigned Code; 2584 if (isa<BasicBlock>(SI->getValue())) { 2585 Code = bitc::VST_CODE_BBENTRY; 2586 if (isChar6) 2587 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2588 } else { 2589 Code = bitc::VST_CODE_ENTRY; 2590 if (isChar6) 2591 AbbrevToUse = VST_ENTRY_6_ABBREV; 2592 else if (is7Bit) 2593 AbbrevToUse = VST_ENTRY_7_ABBREV; 2594 } 2595 2596 NameVals.push_back(VE.getValueID(SI->getValue())); 2597 for (const char *P = Name.getKeyData(), 2598 *E = Name.getKeyData() + Name.getKeyLength(); 2599 P != E; ++P) 2600 NameVals.push_back((unsigned char)*P); 2601 2602 // Emit the finished record. 2603 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2604 NameVals.clear(); 2605 } 2606 Stream.ExitBlock(); 2607 } 2608 2609 /// Emit a function body to the module stream. 2610 void DXILBitcodeWriter::writeFunction(const Function &F) { 2611 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2612 VE.incorporateFunction(F); 2613 2614 SmallVector<unsigned, 64> Vals; 2615 2616 // Emit the number of basic blocks, so the reader can create them ahead of 2617 // time. 2618 Vals.push_back(VE.getBasicBlocks().size()); 2619 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2620 Vals.clear(); 2621 2622 // If there are function-local constants, emit them now. 2623 unsigned CstStart, CstEnd; 2624 VE.getFunctionConstantRange(CstStart, CstEnd); 2625 writeConstants(CstStart, CstEnd, false); 2626 2627 // If there is function-local metadata, emit it now. 2628 writeFunctionMetadata(F); 2629 2630 // Keep a running idea of what the instruction ID is. 2631 unsigned InstID = CstEnd; 2632 2633 bool NeedsMetadataAttachment = F.hasMetadata(); 2634 2635 DILocation *LastDL = nullptr; 2636 2637 // Finally, emit all the instructions, in order. 2638 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2639 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2640 ++I) { 2641 writeInstruction(*I, InstID, Vals); 2642 2643 if (!I->getType()->isVoidTy()) 2644 ++InstID; 2645 2646 // If the instruction has metadata, write a metadata attachment later. 2647 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2648 2649 // If the instruction has a debug location, emit it. 2650 DILocation *DL = I->getDebugLoc(); 2651 if (!DL) 2652 continue; 2653 2654 if (DL == LastDL) { 2655 // Just repeat the same debug loc as last time. 2656 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2657 continue; 2658 } 2659 2660 Vals.push_back(DL->getLine()); 2661 Vals.push_back(DL->getColumn()); 2662 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2663 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2664 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2665 Vals.clear(); 2666 2667 LastDL = DL; 2668 } 2669 2670 // Emit names for all the instructions etc. 2671 if (auto *Symtab = F.getValueSymbolTable()) 2672 writeFunctionLevelValueSymbolTable(*Symtab); 2673 2674 if (NeedsMetadataAttachment) 2675 writeFunctionMetadataAttachment(F); 2676 2677 VE.purgeFunction(); 2678 Stream.ExitBlock(); 2679 } 2680 2681 // Emit blockinfo, which defines the standard abbreviations etc. 2682 void DXILBitcodeWriter::writeBlockInfo() { 2683 // We only want to emit block info records for blocks that have multiple 2684 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2685 // Other blocks can define their abbrevs inline. 2686 Stream.EnterBlockInfoBlock(); 2687 2688 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2689 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2694 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2695 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2696 assert(false && "Unexpected abbrev ordering!"); 2697 } 2698 2699 { // 7-bit fixed width VST_ENTRY strings. 2700 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2701 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2705 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2706 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2707 assert(false && "Unexpected abbrev ordering!"); 2708 } 2709 { // 6-bit char6 VST_ENTRY strings. 2710 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2711 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2715 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2716 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2717 assert(false && "Unexpected abbrev ordering!"); 2718 } 2719 { // 6-bit char6 VST_BBENTRY strings. 2720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2721 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2725 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2726 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2727 assert(false && "Unexpected abbrev ordering!"); 2728 } 2729 2730 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2731 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2732 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2734 VE.computeBitsRequiredForTypeIndices())); 2735 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2736 CONSTANTS_SETTYPE_ABBREV) 2737 assert(false && "Unexpected abbrev ordering!"); 2738 } 2739 2740 { // INTEGER abbrev for CONSTANTS_BLOCK. 2741 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2742 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2744 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2745 CONSTANTS_INTEGER_ABBREV) 2746 assert(false && "Unexpected abbrev ordering!"); 2747 } 2748 2749 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2750 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2751 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2754 VE.computeBitsRequiredForTypeIndices())); 2755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2756 2757 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2758 CONSTANTS_CE_CAST_Abbrev) 2759 assert(false && "Unexpected abbrev ordering!"); 2760 } 2761 { // NULL abbrev for CONSTANTS_BLOCK. 2762 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2763 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2764 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2765 CONSTANTS_NULL_Abbrev) 2766 assert(false && "Unexpected abbrev ordering!"); 2767 } 2768 2769 // FIXME: This should only use space for first class types! 2770 2771 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2773 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2776 VE.computeBitsRequiredForTypeIndices())); 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2779 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2780 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2781 assert(false && "Unexpected abbrev ordering!"); 2782 } 2783 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2784 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2785 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2789 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2790 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2791 assert(false && "Unexpected abbrev ordering!"); 2792 } 2793 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2794 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2795 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2800 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2801 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2802 assert(false && "Unexpected abbrev ordering!"); 2803 } 2804 { // INST_CAST abbrev for FUNCTION_BLOCK. 2805 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2806 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2809 VE.computeBitsRequiredForTypeIndices())); 2810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2811 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2812 (unsigned)FUNCTION_INST_CAST_ABBREV) 2813 assert(false && "Unexpected abbrev ordering!"); 2814 } 2815 2816 { // INST_RET abbrev for FUNCTION_BLOCK. 2817 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2818 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2819 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2820 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2821 assert(false && "Unexpected abbrev ordering!"); 2822 } 2823 { // INST_RET abbrev for FUNCTION_BLOCK. 2824 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2825 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2827 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2828 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2829 assert(false && "Unexpected abbrev ordering!"); 2830 } 2831 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2832 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2833 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2834 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2835 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2836 assert(false && "Unexpected abbrev ordering!"); 2837 } 2838 { 2839 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2840 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2843 Log2_32_Ceil(VE.getTypes().size() + 1))); 2844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2846 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2847 (unsigned)FUNCTION_INST_GEP_ABBREV) 2848 assert(false && "Unexpected abbrev ordering!"); 2849 } 2850 2851 Stream.ExitBlock(); 2852 } 2853 2854 void DXILBitcodeWriter::writeModuleVersion() { 2855 // VERSION: [version#] 2856 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2857 } 2858 2859 /// WriteModule - Emit the specified module to the bitstream. 2860 void DXILBitcodeWriter::write() { 2861 // The identification block is new since llvm-3.7, but the old bitcode reader 2862 // will skip it. 2863 // writeIdentificationBlock(Stream); 2864 2865 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2866 2867 // It is redundant to fully-specify this here, but nice to make it explicit 2868 // so that it is clear the DXIL module version is different. 2869 DXILBitcodeWriter::writeModuleVersion(); 2870 2871 // Emit blockinfo, which defines the standard abbreviations etc. 2872 writeBlockInfo(); 2873 2874 // Emit information about attribute groups. 2875 writeAttributeGroupTable(); 2876 2877 // Emit information about parameter attributes. 2878 writeAttributeTable(); 2879 2880 // Emit information describing all of the types in the module. 2881 writeTypeTable(); 2882 2883 writeComdats(); 2884 2885 // Emit top-level description of module, including target triple, inline asm, 2886 // descriptors for global variables, and function prototype info. 2887 writeModuleInfo(); 2888 2889 // Emit constants. 2890 writeModuleConstants(); 2891 2892 // Emit metadata. 2893 writeModuleMetadataKinds(); 2894 2895 // Emit metadata. 2896 writeModuleMetadata(); 2897 2898 // Emit names for globals/functions etc. 2899 // DXIL uses the same format for module-level value symbol table as for the 2900 // function level table. 2901 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2902 2903 // Emit function bodies. 2904 for (const Function &F : M) 2905 if (!F.isDeclaration()) 2906 writeFunction(F); 2907 2908 Stream.ExitBlock(); 2909 } 2910