1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitcodeCommon.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/Bitcode/LLVMBitCodes.h" 21 #include "llvm/Bitstream/BitCodes.h" 22 #include "llvm/Bitstream/BitstreamWriter.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalIFunc.h" 34 #include "llvm/IR/GlobalObject.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/UseListOrder.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/IR/ValueSymbolTable.h" 50 #include "llvm/Object/IRSymtab.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/SHA1.h" 53 54 namespace llvm { 55 namespace dxil { 56 57 // Generates an enum to use as an index in the Abbrev array of Metadata record. 58 enum MetadataAbbrev : unsigned { 59 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 60 #include "llvm/IR/Metadata.def" 61 LastPlusOne 62 }; 63 64 class DXILBitcodeWriter { 65 66 /// These are manifest constants used by the bitcode writer. They do not need 67 /// to be kept in sync with the reader, but need to be consistent within this 68 /// file. 69 enum { 70 // VALUE_SYMTAB_BLOCK abbrev id's. 71 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 72 VST_ENTRY_7_ABBREV, 73 VST_ENTRY_6_ABBREV, 74 VST_BBENTRY_6_ABBREV, 75 76 // CONSTANTS_BLOCK abbrev id's. 77 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 78 CONSTANTS_INTEGER_ABBREV, 79 CONSTANTS_CE_CAST_Abbrev, 80 CONSTANTS_NULL_Abbrev, 81 82 // FUNCTION_BLOCK abbrev id's. 83 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 84 FUNCTION_INST_BINOP_ABBREV, 85 FUNCTION_INST_BINOP_FLAGS_ABBREV, 86 FUNCTION_INST_CAST_ABBREV, 87 FUNCTION_INST_RET_VOID_ABBREV, 88 FUNCTION_INST_RET_VAL_ABBREV, 89 FUNCTION_INST_UNREACHABLE_ABBREV, 90 FUNCTION_INST_GEP_ABBREV, 91 }; 92 93 // Cache some types 94 Type *I8Ty; 95 Type *I8PtrTy; 96 97 /// The stream created and owned by the client. 98 BitstreamWriter &Stream; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Map that holds the correspondence between GUIDs in the summary index, 109 /// that came from indirect call profiles, and a value id generated by this 110 /// class to use in the VST and summary block records. 111 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 112 113 /// Tracks the last value id recorded in the GUIDToValueMap. 114 unsigned GlobalValueId; 115 116 /// Saves the offset of the VSTOffset record that must eventually be 117 /// backpatched with the offset of the actual VST. 118 uint64_t VSTOffsetPlaceholder = 0; 119 120 /// Pointer to the buffer allocated by caller for bitcode writing. 121 const SmallVectorImpl<char> &Buffer; 122 123 /// The start bit of the identification block. 124 uint64_t BitcodeStartBit; 125 126 /// This maps values to their typed pointers 127 PointerTypeMap PointerMap; 128 129 public: 130 /// Constructs a ModuleBitcodeWriter object for the given Module, 131 /// writing to the provided \p Buffer. 132 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 133 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 134 : I8Ty(Type::getInt8Ty(M.getContext())), 135 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 136 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 137 BitcodeStartBit(Stream.GetCurrentBitNo()), 138 PointerMap(PointerTypeAnalysis::run(M)) { 139 GlobalValueId = VE.getValues().size(); 140 // Enumerate the typed pointers 141 for (auto El : PointerMap) 142 VE.EnumerateType(El.second); 143 } 144 145 /// Emit the current module to the bitstream. 146 void write(); 147 148 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 149 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 150 StringRef Str, unsigned AbbrevToUse); 151 static void writeIdentificationBlock(BitstreamWriter &Stream); 152 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 153 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 154 155 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 156 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 157 static unsigned getEncodedLinkage(const GlobalValue &GV); 158 static unsigned getEncodedVisibility(const GlobalValue &GV); 159 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 160 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 161 static unsigned getEncodedCastOpcode(unsigned Opcode); 162 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 163 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 164 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 165 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 166 static uint64_t getOptimizationFlags(const Value *V); 167 168 private: 169 void writeModuleVersion(); 170 void writePerModuleGlobalValueSummary(); 171 172 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 173 GlobalValueSummary *Summary, 174 unsigned ValueID, 175 unsigned FSCallsAbbrev, 176 unsigned FSCallsProfileAbbrev, 177 const Function &F); 178 void writeModuleLevelReferences(const GlobalVariable &V, 179 SmallVector<uint64_t, 64> &NameVals, 180 unsigned FSModRefsAbbrev, 181 unsigned FSModVTableRefsAbbrev); 182 183 void assignValueId(GlobalValue::GUID ValGUID) { 184 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 185 } 186 187 unsigned getValueId(GlobalValue::GUID ValGUID) { 188 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 189 // Expect that any GUID value had a value Id assigned by an 190 // earlier call to assignValueId. 191 assert(VMI != GUIDToValueIdMap.end() && 192 "GUID does not have assigned value Id"); 193 return VMI->second; 194 } 195 196 // Helper to get the valueId for the type of value recorded in VI. 197 unsigned getValueId(ValueInfo VI) { 198 if (!VI.haveGVs() || !VI.getValue()) 199 return getValueId(VI.getGUID()); 200 return VE.getValueID(VI.getValue()); 201 } 202 203 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 204 205 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 206 207 size_t addToStrtab(StringRef Str); 208 209 unsigned createDILocationAbbrev(); 210 unsigned createGenericDINodeAbbrev(); 211 212 void writeAttributeGroupTable(); 213 void writeAttributeTable(); 214 void writeTypeTable(); 215 void writeComdats(); 216 void writeValueSymbolTableForwardDecl(); 217 void writeModuleInfo(); 218 void writeValueAsMetadata(const ValueAsMetadata *MD, 219 SmallVectorImpl<uint64_t> &Record); 220 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned &Abbrev); 224 void writeGenericDINode(const GenericDINode *N, 225 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 226 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 227 } 228 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGenericSubrange(const DIGenericSubrange *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev) { 233 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 234 } 235 void writeDIEnumerator(const DIEnumerator *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 238 unsigned Abbrev); 239 void writeDIStringType(const DIStringType *N, 240 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 241 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 242 } 243 void writeDIDerivedType(const DIDerivedType *N, 244 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 245 void writeDICompositeType(const DICompositeType *N, 246 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 247 void writeDISubroutineType(const DISubroutineType *N, 248 SmallVectorImpl<uint64_t> &Record, 249 unsigned Abbrev); 250 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 251 unsigned Abbrev); 252 void writeDICompileUnit(const DICompileUnit *N, 253 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 254 void writeDISubprogram(const DISubprogram *N, 255 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 256 void writeDILexicalBlock(const DILexicalBlock *N, 257 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 258 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 259 SmallVectorImpl<uint64_t> &Record, 260 unsigned Abbrev); 261 void writeDICommonBlock(const DICommonBlock *N, 262 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 263 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 264 } 265 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 266 unsigned Abbrev); 267 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 268 unsigned Abbrev) { 269 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 270 } 271 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 272 unsigned Abbrev) { 273 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 274 } 275 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 276 unsigned Abbrev) { 277 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 278 } 279 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 280 unsigned Abbrev); 281 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 282 SmallVectorImpl<uint64_t> &Record, 283 unsigned Abbrev); 284 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 285 SmallVectorImpl<uint64_t> &Record, 286 unsigned Abbrev); 287 void writeDIGlobalVariable(const DIGlobalVariable *N, 288 SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 void writeDILocalVariable(const DILocalVariable *N, 291 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 292 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned Abbrev) { 294 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 295 } 296 void writeDIExpression(const DIExpression *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 299 SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev) { 301 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 302 } 303 void writeDIObjCProperty(const DIObjCProperty *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDIImportedEntity(const DIImportedEntity *N, 306 SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 unsigned createNamedMetadataAbbrev(); 309 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 310 unsigned createMetadataStringsAbbrev(); 311 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 312 SmallVectorImpl<uint64_t> &Record); 313 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 314 SmallVectorImpl<uint64_t> &Record, 315 std::vector<unsigned> *MDAbbrevs = nullptr, 316 std::vector<uint64_t> *IndexPos = nullptr); 317 void writeModuleMetadata(); 318 void writeFunctionMetadata(const Function &F); 319 void writeFunctionMetadataAttachment(const Function &F); 320 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 321 const GlobalObject &GO); 322 void writeModuleMetadataKinds(); 323 void writeOperandBundleTags(); 324 void writeSyncScopeNames(); 325 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 326 void writeModuleConstants(); 327 bool pushValueAndType(const Value *V, unsigned InstID, 328 SmallVectorImpl<unsigned> &Vals); 329 void writeOperandBundles(const CallBase &CB, unsigned InstID); 330 void pushValue(const Value *V, unsigned InstID, 331 SmallVectorImpl<unsigned> &Vals); 332 void pushValueSigned(const Value *V, unsigned InstID, 333 SmallVectorImpl<uint64_t> &Vals); 334 void writeInstruction(const Instruction &I, unsigned InstID, 335 SmallVectorImpl<unsigned> &Vals); 336 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 337 void writeGlobalValueSymbolTable( 338 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 339 void writeUseList(UseListOrder &&Order); 340 void writeUseListBlock(const Function *F); 341 void writeFunction(const Function &F); 342 void writeBlockInfo(); 343 344 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 345 346 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 347 348 unsigned getTypeID(Type *T, const Value *V = nullptr); 349 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 350 /// 351 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 352 /// GlobalObject, but in the bitcode writer we need the pointer element type. 353 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 354 }; 355 356 } // namespace dxil 357 } // namespace llvm 358 359 using namespace llvm; 360 using namespace llvm::dxil; 361 362 //////////////////////////////////////////////////////////////////////////////// 363 /// Begin dxil::BitcodeWriter Implementation 364 //////////////////////////////////////////////////////////////////////////////// 365 366 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, 367 raw_fd_stream *FS) 368 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { 369 // Emit the file header. 370 Stream->Emit((unsigned)'B', 8); 371 Stream->Emit((unsigned)'C', 8); 372 Stream->Emit(0x0, 4); 373 Stream->Emit(0xC, 4); 374 Stream->Emit(0xE, 4); 375 Stream->Emit(0xD, 4); 376 } 377 378 dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 379 380 /// Write the specified module to the specified output stream. 381 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 382 SmallVector<char, 0> Buffer; 383 Buffer.reserve(256 * 1024); 384 385 // If this is darwin or another generic macho target, reserve space for the 386 // header. 387 Triple TT(M.getTargetTriple()); 388 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 389 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 390 391 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 392 Writer.writeModule(M); 393 Writer.writeSymtab(); 394 Writer.writeStrtab(); 395 396 // Write the generated bitstream to "Out". 397 if (!Buffer.empty()) 398 Out.write((char *)&Buffer.front(), Buffer.size()); 399 } 400 401 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 402 Stream->EnterSubblock(Block, 3); 403 404 auto Abbv = std::make_shared<BitCodeAbbrev>(); 405 Abbv->Add(BitCodeAbbrevOp(Record)); 406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 407 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 408 409 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 410 411 Stream->ExitBlock(); 412 } 413 414 void BitcodeWriter::writeSymtab() { 415 assert(!WroteStrtab && !WroteSymtab); 416 417 // If any module has module-level inline asm, we will require a registered asm 418 // parser for the target so that we can create an accurate symbol table for 419 // the module. 420 for (Module *M : Mods) { 421 if (M->getModuleInlineAsm().empty()) 422 continue; 423 } 424 425 WroteSymtab = true; 426 SmallVector<char, 0> Symtab; 427 // The irsymtab::build function may be unable to create a symbol table if the 428 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 429 // table is not required for correctness, but we still want to be able to 430 // write malformed modules to bitcode files, so swallow the error. 431 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 432 consumeError(std::move(E)); 433 return; 434 } 435 436 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 437 {Symtab.data(), Symtab.size()}); 438 } 439 440 void BitcodeWriter::writeStrtab() { 441 assert(!WroteStrtab); 442 443 std::vector<char> Strtab; 444 StrtabBuilder.finalizeInOrder(); 445 Strtab.resize(StrtabBuilder.getSize()); 446 StrtabBuilder.write((uint8_t *)Strtab.data()); 447 448 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 449 {Strtab.data(), Strtab.size()}); 450 451 WroteStrtab = true; 452 } 453 454 void BitcodeWriter::copyStrtab(StringRef Strtab) { 455 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 456 WroteStrtab = true; 457 } 458 459 void BitcodeWriter::writeModule(const Module &M) { 460 assert(!WroteStrtab); 461 462 // The Mods vector is used by irsymtab::build, which requires non-const 463 // Modules in case it needs to materialize metadata. But the bitcode writer 464 // requires that the module is materialized, so we can cast to non-const here, 465 // after checking that it is in fact materialized. 466 assert(M.isMaterialized()); 467 Mods.push_back(const_cast<Module *>(&M)); 468 469 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 470 ModuleWriter.write(); 471 } 472 473 //////////////////////////////////////////////////////////////////////////////// 474 /// Begin dxil::BitcodeWriterBase Implementation 475 //////////////////////////////////////////////////////////////////////////////// 476 477 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 478 switch (Opcode) { 479 default: 480 llvm_unreachable("Unknown cast instruction!"); 481 case Instruction::Trunc: 482 return bitc::CAST_TRUNC; 483 case Instruction::ZExt: 484 return bitc::CAST_ZEXT; 485 case Instruction::SExt: 486 return bitc::CAST_SEXT; 487 case Instruction::FPToUI: 488 return bitc::CAST_FPTOUI; 489 case Instruction::FPToSI: 490 return bitc::CAST_FPTOSI; 491 case Instruction::UIToFP: 492 return bitc::CAST_UITOFP; 493 case Instruction::SIToFP: 494 return bitc::CAST_SITOFP; 495 case Instruction::FPTrunc: 496 return bitc::CAST_FPTRUNC; 497 case Instruction::FPExt: 498 return bitc::CAST_FPEXT; 499 case Instruction::PtrToInt: 500 return bitc::CAST_PTRTOINT; 501 case Instruction::IntToPtr: 502 return bitc::CAST_INTTOPTR; 503 case Instruction::BitCast: 504 return bitc::CAST_BITCAST; 505 case Instruction::AddrSpaceCast: 506 return bitc::CAST_ADDRSPACECAST; 507 } 508 } 509 510 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 511 switch (Opcode) { 512 default: 513 llvm_unreachable("Unknown binary instruction!"); 514 case Instruction::FNeg: 515 return bitc::UNOP_FNEG; 516 } 517 } 518 519 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: 522 llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::Add: 524 case Instruction::FAdd: 525 return bitc::BINOP_ADD; 526 case Instruction::Sub: 527 case Instruction::FSub: 528 return bitc::BINOP_SUB; 529 case Instruction::Mul: 530 case Instruction::FMul: 531 return bitc::BINOP_MUL; 532 case Instruction::UDiv: 533 return bitc::BINOP_UDIV; 534 case Instruction::FDiv: 535 case Instruction::SDiv: 536 return bitc::BINOP_SDIV; 537 case Instruction::URem: 538 return bitc::BINOP_UREM; 539 case Instruction::FRem: 540 case Instruction::SRem: 541 return bitc::BINOP_SREM; 542 case Instruction::Shl: 543 return bitc::BINOP_SHL; 544 case Instruction::LShr: 545 return bitc::BINOP_LSHR; 546 case Instruction::AShr: 547 return bitc::BINOP_ASHR; 548 case Instruction::And: 549 return bitc::BINOP_AND; 550 case Instruction::Or: 551 return bitc::BINOP_OR; 552 case Instruction::Xor: 553 return bitc::BINOP_XOR; 554 } 555 } 556 557 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 558 if (!T->isOpaquePointerTy() && 559 // For Constant, always check PointerMap to make sure OpaquePointer in 560 // things like constant struct/array works. 561 (!V || !isa<Constant>(V))) 562 return VE.getTypeID(T); 563 auto It = PointerMap.find(V); 564 if (It != PointerMap.end()) 565 return VE.getTypeID(It->second); 566 // For Constant, return T when cannot find in PointerMap. 567 // FIXME: support ConstantPointerNull which could map to more than one 568 // TypedPointerType. 569 // See https://github.com/llvm/llvm-project/issues/57942. 570 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 571 return VE.getTypeID(T); 572 return VE.getTypeID(I8PtrTy); 573 } 574 575 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 576 const GlobalObject *G) { 577 auto It = PointerMap.find(G); 578 if (It != PointerMap.end()) { 579 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 580 return VE.getTypeID(PtrTy->getElementType()); 581 } 582 return VE.getTypeID(T); 583 } 584 585 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 586 switch (Op) { 587 default: 588 llvm_unreachable("Unknown RMW operation!"); 589 case AtomicRMWInst::Xchg: 590 return bitc::RMW_XCHG; 591 case AtomicRMWInst::Add: 592 return bitc::RMW_ADD; 593 case AtomicRMWInst::Sub: 594 return bitc::RMW_SUB; 595 case AtomicRMWInst::And: 596 return bitc::RMW_AND; 597 case AtomicRMWInst::Nand: 598 return bitc::RMW_NAND; 599 case AtomicRMWInst::Or: 600 return bitc::RMW_OR; 601 case AtomicRMWInst::Xor: 602 return bitc::RMW_XOR; 603 case AtomicRMWInst::Max: 604 return bitc::RMW_MAX; 605 case AtomicRMWInst::Min: 606 return bitc::RMW_MIN; 607 case AtomicRMWInst::UMax: 608 return bitc::RMW_UMAX; 609 case AtomicRMWInst::UMin: 610 return bitc::RMW_UMIN; 611 case AtomicRMWInst::FAdd: 612 return bitc::RMW_FADD; 613 case AtomicRMWInst::FSub: 614 return bitc::RMW_FSUB; 615 case AtomicRMWInst::FMax: 616 return bitc::RMW_FMAX; 617 case AtomicRMWInst::FMin: 618 return bitc::RMW_FMIN; 619 } 620 } 621 622 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 623 switch (Ordering) { 624 case AtomicOrdering::NotAtomic: 625 return bitc::ORDERING_NOTATOMIC; 626 case AtomicOrdering::Unordered: 627 return bitc::ORDERING_UNORDERED; 628 case AtomicOrdering::Monotonic: 629 return bitc::ORDERING_MONOTONIC; 630 case AtomicOrdering::Acquire: 631 return bitc::ORDERING_ACQUIRE; 632 case AtomicOrdering::Release: 633 return bitc::ORDERING_RELEASE; 634 case AtomicOrdering::AcquireRelease: 635 return bitc::ORDERING_ACQREL; 636 case AtomicOrdering::SequentiallyConsistent: 637 return bitc::ORDERING_SEQCST; 638 } 639 llvm_unreachable("Invalid ordering"); 640 } 641 642 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 643 unsigned Code, StringRef Str, 644 unsigned AbbrevToUse) { 645 SmallVector<unsigned, 64> Vals; 646 647 // Code: [strchar x N] 648 for (char C : Str) { 649 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 650 AbbrevToUse = 0; 651 Vals.push_back(C); 652 } 653 654 // Emit the finished record. 655 Stream.EmitRecord(Code, Vals, AbbrevToUse); 656 } 657 658 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 659 switch (Kind) { 660 case Attribute::Alignment: 661 return bitc::ATTR_KIND_ALIGNMENT; 662 case Attribute::AlwaysInline: 663 return bitc::ATTR_KIND_ALWAYS_INLINE; 664 case Attribute::ArgMemOnly: 665 return bitc::ATTR_KIND_ARGMEMONLY; 666 case Attribute::Builtin: 667 return bitc::ATTR_KIND_BUILTIN; 668 case Attribute::ByVal: 669 return bitc::ATTR_KIND_BY_VAL; 670 case Attribute::Convergent: 671 return bitc::ATTR_KIND_CONVERGENT; 672 case Attribute::InAlloca: 673 return bitc::ATTR_KIND_IN_ALLOCA; 674 case Attribute::Cold: 675 return bitc::ATTR_KIND_COLD; 676 case Attribute::InlineHint: 677 return bitc::ATTR_KIND_INLINE_HINT; 678 case Attribute::InReg: 679 return bitc::ATTR_KIND_IN_REG; 680 case Attribute::JumpTable: 681 return bitc::ATTR_KIND_JUMP_TABLE; 682 case Attribute::MinSize: 683 return bitc::ATTR_KIND_MIN_SIZE; 684 case Attribute::Naked: 685 return bitc::ATTR_KIND_NAKED; 686 case Attribute::Nest: 687 return bitc::ATTR_KIND_NEST; 688 case Attribute::NoAlias: 689 return bitc::ATTR_KIND_NO_ALIAS; 690 case Attribute::NoBuiltin: 691 return bitc::ATTR_KIND_NO_BUILTIN; 692 case Attribute::NoCapture: 693 return bitc::ATTR_KIND_NO_CAPTURE; 694 case Attribute::NoDuplicate: 695 return bitc::ATTR_KIND_NO_DUPLICATE; 696 case Attribute::NoImplicitFloat: 697 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 698 case Attribute::NoInline: 699 return bitc::ATTR_KIND_NO_INLINE; 700 case Attribute::NonLazyBind: 701 return bitc::ATTR_KIND_NON_LAZY_BIND; 702 case Attribute::NonNull: 703 return bitc::ATTR_KIND_NON_NULL; 704 case Attribute::Dereferenceable: 705 return bitc::ATTR_KIND_DEREFERENCEABLE; 706 case Attribute::DereferenceableOrNull: 707 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 708 case Attribute::NoRedZone: 709 return bitc::ATTR_KIND_NO_RED_ZONE; 710 case Attribute::NoReturn: 711 return bitc::ATTR_KIND_NO_RETURN; 712 case Attribute::NoUnwind: 713 return bitc::ATTR_KIND_NO_UNWIND; 714 case Attribute::OptimizeForSize: 715 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 716 case Attribute::OptimizeNone: 717 return bitc::ATTR_KIND_OPTIMIZE_NONE; 718 case Attribute::ReadNone: 719 return bitc::ATTR_KIND_READ_NONE; 720 case Attribute::ReadOnly: 721 return bitc::ATTR_KIND_READ_ONLY; 722 case Attribute::Returned: 723 return bitc::ATTR_KIND_RETURNED; 724 case Attribute::ReturnsTwice: 725 return bitc::ATTR_KIND_RETURNS_TWICE; 726 case Attribute::SExt: 727 return bitc::ATTR_KIND_S_EXT; 728 case Attribute::StackAlignment: 729 return bitc::ATTR_KIND_STACK_ALIGNMENT; 730 case Attribute::StackProtect: 731 return bitc::ATTR_KIND_STACK_PROTECT; 732 case Attribute::StackProtectReq: 733 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 734 case Attribute::StackProtectStrong: 735 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 736 case Attribute::SafeStack: 737 return bitc::ATTR_KIND_SAFESTACK; 738 case Attribute::StructRet: 739 return bitc::ATTR_KIND_STRUCT_RET; 740 case Attribute::SanitizeAddress: 741 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 742 case Attribute::SanitizeThread: 743 return bitc::ATTR_KIND_SANITIZE_THREAD; 744 case Attribute::SanitizeMemory: 745 return bitc::ATTR_KIND_SANITIZE_MEMORY; 746 case Attribute::UWTable: 747 return bitc::ATTR_KIND_UW_TABLE; 748 case Attribute::ZExt: 749 return bitc::ATTR_KIND_Z_EXT; 750 case Attribute::EndAttrKinds: 751 llvm_unreachable("Can not encode end-attribute kinds marker."); 752 case Attribute::None: 753 llvm_unreachable("Can not encode none-attribute."); 754 case Attribute::EmptyKey: 755 case Attribute::TombstoneKey: 756 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 757 default: 758 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 759 "should be stripped in DXILPrepare"); 760 } 761 762 llvm_unreachable("Trying to encode unknown attribute"); 763 } 764 765 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 766 uint64_t V) { 767 if ((int64_t)V >= 0) 768 Vals.push_back(V << 1); 769 else 770 Vals.push_back((-V << 1) | 1); 771 } 772 773 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 774 const APInt &A) { 775 // We have an arbitrary precision integer value to write whose 776 // bit width is > 64. However, in canonical unsigned integer 777 // format it is likely that the high bits are going to be zero. 778 // So, we only write the number of active words. 779 unsigned NumWords = A.getActiveWords(); 780 const uint64_t *RawData = A.getRawData(); 781 for (unsigned i = 0; i < NumWords; i++) 782 emitSignedInt64(Vals, RawData[i]); 783 } 784 785 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 786 uint64_t Flags = 0; 787 788 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 789 if (OBO->hasNoSignedWrap()) 790 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 791 if (OBO->hasNoUnsignedWrap()) 792 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 793 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 794 if (PEO->isExact()) 795 Flags |= 1 << bitc::PEO_EXACT; 796 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 797 if (FPMO->hasAllowReassoc()) 798 Flags |= bitc::AllowReassoc; 799 if (FPMO->hasNoNaNs()) 800 Flags |= bitc::NoNaNs; 801 if (FPMO->hasNoInfs()) 802 Flags |= bitc::NoInfs; 803 if (FPMO->hasNoSignedZeros()) 804 Flags |= bitc::NoSignedZeros; 805 if (FPMO->hasAllowReciprocal()) 806 Flags |= bitc::AllowReciprocal; 807 if (FPMO->hasAllowContract()) 808 Flags |= bitc::AllowContract; 809 if (FPMO->hasApproxFunc()) 810 Flags |= bitc::ApproxFunc; 811 } 812 813 return Flags; 814 } 815 816 unsigned 817 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 818 switch (Linkage) { 819 case GlobalValue::ExternalLinkage: 820 return 0; 821 case GlobalValue::WeakAnyLinkage: 822 return 16; 823 case GlobalValue::AppendingLinkage: 824 return 2; 825 case GlobalValue::InternalLinkage: 826 return 3; 827 case GlobalValue::LinkOnceAnyLinkage: 828 return 18; 829 case GlobalValue::ExternalWeakLinkage: 830 return 7; 831 case GlobalValue::CommonLinkage: 832 return 8; 833 case GlobalValue::PrivateLinkage: 834 return 9; 835 case GlobalValue::WeakODRLinkage: 836 return 17; 837 case GlobalValue::LinkOnceODRLinkage: 838 return 19; 839 case GlobalValue::AvailableExternallyLinkage: 840 return 12; 841 } 842 llvm_unreachable("Invalid linkage"); 843 } 844 845 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 846 return getEncodedLinkage(GV.getLinkage()); 847 } 848 849 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 850 switch (GV.getVisibility()) { 851 case GlobalValue::DefaultVisibility: 852 return 0; 853 case GlobalValue::HiddenVisibility: 854 return 1; 855 case GlobalValue::ProtectedVisibility: 856 return 2; 857 } 858 llvm_unreachable("Invalid visibility"); 859 } 860 861 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 862 switch (GV.getDLLStorageClass()) { 863 case GlobalValue::DefaultStorageClass: 864 return 0; 865 case GlobalValue::DLLImportStorageClass: 866 return 1; 867 case GlobalValue::DLLExportStorageClass: 868 return 2; 869 } 870 llvm_unreachable("Invalid DLL storage class"); 871 } 872 873 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 874 switch (GV.getThreadLocalMode()) { 875 case GlobalVariable::NotThreadLocal: 876 return 0; 877 case GlobalVariable::GeneralDynamicTLSModel: 878 return 1; 879 case GlobalVariable::LocalDynamicTLSModel: 880 return 2; 881 case GlobalVariable::InitialExecTLSModel: 882 return 3; 883 case GlobalVariable::LocalExecTLSModel: 884 return 4; 885 } 886 llvm_unreachable("Invalid TLS model"); 887 } 888 889 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 890 switch (C.getSelectionKind()) { 891 case Comdat::Any: 892 return bitc::COMDAT_SELECTION_KIND_ANY; 893 case Comdat::ExactMatch: 894 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 895 case Comdat::Largest: 896 return bitc::COMDAT_SELECTION_KIND_LARGEST; 897 case Comdat::NoDeduplicate: 898 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 899 case Comdat::SameSize: 900 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 901 } 902 llvm_unreachable("Invalid selection kind"); 903 } 904 905 //////////////////////////////////////////////////////////////////////////////// 906 /// Begin DXILBitcodeWriter Implementation 907 //////////////////////////////////////////////////////////////////////////////// 908 909 void DXILBitcodeWriter::writeAttributeGroupTable() { 910 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 911 VE.getAttributeGroups(); 912 if (AttrGrps.empty()) 913 return; 914 915 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 916 917 SmallVector<uint64_t, 64> Record; 918 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 919 unsigned AttrListIndex = Pair.first; 920 AttributeSet AS = Pair.second; 921 Record.push_back(VE.getAttributeGroupID(Pair)); 922 Record.push_back(AttrListIndex); 923 924 for (Attribute Attr : AS) { 925 if (Attr.isEnumAttribute()) { 926 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 927 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 928 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 929 Record.push_back(0); 930 Record.push_back(Val); 931 } else if (Attr.isIntAttribute()) { 932 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 933 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 934 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 935 Record.push_back(1); 936 Record.push_back(Val); 937 Record.push_back(Attr.getValueAsInt()); 938 } else { 939 StringRef Kind = Attr.getKindAsString(); 940 StringRef Val = Attr.getValueAsString(); 941 942 Record.push_back(Val.empty() ? 3 : 4); 943 Record.append(Kind.begin(), Kind.end()); 944 Record.push_back(0); 945 if (!Val.empty()) { 946 Record.append(Val.begin(), Val.end()); 947 Record.push_back(0); 948 } 949 } 950 } 951 952 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 953 Record.clear(); 954 } 955 956 Stream.ExitBlock(); 957 } 958 959 void DXILBitcodeWriter::writeAttributeTable() { 960 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 961 if (Attrs.empty()) 962 return; 963 964 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 965 966 SmallVector<uint64_t, 64> Record; 967 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 968 AttributeList AL = Attrs[i]; 969 for (unsigned i : AL.indexes()) { 970 AttributeSet AS = AL.getAttributes(i); 971 if (AS.hasAttributes()) 972 Record.push_back(VE.getAttributeGroupID({i, AS})); 973 } 974 975 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 976 Record.clear(); 977 } 978 979 Stream.ExitBlock(); 980 } 981 982 /// WriteTypeTable - Write out the type table for a module. 983 void DXILBitcodeWriter::writeTypeTable() { 984 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 985 986 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 987 SmallVector<uint64_t, 64> TypeVals; 988 989 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 990 991 // Abbrev for TYPE_CODE_POINTER. 992 auto Abbv = std::make_shared<BitCodeAbbrev>(); 993 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 995 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 996 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 997 998 // Abbrev for TYPE_CODE_FUNCTION. 999 Abbv = std::make_shared<BitCodeAbbrev>(); 1000 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1004 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1005 1006 // Abbrev for TYPE_CODE_STRUCT_ANON. 1007 Abbv = std::make_shared<BitCodeAbbrev>(); 1008 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1012 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1013 1014 // Abbrev for TYPE_CODE_STRUCT_NAME. 1015 Abbv = std::make_shared<BitCodeAbbrev>(); 1016 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1019 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1020 1021 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1022 Abbv = std::make_shared<BitCodeAbbrev>(); 1023 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1027 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1028 1029 // Abbrev for TYPE_CODE_ARRAY. 1030 Abbv = std::make_shared<BitCodeAbbrev>(); 1031 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1034 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1035 1036 // Emit an entry count so the reader can reserve space. 1037 TypeVals.push_back(TypeList.size()); 1038 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1039 TypeVals.clear(); 1040 1041 // Loop over all of the types, emitting each in turn. 1042 for (Type *T : TypeList) { 1043 int AbbrevToUse = 0; 1044 unsigned Code = 0; 1045 1046 switch (T->getTypeID()) { 1047 case Type::BFloatTyID: 1048 case Type::X86_AMXTyID: 1049 case Type::TokenTyID: 1050 llvm_unreachable("These should never be used!!!"); 1051 break; 1052 case Type::VoidTyID: 1053 Code = bitc::TYPE_CODE_VOID; 1054 break; 1055 case Type::HalfTyID: 1056 Code = bitc::TYPE_CODE_HALF; 1057 break; 1058 case Type::FloatTyID: 1059 Code = bitc::TYPE_CODE_FLOAT; 1060 break; 1061 case Type::DoubleTyID: 1062 Code = bitc::TYPE_CODE_DOUBLE; 1063 break; 1064 case Type::X86_FP80TyID: 1065 Code = bitc::TYPE_CODE_X86_FP80; 1066 break; 1067 case Type::FP128TyID: 1068 Code = bitc::TYPE_CODE_FP128; 1069 break; 1070 case Type::PPC_FP128TyID: 1071 Code = bitc::TYPE_CODE_PPC_FP128; 1072 break; 1073 case Type::LabelTyID: 1074 Code = bitc::TYPE_CODE_LABEL; 1075 break; 1076 case Type::MetadataTyID: 1077 Code = bitc::TYPE_CODE_METADATA; 1078 break; 1079 case Type::X86_MMXTyID: 1080 Code = bitc::TYPE_CODE_X86_MMX; 1081 break; 1082 case Type::IntegerTyID: 1083 // INTEGER: [width] 1084 Code = bitc::TYPE_CODE_INTEGER; 1085 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1086 break; 1087 case Type::TypedPointerTyID: { 1088 TypedPointerType *PTy = cast<TypedPointerType>(T); 1089 // POINTER: [pointee type, address space] 1090 Code = bitc::TYPE_CODE_POINTER; 1091 TypeVals.push_back(getTypeID(PTy->getElementType())); 1092 unsigned AddressSpace = PTy->getAddressSpace(); 1093 TypeVals.push_back(AddressSpace); 1094 if (AddressSpace == 0) 1095 AbbrevToUse = PtrAbbrev; 1096 break; 1097 } 1098 case Type::PointerTyID: { 1099 PointerType *PTy = cast<PointerType>(T); 1100 // POINTER: [pointee type, address space] 1101 Code = bitc::TYPE_CODE_POINTER; 1102 // Emitting an empty struct type for the opaque pointer's type allows 1103 // this to be order-independent. Non-struct types must be emitted in 1104 // bitcode before they can be referenced. 1105 if (PTy->isOpaquePointerTy()) { 1106 TypeVals.push_back(false); 1107 Code = bitc::TYPE_CODE_OPAQUE; 1108 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1109 "dxilOpaquePtrReservedName", StructNameAbbrev); 1110 } else { 1111 TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); 1112 unsigned AddressSpace = PTy->getAddressSpace(); 1113 TypeVals.push_back(AddressSpace); 1114 if (AddressSpace == 0) 1115 AbbrevToUse = PtrAbbrev; 1116 } 1117 break; 1118 } 1119 case Type::FunctionTyID: { 1120 FunctionType *FT = cast<FunctionType>(T); 1121 // FUNCTION: [isvararg, retty, paramty x N] 1122 Code = bitc::TYPE_CODE_FUNCTION; 1123 TypeVals.push_back(FT->isVarArg()); 1124 TypeVals.push_back(getTypeID(FT->getReturnType())); 1125 for (Type *PTy : FT->params()) 1126 TypeVals.push_back(getTypeID(PTy)); 1127 AbbrevToUse = FunctionAbbrev; 1128 break; 1129 } 1130 case Type::StructTyID: { 1131 StructType *ST = cast<StructType>(T); 1132 // STRUCT: [ispacked, eltty x N] 1133 TypeVals.push_back(ST->isPacked()); 1134 // Output all of the element types. 1135 for (Type *ElTy : ST->elements()) 1136 TypeVals.push_back(getTypeID(ElTy)); 1137 1138 if (ST->isLiteral()) { 1139 Code = bitc::TYPE_CODE_STRUCT_ANON; 1140 AbbrevToUse = StructAnonAbbrev; 1141 } else { 1142 if (ST->isOpaque()) { 1143 Code = bitc::TYPE_CODE_OPAQUE; 1144 } else { 1145 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1146 AbbrevToUse = StructNamedAbbrev; 1147 } 1148 1149 // Emit the name if it is present. 1150 if (!ST->getName().empty()) 1151 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1152 StructNameAbbrev); 1153 } 1154 break; 1155 } 1156 case Type::ArrayTyID: { 1157 ArrayType *AT = cast<ArrayType>(T); 1158 // ARRAY: [numelts, eltty] 1159 Code = bitc::TYPE_CODE_ARRAY; 1160 TypeVals.push_back(AT->getNumElements()); 1161 TypeVals.push_back(getTypeID(AT->getElementType())); 1162 AbbrevToUse = ArrayAbbrev; 1163 break; 1164 } 1165 case Type::FixedVectorTyID: 1166 case Type::ScalableVectorTyID: { 1167 VectorType *VT = cast<VectorType>(T); 1168 // VECTOR [numelts, eltty] 1169 Code = bitc::TYPE_CODE_VECTOR; 1170 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1171 TypeVals.push_back(getTypeID(VT->getElementType())); 1172 break; 1173 } 1174 } 1175 1176 // Emit the finished record. 1177 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1178 TypeVals.clear(); 1179 } 1180 1181 Stream.ExitBlock(); 1182 } 1183 1184 void DXILBitcodeWriter::writeComdats() { 1185 SmallVector<uint16_t, 64> Vals; 1186 for (const Comdat *C : VE.getComdats()) { 1187 // COMDAT: [selection_kind, name] 1188 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1189 size_t Size = C->getName().size(); 1190 assert(isUInt<16>(Size)); 1191 Vals.push_back(Size); 1192 for (char Chr : C->getName()) 1193 Vals.push_back((unsigned char)Chr); 1194 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1195 Vals.clear(); 1196 } 1197 } 1198 1199 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1200 1201 /// Emit top-level description of module, including target triple, inline asm, 1202 /// descriptors for global variables, and function prototype info. 1203 /// Returns the bit offset to backpatch with the location of the real VST. 1204 void DXILBitcodeWriter::writeModuleInfo() { 1205 // Emit various pieces of data attached to a module. 1206 if (!M.getTargetTriple().empty()) 1207 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1208 0 /*TODO*/); 1209 const std::string &DL = M.getDataLayoutStr(); 1210 if (!DL.empty()) 1211 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1212 if (!M.getModuleInlineAsm().empty()) 1213 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1214 0 /*TODO*/); 1215 1216 // Emit information about sections and GC, computing how many there are. Also 1217 // compute the maximum alignment value. 1218 std::map<std::string, unsigned> SectionMap; 1219 std::map<std::string, unsigned> GCMap; 1220 MaybeAlign MaxAlignment; 1221 unsigned MaxGlobalType = 0; 1222 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1223 if (A) 1224 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1225 }; 1226 for (const GlobalVariable &GV : M.globals()) { 1227 UpdateMaxAlignment(GV.getAlign()); 1228 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1229 // Global Variable types. 1230 MaxGlobalType = std::max( 1231 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1232 if (GV.hasSection()) { 1233 // Give section names unique ID's. 1234 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1235 if (!Entry) { 1236 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1237 GV.getSection(), 0 /*TODO*/); 1238 Entry = SectionMap.size(); 1239 } 1240 } 1241 } 1242 for (const Function &F : M) { 1243 UpdateMaxAlignment(F.getAlign()); 1244 if (F.hasSection()) { 1245 // Give section names unique ID's. 1246 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1247 if (!Entry) { 1248 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1249 0 /*TODO*/); 1250 Entry = SectionMap.size(); 1251 } 1252 } 1253 if (F.hasGC()) { 1254 // Same for GC names. 1255 unsigned &Entry = GCMap[F.getGC()]; 1256 if (!Entry) { 1257 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1258 0 /*TODO*/); 1259 Entry = GCMap.size(); 1260 } 1261 } 1262 } 1263 1264 // Emit abbrev for globals, now that we know # sections and max alignment. 1265 unsigned SimpleGVarAbbrev = 0; 1266 if (!M.global_empty()) { 1267 // Add an abbrev for common globals with no visibility or thread 1268 // localness. 1269 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1270 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1272 Log2_32_Ceil(MaxGlobalType + 1))); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1274 //| explicitType << 1 1275 //| constant 1276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1278 if (!MaxAlignment) // Alignment. 1279 Abbv->Add(BitCodeAbbrevOp(0)); 1280 else { 1281 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1283 Log2_32_Ceil(MaxEncAlignment + 1))); 1284 } 1285 if (SectionMap.empty()) // Section. 1286 Abbv->Add(BitCodeAbbrevOp(0)); 1287 else 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1289 Log2_32_Ceil(SectionMap.size() + 1))); 1290 // Don't bother emitting vis + thread local. 1291 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1292 } 1293 1294 // Emit the global variable information. 1295 SmallVector<unsigned, 64> Vals; 1296 for (const GlobalVariable &GV : M.globals()) { 1297 unsigned AbbrevToUse = 0; 1298 1299 // GLOBALVAR: [type, isconst, initid, 1300 // linkage, alignment, section, visibility, threadlocal, 1301 // unnamed_addr, externally_initialized, dllstorageclass, 1302 // comdat] 1303 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1304 Vals.push_back( 1305 GV.getType()->getAddressSpace() << 2 | 2 | 1306 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1307 // unsigned int and bool 1308 Vals.push_back( 1309 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1310 Vals.push_back(getEncodedLinkage(GV)); 1311 Vals.push_back(getEncodedAlign(GV.getAlign())); 1312 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1313 : 0); 1314 if (GV.isThreadLocal() || 1315 GV.getVisibility() != GlobalValue::DefaultVisibility || 1316 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1317 GV.isExternallyInitialized() || 1318 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1319 GV.hasComdat()) { 1320 Vals.push_back(getEncodedVisibility(GV)); 1321 Vals.push_back(getEncodedThreadLocalMode(GV)); 1322 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1323 Vals.push_back(GV.isExternallyInitialized()); 1324 Vals.push_back(getEncodedDLLStorageClass(GV)); 1325 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1326 } else { 1327 AbbrevToUse = SimpleGVarAbbrev; 1328 } 1329 1330 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1331 Vals.clear(); 1332 } 1333 1334 // Emit the function proto information. 1335 for (const Function &F : M) { 1336 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1337 // section, visibility, gc, unnamed_addr, prologuedata, 1338 // dllstorageclass, comdat, prefixdata, personalityfn] 1339 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1340 Vals.push_back(F.getCallingConv()); 1341 Vals.push_back(F.isDeclaration()); 1342 Vals.push_back(getEncodedLinkage(F)); 1343 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1344 Vals.push_back(getEncodedAlign(F.getAlign())); 1345 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1346 : 0); 1347 Vals.push_back(getEncodedVisibility(F)); 1348 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1349 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1350 Vals.push_back( 1351 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1352 Vals.push_back(getEncodedDLLStorageClass(F)); 1353 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1354 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1355 : 0); 1356 Vals.push_back( 1357 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1358 1359 unsigned AbbrevToUse = 0; 1360 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1361 Vals.clear(); 1362 } 1363 1364 // Emit the alias information. 1365 for (const GlobalAlias &A : M.aliases()) { 1366 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1367 Vals.push_back(getTypeID(A.getValueType(), &A)); 1368 Vals.push_back(VE.getValueID(A.getAliasee())); 1369 Vals.push_back(getEncodedLinkage(A)); 1370 Vals.push_back(getEncodedVisibility(A)); 1371 Vals.push_back(getEncodedDLLStorageClass(A)); 1372 Vals.push_back(getEncodedThreadLocalMode(A)); 1373 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1374 unsigned AbbrevToUse = 0; 1375 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1376 Vals.clear(); 1377 } 1378 } 1379 1380 void DXILBitcodeWriter::writeValueAsMetadata( 1381 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1382 // Mimic an MDNode with a value as one operand. 1383 Value *V = MD->getValue(); 1384 Type *Ty = V->getType(); 1385 if (Function *F = dyn_cast<Function>(V)) 1386 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1387 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1388 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1389 Record.push_back(getTypeID(Ty)); 1390 Record.push_back(VE.getValueID(V)); 1391 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1392 Record.clear(); 1393 } 1394 1395 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1396 SmallVectorImpl<uint64_t> &Record, 1397 unsigned Abbrev) { 1398 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1399 Metadata *MD = N->getOperand(i); 1400 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1401 "Unexpected function-local metadata"); 1402 Record.push_back(VE.getMetadataOrNullID(MD)); 1403 } 1404 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1405 : bitc::METADATA_NODE, 1406 Record, Abbrev); 1407 Record.clear(); 1408 } 1409 1410 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1411 SmallVectorImpl<uint64_t> &Record, 1412 unsigned &Abbrev) { 1413 if (!Abbrev) 1414 Abbrev = createDILocationAbbrev(); 1415 Record.push_back(N->isDistinct()); 1416 Record.push_back(N->getLine()); 1417 Record.push_back(N->getColumn()); 1418 Record.push_back(VE.getMetadataID(N->getScope())); 1419 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1420 1421 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1422 Record.clear(); 1423 } 1424 1425 static uint64_t rotateSign(APInt Val) { 1426 int64_t I = Val.getSExtValue(); 1427 uint64_t U = I; 1428 return I < 0 ? ~(U << 1) : U << 1; 1429 } 1430 1431 static uint64_t rotateSign(DISubrange::BoundType Val) { 1432 return rotateSign(Val.get<ConstantInt *>()->getValue()); 1433 } 1434 1435 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back( 1440 N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); 1441 Record.push_back(rotateSign(N->getLowerBound())); 1442 1443 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 Record.push_back(N->isDistinct()); 1451 Record.push_back(rotateSign(N->getValue())); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1453 1454 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1455 Record.clear(); 1456 } 1457 1458 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1459 SmallVectorImpl<uint64_t> &Record, 1460 unsigned Abbrev) { 1461 Record.push_back(N->isDistinct()); 1462 Record.push_back(N->getTag()); 1463 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1464 Record.push_back(N->getSizeInBits()); 1465 Record.push_back(N->getAlignInBits()); 1466 Record.push_back(N->getEncoding()); 1467 1468 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1469 Record.clear(); 1470 } 1471 1472 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1473 SmallVectorImpl<uint64_t> &Record, 1474 unsigned Abbrev) { 1475 Record.push_back(N->isDistinct()); 1476 Record.push_back(N->getTag()); 1477 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1479 Record.push_back(N->getLine()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1482 Record.push_back(N->getSizeInBits()); 1483 Record.push_back(N->getAlignInBits()); 1484 Record.push_back(N->getOffsetInBits()); 1485 Record.push_back(N->getFlags()); 1486 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1487 1488 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1489 Record.clear(); 1490 } 1491 1492 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1493 SmallVectorImpl<uint64_t> &Record, 1494 unsigned Abbrev) { 1495 Record.push_back(N->isDistinct()); 1496 Record.push_back(N->getTag()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1498 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1499 Record.push_back(N->getLine()); 1500 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1501 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1502 Record.push_back(N->getSizeInBits()); 1503 Record.push_back(N->getAlignInBits()); 1504 Record.push_back(N->getOffsetInBits()); 1505 Record.push_back(N->getFlags()); 1506 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1507 Record.push_back(N->getRuntimeLang()); 1508 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1509 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1511 1512 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1517 SmallVectorImpl<uint64_t> &Record, 1518 unsigned Abbrev) { 1519 Record.push_back(N->isDistinct()); 1520 Record.push_back(N->getFlags()); 1521 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1522 1523 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1524 Record.clear(); 1525 } 1526 1527 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1528 SmallVectorImpl<uint64_t> &Record, 1529 unsigned Abbrev) { 1530 Record.push_back(N->isDistinct()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1533 1534 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1535 Record.clear(); 1536 } 1537 1538 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1539 SmallVectorImpl<uint64_t> &Record, 1540 unsigned Abbrev) { 1541 Record.push_back(N->isDistinct()); 1542 Record.push_back(N->getSourceLanguage()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1545 Record.push_back(N->isOptimized()); 1546 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1547 Record.push_back(N->getRuntimeVersion()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1549 Record.push_back(N->getEmissionKind()); 1550 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1551 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1552 Record.push_back(/* subprograms */ 0); 1553 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1554 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1555 Record.push_back(N->getDWOId()); 1556 1557 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1562 SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 Record.push_back(N->isDistinct()); 1565 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1566 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1569 Record.push_back(N->getLine()); 1570 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1571 Record.push_back(N->isLocalToUnit()); 1572 Record.push_back(N->isDefinition()); 1573 Record.push_back(N->getScopeLine()); 1574 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1575 Record.push_back(N->getVirtuality()); 1576 Record.push_back(N->getVirtualIndex()); 1577 Record.push_back(N->getFlags()); 1578 Record.push_back(N->isOptimized()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1581 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1583 1584 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1589 SmallVectorImpl<uint64_t> &Record, 1590 unsigned Abbrev) { 1591 Record.push_back(N->isDistinct()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1594 Record.push_back(N->getLine()); 1595 Record.push_back(N->getColumn()); 1596 1597 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void DXILBitcodeWriter::writeDILexicalBlockFile( 1602 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 Record.push_back(N->isDistinct()); 1605 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1607 Record.push_back(N->getDiscriminator()); 1608 1609 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1614 SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 Record.push_back(N->isDistinct()); 1617 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1620 Record.push_back(/* line number */ 0); 1621 1622 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1623 Record.clear(); 1624 } 1625 1626 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1627 SmallVectorImpl<uint64_t> &Record, 1628 unsigned Abbrev) { 1629 Record.push_back(N->isDistinct()); 1630 for (auto &I : N->operands()) 1631 Record.push_back(VE.getMetadataOrNullID(I)); 1632 1633 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1634 Record.clear(); 1635 } 1636 1637 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1638 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1639 unsigned Abbrev) { 1640 Record.push_back(N->isDistinct()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1643 1644 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1645 Record.clear(); 1646 } 1647 1648 void DXILBitcodeWriter::writeDITemplateValueParameter( 1649 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1650 unsigned Abbrev) { 1651 Record.push_back(N->isDistinct()); 1652 Record.push_back(N->getTag()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1656 1657 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1662 SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1668 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1669 Record.push_back(N->getLine()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1671 Record.push_back(N->isLocalToUnit()); 1672 Record.push_back(N->isDefinition()); 1673 Record.push_back(/* N->getRawVariable() */ 0); 1674 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1675 1676 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(N->getTag()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1688 Record.push_back(N->getLine()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1690 Record.push_back(N->getArg()); 1691 Record.push_back(N->getFlags()); 1692 1693 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.reserve(N->getElements().size() + 1); 1701 1702 Record.push_back(N->isDistinct()); 1703 Record.append(N->elements_begin(), N->elements_end()); 1704 1705 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1710 SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 llvm_unreachable("DXIL does not support objc!!!"); 1713 } 1714 1715 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1716 SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct()); 1719 Record.push_back(N->getTag()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1722 Record.push_back(N->getLine()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1724 1725 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1730 // Abbrev for METADATA_LOCATION. 1731 // 1732 // Assume the column is usually under 128, and always output the inlined-at 1733 // location (it's never more expensive than building an array size 1). 1734 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1735 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1741 return Stream.EmitAbbrev(std::move(Abbv)); 1742 } 1743 1744 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1745 // Abbrev for METADATA_GENERIC_DEBUG. 1746 // 1747 // Assume the column is usually under 128, and always output the inlined-at 1748 // location (it's never more expensive than building an array size 1). 1749 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1750 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1757 return Stream.EmitAbbrev(std::move(Abbv)); 1758 } 1759 1760 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1761 SmallVectorImpl<uint64_t> &Record, 1762 std::vector<unsigned> *MDAbbrevs, 1763 std::vector<uint64_t> *IndexPos) { 1764 if (MDs.empty()) 1765 return; 1766 1767 // Initialize MDNode abbreviations. 1768 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1769 #include "llvm/IR/Metadata.def" 1770 1771 for (const Metadata *MD : MDs) { 1772 if (IndexPos) 1773 IndexPos->push_back(Stream.GetCurrentBitNo()); 1774 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1775 assert(N->isResolved() && "Expected forward references to be resolved"); 1776 1777 switch (N->getMetadataID()) { 1778 default: 1779 llvm_unreachable("Invalid MDNode subclass"); 1780 #define HANDLE_MDNODE_LEAF(CLASS) \ 1781 case Metadata::CLASS##Kind: \ 1782 if (MDAbbrevs) \ 1783 write##CLASS(cast<CLASS>(N), Record, \ 1784 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1785 else \ 1786 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1787 continue; 1788 #include "llvm/IR/Metadata.def" 1789 } 1790 } 1791 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1792 } 1793 } 1794 1795 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1796 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1797 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1800 return Stream.EmitAbbrev(std::move(Abbv)); 1801 } 1802 1803 void DXILBitcodeWriter::writeMetadataStrings( 1804 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1805 for (const Metadata *MD : Strings) { 1806 const MDString *MDS = cast<MDString>(MD); 1807 // Code: [strchar x N] 1808 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1809 1810 // Emit the finished record. 1811 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, 1812 createMetadataStringsAbbrev()); 1813 Record.clear(); 1814 } 1815 } 1816 1817 void DXILBitcodeWriter::writeModuleMetadata() { 1818 if (!VE.hasMDs() && M.named_metadata_empty()) 1819 return; 1820 1821 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1822 1823 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1824 // block and load any metadata. 1825 std::vector<unsigned> MDAbbrevs; 1826 1827 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1828 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1829 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1830 createGenericDINodeAbbrev(); 1831 1832 unsigned NameAbbrev = 0; 1833 if (!M.named_metadata_empty()) { 1834 // Abbrev for METADATA_NAME. 1835 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1836 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1839 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1840 } 1841 1842 SmallVector<uint64_t, 64> Record; 1843 writeMetadataStrings(VE.getMDStrings(), Record); 1844 1845 std::vector<uint64_t> IndexPos; 1846 IndexPos.reserve(VE.getNonMDStrings().size()); 1847 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1848 1849 // Write named metadata. 1850 for (const NamedMDNode &NMD : M.named_metadata()) { 1851 // Write name. 1852 StringRef Str = NMD.getName(); 1853 Record.append(Str.bytes_begin(), Str.bytes_end()); 1854 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1855 Record.clear(); 1856 1857 // Write named metadata operands. 1858 for (const MDNode *N : NMD.operands()) 1859 Record.push_back(VE.getMetadataID(N)); 1860 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1861 Record.clear(); 1862 } 1863 1864 Stream.ExitBlock(); 1865 } 1866 1867 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1868 if (!VE.hasMDs()) 1869 return; 1870 1871 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1872 SmallVector<uint64_t, 64> Record; 1873 writeMetadataStrings(VE.getMDStrings(), Record); 1874 writeMetadataRecords(VE.getNonMDStrings(), Record); 1875 Stream.ExitBlock(); 1876 } 1877 1878 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1879 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1880 1881 SmallVector<uint64_t, 64> Record; 1882 1883 // Write metadata attachments 1884 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1885 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1886 F.getAllMetadata(MDs); 1887 if (!MDs.empty()) { 1888 for (const auto &I : MDs) { 1889 Record.push_back(I.first); 1890 Record.push_back(VE.getMetadataID(I.second)); 1891 } 1892 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1893 Record.clear(); 1894 } 1895 1896 for (const BasicBlock &BB : F) 1897 for (const Instruction &I : BB) { 1898 MDs.clear(); 1899 I.getAllMetadataOtherThanDebugLoc(MDs); 1900 1901 // If no metadata, ignore instruction. 1902 if (MDs.empty()) 1903 continue; 1904 1905 Record.push_back(VE.getInstructionID(&I)); 1906 1907 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1908 Record.push_back(MDs[i].first); 1909 Record.push_back(VE.getMetadataID(MDs[i].second)); 1910 } 1911 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1912 Record.clear(); 1913 } 1914 1915 Stream.ExitBlock(); 1916 } 1917 1918 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1919 SmallVector<uint64_t, 64> Record; 1920 1921 // Write metadata kinds 1922 // METADATA_KIND - [n x [id, name]] 1923 SmallVector<StringRef, 8> Names; 1924 M.getMDKindNames(Names); 1925 1926 if (Names.empty()) 1927 return; 1928 1929 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1930 1931 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1932 Record.push_back(MDKindID); 1933 StringRef KName = Names[MDKindID]; 1934 Record.append(KName.begin(), KName.end()); 1935 1936 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1937 Record.clear(); 1938 } 1939 1940 Stream.ExitBlock(); 1941 } 1942 1943 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1944 bool isGlobal) { 1945 if (FirstVal == LastVal) 1946 return; 1947 1948 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1949 1950 unsigned AggregateAbbrev = 0; 1951 unsigned String8Abbrev = 0; 1952 unsigned CString7Abbrev = 0; 1953 unsigned CString6Abbrev = 0; 1954 // If this is a constant pool for the module, emit module-specific abbrevs. 1955 if (isGlobal) { 1956 // Abbrev for CST_CODE_AGGREGATE. 1957 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1958 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1960 Abbv->Add( 1961 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1962 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1963 1964 // Abbrev for CST_CODE_STRING. 1965 Abbv = std::make_shared<BitCodeAbbrev>(); 1966 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1969 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1970 // Abbrev for CST_CODE_CSTRING. 1971 Abbv = std::make_shared<BitCodeAbbrev>(); 1972 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1975 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1976 // Abbrev for CST_CODE_CSTRING. 1977 Abbv = std::make_shared<BitCodeAbbrev>(); 1978 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1981 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1982 } 1983 1984 SmallVector<uint64_t, 64> Record; 1985 1986 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1987 Type *LastTy = nullptr; 1988 for (unsigned i = FirstVal; i != LastVal; ++i) { 1989 const Value *V = Vals[i].first; 1990 // If we need to switch types, do so now. 1991 if (V->getType() != LastTy) { 1992 LastTy = V->getType(); 1993 Record.push_back(getTypeID(LastTy, V)); 1994 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1995 CONSTANTS_SETTYPE_ABBREV); 1996 Record.clear(); 1997 } 1998 1999 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2000 Record.push_back(unsigned(IA->hasSideEffects()) | 2001 unsigned(IA->isAlignStack()) << 1 | 2002 unsigned(IA->getDialect() & 1) << 2); 2003 2004 // Add the asm string. 2005 const std::string &AsmStr = IA->getAsmString(); 2006 Record.push_back(AsmStr.size()); 2007 Record.append(AsmStr.begin(), AsmStr.end()); 2008 2009 // Add the constraint string. 2010 const std::string &ConstraintStr = IA->getConstraintString(); 2011 Record.push_back(ConstraintStr.size()); 2012 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2013 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2014 Record.clear(); 2015 continue; 2016 } 2017 const Constant *C = cast<Constant>(V); 2018 unsigned Code = -1U; 2019 unsigned AbbrevToUse = 0; 2020 if (C->isNullValue()) { 2021 Code = bitc::CST_CODE_NULL; 2022 } else if (isa<UndefValue>(C)) { 2023 Code = bitc::CST_CODE_UNDEF; 2024 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2025 if (IV->getBitWidth() <= 64) { 2026 uint64_t V = IV->getSExtValue(); 2027 emitSignedInt64(Record, V); 2028 Code = bitc::CST_CODE_INTEGER; 2029 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2030 } else { // Wide integers, > 64 bits in size. 2031 // We have an arbitrary precision integer value to write whose 2032 // bit width is > 64. However, in canonical unsigned integer 2033 // format it is likely that the high bits are going to be zero. 2034 // So, we only write the number of active words. 2035 unsigned NWords = IV->getValue().getActiveWords(); 2036 const uint64_t *RawWords = IV->getValue().getRawData(); 2037 for (unsigned i = 0; i != NWords; ++i) { 2038 emitSignedInt64(Record, RawWords[i]); 2039 } 2040 Code = bitc::CST_CODE_WIDE_INTEGER; 2041 } 2042 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2043 Code = bitc::CST_CODE_FLOAT; 2044 Type *Ty = CFP->getType(); 2045 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2046 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2047 } else if (Ty->isX86_FP80Ty()) { 2048 // api needed to prevent premature destruction 2049 // bits are not in the same order as a normal i80 APInt, compensate. 2050 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2051 const uint64_t *p = api.getRawData(); 2052 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2053 Record.push_back(p[0] & 0xffffLL); 2054 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2055 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2056 const uint64_t *p = api.getRawData(); 2057 Record.push_back(p[0]); 2058 Record.push_back(p[1]); 2059 } else { 2060 assert(0 && "Unknown FP type!"); 2061 } 2062 } else if (isa<ConstantDataSequential>(C) && 2063 cast<ConstantDataSequential>(C)->isString()) { 2064 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2065 // Emit constant strings specially. 2066 unsigned NumElts = Str->getNumElements(); 2067 // If this is a null-terminated string, use the denser CSTRING encoding. 2068 if (Str->isCString()) { 2069 Code = bitc::CST_CODE_CSTRING; 2070 --NumElts; // Don't encode the null, which isn't allowed by char6. 2071 } else { 2072 Code = bitc::CST_CODE_STRING; 2073 AbbrevToUse = String8Abbrev; 2074 } 2075 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2076 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2077 for (unsigned i = 0; i != NumElts; ++i) { 2078 unsigned char V = Str->getElementAsInteger(i); 2079 Record.push_back(V); 2080 isCStr7 &= (V & 128) == 0; 2081 if (isCStrChar6) 2082 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2083 } 2084 2085 if (isCStrChar6) 2086 AbbrevToUse = CString6Abbrev; 2087 else if (isCStr7) 2088 AbbrevToUse = CString7Abbrev; 2089 } else if (const ConstantDataSequential *CDS = 2090 dyn_cast<ConstantDataSequential>(C)) { 2091 Code = bitc::CST_CODE_DATA; 2092 Type *EltTy = CDS->getElementType(); 2093 if (isa<IntegerType>(EltTy)) { 2094 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2095 Record.push_back(CDS->getElementAsInteger(i)); 2096 } else if (EltTy->isFloatTy()) { 2097 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2098 union { 2099 float F; 2100 uint32_t I; 2101 }; 2102 F = CDS->getElementAsFloat(i); 2103 Record.push_back(I); 2104 } 2105 } else { 2106 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2108 union { 2109 double F; 2110 uint64_t I; 2111 }; 2112 F = CDS->getElementAsDouble(i); 2113 Record.push_back(I); 2114 } 2115 } 2116 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2117 isa<ConstantVector>(C)) { 2118 Code = bitc::CST_CODE_AGGREGATE; 2119 for (const Value *Op : C->operands()) 2120 Record.push_back(VE.getValueID(Op)); 2121 AbbrevToUse = AggregateAbbrev; 2122 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2123 switch (CE->getOpcode()) { 2124 default: 2125 if (Instruction::isCast(CE->getOpcode())) { 2126 Code = bitc::CST_CODE_CE_CAST; 2127 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2128 Record.push_back( 2129 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2130 Record.push_back(VE.getValueID(C->getOperand(0))); 2131 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2132 } else { 2133 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2134 Code = bitc::CST_CODE_CE_BINOP; 2135 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2136 Record.push_back(VE.getValueID(C->getOperand(0))); 2137 Record.push_back(VE.getValueID(C->getOperand(1))); 2138 uint64_t Flags = getOptimizationFlags(CE); 2139 if (Flags != 0) 2140 Record.push_back(Flags); 2141 } 2142 break; 2143 case Instruction::GetElementPtr: { 2144 Code = bitc::CST_CODE_CE_GEP; 2145 const auto *GO = cast<GEPOperator>(C); 2146 if (GO->isInBounds()) 2147 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2148 Record.push_back(getTypeID(GO->getSourceElementType())); 2149 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2150 Record.push_back( 2151 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2152 Record.push_back(VE.getValueID(C->getOperand(i))); 2153 } 2154 break; 2155 } 2156 case Instruction::Select: 2157 Code = bitc::CST_CODE_CE_SELECT; 2158 Record.push_back(VE.getValueID(C->getOperand(0))); 2159 Record.push_back(VE.getValueID(C->getOperand(1))); 2160 Record.push_back(VE.getValueID(C->getOperand(2))); 2161 break; 2162 case Instruction::ExtractElement: 2163 Code = bitc::CST_CODE_CE_EXTRACTELT; 2164 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2165 Record.push_back(VE.getValueID(C->getOperand(0))); 2166 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2167 Record.push_back(VE.getValueID(C->getOperand(1))); 2168 break; 2169 case Instruction::InsertElement: 2170 Code = bitc::CST_CODE_CE_INSERTELT; 2171 Record.push_back(VE.getValueID(C->getOperand(0))); 2172 Record.push_back(VE.getValueID(C->getOperand(1))); 2173 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2174 Record.push_back(VE.getValueID(C->getOperand(2))); 2175 break; 2176 case Instruction::ShuffleVector: 2177 // If the return type and argument types are the same, this is a 2178 // standard shufflevector instruction. If the types are different, 2179 // then the shuffle is widening or truncating the input vectors, and 2180 // the argument type must also be encoded. 2181 if (C->getType() == C->getOperand(0)->getType()) { 2182 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2183 } else { 2184 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2185 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2186 } 2187 Record.push_back(VE.getValueID(C->getOperand(0))); 2188 Record.push_back(VE.getValueID(C->getOperand(1))); 2189 Record.push_back(VE.getValueID(C->getOperand(2))); 2190 break; 2191 case Instruction::ICmp: 2192 case Instruction::FCmp: 2193 Code = bitc::CST_CODE_CE_CMP; 2194 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2195 Record.push_back(VE.getValueID(C->getOperand(0))); 2196 Record.push_back(VE.getValueID(C->getOperand(1))); 2197 Record.push_back(CE->getPredicate()); 2198 break; 2199 } 2200 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2201 Code = bitc::CST_CODE_BLOCKADDRESS; 2202 Record.push_back(getTypeID(BA->getFunction()->getType())); 2203 Record.push_back(VE.getValueID(BA->getFunction())); 2204 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2205 } else { 2206 #ifndef NDEBUG 2207 C->dump(); 2208 #endif 2209 llvm_unreachable("Unknown constant!"); 2210 } 2211 Stream.EmitRecord(Code, Record, AbbrevToUse); 2212 Record.clear(); 2213 } 2214 2215 Stream.ExitBlock(); 2216 } 2217 2218 void DXILBitcodeWriter::writeModuleConstants() { 2219 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2220 2221 // Find the first constant to emit, which is the first non-globalvalue value. 2222 // We know globalvalues have been emitted by WriteModuleInfo. 2223 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2224 if (!isa<GlobalValue>(Vals[i].first)) { 2225 writeConstants(i, Vals.size(), true); 2226 return; 2227 } 2228 } 2229 } 2230 2231 /// pushValueAndType - The file has to encode both the value and type id for 2232 /// many values, because we need to know what type to create for forward 2233 /// references. However, most operands are not forward references, so this type 2234 /// field is not needed. 2235 /// 2236 /// This function adds V's value ID to Vals. If the value ID is higher than the 2237 /// instruction ID, then it is a forward reference, and it also includes the 2238 /// type ID. The value ID that is written is encoded relative to the InstID. 2239 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2240 SmallVectorImpl<unsigned> &Vals) { 2241 unsigned ValID = VE.getValueID(V); 2242 // Make encoding relative to the InstID. 2243 Vals.push_back(InstID - ValID); 2244 if (ValID >= InstID) { 2245 Vals.push_back(getTypeID(V->getType(), V)); 2246 return true; 2247 } 2248 return false; 2249 } 2250 2251 /// pushValue - Like pushValueAndType, but where the type of the value is 2252 /// omitted (perhaps it was already encoded in an earlier operand). 2253 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2254 SmallVectorImpl<unsigned> &Vals) { 2255 unsigned ValID = VE.getValueID(V); 2256 Vals.push_back(InstID - ValID); 2257 } 2258 2259 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2260 SmallVectorImpl<uint64_t> &Vals) { 2261 unsigned ValID = VE.getValueID(V); 2262 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2263 emitSignedInt64(Vals, diff); 2264 } 2265 2266 /// WriteInstruction - Emit an instruction 2267 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2268 SmallVectorImpl<unsigned> &Vals) { 2269 unsigned Code = 0; 2270 unsigned AbbrevToUse = 0; 2271 VE.setInstructionID(&I); 2272 switch (I.getOpcode()) { 2273 default: 2274 if (Instruction::isCast(I.getOpcode())) { 2275 Code = bitc::FUNC_CODE_INST_CAST; 2276 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2277 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2278 Vals.push_back(getTypeID(I.getType(), &I)); 2279 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2280 } else { 2281 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2282 Code = bitc::FUNC_CODE_INST_BINOP; 2283 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2284 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2285 pushValue(I.getOperand(1), InstID, Vals); 2286 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2287 uint64_t Flags = getOptimizationFlags(&I); 2288 if (Flags != 0) { 2289 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2290 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2291 Vals.push_back(Flags); 2292 } 2293 } 2294 break; 2295 2296 case Instruction::GetElementPtr: { 2297 Code = bitc::FUNC_CODE_INST_GEP; 2298 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2299 auto &GEPInst = cast<GetElementPtrInst>(I); 2300 Vals.push_back(GEPInst.isInBounds()); 2301 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2302 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2303 pushValueAndType(I.getOperand(i), InstID, Vals); 2304 break; 2305 } 2306 case Instruction::ExtractValue: { 2307 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2308 pushValueAndType(I.getOperand(0), InstID, Vals); 2309 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2310 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2311 break; 2312 } 2313 case Instruction::InsertValue: { 2314 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2315 pushValueAndType(I.getOperand(0), InstID, Vals); 2316 pushValueAndType(I.getOperand(1), InstID, Vals); 2317 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2318 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2319 break; 2320 } 2321 case Instruction::Select: 2322 Code = bitc::FUNC_CODE_INST_VSELECT; 2323 pushValueAndType(I.getOperand(1), InstID, Vals); 2324 pushValue(I.getOperand(2), InstID, Vals); 2325 pushValueAndType(I.getOperand(0), InstID, Vals); 2326 break; 2327 case Instruction::ExtractElement: 2328 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2329 pushValueAndType(I.getOperand(0), InstID, Vals); 2330 pushValueAndType(I.getOperand(1), InstID, Vals); 2331 break; 2332 case Instruction::InsertElement: 2333 Code = bitc::FUNC_CODE_INST_INSERTELT; 2334 pushValueAndType(I.getOperand(0), InstID, Vals); 2335 pushValue(I.getOperand(1), InstID, Vals); 2336 pushValueAndType(I.getOperand(2), InstID, Vals); 2337 break; 2338 case Instruction::ShuffleVector: 2339 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2340 pushValueAndType(I.getOperand(0), InstID, Vals); 2341 pushValue(I.getOperand(1), InstID, Vals); 2342 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2343 Vals); 2344 break; 2345 case Instruction::ICmp: 2346 case Instruction::FCmp: { 2347 // compare returning Int1Ty or vector of Int1Ty 2348 Code = bitc::FUNC_CODE_INST_CMP2; 2349 pushValueAndType(I.getOperand(0), InstID, Vals); 2350 pushValue(I.getOperand(1), InstID, Vals); 2351 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2352 uint64_t Flags = getOptimizationFlags(&I); 2353 if (Flags != 0) 2354 Vals.push_back(Flags); 2355 break; 2356 } 2357 2358 case Instruction::Ret: { 2359 Code = bitc::FUNC_CODE_INST_RET; 2360 unsigned NumOperands = I.getNumOperands(); 2361 if (NumOperands == 0) 2362 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2363 else if (NumOperands == 1) { 2364 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2365 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2366 } else { 2367 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2368 pushValueAndType(I.getOperand(i), InstID, Vals); 2369 } 2370 } break; 2371 case Instruction::Br: { 2372 Code = bitc::FUNC_CODE_INST_BR; 2373 const BranchInst &II = cast<BranchInst>(I); 2374 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2375 if (II.isConditional()) { 2376 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2377 pushValue(II.getCondition(), InstID, Vals); 2378 } 2379 } break; 2380 case Instruction::Switch: { 2381 Code = bitc::FUNC_CODE_INST_SWITCH; 2382 const SwitchInst &SI = cast<SwitchInst>(I); 2383 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2384 pushValue(SI.getCondition(), InstID, Vals); 2385 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2386 for (auto Case : SI.cases()) { 2387 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2388 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2389 } 2390 } break; 2391 case Instruction::IndirectBr: 2392 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2393 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2394 // Encode the address operand as relative, but not the basic blocks. 2395 pushValue(I.getOperand(0), InstID, Vals); 2396 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2397 Vals.push_back(VE.getValueID(I.getOperand(i))); 2398 break; 2399 2400 case Instruction::Invoke: { 2401 const InvokeInst *II = cast<InvokeInst>(&I); 2402 const Value *Callee = II->getCalledOperand(); 2403 FunctionType *FTy = II->getFunctionType(); 2404 Code = bitc::FUNC_CODE_INST_INVOKE; 2405 2406 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2407 Vals.push_back(II->getCallingConv() | 1 << 13); 2408 Vals.push_back(VE.getValueID(II->getNormalDest())); 2409 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2410 Vals.push_back(getTypeID(FTy)); 2411 pushValueAndType(Callee, InstID, Vals); 2412 2413 // Emit value #'s for the fixed parameters. 2414 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2415 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2416 2417 // Emit type/value pairs for varargs params. 2418 if (FTy->isVarArg()) { 2419 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2420 ++i) 2421 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2422 } 2423 break; 2424 } 2425 case Instruction::Resume: 2426 Code = bitc::FUNC_CODE_INST_RESUME; 2427 pushValueAndType(I.getOperand(0), InstID, Vals); 2428 break; 2429 case Instruction::Unreachable: 2430 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2431 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2432 break; 2433 2434 case Instruction::PHI: { 2435 const PHINode &PN = cast<PHINode>(I); 2436 Code = bitc::FUNC_CODE_INST_PHI; 2437 // With the newer instruction encoding, forward references could give 2438 // negative valued IDs. This is most common for PHIs, so we use 2439 // signed VBRs. 2440 SmallVector<uint64_t, 128> Vals64; 2441 Vals64.push_back(getTypeID(PN.getType())); 2442 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2443 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2444 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2445 } 2446 // Emit a Vals64 vector and exit. 2447 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2448 Vals64.clear(); 2449 return; 2450 } 2451 2452 case Instruction::LandingPad: { 2453 const LandingPadInst &LP = cast<LandingPadInst>(I); 2454 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2455 Vals.push_back(getTypeID(LP.getType())); 2456 Vals.push_back(LP.isCleanup()); 2457 Vals.push_back(LP.getNumClauses()); 2458 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2459 if (LP.isCatch(I)) 2460 Vals.push_back(LandingPadInst::Catch); 2461 else 2462 Vals.push_back(LandingPadInst::Filter); 2463 pushValueAndType(LP.getClause(I), InstID, Vals); 2464 } 2465 break; 2466 } 2467 2468 case Instruction::Alloca: { 2469 Code = bitc::FUNC_CODE_INST_ALLOCA; 2470 const AllocaInst &AI = cast<AllocaInst>(I); 2471 Vals.push_back(getTypeID(AI.getAllocatedType())); 2472 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2473 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2474 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2475 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2476 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2477 AlignRecord |= 1 << 6; 2478 Vals.push_back(AlignRecord); 2479 break; 2480 } 2481 2482 case Instruction::Load: 2483 if (cast<LoadInst>(I).isAtomic()) { 2484 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2485 pushValueAndType(I.getOperand(0), InstID, Vals); 2486 } else { 2487 Code = bitc::FUNC_CODE_INST_LOAD; 2488 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2489 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2490 } 2491 Vals.push_back(getTypeID(I.getType())); 2492 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2493 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2494 if (cast<LoadInst>(I).isAtomic()) { 2495 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2496 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2497 } 2498 break; 2499 case Instruction::Store: 2500 if (cast<StoreInst>(I).isAtomic()) 2501 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2502 else 2503 Code = bitc::FUNC_CODE_INST_STORE; 2504 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2505 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2506 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2507 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2508 if (cast<StoreInst>(I).isAtomic()) { 2509 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2510 Vals.push_back( 2511 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2512 } 2513 break; 2514 case Instruction::AtomicCmpXchg: 2515 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2516 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2517 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2518 pushValue(I.getOperand(2), InstID, Vals); // newval. 2519 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2520 Vals.push_back( 2521 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2522 Vals.push_back( 2523 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2524 Vals.push_back( 2525 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2526 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2527 break; 2528 case Instruction::AtomicRMW: 2529 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2530 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2531 pushValue(I.getOperand(1), InstID, Vals); // val. 2532 Vals.push_back( 2533 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2534 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2535 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2536 Vals.push_back( 2537 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2538 break; 2539 case Instruction::Fence: 2540 Code = bitc::FUNC_CODE_INST_FENCE; 2541 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2542 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2543 break; 2544 case Instruction::Call: { 2545 const CallInst &CI = cast<CallInst>(I); 2546 FunctionType *FTy = CI.getFunctionType(); 2547 2548 Code = bitc::FUNC_CODE_INST_CALL; 2549 2550 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2551 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2552 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2553 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2554 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2555 2556 // Emit value #'s for the fixed parameters. 2557 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2558 // Check for labels (can happen with asm labels). 2559 if (FTy->getParamType(i)->isLabelTy()) 2560 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2561 else 2562 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2563 } 2564 2565 // Emit type/value pairs for varargs params. 2566 if (FTy->isVarArg()) { 2567 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2568 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2569 } 2570 break; 2571 } 2572 case Instruction::VAArg: 2573 Code = bitc::FUNC_CODE_INST_VAARG; 2574 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2575 pushValue(I.getOperand(0), InstID, Vals); // valist. 2576 Vals.push_back(getTypeID(I.getType())); // restype. 2577 break; 2578 } 2579 2580 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2581 Vals.clear(); 2582 } 2583 2584 // Emit names for globals/functions etc. 2585 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2586 const ValueSymbolTable &VST) { 2587 if (VST.empty()) 2588 return; 2589 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2590 2591 SmallVector<unsigned, 64> NameVals; 2592 2593 // HLSL Change 2594 // Read the named values from a sorted list instead of the original list 2595 // to ensure the binary is the same no matter what values ever existed. 2596 SmallVector<const ValueName *, 16> SortedTable; 2597 2598 for (auto &VI : VST) { 2599 SortedTable.push_back(VI.second->getValueName()); 2600 } 2601 // The keys are unique, so there shouldn't be stability issues. 2602 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2603 return A->first() < B->first(); 2604 }); 2605 2606 for (const ValueName *SI : SortedTable) { 2607 auto &Name = *SI; 2608 2609 // Figure out the encoding to use for the name. 2610 bool is7Bit = true; 2611 bool isChar6 = true; 2612 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2613 C != E; ++C) { 2614 if (isChar6) 2615 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2616 if ((unsigned char)*C & 128) { 2617 is7Bit = false; 2618 break; // don't bother scanning the rest. 2619 } 2620 } 2621 2622 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2623 2624 // VST_ENTRY: [valueid, namechar x N] 2625 // VST_BBENTRY: [bbid, namechar x N] 2626 unsigned Code; 2627 if (isa<BasicBlock>(SI->getValue())) { 2628 Code = bitc::VST_CODE_BBENTRY; 2629 if (isChar6) 2630 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2631 } else { 2632 Code = bitc::VST_CODE_ENTRY; 2633 if (isChar6) 2634 AbbrevToUse = VST_ENTRY_6_ABBREV; 2635 else if (is7Bit) 2636 AbbrevToUse = VST_ENTRY_7_ABBREV; 2637 } 2638 2639 NameVals.push_back(VE.getValueID(SI->getValue())); 2640 for (const char *P = Name.getKeyData(), 2641 *E = Name.getKeyData() + Name.getKeyLength(); 2642 P != E; ++P) 2643 NameVals.push_back((unsigned char)*P); 2644 2645 // Emit the finished record. 2646 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2647 NameVals.clear(); 2648 } 2649 Stream.ExitBlock(); 2650 } 2651 2652 void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) { 2653 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2654 unsigned Code; 2655 if (isa<BasicBlock>(Order.V)) 2656 Code = bitc::USELIST_CODE_BB; 2657 else 2658 Code = bitc::USELIST_CODE_DEFAULT; 2659 2660 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2661 Record.push_back(VE.getValueID(Order.V)); 2662 Stream.EmitRecord(Code, Record); 2663 } 2664 2665 void DXILBitcodeWriter::writeUseListBlock(const Function *F) { 2666 auto hasMore = [&]() { 2667 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2668 }; 2669 if (!hasMore()) 2670 // Nothing to do. 2671 return; 2672 2673 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2674 while (hasMore()) { 2675 writeUseList(std::move(VE.UseListOrders.back())); 2676 VE.UseListOrders.pop_back(); 2677 } 2678 Stream.ExitBlock(); 2679 } 2680 2681 /// Emit a function body to the module stream. 2682 void DXILBitcodeWriter::writeFunction(const Function &F) { 2683 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2684 VE.incorporateFunction(F); 2685 2686 SmallVector<unsigned, 64> Vals; 2687 2688 // Emit the number of basic blocks, so the reader can create them ahead of 2689 // time. 2690 Vals.push_back(VE.getBasicBlocks().size()); 2691 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2692 Vals.clear(); 2693 2694 // If there are function-local constants, emit them now. 2695 unsigned CstStart, CstEnd; 2696 VE.getFunctionConstantRange(CstStart, CstEnd); 2697 writeConstants(CstStart, CstEnd, false); 2698 2699 // If there is function-local metadata, emit it now. 2700 writeFunctionMetadata(F); 2701 2702 // Keep a running idea of what the instruction ID is. 2703 unsigned InstID = CstEnd; 2704 2705 bool NeedsMetadataAttachment = F.hasMetadata(); 2706 2707 DILocation *LastDL = nullptr; 2708 2709 // Finally, emit all the instructions, in order. 2710 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2711 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2712 ++I) { 2713 writeInstruction(*I, InstID, Vals); 2714 2715 if (!I->getType()->isVoidTy()) 2716 ++InstID; 2717 2718 // If the instruction has metadata, write a metadata attachment later. 2719 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2720 2721 // If the instruction has a debug location, emit it. 2722 DILocation *DL = I->getDebugLoc(); 2723 if (!DL) 2724 continue; 2725 2726 if (DL == LastDL) { 2727 // Just repeat the same debug loc as last time. 2728 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2729 continue; 2730 } 2731 2732 Vals.push_back(DL->getLine()); 2733 Vals.push_back(DL->getColumn()); 2734 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2735 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2736 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2737 Vals.clear(); 2738 2739 LastDL = DL; 2740 } 2741 2742 // Emit names for all the instructions etc. 2743 if (auto *Symtab = F.getValueSymbolTable()) 2744 writeFunctionLevelValueSymbolTable(*Symtab); 2745 2746 if (NeedsMetadataAttachment) 2747 writeFunctionMetadataAttachment(F); 2748 2749 writeUseListBlock(&F); 2750 VE.purgeFunction(); 2751 Stream.ExitBlock(); 2752 } 2753 2754 // Emit blockinfo, which defines the standard abbreviations etc. 2755 void DXILBitcodeWriter::writeBlockInfo() { 2756 // We only want to emit block info records for blocks that have multiple 2757 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2758 // Other blocks can define their abbrevs inline. 2759 Stream.EnterBlockInfoBlock(); 2760 2761 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2762 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2767 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2768 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2769 assert(false && "Unexpected abbrev ordering!"); 2770 } 2771 2772 { // 7-bit fixed width VST_ENTRY strings. 2773 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2774 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2778 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2779 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2780 assert(false && "Unexpected abbrev ordering!"); 2781 } 2782 { // 6-bit char6 VST_ENTRY strings. 2783 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2784 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2788 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2789 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2790 assert(false && "Unexpected abbrev ordering!"); 2791 } 2792 { // 6-bit char6 VST_BBENTRY strings. 2793 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2794 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2798 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2799 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2800 assert(false && "Unexpected abbrev ordering!"); 2801 } 2802 2803 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2804 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2805 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2807 VE.computeBitsRequiredForTypeIndicies())); 2808 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2809 CONSTANTS_SETTYPE_ABBREV) 2810 assert(false && "Unexpected abbrev ordering!"); 2811 } 2812 2813 { // INTEGER abbrev for CONSTANTS_BLOCK. 2814 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2815 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2817 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2818 CONSTANTS_INTEGER_ABBREV) 2819 assert(false && "Unexpected abbrev ordering!"); 2820 } 2821 2822 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2823 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2824 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2827 VE.computeBitsRequiredForTypeIndicies())); 2828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2829 2830 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2831 CONSTANTS_CE_CAST_Abbrev) 2832 assert(false && "Unexpected abbrev ordering!"); 2833 } 2834 { // NULL abbrev for CONSTANTS_BLOCK. 2835 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2836 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2837 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2838 CONSTANTS_NULL_Abbrev) 2839 assert(false && "Unexpected abbrev ordering!"); 2840 } 2841 2842 // FIXME: This should only use space for first class types! 2843 2844 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2845 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2846 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2849 VE.computeBitsRequiredForTypeIndicies())); 2850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2852 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2853 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2854 assert(false && "Unexpected abbrev ordering!"); 2855 } 2856 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2857 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2858 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2862 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2863 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2864 assert(false && "Unexpected abbrev ordering!"); 2865 } 2866 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2867 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2868 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2873 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2874 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2875 assert(false && "Unexpected abbrev ordering!"); 2876 } 2877 { // INST_CAST abbrev for FUNCTION_BLOCK. 2878 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2879 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2882 VE.computeBitsRequiredForTypeIndicies())); 2883 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2884 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2885 (unsigned)FUNCTION_INST_CAST_ABBREV) 2886 assert(false && "Unexpected abbrev ordering!"); 2887 } 2888 2889 { // INST_RET abbrev for FUNCTION_BLOCK. 2890 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2891 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2892 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2893 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2894 assert(false && "Unexpected abbrev ordering!"); 2895 } 2896 { // INST_RET abbrev for FUNCTION_BLOCK. 2897 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2898 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2900 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2901 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2902 assert(false && "Unexpected abbrev ordering!"); 2903 } 2904 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2905 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2906 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2907 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2908 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2909 assert(false && "Unexpected abbrev ordering!"); 2910 } 2911 { 2912 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2913 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2916 Log2_32_Ceil(VE.getTypes().size() + 1))); 2917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2919 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2920 (unsigned)FUNCTION_INST_GEP_ABBREV) 2921 assert(false && "Unexpected abbrev ordering!"); 2922 } 2923 2924 Stream.ExitBlock(); 2925 } 2926 2927 void DXILBitcodeWriter::writeModuleVersion() { 2928 // VERSION: [version#] 2929 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2930 } 2931 2932 /// WriteModule - Emit the specified module to the bitstream. 2933 void DXILBitcodeWriter::write() { 2934 // The identification block is new since llvm-3.7, but the old bitcode reader 2935 // will skip it. 2936 // writeIdentificationBlock(Stream); 2937 2938 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2939 2940 // It is redundant to fully-specify this here, but nice to make it explicit 2941 // so that it is clear the DXIL module version is different. 2942 DXILBitcodeWriter::writeModuleVersion(); 2943 2944 // Emit blockinfo, which defines the standard abbreviations etc. 2945 writeBlockInfo(); 2946 2947 // Emit information about attribute groups. 2948 writeAttributeGroupTable(); 2949 2950 // Emit information about parameter attributes. 2951 writeAttributeTable(); 2952 2953 // Emit information describing all of the types in the module. 2954 writeTypeTable(); 2955 2956 writeComdats(); 2957 2958 // Emit top-level description of module, including target triple, inline asm, 2959 // descriptors for global variables, and function prototype info. 2960 writeModuleInfo(); 2961 2962 // Emit constants. 2963 writeModuleConstants(); 2964 2965 // Emit metadata. 2966 writeModuleMetadataKinds(); 2967 2968 // Emit metadata. 2969 writeModuleMetadata(); 2970 2971 // Emit names for globals/functions etc. 2972 // DXIL uses the same format for module-level value symbol table as for the 2973 // function level table. 2974 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2975 2976 // Emit module-level use-lists. 2977 writeUseListBlock(nullptr); 2978 2979 // Emit function bodies. 2980 for (const Function &F : M) 2981 if (!F.isDeclaration()) 2982 writeFunction(F); 2983 2984 Stream.ExitBlock(); 2985 } 2986