1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitcodeCommon.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/Bitcode/LLVMBitCodes.h" 21 #include "llvm/Bitstream/BitCodes.h" 22 #include "llvm/Bitstream/BitstreamWriter.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalIFunc.h" 34 #include "llvm/IR/GlobalObject.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/UseListOrder.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Object/IRSymtab.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/ModRef.h" 53 #include "llvm/Support/SHA1.h" 54 55 namespace llvm { 56 namespace dxil { 57 58 // Generates an enum to use as an index in the Abbrev array of Metadata record. 59 enum MetadataAbbrev : unsigned { 60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 61 #include "llvm/IR/Metadata.def" 62 LastPlusOne 63 }; 64 65 class DXILBitcodeWriter { 66 67 /// These are manifest constants used by the bitcode writer. They do not need 68 /// to be kept in sync with the reader, but need to be consistent within this 69 /// file. 70 enum { 71 // VALUE_SYMTAB_BLOCK abbrev id's. 72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 73 VST_ENTRY_7_ABBREV, 74 VST_ENTRY_6_ABBREV, 75 VST_BBENTRY_6_ABBREV, 76 77 // CONSTANTS_BLOCK abbrev id's. 78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 79 CONSTANTS_INTEGER_ABBREV, 80 CONSTANTS_CE_CAST_Abbrev, 81 CONSTANTS_NULL_Abbrev, 82 83 // FUNCTION_BLOCK abbrev id's. 84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 85 FUNCTION_INST_BINOP_ABBREV, 86 FUNCTION_INST_BINOP_FLAGS_ABBREV, 87 FUNCTION_INST_CAST_ABBREV, 88 FUNCTION_INST_RET_VOID_ABBREV, 89 FUNCTION_INST_RET_VAL_ABBREV, 90 FUNCTION_INST_UNREACHABLE_ABBREV, 91 FUNCTION_INST_GEP_ABBREV, 92 }; 93 94 // Cache some types 95 Type *I8Ty; 96 Type *I8PtrTy; 97 98 /// The stream created and owned by the client. 99 BitstreamWriter &Stream; 100 101 StringTableBuilder &StrtabBuilder; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 /// Saves the offset of the VSTOffset record that must eventually be 118 /// backpatched with the offset of the actual VST. 119 uint64_t VSTOffsetPlaceholder = 0; 120 121 /// Pointer to the buffer allocated by caller for bitcode writing. 122 const SmallVectorImpl<char> &Buffer; 123 124 /// The start bit of the identification block. 125 uint64_t BitcodeStartBit; 126 127 /// This maps values to their typed pointers 128 PointerTypeMap PointerMap; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 135 : I8Ty(Type::getInt8Ty(M.getContext())), 136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 138 BitcodeStartBit(Stream.GetCurrentBitNo()), 139 PointerMap(PointerTypeAnalysis::run(M)) { 140 GlobalValueId = VE.getValues().size(); 141 // Enumerate the typed pointers 142 for (auto El : PointerMap) 143 VE.EnumerateType(El.second); 144 } 145 146 /// Emit the current module to the bitstream. 147 void write(); 148 149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 151 StringRef Str, unsigned AbbrevToUse); 152 static void writeIdentificationBlock(BitstreamWriter &Stream); 153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 155 156 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 158 static unsigned getEncodedLinkage(const GlobalValue &GV); 159 static unsigned getEncodedVisibility(const GlobalValue &GV); 160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 162 static unsigned getEncodedCastOpcode(unsigned Opcode); 163 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 164 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 166 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 167 static uint64_t getOptimizationFlags(const Value *V); 168 169 private: 170 void writeModuleVersion(); 171 void writePerModuleGlobalValueSummary(); 172 173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 174 GlobalValueSummary *Summary, 175 unsigned ValueID, 176 unsigned FSCallsAbbrev, 177 unsigned FSCallsProfileAbbrev, 178 const Function &F); 179 void writeModuleLevelReferences(const GlobalVariable &V, 180 SmallVector<uint64_t, 64> &NameVals, 181 unsigned FSModRefsAbbrev, 182 unsigned FSModVTableRefsAbbrev); 183 184 void assignValueId(GlobalValue::GUID ValGUID) { 185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 186 } 187 188 unsigned getValueId(GlobalValue::GUID ValGUID) { 189 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 190 // Expect that any GUID value had a value Id assigned by an 191 // earlier call to assignValueId. 192 assert(VMI != GUIDToValueIdMap.end() && 193 "GUID does not have assigned value Id"); 194 return VMI->second; 195 } 196 197 // Helper to get the valueId for the type of value recorded in VI. 198 unsigned getValueId(ValueInfo VI) { 199 if (!VI.haveGVs() || !VI.getValue()) 200 return getValueId(VI.getGUID()); 201 return VE.getValueID(VI.getValue()); 202 } 203 204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 205 206 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 207 208 size_t addToStrtab(StringRef Str); 209 210 unsigned createDILocationAbbrev(); 211 unsigned createGenericDINodeAbbrev(); 212 213 void writeAttributeGroupTable(); 214 void writeAttributeTable(); 215 void writeTypeTable(); 216 void writeComdats(); 217 void writeValueSymbolTableForwardDecl(); 218 void writeModuleInfo(); 219 void writeValueAsMetadata(const ValueAsMetadata *MD, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned &Abbrev); 225 void writeGenericDINode(const GenericDINode *N, 226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 227 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 228 } 229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGenericSubrange(const DIGenericSubrange *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev) { 234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 235 } 236 void writeDIEnumerator(const DIEnumerator *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIStringType(const DIStringType *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 242 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 243 } 244 void writeDIDerivedType(const DIDerivedType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDICompositeType(const DICompositeType *N, 247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 248 void writeDISubroutineType(const DISubroutineType *N, 249 SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 252 unsigned Abbrev); 253 void writeDICompileUnit(const DICompileUnit *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDISubprogram(const DISubprogram *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlock(const DILexicalBlock *N, 258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 259 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 260 SmallVectorImpl<uint64_t> &Record, 261 unsigned Abbrev); 262 void writeDICommonBlock(const DICommonBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 265 } 266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev); 268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 269 unsigned Abbrev) { 270 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 271 } 272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 273 unsigned Abbrev) { 274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 275 } 276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev) { 278 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 279 } 280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev) { 282 // DIAssignID is experimental feature to track variable location in IR.. 283 // FIXME: translate DIAssignID to debug info DXIL supports. 284 // See https://github.com/llvm/llvm-project/issues/58989 285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); 286 } 287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 290 SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 293 SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 void writeDIGlobalVariable(const DIGlobalVariable *N, 296 SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDILocalVariable(const DILocalVariable *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev) { 302 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 303 } 304 void writeDIExpression(const DIExpression *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev) { 309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 310 } 311 void writeDIObjCProperty(const DIObjCProperty *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIImportedEntity(const DIImportedEntity *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 unsigned createNamedMetadataAbbrev(); 317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 318 unsigned createMetadataStringsAbbrev(); 319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 320 SmallVectorImpl<uint64_t> &Record); 321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 322 SmallVectorImpl<uint64_t> &Record, 323 std::vector<unsigned> *MDAbbrevs = nullptr, 324 std::vector<uint64_t> *IndexPos = nullptr); 325 void writeModuleMetadata(); 326 void writeFunctionMetadata(const Function &F); 327 void writeFunctionMetadataAttachment(const Function &F); 328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 329 const GlobalObject &GO); 330 void writeModuleMetadataKinds(); 331 void writeOperandBundleTags(); 332 void writeSyncScopeNames(); 333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 334 void writeModuleConstants(); 335 bool pushValueAndType(const Value *V, unsigned InstID, 336 SmallVectorImpl<unsigned> &Vals); 337 void writeOperandBundles(const CallBase &CB, unsigned InstID); 338 void pushValue(const Value *V, unsigned InstID, 339 SmallVectorImpl<unsigned> &Vals); 340 void pushValueSigned(const Value *V, unsigned InstID, 341 SmallVectorImpl<uint64_t> &Vals); 342 void writeInstruction(const Instruction &I, unsigned InstID, 343 SmallVectorImpl<unsigned> &Vals); 344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 345 void writeGlobalValueSymbolTable( 346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 347 void writeUseList(UseListOrder &&Order); 348 void writeUseListBlock(const Function *F); 349 void writeFunction(const Function &F); 350 void writeBlockInfo(); 351 352 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 353 354 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 355 356 unsigned getTypeID(Type *T, const Value *V = nullptr); 357 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 358 /// 359 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 360 /// GlobalObject, but in the bitcode writer we need the pointer element type. 361 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 362 }; 363 364 } // namespace dxil 365 } // namespace llvm 366 367 using namespace llvm; 368 using namespace llvm::dxil; 369 370 //////////////////////////////////////////////////////////////////////////////// 371 /// Begin dxil::BitcodeWriter Implementation 372 //////////////////////////////////////////////////////////////////////////////// 373 374 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 375 raw_fd_stream *FS) 376 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 377 // Emit the file header. 378 Stream->Emit((unsigned)'B', 8); 379 Stream->Emit((unsigned)'C', 8); 380 Stream->Emit(0x0, 4); 381 Stream->Emit(0xC, 4); 382 Stream->Emit(0xE, 4); 383 Stream->Emit(0xD, 4); 384 } 385 386 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 387 388 /// Write the specified module to the specified output stream. 389 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 390 SmallVector<char, 0> Buffer; 391 Buffer.reserve(256 * 1024); 392 393 // If this is darwin or another generic macho target, reserve space for the 394 // header. 395 Triple TT(M.getTargetTriple()); 396 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 397 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 398 399 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 400 Writer.writeModule(M); 401 Writer.writeSymtab(); 402 Writer.writeStrtab(); 403 404 // Write the generated bitstream to "Out". 405 if (!Buffer.empty()) 406 Out.write((char *)&Buffer.front(), Buffer.size()); 407 } 408 409 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 410 Stream->EnterSubblock(Block, 3); 411 412 auto Abbv = std::make_shared<BitCodeAbbrev>(); 413 Abbv->Add(BitCodeAbbrevOp(Record)); 414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 415 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 416 417 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 418 419 Stream->ExitBlock(); 420 } 421 422 void BitcodeWriter::writeSymtab() { 423 assert(!WroteStrtab && !WroteSymtab); 424 425 // If any module has module-level inline asm, we will require a registered asm 426 // parser for the target so that we can create an accurate symbol table for 427 // the module. 428 for (Module *M : Mods) { 429 if (M->getModuleInlineAsm().empty()) 430 continue; 431 } 432 433 WroteSymtab = true; 434 SmallVector<char, 0> Symtab; 435 // The irsymtab::build function may be unable to create a symbol table if the 436 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 437 // table is not required for correctness, but we still want to be able to 438 // write malformed modules to bitcode files, so swallow the error. 439 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 440 consumeError(std::move(E)); 441 return; 442 } 443 444 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 445 {Symtab.data(), Symtab.size()}); 446 } 447 448 void BitcodeWriter::writeStrtab() { 449 assert(!WroteStrtab); 450 451 std::vector<char> Strtab; 452 StrtabBuilder.finalizeInOrder(); 453 Strtab.resize(StrtabBuilder.getSize()); 454 StrtabBuilder.write((uint8_t *)Strtab.data()); 455 456 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 457 {Strtab.data(), Strtab.size()}); 458 459 WroteStrtab = true; 460 } 461 462 void BitcodeWriter::copyStrtab(StringRef Strtab) { 463 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 464 WroteStrtab = true; 465 } 466 467 void BitcodeWriter::writeModule(const Module &M) { 468 assert(!WroteStrtab); 469 470 // The Mods vector is used by irsymtab::build, which requires non-const 471 // Modules in case it needs to materialize metadata. But the bitcode writer 472 // requires that the module is materialized, so we can cast to non-const here, 473 // after checking that it is in fact materialized. 474 assert(M.isMaterialized()); 475 Mods.push_back(const_cast<Module *>(&M)); 476 477 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 478 ModuleWriter.write(); 479 } 480 481 //////////////////////////////////////////////////////////////////////////////// 482 /// Begin dxil::BitcodeWriterBase Implementation 483 //////////////////////////////////////////////////////////////////////////////// 484 485 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 486 switch (Opcode) { 487 default: 488 llvm_unreachable("Unknown cast instruction!"); 489 case Instruction::Trunc: 490 return bitc::CAST_TRUNC; 491 case Instruction::ZExt: 492 return bitc::CAST_ZEXT; 493 case Instruction::SExt: 494 return bitc::CAST_SEXT; 495 case Instruction::FPToUI: 496 return bitc::CAST_FPTOUI; 497 case Instruction::FPToSI: 498 return bitc::CAST_FPTOSI; 499 case Instruction::UIToFP: 500 return bitc::CAST_UITOFP; 501 case Instruction::SIToFP: 502 return bitc::CAST_SITOFP; 503 case Instruction::FPTrunc: 504 return bitc::CAST_FPTRUNC; 505 case Instruction::FPExt: 506 return bitc::CAST_FPEXT; 507 case Instruction::PtrToInt: 508 return bitc::CAST_PTRTOINT; 509 case Instruction::IntToPtr: 510 return bitc::CAST_INTTOPTR; 511 case Instruction::BitCast: 512 return bitc::CAST_BITCAST; 513 case Instruction::AddrSpaceCast: 514 return bitc::CAST_ADDRSPACECAST; 515 } 516 } 517 518 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 519 switch (Opcode) { 520 default: 521 llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::FNeg: 523 return bitc::UNOP_FNEG; 524 } 525 } 526 527 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: 530 llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: 533 return bitc::BINOP_ADD; 534 case Instruction::Sub: 535 case Instruction::FSub: 536 return bitc::BINOP_SUB; 537 case Instruction::Mul: 538 case Instruction::FMul: 539 return bitc::BINOP_MUL; 540 case Instruction::UDiv: 541 return bitc::BINOP_UDIV; 542 case Instruction::FDiv: 543 case Instruction::SDiv: 544 return bitc::BINOP_SDIV; 545 case Instruction::URem: 546 return bitc::BINOP_UREM; 547 case Instruction::FRem: 548 case Instruction::SRem: 549 return bitc::BINOP_SREM; 550 case Instruction::Shl: 551 return bitc::BINOP_SHL; 552 case Instruction::LShr: 553 return bitc::BINOP_LSHR; 554 case Instruction::AShr: 555 return bitc::BINOP_ASHR; 556 case Instruction::And: 557 return bitc::BINOP_AND; 558 case Instruction::Or: 559 return bitc::BINOP_OR; 560 case Instruction::Xor: 561 return bitc::BINOP_XOR; 562 } 563 } 564 565 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 566 if (!T->isOpaquePointerTy() && 567 // For Constant, always check PointerMap to make sure OpaquePointer in 568 // things like constant struct/array works. 569 (!V || !isa<Constant>(V))) 570 return VE.getTypeID(T); 571 auto It = PointerMap.find(V); 572 if (It != PointerMap.end()) 573 return VE.getTypeID(It->second); 574 // For Constant, return T when cannot find in PointerMap. 575 // FIXME: support ConstantPointerNull which could map to more than one 576 // TypedPointerType. 577 // See https://github.com/llvm/llvm-project/issues/57942. 578 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 579 return VE.getTypeID(T); 580 return VE.getTypeID(I8PtrTy); 581 } 582 583 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 584 const GlobalObject *G) { 585 auto It = PointerMap.find(G); 586 if (It != PointerMap.end()) { 587 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 588 return VE.getTypeID(PtrTy->getElementType()); 589 } 590 return VE.getTypeID(T); 591 } 592 593 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 594 switch (Op) { 595 default: 596 llvm_unreachable("Unknown RMW operation!"); 597 case AtomicRMWInst::Xchg: 598 return bitc::RMW_XCHG; 599 case AtomicRMWInst::Add: 600 return bitc::RMW_ADD; 601 case AtomicRMWInst::Sub: 602 return bitc::RMW_SUB; 603 case AtomicRMWInst::And: 604 return bitc::RMW_AND; 605 case AtomicRMWInst::Nand: 606 return bitc::RMW_NAND; 607 case AtomicRMWInst::Or: 608 return bitc::RMW_OR; 609 case AtomicRMWInst::Xor: 610 return bitc::RMW_XOR; 611 case AtomicRMWInst::Max: 612 return bitc::RMW_MAX; 613 case AtomicRMWInst::Min: 614 return bitc::RMW_MIN; 615 case AtomicRMWInst::UMax: 616 return bitc::RMW_UMAX; 617 case AtomicRMWInst::UMin: 618 return bitc::RMW_UMIN; 619 case AtomicRMWInst::FAdd: 620 return bitc::RMW_FADD; 621 case AtomicRMWInst::FSub: 622 return bitc::RMW_FSUB; 623 case AtomicRMWInst::FMax: 624 return bitc::RMW_FMAX; 625 case AtomicRMWInst::FMin: 626 return bitc::RMW_FMIN; 627 } 628 } 629 630 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 631 switch (Ordering) { 632 case AtomicOrdering::NotAtomic: 633 return bitc::ORDERING_NOTATOMIC; 634 case AtomicOrdering::Unordered: 635 return bitc::ORDERING_UNORDERED; 636 case AtomicOrdering::Monotonic: 637 return bitc::ORDERING_MONOTONIC; 638 case AtomicOrdering::Acquire: 639 return bitc::ORDERING_ACQUIRE; 640 case AtomicOrdering::Release: 641 return bitc::ORDERING_RELEASE; 642 case AtomicOrdering::AcquireRelease: 643 return bitc::ORDERING_ACQREL; 644 case AtomicOrdering::SequentiallyConsistent: 645 return bitc::ORDERING_SEQCST; 646 } 647 llvm_unreachable("Invalid ordering"); 648 } 649 650 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 651 unsigned Code, StringRef Str, 652 unsigned AbbrevToUse) { 653 SmallVector<unsigned, 64> Vals; 654 655 // Code: [strchar x N] 656 for (char C : Str) { 657 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 658 AbbrevToUse = 0; 659 Vals.push_back(C); 660 } 661 662 // Emit the finished record. 663 Stream.EmitRecord(Code, Vals, AbbrevToUse); 664 } 665 666 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 667 switch (Kind) { 668 case Attribute::Alignment: 669 return bitc::ATTR_KIND_ALIGNMENT; 670 case Attribute::AlwaysInline: 671 return bitc::ATTR_KIND_ALWAYS_INLINE; 672 case Attribute::Builtin: 673 return bitc::ATTR_KIND_BUILTIN; 674 case Attribute::ByVal: 675 return bitc::ATTR_KIND_BY_VAL; 676 case Attribute::Convergent: 677 return bitc::ATTR_KIND_CONVERGENT; 678 case Attribute::InAlloca: 679 return bitc::ATTR_KIND_IN_ALLOCA; 680 case Attribute::Cold: 681 return bitc::ATTR_KIND_COLD; 682 case Attribute::InlineHint: 683 return bitc::ATTR_KIND_INLINE_HINT; 684 case Attribute::InReg: 685 return bitc::ATTR_KIND_IN_REG; 686 case Attribute::JumpTable: 687 return bitc::ATTR_KIND_JUMP_TABLE; 688 case Attribute::MinSize: 689 return bitc::ATTR_KIND_MIN_SIZE; 690 case Attribute::Naked: 691 return bitc::ATTR_KIND_NAKED; 692 case Attribute::Nest: 693 return bitc::ATTR_KIND_NEST; 694 case Attribute::NoAlias: 695 return bitc::ATTR_KIND_NO_ALIAS; 696 case Attribute::NoBuiltin: 697 return bitc::ATTR_KIND_NO_BUILTIN; 698 case Attribute::NoCapture: 699 return bitc::ATTR_KIND_NO_CAPTURE; 700 case Attribute::NoDuplicate: 701 return bitc::ATTR_KIND_NO_DUPLICATE; 702 case Attribute::NoImplicitFloat: 703 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 704 case Attribute::NoInline: 705 return bitc::ATTR_KIND_NO_INLINE; 706 case Attribute::NonLazyBind: 707 return bitc::ATTR_KIND_NON_LAZY_BIND; 708 case Attribute::NonNull: 709 return bitc::ATTR_KIND_NON_NULL; 710 case Attribute::Dereferenceable: 711 return bitc::ATTR_KIND_DEREFERENCEABLE; 712 case Attribute::DereferenceableOrNull: 713 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 714 case Attribute::NoRedZone: 715 return bitc::ATTR_KIND_NO_RED_ZONE; 716 case Attribute::NoReturn: 717 return bitc::ATTR_KIND_NO_RETURN; 718 case Attribute::NoUnwind: 719 return bitc::ATTR_KIND_NO_UNWIND; 720 case Attribute::OptimizeForSize: 721 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 722 case Attribute::OptimizeNone: 723 return bitc::ATTR_KIND_OPTIMIZE_NONE; 724 case Attribute::ReadNone: 725 return bitc::ATTR_KIND_READ_NONE; 726 case Attribute::ReadOnly: 727 return bitc::ATTR_KIND_READ_ONLY; 728 case Attribute::Returned: 729 return bitc::ATTR_KIND_RETURNED; 730 case Attribute::ReturnsTwice: 731 return bitc::ATTR_KIND_RETURNS_TWICE; 732 case Attribute::SExt: 733 return bitc::ATTR_KIND_S_EXT; 734 case Attribute::StackAlignment: 735 return bitc::ATTR_KIND_STACK_ALIGNMENT; 736 case Attribute::StackProtect: 737 return bitc::ATTR_KIND_STACK_PROTECT; 738 case Attribute::StackProtectReq: 739 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 740 case Attribute::StackProtectStrong: 741 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 742 case Attribute::SafeStack: 743 return bitc::ATTR_KIND_SAFESTACK; 744 case Attribute::StructRet: 745 return bitc::ATTR_KIND_STRUCT_RET; 746 case Attribute::SanitizeAddress: 747 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 748 case Attribute::SanitizeThread: 749 return bitc::ATTR_KIND_SANITIZE_THREAD; 750 case Attribute::SanitizeMemory: 751 return bitc::ATTR_KIND_SANITIZE_MEMORY; 752 case Attribute::UWTable: 753 return bitc::ATTR_KIND_UW_TABLE; 754 case Attribute::ZExt: 755 return bitc::ATTR_KIND_Z_EXT; 756 case Attribute::EndAttrKinds: 757 llvm_unreachable("Can not encode end-attribute kinds marker."); 758 case Attribute::None: 759 llvm_unreachable("Can not encode none-attribute."); 760 case Attribute::EmptyKey: 761 case Attribute::TombstoneKey: 762 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 763 default: 764 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 765 "should be stripped in DXILPrepare"); 766 } 767 768 llvm_unreachable("Trying to encode unknown attribute"); 769 } 770 771 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 772 uint64_t V) { 773 if ((int64_t)V >= 0) 774 Vals.push_back(V << 1); 775 else 776 Vals.push_back((-V << 1) | 1); 777 } 778 779 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 780 const APInt &A) { 781 // We have an arbitrary precision integer value to write whose 782 // bit width is > 64. However, in canonical unsigned integer 783 // format it is likely that the high bits are going to be zero. 784 // So, we only write the number of active words. 785 unsigned NumWords = A.getActiveWords(); 786 const uint64_t *RawData = A.getRawData(); 787 for (unsigned i = 0; i < NumWords; i++) 788 emitSignedInt64(Vals, RawData[i]); 789 } 790 791 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 792 uint64_t Flags = 0; 793 794 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 795 if (OBO->hasNoSignedWrap()) 796 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 797 if (OBO->hasNoUnsignedWrap()) 798 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 799 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 800 if (PEO->isExact()) 801 Flags |= 1 << bitc::PEO_EXACT; 802 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 803 if (FPMO->hasAllowReassoc()) 804 Flags |= bitc::AllowReassoc; 805 if (FPMO->hasNoNaNs()) 806 Flags |= bitc::NoNaNs; 807 if (FPMO->hasNoInfs()) 808 Flags |= bitc::NoInfs; 809 if (FPMO->hasNoSignedZeros()) 810 Flags |= bitc::NoSignedZeros; 811 if (FPMO->hasAllowReciprocal()) 812 Flags |= bitc::AllowReciprocal; 813 if (FPMO->hasAllowContract()) 814 Flags |= bitc::AllowContract; 815 if (FPMO->hasApproxFunc()) 816 Flags |= bitc::ApproxFunc; 817 } 818 819 return Flags; 820 } 821 822 unsigned 823 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 824 switch (Linkage) { 825 case GlobalValue::ExternalLinkage: 826 return 0; 827 case GlobalValue::WeakAnyLinkage: 828 return 16; 829 case GlobalValue::AppendingLinkage: 830 return 2; 831 case GlobalValue::InternalLinkage: 832 return 3; 833 case GlobalValue::LinkOnceAnyLinkage: 834 return 18; 835 case GlobalValue::ExternalWeakLinkage: 836 return 7; 837 case GlobalValue::CommonLinkage: 838 return 8; 839 case GlobalValue::PrivateLinkage: 840 return 9; 841 case GlobalValue::WeakODRLinkage: 842 return 17; 843 case GlobalValue::LinkOnceODRLinkage: 844 return 19; 845 case GlobalValue::AvailableExternallyLinkage: 846 return 12; 847 } 848 llvm_unreachable("Invalid linkage"); 849 } 850 851 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 852 return getEncodedLinkage(GV.getLinkage()); 853 } 854 855 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 856 switch (GV.getVisibility()) { 857 case GlobalValue::DefaultVisibility: 858 return 0; 859 case GlobalValue::HiddenVisibility: 860 return 1; 861 case GlobalValue::ProtectedVisibility: 862 return 2; 863 } 864 llvm_unreachable("Invalid visibility"); 865 } 866 867 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 868 switch (GV.getDLLStorageClass()) { 869 case GlobalValue::DefaultStorageClass: 870 return 0; 871 case GlobalValue::DLLImportStorageClass: 872 return 1; 873 case GlobalValue::DLLExportStorageClass: 874 return 2; 875 } 876 llvm_unreachable("Invalid DLL storage class"); 877 } 878 879 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 880 switch (GV.getThreadLocalMode()) { 881 case GlobalVariable::NotThreadLocal: 882 return 0; 883 case GlobalVariable::GeneralDynamicTLSModel: 884 return 1; 885 case GlobalVariable::LocalDynamicTLSModel: 886 return 2; 887 case GlobalVariable::InitialExecTLSModel: 888 return 3; 889 case GlobalVariable::LocalExecTLSModel: 890 return 4; 891 } 892 llvm_unreachable("Invalid TLS model"); 893 } 894 895 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 896 switch (C.getSelectionKind()) { 897 case Comdat::Any: 898 return bitc::COMDAT_SELECTION_KIND_ANY; 899 case Comdat::ExactMatch: 900 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 901 case Comdat::Largest: 902 return bitc::COMDAT_SELECTION_KIND_LARGEST; 903 case Comdat::NoDeduplicate: 904 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 905 case Comdat::SameSize: 906 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 907 } 908 llvm_unreachable("Invalid selection kind"); 909 } 910 911 //////////////////////////////////////////////////////////////////////////////// 912 /// Begin DXILBitcodeWriter Implementation 913 //////////////////////////////////////////////////////////////////////////////// 914 915 void DXILBitcodeWriter::writeAttributeGroupTable() { 916 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 917 VE.getAttributeGroups(); 918 if (AttrGrps.empty()) 919 return; 920 921 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 922 923 SmallVector<uint64_t, 64> Record; 924 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 925 unsigned AttrListIndex = Pair.first; 926 AttributeSet AS = Pair.second; 927 Record.push_back(VE.getAttributeGroupID(Pair)); 928 Record.push_back(AttrListIndex); 929 930 for (Attribute Attr : AS) { 931 if (Attr.isEnumAttribute()) { 932 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 933 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 934 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 935 Record.push_back(0); 936 Record.push_back(Val); 937 } else if (Attr.isIntAttribute()) { 938 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { 939 MemoryEffects ME = Attr.getMemoryEffects(); 940 if (ME.doesNotAccessMemory()) { 941 Record.push_back(0); 942 Record.push_back(bitc::ATTR_KIND_READ_NONE); 943 } else { 944 if (ME.onlyReadsMemory()) { 945 Record.push_back(0); 946 Record.push_back(bitc::ATTR_KIND_READ_ONLY); 947 } 948 if (ME.onlyAccessesArgPointees()) { 949 Record.push_back(0); 950 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); 951 } 952 } 953 } else { 954 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 955 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 956 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 957 Record.push_back(1); 958 Record.push_back(Val); 959 Record.push_back(Attr.getValueAsInt()); 960 } 961 } else { 962 StringRef Kind = Attr.getKindAsString(); 963 StringRef Val = Attr.getValueAsString(); 964 965 Record.push_back(Val.empty() ? 3 : 4); 966 Record.append(Kind.begin(), Kind.end()); 967 Record.push_back(0); 968 if (!Val.empty()) { 969 Record.append(Val.begin(), Val.end()); 970 Record.push_back(0); 971 } 972 } 973 } 974 975 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 976 Record.clear(); 977 } 978 979 Stream.ExitBlock(); 980 } 981 982 void DXILBitcodeWriter::writeAttributeTable() { 983 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 984 if (Attrs.empty()) 985 return; 986 987 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 988 989 SmallVector<uint64_t, 64> Record; 990 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 991 AttributeList AL = Attrs[i]; 992 for (unsigned i : AL.indexes()) { 993 AttributeSet AS = AL.getAttributes(i); 994 if (AS.hasAttributes()) 995 Record.push_back(VE.getAttributeGroupID({i, AS})); 996 } 997 998 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 999 Record.clear(); 1000 } 1001 1002 Stream.ExitBlock(); 1003 } 1004 1005 /// WriteTypeTable - Write out the type table for a module. 1006 void DXILBitcodeWriter::writeTypeTable() { 1007 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1008 1009 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1010 SmallVector<uint64_t, 64> TypeVals; 1011 1012 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 1013 1014 // Abbrev for TYPE_CODE_POINTER. 1015 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1016 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1018 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1019 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1020 1021 // Abbrev for TYPE_CODE_FUNCTION. 1022 Abbv = std::make_shared<BitCodeAbbrev>(); 1023 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1027 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1028 1029 // Abbrev for TYPE_CODE_STRUCT_ANON. 1030 Abbv = std::make_shared<BitCodeAbbrev>(); 1031 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1035 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1036 1037 // Abbrev for TYPE_CODE_STRUCT_NAME. 1038 Abbv = std::make_shared<BitCodeAbbrev>(); 1039 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1042 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1043 1044 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1045 Abbv = std::make_shared<BitCodeAbbrev>(); 1046 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1050 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1051 1052 // Abbrev for TYPE_CODE_ARRAY. 1053 Abbv = std::make_shared<BitCodeAbbrev>(); 1054 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1057 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1058 1059 // Emit an entry count so the reader can reserve space. 1060 TypeVals.push_back(TypeList.size()); 1061 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1062 TypeVals.clear(); 1063 1064 // Loop over all of the types, emitting each in turn. 1065 for (Type *T : TypeList) { 1066 int AbbrevToUse = 0; 1067 unsigned Code = 0; 1068 1069 switch (T->getTypeID()) { 1070 case Type::BFloatTyID: 1071 case Type::X86_AMXTyID: 1072 case Type::TokenTyID: 1073 llvm_unreachable("These should never be used!!!"); 1074 break; 1075 case Type::VoidTyID: 1076 Code = bitc::TYPE_CODE_VOID; 1077 break; 1078 case Type::HalfTyID: 1079 Code = bitc::TYPE_CODE_HALF; 1080 break; 1081 case Type::FloatTyID: 1082 Code = bitc::TYPE_CODE_FLOAT; 1083 break; 1084 case Type::DoubleTyID: 1085 Code = bitc::TYPE_CODE_DOUBLE; 1086 break; 1087 case Type::X86_FP80TyID: 1088 Code = bitc::TYPE_CODE_X86_FP80; 1089 break; 1090 case Type::FP128TyID: 1091 Code = bitc::TYPE_CODE_FP128; 1092 break; 1093 case Type::PPC_FP128TyID: 1094 Code = bitc::TYPE_CODE_PPC_FP128; 1095 break; 1096 case Type::LabelTyID: 1097 Code = bitc::TYPE_CODE_LABEL; 1098 break; 1099 case Type::MetadataTyID: 1100 Code = bitc::TYPE_CODE_METADATA; 1101 break; 1102 case Type::X86_MMXTyID: 1103 Code = bitc::TYPE_CODE_X86_MMX; 1104 break; 1105 case Type::IntegerTyID: 1106 // INTEGER: [width] 1107 Code = bitc::TYPE_CODE_INTEGER; 1108 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1109 break; 1110 case Type::TypedPointerTyID: { 1111 TypedPointerType *PTy = cast<TypedPointerType>(T); 1112 // POINTER: [pointee type, address space] 1113 Code = bitc::TYPE_CODE_POINTER; 1114 TypeVals.push_back(getTypeID(PTy->getElementType())); 1115 unsigned AddressSpace = PTy->getAddressSpace(); 1116 TypeVals.push_back(AddressSpace); 1117 if (AddressSpace == 0) 1118 AbbrevToUse = PtrAbbrev; 1119 break; 1120 } 1121 case Type::PointerTyID: { 1122 PointerType *PTy = cast<PointerType>(T); 1123 // POINTER: [pointee type, address space] 1124 Code = bitc::TYPE_CODE_POINTER; 1125 // Emitting an empty struct type for the opaque pointer's type allows 1126 // this to be order-independent. Non-struct types must be emitted in 1127 // bitcode before they can be referenced. 1128 if (PTy->isOpaquePointerTy()) { 1129 TypeVals.push_back(false); 1130 Code = bitc::TYPE_CODE_OPAQUE; 1131 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1132 "dxilOpaquePtrReservedName", StructNameAbbrev); 1133 } else { 1134 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); 1135 unsigned AddressSpace = PTy->getAddressSpace(); 1136 TypeVals.push_back(AddressSpace); 1137 if (AddressSpace == 0) 1138 AbbrevToUse = PtrAbbrev; 1139 } 1140 break; 1141 } 1142 case Type::FunctionTyID: { 1143 FunctionType *FT = cast<FunctionType>(T); 1144 // FUNCTION: [isvararg, retty, paramty x N] 1145 Code = bitc::TYPE_CODE_FUNCTION; 1146 TypeVals.push_back(FT->isVarArg()); 1147 TypeVals.push_back(getTypeID(FT->getReturnType())); 1148 for (Type *PTy : FT->params()) 1149 TypeVals.push_back(getTypeID(PTy)); 1150 AbbrevToUse = FunctionAbbrev; 1151 break; 1152 } 1153 case Type::StructTyID: { 1154 StructType *ST = cast<StructType>(T); 1155 // STRUCT: [ispacked, eltty x N] 1156 TypeVals.push_back(ST->isPacked()); 1157 // Output all of the element types. 1158 for (Type *ElTy : ST->elements()) 1159 TypeVals.push_back(getTypeID(ElTy)); 1160 1161 if (ST->isLiteral()) { 1162 Code = bitc::TYPE_CODE_STRUCT_ANON; 1163 AbbrevToUse = StructAnonAbbrev; 1164 } else { 1165 if (ST->isOpaque()) { 1166 Code = bitc::TYPE_CODE_OPAQUE; 1167 } else { 1168 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1169 AbbrevToUse = StructNamedAbbrev; 1170 } 1171 1172 // Emit the name if it is present. 1173 if (!ST->getName().empty()) 1174 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1175 StructNameAbbrev); 1176 } 1177 break; 1178 } 1179 case Type::ArrayTyID: { 1180 ArrayType *AT = cast<ArrayType>(T); 1181 // ARRAY: [numelts, eltty] 1182 Code = bitc::TYPE_CODE_ARRAY; 1183 TypeVals.push_back(AT->getNumElements()); 1184 TypeVals.push_back(getTypeID(AT->getElementType())); 1185 AbbrevToUse = ArrayAbbrev; 1186 break; 1187 } 1188 case Type::FixedVectorTyID: 1189 case Type::ScalableVectorTyID: { 1190 VectorType *VT = cast<VectorType>(T); 1191 // VECTOR [numelts, eltty] 1192 Code = bitc::TYPE_CODE_VECTOR; 1193 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1194 TypeVals.push_back(getTypeID(VT->getElementType())); 1195 break; 1196 } 1197 } 1198 1199 // Emit the finished record. 1200 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1201 TypeVals.clear(); 1202 } 1203 1204 Stream.ExitBlock(); 1205 } 1206 1207 void DXILBitcodeWriter::writeComdats() { 1208 SmallVector<uint16_t, 64> Vals; 1209 for (const Comdat *C : VE.getComdats()) { 1210 // COMDAT: [selection_kind, name] 1211 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1212 size_t Size = C->getName().size(); 1213 assert(isUInt<16>(Size)); 1214 Vals.push_back(Size); 1215 for (char Chr : C->getName()) 1216 Vals.push_back((unsigned char)Chr); 1217 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1218 Vals.clear(); 1219 } 1220 } 1221 1222 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1223 1224 /// Emit top-level description of module, including target triple, inline asm, 1225 /// descriptors for global variables, and function prototype info. 1226 /// Returns the bit offset to backpatch with the location of the real VST. 1227 void DXILBitcodeWriter::writeModuleInfo() { 1228 // Emit various pieces of data attached to a module. 1229 if (!M.getTargetTriple().empty()) 1230 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1231 0 /*TODO*/); 1232 const std::string &DL = M.getDataLayoutStr(); 1233 if (!DL.empty()) 1234 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1235 if (!M.getModuleInlineAsm().empty()) 1236 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1237 0 /*TODO*/); 1238 1239 // Emit information about sections and GC, computing how many there are. Also 1240 // compute the maximum alignment value. 1241 std::map<std::string, unsigned> SectionMap; 1242 std::map<std::string, unsigned> GCMap; 1243 MaybeAlign MaxAlignment; 1244 unsigned MaxGlobalType = 0; 1245 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1246 if (A) 1247 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1248 }; 1249 for (const GlobalVariable &GV : M.globals()) { 1250 UpdateMaxAlignment(GV.getAlign()); 1251 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1252 // Global Variable types. 1253 MaxGlobalType = std::max( 1254 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1255 if (GV.hasSection()) { 1256 // Give section names unique ID's. 1257 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1258 if (!Entry) { 1259 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1260 GV.getSection(), 0 /*TODO*/); 1261 Entry = SectionMap.size(); 1262 } 1263 } 1264 } 1265 for (const Function &F : M) { 1266 UpdateMaxAlignment(F.getAlign()); 1267 if (F.hasSection()) { 1268 // Give section names unique ID's. 1269 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1270 if (!Entry) { 1271 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1272 0 /*TODO*/); 1273 Entry = SectionMap.size(); 1274 } 1275 } 1276 if (F.hasGC()) { 1277 // Same for GC names. 1278 unsigned &Entry = GCMap[F.getGC()]; 1279 if (!Entry) { 1280 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1281 0 /*TODO*/); 1282 Entry = GCMap.size(); 1283 } 1284 } 1285 } 1286 1287 // Emit abbrev for globals, now that we know # sections and max alignment. 1288 unsigned SimpleGVarAbbrev = 0; 1289 if (!M.global_empty()) { 1290 // Add an abbrev for common globals with no visibility or thread 1291 // localness. 1292 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1293 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1295 Log2_32_Ceil(MaxGlobalType + 1))); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1297 //| explicitType << 1 1298 //| constant 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1301 if (!MaxAlignment) // Alignment. 1302 Abbv->Add(BitCodeAbbrevOp(0)); 1303 else { 1304 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1306 Log2_32_Ceil(MaxEncAlignment + 1))); 1307 } 1308 if (SectionMap.empty()) // Section. 1309 Abbv->Add(BitCodeAbbrevOp(0)); 1310 else 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1312 Log2_32_Ceil(SectionMap.size() + 1))); 1313 // Don't bother emitting vis + thread local. 1314 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1315 } 1316 1317 // Emit the global variable information. 1318 SmallVector<unsigned, 64> Vals; 1319 for (const GlobalVariable &GV : M.globals()) { 1320 unsigned AbbrevToUse = 0; 1321 1322 // GLOBALVAR: [type, isconst, initid, 1323 // linkage, alignment, section, visibility, threadlocal, 1324 // unnamed_addr, externally_initialized, dllstorageclass, 1325 // comdat] 1326 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1327 Vals.push_back( 1328 GV.getType()->getAddressSpace() << 2 | 2 | 1329 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1330 // unsigned int and bool 1331 Vals.push_back( 1332 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1333 Vals.push_back(getEncodedLinkage(GV)); 1334 Vals.push_back(getEncodedAlign(GV.getAlign())); 1335 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1336 : 0); 1337 if (GV.isThreadLocal() || 1338 GV.getVisibility() != GlobalValue::DefaultVisibility || 1339 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1340 GV.isExternallyInitialized() || 1341 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1342 GV.hasComdat()) { 1343 Vals.push_back(getEncodedVisibility(GV)); 1344 Vals.push_back(getEncodedThreadLocalMode(GV)); 1345 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1346 Vals.push_back(GV.isExternallyInitialized()); 1347 Vals.push_back(getEncodedDLLStorageClass(GV)); 1348 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1349 } else { 1350 AbbrevToUse = SimpleGVarAbbrev; 1351 } 1352 1353 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1354 Vals.clear(); 1355 } 1356 1357 // Emit the function proto information. 1358 for (const Function &F : M) { 1359 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1360 // section, visibility, gc, unnamed_addr, prologuedata, 1361 // dllstorageclass, comdat, prefixdata, personalityfn] 1362 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1363 Vals.push_back(F.getCallingConv()); 1364 Vals.push_back(F.isDeclaration()); 1365 Vals.push_back(getEncodedLinkage(F)); 1366 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1367 Vals.push_back(getEncodedAlign(F.getAlign())); 1368 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1369 : 0); 1370 Vals.push_back(getEncodedVisibility(F)); 1371 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1372 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1373 Vals.push_back( 1374 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1375 Vals.push_back(getEncodedDLLStorageClass(F)); 1376 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1377 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1378 : 0); 1379 Vals.push_back( 1380 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1381 1382 unsigned AbbrevToUse = 0; 1383 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1384 Vals.clear(); 1385 } 1386 1387 // Emit the alias information. 1388 for (const GlobalAlias &A : M.aliases()) { 1389 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1390 Vals.push_back(getTypeID(A.getValueType(), &A)); 1391 Vals.push_back(VE.getValueID(A.getAliasee())); 1392 Vals.push_back(getEncodedLinkage(A)); 1393 Vals.push_back(getEncodedVisibility(A)); 1394 Vals.push_back(getEncodedDLLStorageClass(A)); 1395 Vals.push_back(getEncodedThreadLocalMode(A)); 1396 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1397 unsigned AbbrevToUse = 0; 1398 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1399 Vals.clear(); 1400 } 1401 } 1402 1403 void DXILBitcodeWriter::writeValueAsMetadata( 1404 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1405 // Mimic an MDNode with a value as one operand. 1406 Value *V = MD->getValue(); 1407 Type *Ty = V->getType(); 1408 if (Function *F = dyn_cast<Function>(V)) 1409 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1410 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1411 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1412 Record.push_back(getTypeID(Ty)); 1413 Record.push_back(VE.getValueID(V)); 1414 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1415 Record.clear(); 1416 } 1417 1418 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1419 SmallVectorImpl<uint64_t> &Record, 1420 unsigned Abbrev) { 1421 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1422 Metadata *MD = N->getOperand(i); 1423 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1424 "Unexpected function-local metadata"); 1425 Record.push_back(VE.getMetadataOrNullID(MD)); 1426 } 1427 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1428 : bitc::METADATA_NODE, 1429 Record, Abbrev); 1430 Record.clear(); 1431 } 1432 1433 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1434 SmallVectorImpl<uint64_t> &Record, 1435 unsigned &Abbrev) { 1436 if (!Abbrev) 1437 Abbrev = createDILocationAbbrev(); 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back(N->getLine()); 1440 Record.push_back(N->getColumn()); 1441 Record.push_back(VE.getMetadataID(N->getScope())); 1442 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1443 1444 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1445 Record.clear(); 1446 } 1447 1448 static uint64_t rotateSign(APInt Val) { 1449 int64_t I = Val.getSExtValue(); 1450 uint64_t U = I; 1451 return I < 0 ? ~(U << 1) : U << 1; 1452 } 1453 1454 static uint64_t rotateSign(DISubrange::BoundType Val) { 1455 return rotateSign(Val.get<ConstantInt *>()->getValue()); 1456 } 1457 1458 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1459 SmallVectorImpl<uint64_t> &Record, 1460 unsigned Abbrev) { 1461 Record.push_back(N->isDistinct()); 1462 Record.push_back( 1463 N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); 1464 Record.push_back(rotateSign(N->getLowerBound())); 1465 1466 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1467 Record.clear(); 1468 } 1469 1470 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1471 SmallVectorImpl<uint64_t> &Record, 1472 unsigned Abbrev) { 1473 Record.push_back(N->isDistinct()); 1474 Record.push_back(rotateSign(N->getValue())); 1475 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1476 1477 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1478 Record.clear(); 1479 } 1480 1481 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1482 SmallVectorImpl<uint64_t> &Record, 1483 unsigned Abbrev) { 1484 Record.push_back(N->isDistinct()); 1485 Record.push_back(N->getTag()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1487 Record.push_back(N->getSizeInBits()); 1488 Record.push_back(N->getAlignInBits()); 1489 Record.push_back(N->getEncoding()); 1490 1491 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1492 Record.clear(); 1493 } 1494 1495 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1496 SmallVectorImpl<uint64_t> &Record, 1497 unsigned Abbrev) { 1498 Record.push_back(N->isDistinct()); 1499 Record.push_back(N->getTag()); 1500 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1501 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1502 Record.push_back(N->getLine()); 1503 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1504 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1505 Record.push_back(N->getSizeInBits()); 1506 Record.push_back(N->getAlignInBits()); 1507 Record.push_back(N->getOffsetInBits()); 1508 Record.push_back(N->getFlags()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1510 1511 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1512 Record.clear(); 1513 } 1514 1515 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1516 SmallVectorImpl<uint64_t> &Record, 1517 unsigned Abbrev) { 1518 Record.push_back(N->isDistinct()); 1519 Record.push_back(N->getTag()); 1520 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1521 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1522 Record.push_back(N->getLine()); 1523 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1524 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1525 Record.push_back(N->getSizeInBits()); 1526 Record.push_back(N->getAlignInBits()); 1527 Record.push_back(N->getOffsetInBits()); 1528 Record.push_back(N->getFlags()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1530 Record.push_back(N->getRuntimeLang()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1533 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1534 1535 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1536 Record.clear(); 1537 } 1538 1539 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1540 SmallVectorImpl<uint64_t> &Record, 1541 unsigned Abbrev) { 1542 Record.push_back(N->isDistinct()); 1543 Record.push_back(N->getFlags()); 1544 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1545 1546 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1551 SmallVectorImpl<uint64_t> &Record, 1552 unsigned Abbrev) { 1553 Record.push_back(N->isDistinct()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1556 1557 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 Record.push_back(N->isDistinct()); 1565 Record.push_back(N->getSourceLanguage()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1568 Record.push_back(N->isOptimized()); 1569 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1570 Record.push_back(N->getRuntimeVersion()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1572 Record.push_back(N->getEmissionKind()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1574 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1575 Record.push_back(/* subprograms */ 0); 1576 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1578 Record.push_back(N->getDWOId()); 1579 1580 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1585 SmallVectorImpl<uint64_t> &Record, 1586 unsigned Abbrev) { 1587 Record.push_back(N->isDistinct()); 1588 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1592 Record.push_back(N->getLine()); 1593 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1594 Record.push_back(N->isLocalToUnit()); 1595 Record.push_back(N->isDefinition()); 1596 Record.push_back(N->getScopeLine()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1598 Record.push_back(N->getVirtuality()); 1599 Record.push_back(N->getVirtualIndex()); 1600 Record.push_back(N->getFlags()); 1601 Record.push_back(N->isOptimized()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1606 1607 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1612 SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 Record.push_back(N->isDistinct()); 1615 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1616 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1617 Record.push_back(N->getLine()); 1618 Record.push_back(N->getColumn()); 1619 1620 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1621 Record.clear(); 1622 } 1623 1624 void DXILBitcodeWriter::writeDILexicalBlockFile( 1625 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 Record.push_back(N->isDistinct()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1630 Record.push_back(N->getDiscriminator()); 1631 1632 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1641 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(/* line number */ 0); 1644 1645 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1650 SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 for (auto &I : N->operands()) 1654 Record.push_back(VE.getMetadataOrNullID(I)); 1655 1656 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1657 Record.clear(); 1658 } 1659 1660 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1661 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1662 unsigned Abbrev) { 1663 Record.push_back(N->isDistinct()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1666 1667 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void DXILBitcodeWriter::writeDITemplateValueParameter( 1672 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back(N->isDistinct()); 1675 Record.push_back(N->getTag()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1679 1680 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1681 Record.clear(); 1682 } 1683 1684 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 Record.push_back(N->isDistinct()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1692 Record.push_back(N->getLine()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1694 Record.push_back(N->isLocalToUnit()); 1695 Record.push_back(N->isDefinition()); 1696 Record.push_back(/* N->getRawVariable() */ 0); 1697 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1698 1699 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1704 SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 Record.push_back(N->isDistinct()); 1707 Record.push_back(N->getTag()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1711 Record.push_back(N->getLine()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1713 Record.push_back(N->getArg()); 1714 Record.push_back(N->getFlags()); 1715 1716 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1717 Record.clear(); 1718 } 1719 1720 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1721 SmallVectorImpl<uint64_t> &Record, 1722 unsigned Abbrev) { 1723 Record.reserve(N->getElements().size() + 1); 1724 1725 Record.push_back(N->isDistinct()); 1726 Record.append(N->elements_begin(), N->elements_end()); 1727 1728 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1729 Record.clear(); 1730 } 1731 1732 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1733 SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 llvm_unreachable("DXIL does not support objc!!!"); 1736 } 1737 1738 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1739 SmallVectorImpl<uint64_t> &Record, 1740 unsigned Abbrev) { 1741 Record.push_back(N->isDistinct()); 1742 Record.push_back(N->getTag()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1744 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1745 Record.push_back(N->getLine()); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1747 1748 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1749 Record.clear(); 1750 } 1751 1752 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1753 // Abbrev for METADATA_LOCATION. 1754 // 1755 // Assume the column is usually under 128, and always output the inlined-at 1756 // location (it's never more expensive than building an array size 1). 1757 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1758 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1764 return Stream.EmitAbbrev(std::move(Abbv)); 1765 } 1766 1767 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1768 // Abbrev for METADATA_GENERIC_DEBUG. 1769 // 1770 // Assume the column is usually under 128, and always output the inlined-at 1771 // location (it's never more expensive than building an array size 1). 1772 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1773 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1780 return Stream.EmitAbbrev(std::move(Abbv)); 1781 } 1782 1783 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1784 SmallVectorImpl<uint64_t> &Record, 1785 std::vector<unsigned> *MDAbbrevs, 1786 std::vector<uint64_t> *IndexPos) { 1787 if (MDs.empty()) 1788 return; 1789 1790 // Initialize MDNode abbreviations. 1791 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1792 #include "llvm/IR/Metadata.def" 1793 1794 for (const Metadata *MD : MDs) { 1795 if (IndexPos) 1796 IndexPos->push_back(Stream.GetCurrentBitNo()); 1797 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1798 assert(N->isResolved() && "Expected forward references to be resolved"); 1799 1800 switch (N->getMetadataID()) { 1801 default: 1802 llvm_unreachable("Invalid MDNode subclass"); 1803 #define HANDLE_MDNODE_LEAF(CLASS) \ 1804 case Metadata::CLASS##Kind: \ 1805 if (MDAbbrevs) \ 1806 write##CLASS(cast<CLASS>(N), Record, \ 1807 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1808 else \ 1809 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1810 continue; 1811 #include "llvm/IR/Metadata.def" 1812 } 1813 } 1814 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1815 } 1816 } 1817 1818 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1819 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1820 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1823 return Stream.EmitAbbrev(std::move(Abbv)); 1824 } 1825 1826 void DXILBitcodeWriter::writeMetadataStrings( 1827 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1828 for (const Metadata *MD : Strings) { 1829 const MDString *MDS = cast<MDString>(MD); 1830 // Code: [strchar x N] 1831 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1832 1833 // Emit the finished record. 1834 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, 1835 createMetadataStringsAbbrev()); 1836 Record.clear(); 1837 } 1838 } 1839 1840 void DXILBitcodeWriter::writeModuleMetadata() { 1841 if (!VE.hasMDs() && M.named_metadata_empty()) 1842 return; 1843 1844 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1845 1846 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1847 // block and load any metadata. 1848 std::vector<unsigned> MDAbbrevs; 1849 1850 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1851 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1852 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1853 createGenericDINodeAbbrev(); 1854 1855 unsigned NameAbbrev = 0; 1856 if (!M.named_metadata_empty()) { 1857 // Abbrev for METADATA_NAME. 1858 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1859 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1862 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1863 } 1864 1865 SmallVector<uint64_t, 64> Record; 1866 writeMetadataStrings(VE.getMDStrings(), Record); 1867 1868 std::vector<uint64_t> IndexPos; 1869 IndexPos.reserve(VE.getNonMDStrings().size()); 1870 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1871 1872 // Write named metadata. 1873 for (const NamedMDNode &NMD : M.named_metadata()) { 1874 // Write name. 1875 StringRef Str = NMD.getName(); 1876 Record.append(Str.bytes_begin(), Str.bytes_end()); 1877 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1878 Record.clear(); 1879 1880 // Write named metadata operands. 1881 for (const MDNode *N : NMD.operands()) 1882 Record.push_back(VE.getMetadataID(N)); 1883 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1884 Record.clear(); 1885 } 1886 1887 Stream.ExitBlock(); 1888 } 1889 1890 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1891 if (!VE.hasMDs()) 1892 return; 1893 1894 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1895 SmallVector<uint64_t, 64> Record; 1896 writeMetadataStrings(VE.getMDStrings(), Record); 1897 writeMetadataRecords(VE.getNonMDStrings(), Record); 1898 Stream.ExitBlock(); 1899 } 1900 1901 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1902 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1903 1904 SmallVector<uint64_t, 64> Record; 1905 1906 // Write metadata attachments 1907 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1908 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1909 F.getAllMetadata(MDs); 1910 if (!MDs.empty()) { 1911 for (const auto &I : MDs) { 1912 Record.push_back(I.first); 1913 Record.push_back(VE.getMetadataID(I.second)); 1914 } 1915 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1916 Record.clear(); 1917 } 1918 1919 for (const BasicBlock &BB : F) 1920 for (const Instruction &I : BB) { 1921 MDs.clear(); 1922 I.getAllMetadataOtherThanDebugLoc(MDs); 1923 1924 // If no metadata, ignore instruction. 1925 if (MDs.empty()) 1926 continue; 1927 1928 Record.push_back(VE.getInstructionID(&I)); 1929 1930 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1931 Record.push_back(MDs[i].first); 1932 Record.push_back(VE.getMetadataID(MDs[i].second)); 1933 } 1934 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1935 Record.clear(); 1936 } 1937 1938 Stream.ExitBlock(); 1939 } 1940 1941 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1942 SmallVector<uint64_t, 64> Record; 1943 1944 // Write metadata kinds 1945 // METADATA_KIND - [n x [id, name]] 1946 SmallVector<StringRef, 8> Names; 1947 M.getMDKindNames(Names); 1948 1949 if (Names.empty()) 1950 return; 1951 1952 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1953 1954 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1955 Record.push_back(MDKindID); 1956 StringRef KName = Names[MDKindID]; 1957 Record.append(KName.begin(), KName.end()); 1958 1959 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1960 Record.clear(); 1961 } 1962 1963 Stream.ExitBlock(); 1964 } 1965 1966 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1967 bool isGlobal) { 1968 if (FirstVal == LastVal) 1969 return; 1970 1971 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1972 1973 unsigned AggregateAbbrev = 0; 1974 unsigned String8Abbrev = 0; 1975 unsigned CString7Abbrev = 0; 1976 unsigned CString6Abbrev = 0; 1977 // If this is a constant pool for the module, emit module-specific abbrevs. 1978 if (isGlobal) { 1979 // Abbrev for CST_CODE_AGGREGATE. 1980 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1981 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1983 Abbv->Add( 1984 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1985 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1986 1987 // Abbrev for CST_CODE_STRING. 1988 Abbv = std::make_shared<BitCodeAbbrev>(); 1989 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1992 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1993 // Abbrev for CST_CODE_CSTRING. 1994 Abbv = std::make_shared<BitCodeAbbrev>(); 1995 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1998 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1999 // Abbrev for CST_CODE_CSTRING. 2000 Abbv = std::make_shared<BitCodeAbbrev>(); 2001 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2004 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2005 } 2006 2007 SmallVector<uint64_t, 64> Record; 2008 2009 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2010 Type *LastTy = nullptr; 2011 for (unsigned i = FirstVal; i != LastVal; ++i) { 2012 const Value *V = Vals[i].first; 2013 // If we need to switch types, do so now. 2014 if (V->getType() != LastTy) { 2015 LastTy = V->getType(); 2016 Record.push_back(getTypeID(LastTy, V)); 2017 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2018 CONSTANTS_SETTYPE_ABBREV); 2019 Record.clear(); 2020 } 2021 2022 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2023 Record.push_back(unsigned(IA->hasSideEffects()) | 2024 unsigned(IA->isAlignStack()) << 1 | 2025 unsigned(IA->getDialect() & 1) << 2); 2026 2027 // Add the asm string. 2028 const std::string &AsmStr = IA->getAsmString(); 2029 Record.push_back(AsmStr.size()); 2030 Record.append(AsmStr.begin(), AsmStr.end()); 2031 2032 // Add the constraint string. 2033 const std::string &ConstraintStr = IA->getConstraintString(); 2034 Record.push_back(ConstraintStr.size()); 2035 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2036 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2037 Record.clear(); 2038 continue; 2039 } 2040 const Constant *C = cast<Constant>(V); 2041 unsigned Code = -1U; 2042 unsigned AbbrevToUse = 0; 2043 if (C->isNullValue()) { 2044 Code = bitc::CST_CODE_NULL; 2045 } else if (isa<UndefValue>(C)) { 2046 Code = bitc::CST_CODE_UNDEF; 2047 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2048 if (IV->getBitWidth() <= 64) { 2049 uint64_t V = IV->getSExtValue(); 2050 emitSignedInt64(Record, V); 2051 Code = bitc::CST_CODE_INTEGER; 2052 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2053 } else { // Wide integers, > 64 bits in size. 2054 // We have an arbitrary precision integer value to write whose 2055 // bit width is > 64. However, in canonical unsigned integer 2056 // format it is likely that the high bits are going to be zero. 2057 // So, we only write the number of active words. 2058 unsigned NWords = IV->getValue().getActiveWords(); 2059 const uint64_t *RawWords = IV->getValue().getRawData(); 2060 for (unsigned i = 0; i != NWords; ++i) { 2061 emitSignedInt64(Record, RawWords[i]); 2062 } 2063 Code = bitc::CST_CODE_WIDE_INTEGER; 2064 } 2065 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2066 Code = bitc::CST_CODE_FLOAT; 2067 Type *Ty = CFP->getType(); 2068 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2069 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2070 } else if (Ty->isX86_FP80Ty()) { 2071 // api needed to prevent premature destruction 2072 // bits are not in the same order as a normal i80 APInt, compensate. 2073 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2074 const uint64_t *p = api.getRawData(); 2075 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2076 Record.push_back(p[0] & 0xffffLL); 2077 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2078 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2079 const uint64_t *p = api.getRawData(); 2080 Record.push_back(p[0]); 2081 Record.push_back(p[1]); 2082 } else { 2083 assert(0 && "Unknown FP type!"); 2084 } 2085 } else if (isa<ConstantDataSequential>(C) && 2086 cast<ConstantDataSequential>(C)->isString()) { 2087 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2088 // Emit constant strings specially. 2089 unsigned NumElts = Str->getNumElements(); 2090 // If this is a null-terminated string, use the denser CSTRING encoding. 2091 if (Str->isCString()) { 2092 Code = bitc::CST_CODE_CSTRING; 2093 --NumElts; // Don't encode the null, which isn't allowed by char6. 2094 } else { 2095 Code = bitc::CST_CODE_STRING; 2096 AbbrevToUse = String8Abbrev; 2097 } 2098 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2099 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2100 for (unsigned i = 0; i != NumElts; ++i) { 2101 unsigned char V = Str->getElementAsInteger(i); 2102 Record.push_back(V); 2103 isCStr7 &= (V & 128) == 0; 2104 if (isCStrChar6) 2105 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2106 } 2107 2108 if (isCStrChar6) 2109 AbbrevToUse = CString6Abbrev; 2110 else if (isCStr7) 2111 AbbrevToUse = CString7Abbrev; 2112 } else if (const ConstantDataSequential *CDS = 2113 dyn_cast<ConstantDataSequential>(C)) { 2114 Code = bitc::CST_CODE_DATA; 2115 Type *EltTy = CDS->getElementType(); 2116 if (isa<IntegerType>(EltTy)) { 2117 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2118 Record.push_back(CDS->getElementAsInteger(i)); 2119 } else if (EltTy->isFloatTy()) { 2120 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2121 union { 2122 float F; 2123 uint32_t I; 2124 }; 2125 F = CDS->getElementAsFloat(i); 2126 Record.push_back(I); 2127 } 2128 } else { 2129 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2130 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2131 union { 2132 double F; 2133 uint64_t I; 2134 }; 2135 F = CDS->getElementAsDouble(i); 2136 Record.push_back(I); 2137 } 2138 } 2139 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2140 isa<ConstantVector>(C)) { 2141 Code = bitc::CST_CODE_AGGREGATE; 2142 for (const Value *Op : C->operands()) 2143 Record.push_back(VE.getValueID(Op)); 2144 AbbrevToUse = AggregateAbbrev; 2145 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2146 switch (CE->getOpcode()) { 2147 default: 2148 if (Instruction::isCast(CE->getOpcode())) { 2149 Code = bitc::CST_CODE_CE_CAST; 2150 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2151 Record.push_back( 2152 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2153 Record.push_back(VE.getValueID(C->getOperand(0))); 2154 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2155 } else { 2156 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2157 Code = bitc::CST_CODE_CE_BINOP; 2158 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2159 Record.push_back(VE.getValueID(C->getOperand(0))); 2160 Record.push_back(VE.getValueID(C->getOperand(1))); 2161 uint64_t Flags = getOptimizationFlags(CE); 2162 if (Flags != 0) 2163 Record.push_back(Flags); 2164 } 2165 break; 2166 case Instruction::GetElementPtr: { 2167 Code = bitc::CST_CODE_CE_GEP; 2168 const auto *GO = cast<GEPOperator>(C); 2169 if (GO->isInBounds()) 2170 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2171 Record.push_back(getTypeID(GO->getSourceElementType())); 2172 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2173 Record.push_back( 2174 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2175 Record.push_back(VE.getValueID(C->getOperand(i))); 2176 } 2177 break; 2178 } 2179 case Instruction::Select: 2180 Code = bitc::CST_CODE_CE_SELECT; 2181 Record.push_back(VE.getValueID(C->getOperand(0))); 2182 Record.push_back(VE.getValueID(C->getOperand(1))); 2183 Record.push_back(VE.getValueID(C->getOperand(2))); 2184 break; 2185 case Instruction::ExtractElement: 2186 Code = bitc::CST_CODE_CE_EXTRACTELT; 2187 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2188 Record.push_back(VE.getValueID(C->getOperand(0))); 2189 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2190 Record.push_back(VE.getValueID(C->getOperand(1))); 2191 break; 2192 case Instruction::InsertElement: 2193 Code = bitc::CST_CODE_CE_INSERTELT; 2194 Record.push_back(VE.getValueID(C->getOperand(0))); 2195 Record.push_back(VE.getValueID(C->getOperand(1))); 2196 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2197 Record.push_back(VE.getValueID(C->getOperand(2))); 2198 break; 2199 case Instruction::ShuffleVector: 2200 // If the return type and argument types are the same, this is a 2201 // standard shufflevector instruction. If the types are different, 2202 // then the shuffle is widening or truncating the input vectors, and 2203 // the argument type must also be encoded. 2204 if (C->getType() == C->getOperand(0)->getType()) { 2205 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2206 } else { 2207 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2208 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2209 } 2210 Record.push_back(VE.getValueID(C->getOperand(0))); 2211 Record.push_back(VE.getValueID(C->getOperand(1))); 2212 Record.push_back(VE.getValueID(C->getOperand(2))); 2213 break; 2214 case Instruction::ICmp: 2215 case Instruction::FCmp: 2216 Code = bitc::CST_CODE_CE_CMP; 2217 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2218 Record.push_back(VE.getValueID(C->getOperand(0))); 2219 Record.push_back(VE.getValueID(C->getOperand(1))); 2220 Record.push_back(CE->getPredicate()); 2221 break; 2222 } 2223 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2224 Code = bitc::CST_CODE_BLOCKADDRESS; 2225 Record.push_back(getTypeID(BA->getFunction()->getType())); 2226 Record.push_back(VE.getValueID(BA->getFunction())); 2227 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2228 } else { 2229 #ifndef NDEBUG 2230 C->dump(); 2231 #endif 2232 llvm_unreachable("Unknown constant!"); 2233 } 2234 Stream.EmitRecord(Code, Record, AbbrevToUse); 2235 Record.clear(); 2236 } 2237 2238 Stream.ExitBlock(); 2239 } 2240 2241 void DXILBitcodeWriter::writeModuleConstants() { 2242 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2243 2244 // Find the first constant to emit, which is the first non-globalvalue value. 2245 // We know globalvalues have been emitted by WriteModuleInfo. 2246 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2247 if (!isa<GlobalValue>(Vals[i].first)) { 2248 writeConstants(i, Vals.size(), true); 2249 return; 2250 } 2251 } 2252 } 2253 2254 /// pushValueAndType - The file has to encode both the value and type id for 2255 /// many values, because we need to know what type to create for forward 2256 /// references. However, most operands are not forward references, so this type 2257 /// field is not needed. 2258 /// 2259 /// This function adds V's value ID to Vals. If the value ID is higher than the 2260 /// instruction ID, then it is a forward reference, and it also includes the 2261 /// type ID. The value ID that is written is encoded relative to the InstID. 2262 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2263 SmallVectorImpl<unsigned> &Vals) { 2264 unsigned ValID = VE.getValueID(V); 2265 // Make encoding relative to the InstID. 2266 Vals.push_back(InstID - ValID); 2267 if (ValID >= InstID) { 2268 Vals.push_back(getTypeID(V->getType(), V)); 2269 return true; 2270 } 2271 return false; 2272 } 2273 2274 /// pushValue - Like pushValueAndType, but where the type of the value is 2275 /// omitted (perhaps it was already encoded in an earlier operand). 2276 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2277 SmallVectorImpl<unsigned> &Vals) { 2278 unsigned ValID = VE.getValueID(V); 2279 Vals.push_back(InstID - ValID); 2280 } 2281 2282 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2283 SmallVectorImpl<uint64_t> &Vals) { 2284 unsigned ValID = VE.getValueID(V); 2285 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2286 emitSignedInt64(Vals, diff); 2287 } 2288 2289 /// WriteInstruction - Emit an instruction 2290 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2291 SmallVectorImpl<unsigned> &Vals) { 2292 unsigned Code = 0; 2293 unsigned AbbrevToUse = 0; 2294 VE.setInstructionID(&I); 2295 switch (I.getOpcode()) { 2296 default: 2297 if (Instruction::isCast(I.getOpcode())) { 2298 Code = bitc::FUNC_CODE_INST_CAST; 2299 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2300 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2301 Vals.push_back(getTypeID(I.getType(), &I)); 2302 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2303 } else { 2304 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2305 Code = bitc::FUNC_CODE_INST_BINOP; 2306 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2307 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2308 pushValue(I.getOperand(1), InstID, Vals); 2309 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2310 uint64_t Flags = getOptimizationFlags(&I); 2311 if (Flags != 0) { 2312 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2313 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2314 Vals.push_back(Flags); 2315 } 2316 } 2317 break; 2318 2319 case Instruction::GetElementPtr: { 2320 Code = bitc::FUNC_CODE_INST_GEP; 2321 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2322 auto &GEPInst = cast<GetElementPtrInst>(I); 2323 Vals.push_back(GEPInst.isInBounds()); 2324 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2325 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2326 pushValueAndType(I.getOperand(i), InstID, Vals); 2327 break; 2328 } 2329 case Instruction::ExtractValue: { 2330 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2331 pushValueAndType(I.getOperand(0), InstID, Vals); 2332 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2333 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2334 break; 2335 } 2336 case Instruction::InsertValue: { 2337 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2338 pushValueAndType(I.getOperand(0), InstID, Vals); 2339 pushValueAndType(I.getOperand(1), InstID, Vals); 2340 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2341 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2342 break; 2343 } 2344 case Instruction::Select: 2345 Code = bitc::FUNC_CODE_INST_VSELECT; 2346 pushValueAndType(I.getOperand(1), InstID, Vals); 2347 pushValue(I.getOperand(2), InstID, Vals); 2348 pushValueAndType(I.getOperand(0), InstID, Vals); 2349 break; 2350 case Instruction::ExtractElement: 2351 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2352 pushValueAndType(I.getOperand(0), InstID, Vals); 2353 pushValueAndType(I.getOperand(1), InstID, Vals); 2354 break; 2355 case Instruction::InsertElement: 2356 Code = bitc::FUNC_CODE_INST_INSERTELT; 2357 pushValueAndType(I.getOperand(0), InstID, Vals); 2358 pushValue(I.getOperand(1), InstID, Vals); 2359 pushValueAndType(I.getOperand(2), InstID, Vals); 2360 break; 2361 case Instruction::ShuffleVector: 2362 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2363 pushValueAndType(I.getOperand(0), InstID, Vals); 2364 pushValue(I.getOperand(1), InstID, Vals); 2365 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2366 Vals); 2367 break; 2368 case Instruction::ICmp: 2369 case Instruction::FCmp: { 2370 // compare returning Int1Ty or vector of Int1Ty 2371 Code = bitc::FUNC_CODE_INST_CMP2; 2372 pushValueAndType(I.getOperand(0), InstID, Vals); 2373 pushValue(I.getOperand(1), InstID, Vals); 2374 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2375 uint64_t Flags = getOptimizationFlags(&I); 2376 if (Flags != 0) 2377 Vals.push_back(Flags); 2378 break; 2379 } 2380 2381 case Instruction::Ret: { 2382 Code = bitc::FUNC_CODE_INST_RET; 2383 unsigned NumOperands = I.getNumOperands(); 2384 if (NumOperands == 0) 2385 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2386 else if (NumOperands == 1) { 2387 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2388 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2389 } else { 2390 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2391 pushValueAndType(I.getOperand(i), InstID, Vals); 2392 } 2393 } break; 2394 case Instruction::Br: { 2395 Code = bitc::FUNC_CODE_INST_BR; 2396 const BranchInst &II = cast<BranchInst>(I); 2397 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2398 if (II.isConditional()) { 2399 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2400 pushValue(II.getCondition(), InstID, Vals); 2401 } 2402 } break; 2403 case Instruction::Switch: { 2404 Code = bitc::FUNC_CODE_INST_SWITCH; 2405 const SwitchInst &SI = cast<SwitchInst>(I); 2406 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2407 pushValue(SI.getCondition(), InstID, Vals); 2408 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2409 for (auto Case : SI.cases()) { 2410 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2411 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2412 } 2413 } break; 2414 case Instruction::IndirectBr: 2415 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2416 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2417 // Encode the address operand as relative, but not the basic blocks. 2418 pushValue(I.getOperand(0), InstID, Vals); 2419 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2420 Vals.push_back(VE.getValueID(I.getOperand(i))); 2421 break; 2422 2423 case Instruction::Invoke: { 2424 const InvokeInst *II = cast<InvokeInst>(&I); 2425 const Value *Callee = II->getCalledOperand(); 2426 FunctionType *FTy = II->getFunctionType(); 2427 Code = bitc::FUNC_CODE_INST_INVOKE; 2428 2429 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2430 Vals.push_back(II->getCallingConv() | 1 << 13); 2431 Vals.push_back(VE.getValueID(II->getNormalDest())); 2432 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2433 Vals.push_back(getTypeID(FTy)); 2434 pushValueAndType(Callee, InstID, Vals); 2435 2436 // Emit value #'s for the fixed parameters. 2437 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2438 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2439 2440 // Emit type/value pairs for varargs params. 2441 if (FTy->isVarArg()) { 2442 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2443 ++i) 2444 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2445 } 2446 break; 2447 } 2448 case Instruction::Resume: 2449 Code = bitc::FUNC_CODE_INST_RESUME; 2450 pushValueAndType(I.getOperand(0), InstID, Vals); 2451 break; 2452 case Instruction::Unreachable: 2453 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2454 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2455 break; 2456 2457 case Instruction::PHI: { 2458 const PHINode &PN = cast<PHINode>(I); 2459 Code = bitc::FUNC_CODE_INST_PHI; 2460 // With the newer instruction encoding, forward references could give 2461 // negative valued IDs. This is most common for PHIs, so we use 2462 // signed VBRs. 2463 SmallVector<uint64_t, 128> Vals64; 2464 Vals64.push_back(getTypeID(PN.getType())); 2465 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2466 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2467 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2468 } 2469 // Emit a Vals64 vector and exit. 2470 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2471 Vals64.clear(); 2472 return; 2473 } 2474 2475 case Instruction::LandingPad: { 2476 const LandingPadInst &LP = cast<LandingPadInst>(I); 2477 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2478 Vals.push_back(getTypeID(LP.getType())); 2479 Vals.push_back(LP.isCleanup()); 2480 Vals.push_back(LP.getNumClauses()); 2481 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2482 if (LP.isCatch(I)) 2483 Vals.push_back(LandingPadInst::Catch); 2484 else 2485 Vals.push_back(LandingPadInst::Filter); 2486 pushValueAndType(LP.getClause(I), InstID, Vals); 2487 } 2488 break; 2489 } 2490 2491 case Instruction::Alloca: { 2492 Code = bitc::FUNC_CODE_INST_ALLOCA; 2493 const AllocaInst &AI = cast<AllocaInst>(I); 2494 Vals.push_back(getTypeID(AI.getAllocatedType())); 2495 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2496 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2497 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2498 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2499 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2500 AlignRecord |= 1 << 6; 2501 Vals.push_back(AlignRecord); 2502 break; 2503 } 2504 2505 case Instruction::Load: 2506 if (cast<LoadInst>(I).isAtomic()) { 2507 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2508 pushValueAndType(I.getOperand(0), InstID, Vals); 2509 } else { 2510 Code = bitc::FUNC_CODE_INST_LOAD; 2511 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2512 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2513 } 2514 Vals.push_back(getTypeID(I.getType())); 2515 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2516 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2517 if (cast<LoadInst>(I).isAtomic()) { 2518 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2519 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2520 } 2521 break; 2522 case Instruction::Store: 2523 if (cast<StoreInst>(I).isAtomic()) 2524 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2525 else 2526 Code = bitc::FUNC_CODE_INST_STORE; 2527 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2528 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2529 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2530 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2531 if (cast<StoreInst>(I).isAtomic()) { 2532 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2533 Vals.push_back( 2534 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2535 } 2536 break; 2537 case Instruction::AtomicCmpXchg: 2538 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2539 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2540 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2541 pushValue(I.getOperand(2), InstID, Vals); // newval. 2542 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2543 Vals.push_back( 2544 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2545 Vals.push_back( 2546 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2547 Vals.push_back( 2548 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2549 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2550 break; 2551 case Instruction::AtomicRMW: 2552 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2553 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2554 pushValue(I.getOperand(1), InstID, Vals); // val. 2555 Vals.push_back( 2556 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2557 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2558 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2559 Vals.push_back( 2560 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2561 break; 2562 case Instruction::Fence: 2563 Code = bitc::FUNC_CODE_INST_FENCE; 2564 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2565 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2566 break; 2567 case Instruction::Call: { 2568 const CallInst &CI = cast<CallInst>(I); 2569 FunctionType *FTy = CI.getFunctionType(); 2570 2571 Code = bitc::FUNC_CODE_INST_CALL; 2572 2573 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2574 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2575 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2576 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2577 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2578 2579 // Emit value #'s for the fixed parameters. 2580 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2581 // Check for labels (can happen with asm labels). 2582 if (FTy->getParamType(i)->isLabelTy()) 2583 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2584 else 2585 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2586 } 2587 2588 // Emit type/value pairs for varargs params. 2589 if (FTy->isVarArg()) { 2590 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2591 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2592 } 2593 break; 2594 } 2595 case Instruction::VAArg: 2596 Code = bitc::FUNC_CODE_INST_VAARG; 2597 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2598 pushValue(I.getOperand(0), InstID, Vals); // valist. 2599 Vals.push_back(getTypeID(I.getType())); // restype. 2600 break; 2601 } 2602 2603 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2604 Vals.clear(); 2605 } 2606 2607 // Emit names for globals/functions etc. 2608 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2609 const ValueSymbolTable &VST) { 2610 if (VST.empty()) 2611 return; 2612 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2613 2614 SmallVector<unsigned, 64> NameVals; 2615 2616 // HLSL Change 2617 // Read the named values from a sorted list instead of the original list 2618 // to ensure the binary is the same no matter what values ever existed. 2619 SmallVector<const ValueName *, 16> SortedTable; 2620 2621 for (auto &VI : VST) { 2622 SortedTable.push_back(VI.second->getValueName()); 2623 } 2624 // The keys are unique, so there shouldn't be stability issues. 2625 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2626 return A->first() < B->first(); 2627 }); 2628 2629 for (const ValueName *SI : SortedTable) { 2630 auto &Name = *SI; 2631 2632 // Figure out the encoding to use for the name. 2633 bool is7Bit = true; 2634 bool isChar6 = true; 2635 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2636 C != E; ++C) { 2637 if (isChar6) 2638 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2639 if ((unsigned char)*C & 128) { 2640 is7Bit = false; 2641 break; // don't bother scanning the rest. 2642 } 2643 } 2644 2645 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2646 2647 // VST_ENTRY: [valueid, namechar x N] 2648 // VST_BBENTRY: [bbid, namechar x N] 2649 unsigned Code; 2650 if (isa<BasicBlock>(SI->getValue())) { 2651 Code = bitc::VST_CODE_BBENTRY; 2652 if (isChar6) 2653 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2654 } else { 2655 Code = bitc::VST_CODE_ENTRY; 2656 if (isChar6) 2657 AbbrevToUse = VST_ENTRY_6_ABBREV; 2658 else if (is7Bit) 2659 AbbrevToUse = VST_ENTRY_7_ABBREV; 2660 } 2661 2662 NameVals.push_back(VE.getValueID(SI->getValue())); 2663 for (const char *P = Name.getKeyData(), 2664 *E = Name.getKeyData() + Name.getKeyLength(); 2665 P != E; ++P) 2666 NameVals.push_back((unsigned char)*P); 2667 2668 // Emit the finished record. 2669 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2670 NameVals.clear(); 2671 } 2672 Stream.ExitBlock(); 2673 } 2674 2675 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) { 2676 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2677 unsigned Code; 2678 if (isa<BasicBlock>(Order.V)) 2679 Code = bitc::USELIST_CODE_BB; 2680 else 2681 Code = bitc::USELIST_CODE_DEFAULT; 2682 2683 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2684 Record.push_back(VE.getValueID(Order.V)); 2685 Stream.EmitRecord(Code, Record); 2686 } 2687 2688 void DXILBitcodeWriter::writeUseListBlock(const Function *F) { 2689 auto hasMore = [&]() { 2690 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2691 }; 2692 if (!hasMore()) 2693 // Nothing to do. 2694 return; 2695 2696 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2697 while (hasMore()) { 2698 writeUseList(std::move(VE.UseListOrders.back())); 2699 VE.UseListOrders.pop_back(); 2700 } 2701 Stream.ExitBlock(); 2702 } 2703 2704 /// Emit a function body to the module stream. 2705 void DXILBitcodeWriter::writeFunction(const Function &F) { 2706 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2707 VE.incorporateFunction(F); 2708 2709 SmallVector<unsigned, 64> Vals; 2710 2711 // Emit the number of basic blocks, so the reader can create them ahead of 2712 // time. 2713 Vals.push_back(VE.getBasicBlocks().size()); 2714 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2715 Vals.clear(); 2716 2717 // If there are function-local constants, emit them now. 2718 unsigned CstStart, CstEnd; 2719 VE.getFunctionConstantRange(CstStart, CstEnd); 2720 writeConstants(CstStart, CstEnd, false); 2721 2722 // If there is function-local metadata, emit it now. 2723 writeFunctionMetadata(F); 2724 2725 // Keep a running idea of what the instruction ID is. 2726 unsigned InstID = CstEnd; 2727 2728 bool NeedsMetadataAttachment = F.hasMetadata(); 2729 2730 DILocation *LastDL = nullptr; 2731 2732 // Finally, emit all the instructions, in order. 2733 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2734 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2735 ++I) { 2736 writeInstruction(*I, InstID, Vals); 2737 2738 if (!I->getType()->isVoidTy()) 2739 ++InstID; 2740 2741 // If the instruction has metadata, write a metadata attachment later. 2742 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2743 2744 // If the instruction has a debug location, emit it. 2745 DILocation *DL = I->getDebugLoc(); 2746 if (!DL) 2747 continue; 2748 2749 if (DL == LastDL) { 2750 // Just repeat the same debug loc as last time. 2751 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2752 continue; 2753 } 2754 2755 Vals.push_back(DL->getLine()); 2756 Vals.push_back(DL->getColumn()); 2757 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2758 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2759 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2760 Vals.clear(); 2761 2762 LastDL = DL; 2763 } 2764 2765 // Emit names for all the instructions etc. 2766 if (auto *Symtab = F.getValueSymbolTable()) 2767 writeFunctionLevelValueSymbolTable(*Symtab); 2768 2769 if (NeedsMetadataAttachment) 2770 writeFunctionMetadataAttachment(F); 2771 2772 writeUseListBlock(&F); 2773 VE.purgeFunction(); 2774 Stream.ExitBlock(); 2775 } 2776 2777 // Emit blockinfo, which defines the standard abbreviations etc. 2778 void DXILBitcodeWriter::writeBlockInfo() { 2779 // We only want to emit block info records for blocks that have multiple 2780 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2781 // Other blocks can define their abbrevs inline. 2782 Stream.EnterBlockInfoBlock(); 2783 2784 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2785 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2790 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2791 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2792 assert(false && "Unexpected abbrev ordering!"); 2793 } 2794 2795 { // 7-bit fixed width VST_ENTRY strings. 2796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2797 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2801 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2802 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2803 assert(false && "Unexpected abbrev ordering!"); 2804 } 2805 { // 6-bit char6 VST_ENTRY strings. 2806 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2807 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2811 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2812 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2813 assert(false && "Unexpected abbrev ordering!"); 2814 } 2815 { // 6-bit char6 VST_BBENTRY strings. 2816 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2817 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2821 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2822 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2823 assert(false && "Unexpected abbrev ordering!"); 2824 } 2825 2826 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2828 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2830 VE.computeBitsRequiredForTypeIndicies())); 2831 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2832 CONSTANTS_SETTYPE_ABBREV) 2833 assert(false && "Unexpected abbrev ordering!"); 2834 } 2835 2836 { // INTEGER abbrev for CONSTANTS_BLOCK. 2837 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2838 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2840 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2841 CONSTANTS_INTEGER_ABBREV) 2842 assert(false && "Unexpected abbrev ordering!"); 2843 } 2844 2845 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2846 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2847 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2850 VE.computeBitsRequiredForTypeIndicies())); 2851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2852 2853 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2854 CONSTANTS_CE_CAST_Abbrev) 2855 assert(false && "Unexpected abbrev ordering!"); 2856 } 2857 { // NULL abbrev for CONSTANTS_BLOCK. 2858 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2859 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2860 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2861 CONSTANTS_NULL_Abbrev) 2862 assert(false && "Unexpected abbrev ordering!"); 2863 } 2864 2865 // FIXME: This should only use space for first class types! 2866 2867 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2868 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2869 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2872 VE.computeBitsRequiredForTypeIndicies())); 2873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2875 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2876 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2877 assert(false && "Unexpected abbrev ordering!"); 2878 } 2879 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2880 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2881 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2885 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2886 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2887 assert(false && "Unexpected abbrev ordering!"); 2888 } 2889 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2890 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2891 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2896 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2897 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2898 assert(false && "Unexpected abbrev ordering!"); 2899 } 2900 { // INST_CAST abbrev for FUNCTION_BLOCK. 2901 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2902 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2905 VE.computeBitsRequiredForTypeIndicies())); 2906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2907 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2908 (unsigned)FUNCTION_INST_CAST_ABBREV) 2909 assert(false && "Unexpected abbrev ordering!"); 2910 } 2911 2912 { // INST_RET abbrev for FUNCTION_BLOCK. 2913 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2914 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2915 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2916 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2917 assert(false && "Unexpected abbrev ordering!"); 2918 } 2919 { // INST_RET abbrev for FUNCTION_BLOCK. 2920 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2921 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2923 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2924 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2925 assert(false && "Unexpected abbrev ordering!"); 2926 } 2927 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2928 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2929 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2930 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2931 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2932 assert(false && "Unexpected abbrev ordering!"); 2933 } 2934 { 2935 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2936 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2939 Log2_32_Ceil(VE.getTypes().size() + 1))); 2940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2942 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2943 (unsigned)FUNCTION_INST_GEP_ABBREV) 2944 assert(false && "Unexpected abbrev ordering!"); 2945 } 2946 2947 Stream.ExitBlock(); 2948 } 2949 2950 void DXILBitcodeWriter::writeModuleVersion() { 2951 // VERSION: [version#] 2952 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2953 } 2954 2955 /// WriteModule - Emit the specified module to the bitstream. 2956 void DXILBitcodeWriter::write() { 2957 // The identification block is new since llvm-3.7, but the old bitcode reader 2958 // will skip it. 2959 // writeIdentificationBlock(Stream); 2960 2961 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2962 2963 // It is redundant to fully-specify this here, but nice to make it explicit 2964 // so that it is clear the DXIL module version is different. 2965 DXILBitcodeWriter::writeModuleVersion(); 2966 2967 // Emit blockinfo, which defines the standard abbreviations etc. 2968 writeBlockInfo(); 2969 2970 // Emit information about attribute groups. 2971 writeAttributeGroupTable(); 2972 2973 // Emit information about parameter attributes. 2974 writeAttributeTable(); 2975 2976 // Emit information describing all of the types in the module. 2977 writeTypeTable(); 2978 2979 writeComdats(); 2980 2981 // Emit top-level description of module, including target triple, inline asm, 2982 // descriptors for global variables, and function prototype info. 2983 writeModuleInfo(); 2984 2985 // Emit constants. 2986 writeModuleConstants(); 2987 2988 // Emit metadata. 2989 writeModuleMetadataKinds(); 2990 2991 // Emit metadata. 2992 writeModuleMetadata(); 2993 2994 // Emit names for globals/functions etc. 2995 // DXIL uses the same format for module-level value symbol table as for the 2996 // function level table. 2997 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2998 2999 // Emit module-level use-lists. 3000 writeUseListBlock(nullptr); 3001 3002 // Emit function bodies. 3003 for (const Function &F : M) 3004 if (!F.isDeclaration()) 3005 writeFunction(F); 3006 3007 Stream.ExitBlock(); 3008 } 3009