1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions, 12 /// combined with a new form of predication called tail-predication, can be used 13 /// to provide implicit vector predication within a low-overhead loop. 14 /// This is implicit because the predicate of active/inactive lanes is 15 /// calculated by hardware, and thus does not need to be explicitly passed 16 /// to vector instructions. The instructions responsible for this are the 17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the 18 /// the total number of data elements processed by the loop. The loop-end 19 /// LETP instruction is responsible for decrementing and setting the remaining 20 /// elements to be processed and generating the mask of active lanes. 21 /// 22 /// The HardwareLoops pass inserts intrinsics identifying loops that the 23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 24 /// responsible for generating a vectorized loop in which the lanes are 25 /// predicated upon the iteration counter. This pass looks at these predicated 26 /// vector loops, that are targets for low-overhead loops, and prepares it for 27 /// code generation. Once the vectorizer has produced a masked loop, there's a 28 /// couple of final forms: 29 /// - A tail-predicated loop, with implicit predication. 30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT 31 /// blocks of instructions operating on different vector types. 32 /// 33 /// This pass: 34 /// 1) Checks if the predicates of the masked load/store instructions are 35 /// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes 36 /// the Backedge Taken Count (BTC) of the scalar loop as its second argument, 37 /// which we extract to set up the number of elements processed by the loop. 38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target 39 /// specific VCTP intrinsic to represent the effect of tail predication. 40 /// This will be picked up by the ARM Low-overhead loop pass, which performs 41 /// the final transformation to a DLSTP or WLSTP tail-predicated loop. 42 43 #include "ARM.h" 44 #include "ARMSubtarget.h" 45 #include "llvm/Analysis/LoopInfo.h" 46 #include "llvm/Analysis/LoopPass.h" 47 #include "llvm/Analysis/ScalarEvolution.h" 48 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/CodeGen/TargetPassConfig.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "mve-tail-predication" 65 #define DESC "Transform predicated vector loops to use MVE tail predication" 66 67 static cl::opt<bool> 68 ForceTailPredication("force-mve-tail-predication", cl::Hidden, cl::init(false), 69 cl::desc("Force MVE tail-predication even if it might be " 70 "unsafe (e.g. possible overflow in loop " 71 "counters)")); 72 73 cl::opt<bool> 74 DisableTailPredication("disable-mve-tail-predication", cl::Hidden, 75 cl::init(true), 76 cl::desc("Disable MVE Tail Predication")); 77 namespace { 78 79 class MVETailPredication : public LoopPass { 80 SmallVector<IntrinsicInst*, 4> MaskedInsts; 81 Loop *L = nullptr; 82 LoopInfo *LI = nullptr; 83 const DataLayout *DL; 84 DominatorTree *DT = nullptr; 85 ScalarEvolution *SE = nullptr; 86 TargetTransformInfo *TTI = nullptr; 87 TargetLibraryInfo *TLI = nullptr; 88 bool ClonedVCTPInExitBlock = false; 89 IntrinsicInst *ActiveLaneMask = nullptr; 90 FixedVectorType *VecTy = nullptr; 91 92 public: 93 static char ID; 94 95 MVETailPredication() : LoopPass(ID) { } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 AU.addRequired<ScalarEvolutionWrapperPass>(); 99 AU.addRequired<LoopInfoWrapperPass>(); 100 AU.addRequired<TargetPassConfig>(); 101 AU.addRequired<TargetTransformInfoWrapperPass>(); 102 AU.addRequired<DominatorTreeWrapperPass>(); 103 AU.addRequired<TargetLibraryInfoWrapperPass>(); 104 AU.addPreserved<LoopInfoWrapperPass>(); 105 AU.setPreservesCFG(); 106 } 107 108 bool runOnLoop(Loop *L, LPPassManager&) override; 109 110 private: 111 /// Perform the relevant checks on the loop and convert if possible. 112 bool TryConvert(Value *TripCount); 113 114 /// Return whether this is a vectorized loop, that contains masked 115 /// load/stores. 116 bool IsPredicatedVectorLoop(); 117 118 /// Perform checks on the arguments of @llvm.get.active.lane.mask 119 /// intrinsic: check if the first is a loop induction variable, and for the 120 /// the second check that no overflow can occur in the expression that use 121 /// this backedge-taken count. 122 bool IsSafeActiveMask(Value *TripCount, FixedVectorType *VecTy); 123 124 /// Insert the intrinsic to represent the effect of tail predication. 125 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, 126 FixedVectorType *VecTy, 127 DenseMap<Instruction *, Instruction *> &NewPredicates); 128 129 /// Rematerialize the iteration count in exit blocks, which enables 130 /// ARMLowOverheadLoops to better optimise away loop update statements inside 131 /// hardware-loops. 132 void RematerializeIterCount(); 133 134 /// If it is not safe to lower @llvm.get.active.lane.mask to a VCTP, it needs 135 /// to be lowered to an icmp. 136 void RevertActiveLaneMask(); 137 }; 138 139 } // end namespace 140 141 static bool IsDecrement(Instruction &I) { 142 auto *Call = dyn_cast<IntrinsicInst>(&I); 143 if (!Call) 144 return false; 145 146 Intrinsic::ID ID = Call->getIntrinsicID(); 147 return ID == Intrinsic::loop_decrement_reg; 148 } 149 150 static bool IsMasked(Instruction *I) { 151 auto *Call = dyn_cast<IntrinsicInst>(I); 152 if (!Call) 153 return false; 154 155 Intrinsic::ID ID = Call->getIntrinsicID(); 156 // TODO: Support gather/scatter expand/compress operations. 157 return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; 158 } 159 160 void MVETailPredication::RematerializeIterCount() { 161 SmallVector<WeakTrackingVH, 16> DeadInsts; 162 SCEVExpander Rewriter(*SE, *DL, "mvetp"); 163 ReplaceExitVal ReplaceExitValue = AlwaysRepl; 164 165 formLCSSARecursively(*L, *DT, LI, SE); 166 rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, ReplaceExitValue, 167 DeadInsts); 168 } 169 170 void MVETailPredication::RevertActiveLaneMask() { 171 if (!ActiveLaneMask) 172 return; 173 174 int VectorWidth = VecTy->getElementCount().Min; 175 IRBuilder<> Builder(ActiveLaneMask->getParent()->getFirstNonPHI()); 176 177 // 1. Create the vector induction step. This %induction will be the LHS of 178 // the icmp: 179 // 180 // %splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0 181 // %splat = shufflevector <4 x i32> %splatinsert, <4 x i32> undef, <4 x i32> 0 182 // %induction = add <4 x i32> %splat, <i32 0, i32 1, i32 2, i32 3> 183 // 184 Value *Index = ActiveLaneMask->getOperand(0); 185 Value *SplatIndex = 186 Builder.CreateVectorSplat(VectorWidth, Index, "lane.mask"); 187 188 SmallVector<Constant *, 8> Indices; 189 for (int i = 0; i < VectorWidth; ++i) 190 Indices.push_back(ConstantInt::get(Index->getType(), i)); 191 192 Constant *CV = ConstantVector::get(Indices); 193 Value *Induction = Builder.CreateAdd(SplatIndex, CV, "lane.mask.induction"); 194 195 LLVM_DEBUG(dbgs() << "ARM TP: New index: " << *SplatIndex << "\n"; 196 dbgs() << "ARM TP: New Induction: " << *Induction << "\n"); 197 198 // 2. In the Preheader, first look if the splat BTC already exists. Find this 199 // %splat, which will be the RHS of the icmp: 200 // 201 // %TC.minus.1 = add i32 %N, -1 202 // %splatinsert = insertelement <4 x i32> undef, i32 %TC.minus.1, i32 0 203 // %splat = shufflevector <4 x i32> %splatinsert, <4 x i32> undef, <16 x i32> 0 204 // 205 auto *Preheader = L->getLoopPreheader(); 206 auto *BTC = ActiveLaneMask->getOperand(1); 207 Value *SplatBTC = nullptr; 208 209 if (auto *C = dyn_cast<ConstantInt>(BTC)) { 210 Builder.SetInsertPoint(Preheader->getTerminator()); 211 SplatBTC = Builder.CreateVectorSplat(VectorWidth, C); 212 LLVM_DEBUG(dbgs() << "ARM TCP: New splat BTC: " << *SplatBTC << "\n"); 213 } else { 214 Instruction *InsertElem; 215 for (auto &V : *Preheader) { 216 InsertElem = dyn_cast<InsertElementInst>(&V); 217 if (!InsertElem) 218 continue; 219 ConstantInt *CI = dyn_cast<ConstantInt>(InsertElem->getOperand(2)); 220 if (!CI) 221 continue; 222 if (InsertElem->getOperand(1) != BTC || CI->getSExtValue() != 0) 223 continue; 224 if ((SplatBTC = dyn_cast<ShuffleVectorInst>(*InsertElem->users().begin()))) 225 break; 226 } 227 } 228 // Or create the splat BTC if it doesn't exist. 229 if (!SplatBTC) { 230 Builder.SetInsertPoint(Preheader->getTerminator()); 231 Value *Undef = 232 UndefValue::get(FixedVectorType::get(BTC->getType(), VectorWidth)); 233 Value *Insert = Builder.CreateInsertElement(Undef, 234 BTC, Builder.getInt32(0), "insert.btc"); 235 Value *Zero = ConstantInt::get(Insert->getType(), 0); 236 SplatBTC = Builder.CreateShuffleVector (Insert, Undef, Zero, "splat.btc"); 237 LLVM_DEBUG(dbgs() << "ARM TCP: New splat BTC: " << *SplatBTC << "\n"); 238 } 239 240 Builder.SetInsertPoint(ActiveLaneMask); 241 Value *ICmp = Builder.CreateICmp(ICmpInst::ICMP_ULE, Induction, SplatBTC); 242 LLVM_DEBUG(dbgs() << "ARM TP: New compare: " << *ICmp << "\n"); 243 ActiveLaneMask->replaceAllUsesWith(ICmp); 244 ActiveLaneMask->eraseFromParent(); 245 } 246 247 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 248 if (skipLoop(L) || DisableTailPredication) 249 return false; 250 251 MaskedInsts.clear(); 252 Function &F = *L->getHeader()->getParent(); 253 auto &TPC = getAnalysis<TargetPassConfig>(); 254 auto &TM = TPC.getTM<TargetMachine>(); 255 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 256 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 257 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 258 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 259 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 260 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 261 TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 262 DL = &L->getHeader()->getModule()->getDataLayout(); 263 this->L = L; 264 ActiveLaneMask = nullptr; 265 266 // The MVE and LOB extensions are combined to enable tail-predication, but 267 // there's nothing preventing us from generating VCTP instructions for v8.1m. 268 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 269 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); 270 return false; 271 } 272 273 BasicBlock *Preheader = L->getLoopPreheader(); 274 if (!Preheader) 275 return false; 276 277 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 278 for (auto &I : *BB) { 279 auto *Call = dyn_cast<IntrinsicInst>(&I); 280 if (!Call) 281 continue; 282 283 Intrinsic::ID ID = Call->getIntrinsicID(); 284 if (ID == Intrinsic::set_loop_iterations || 285 ID == Intrinsic::test_set_loop_iterations) 286 return cast<IntrinsicInst>(&I); 287 } 288 return nullptr; 289 }; 290 291 // Look for the hardware loop intrinsic that sets the iteration count. 292 IntrinsicInst *Setup = FindLoopIterations(Preheader); 293 294 // The test.set iteration could live in the pre-preheader. 295 if (!Setup) { 296 if (!Preheader->getSinglePredecessor()) 297 return false; 298 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 299 if (!Setup) 300 return false; 301 } 302 303 // Search for the hardware loop intrinic that decrements the loop counter. 304 IntrinsicInst *Decrement = nullptr; 305 for (auto *BB : L->getBlocks()) { 306 for (auto &I : *BB) { 307 if (IsDecrement(I)) { 308 Decrement = cast<IntrinsicInst>(&I); 309 break; 310 } 311 } 312 } 313 314 if (!Decrement) 315 return false; 316 317 ClonedVCTPInExitBlock = false; 318 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" 319 << *Decrement << "\n"); 320 321 if (TryConvert(Setup->getArgOperand(0))) { 322 if (ClonedVCTPInExitBlock) 323 RematerializeIterCount(); 324 return true; 325 } else 326 RevertActiveLaneMask(); 327 328 LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n"); 329 return false; 330 } 331 332 static FixedVectorType *getVectorType(IntrinsicInst *I) { 333 unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; 334 auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); 335 auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType()); 336 assert(VecTy && "No scalable vectors expected here"); 337 return VecTy; 338 } 339 340 bool MVETailPredication::IsPredicatedVectorLoop() { 341 // Check that the loop contains at least one masked load/store intrinsic. 342 // We only support 'normal' vector instructions - other than masked 343 // load/stores. 344 for (auto *BB : L->getBlocks()) { 345 for (auto &I : *BB) { 346 if (IsMasked(&I)) { 347 FixedVectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I)); 348 unsigned Lanes = VecTy->getNumElements(); 349 unsigned ElementWidth = VecTy->getScalarSizeInBits(); 350 // MVE vectors are 128-bit, but don't support 128 x i1. 351 // TODO: Can we support vectors larger than 128-bits? 352 unsigned MaxWidth = TTI->getRegisterBitWidth(true); 353 if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) 354 return false; 355 MaskedInsts.push_back(cast<IntrinsicInst>(&I)); 356 } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) { 357 if (Int->getIntrinsicID() == Intrinsic::fma) 358 continue; 359 for (auto &U : Int->args()) { 360 if (isa<VectorType>(U->getType())) 361 return false; 362 } 363 } 364 } 365 } 366 367 return !MaskedInsts.empty(); 368 } 369 370 // Look through the exit block to see whether there's a duplicate predicate 371 // instruction. This can happen when we need to perform a select on values 372 // from the last and previous iteration. Instead of doing a straight 373 // replacement of that predicate with the vctp, clone the vctp and place it 374 // in the block. This means that the VPR doesn't have to be live into the 375 // exit block which should make it easier to convert this loop into a proper 376 // tail predicated loop. 377 static bool Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates, 378 SetVector<Instruction*> &MaybeDead, Loop *L) { 379 BasicBlock *Exit = L->getUniqueExitBlock(); 380 if (!Exit) { 381 LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); 382 return false; 383 } 384 385 bool ClonedVCTPInExitBlock = false; 386 387 for (auto &Pair : NewPredicates) { 388 Instruction *OldPred = Pair.first; 389 Instruction *NewPred = Pair.second; 390 391 for (auto &I : *Exit) { 392 if (I.isSameOperationAs(OldPred)) { 393 Instruction *PredClone = NewPred->clone(); 394 PredClone->insertBefore(&I); 395 I.replaceAllUsesWith(PredClone); 396 MaybeDead.insert(&I); 397 ClonedVCTPInExitBlock = true; 398 LLVM_DEBUG(dbgs() << "ARM TP: replacing: "; I.dump(); 399 dbgs() << "ARM TP: with: "; PredClone->dump()); 400 break; 401 } 402 } 403 } 404 405 // Drop references and add operands to check for dead. 406 SmallPtrSet<Instruction*, 4> Dead; 407 while (!MaybeDead.empty()) { 408 auto *I = MaybeDead.front(); 409 MaybeDead.remove(I); 410 if (I->hasNUsesOrMore(1)) 411 continue; 412 413 for (auto &U : I->operands()) 414 if (auto *OpI = dyn_cast<Instruction>(U)) 415 MaybeDead.insert(OpI); 416 417 Dead.insert(I); 418 } 419 420 for (auto *I : Dead) { 421 LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); 422 I->eraseFromParent(); 423 } 424 425 for (auto I : L->blocks()) 426 DeleteDeadPHIs(I); 427 428 return ClonedVCTPInExitBlock; 429 } 430 431 // The active lane intrinsic has this form: 432 // 433 // @llvm.get.active.lane.mask(IV, BTC) 434 // 435 // Here we perform checks that this intrinsic behaves as expected, 436 // which means: 437 // 438 // 1) The element count, which is calculated with BTC + 1, cannot overflow. 439 // 2) The element count needs to be sufficiently large that the decrement of 440 // element counter doesn't overflow, which means that we need to prove: 441 // ceil(ElementCount / VectorWidth) >= TripCount 442 // by rounding up ElementCount up: 443 // ((ElementCount + (VectorWidth - 1)) / VectorWidth 444 // and evaluate if expression isKnownNonNegative: 445 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 446 // 3) The IV must be an induction phi with an increment equal to the 447 // vector width. 448 bool MVETailPredication::IsSafeActiveMask(Value *TripCount, 449 FixedVectorType *VecTy) { 450 // 1) Test whether entry to the loop is protected by a conditional 451 // BTC + 1 < 0. In other words, if the scalar trip count overflows, 452 // becomes negative, we shouldn't enter the loop and creating 453 // tripcount expression BTC + 1 is not safe. So, check that BTC 454 // isn't max. This is evaluated in unsigned, because the semantics 455 // of @get.active.lane.mask is a ULE comparison. 456 int VectorWidth = VecTy->getNumElements(); 457 auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1); 458 auto *BTC = SE->getSCEV(BackedgeTakenCount); 459 460 if (!llvm::cannotBeMaxInLoop(BTC, L, *SE, false /*Signed*/) && 461 !ForceTailPredication) { 462 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be max: "; 463 BTC->dump()); 464 return false; 465 } 466 467 // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow: 468 // 469 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 470 // 471 // 2.1) First prove overflow can't happen in: 472 // 473 // ElementCount + (VectorWidth - 1) 474 // 475 // Because of a lack of context, it is difficult to get a useful bounds on 476 // this expression. But since ElementCount uses the same variables as the 477 // TripCount (TC), for which we can find meaningful value ranges, we use that 478 // instead and assert that: 479 // 480 // upperbound(TC) <= UINT_MAX - VectorWidth 481 // 482 auto *TC = SE->getSCEV(TripCount); 483 unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits(); 484 auto Diff = APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth); 485 uint64_t MaxMinusVW = Diff.getZExtValue(); 486 uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue(); 487 488 if (UpperboundTC > MaxMinusVW && !ForceTailPredication) { 489 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n"; 490 dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n"; 491 dbgs() << UpperboundTC << " <= " << MaxMinusVW << "== false\n";); 492 return false; 493 } 494 495 // 2.2) Make sure overflow doesn't happen in final expression: 496 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount, 497 // To do this, compare the full ranges of these subexpressions: 498 // 499 // Range(Ceil) <= Range(TC) 500 // 501 // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime 502 // values (and not constants), we have to compensate for the lowerbound value 503 // range to be off by 1. The reason is that BTC lives in the preheader in 504 // this form: 505 // 506 // %trip.count.minus = add nsw nuw i32 %N, -1 507 // 508 // For the loop to be executed, %N has to be >= 1 and as a result the value 509 // range of %trip.count.minus has a lower bound of 0. Value %TC has this form: 510 // 511 // %5 = add nuw nsw i32 %4, 1 512 // call void @llvm.set.loop.iterations.i32(i32 %5) 513 // 514 // where %5 is some expression using %N, which needs to have a lower bound of 515 // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set, 516 // we first add 0 to TC such that we can do the <= comparison on both sets. 517 // 518 auto *One = SE->getOne(TripCount->getType()); 519 // ElementCount = BTC + 1 520 auto *ElementCount = SE->getAddExpr(BTC, One); 521 // Tmp = ElementCount + (VW-1) 522 auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount, 523 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); 524 // Ceil = ElementCount + (VW-1) / VW 525 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, 526 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth))); 527 528 ConstantRange RangeCeil = SE->getSignedRange(Ceil) ; 529 ConstantRange RangeTC = SE->getSignedRange(TC) ; 530 if (!RangeTC.isSingleElement()) { 531 auto ZeroRange = 532 ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0)); 533 RangeTC = RangeTC.unionWith(ZeroRange); 534 } 535 if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) { 536 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n"); 537 return false; 538 } 539 540 // 3) Find out if IV is an induction phi. Note that We can't use Loop 541 // helpers here to get the induction variable, because the hardware loop is 542 // no longer in loopsimplify form, and also the hwloop intrinsic use a 543 // different counter. Using SCEV, we check that the induction is of the 544 // form i = i + 4, where the increment must be equal to the VectorWidth. 545 auto *IV = ActiveLaneMask->getOperand(0); 546 auto *IVExpr = SE->getSCEV(IV); 547 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); 548 if (!AddExpr) { 549 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); 550 return false; 551 } 552 // Check that this AddRec is associated with this loop. 553 if (AddExpr->getLoop() != L) { 554 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); 555 return false; 556 } 557 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); 558 if (!Step) { 559 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; 560 AddExpr->getOperand(1)->dump()); 561 return false; 562 } 563 auto StepValue = Step->getValue()->getSExtValue(); 564 if (VectorWidth == StepValue) 565 return true; 566 567 LLVM_DEBUG(dbgs() << "ARM TP: step value " << StepValue << " doesn't match " 568 "vector width : " << VectorWidth << "\n"); 569 570 return false; 571 } 572 573 // Materialize NumElements in the preheader block. 574 static Value *getNumElements(BasicBlock *Preheader, Value *BTC) { 575 // First, check the preheader if it not already exist: 576 // 577 // preheader: 578 // %BTC = add i32 %N, -1 579 // .. 580 // vector.body: 581 // 582 // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1, 583 // but instead can just return %N. 584 for (auto &I : *Preheader) { 585 if (I.getOpcode() != Instruction::Add || &I != BTC) 586 continue; 587 ConstantInt *MinusOne = nullptr; 588 if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1)))) 589 continue; 590 if (MinusOne->getSExtValue() == -1) { 591 LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n"); 592 return I.getOperand(0); 593 } 594 } 595 596 // But we do need to materialise BTC if it is not already there, 597 // e.g. if it is a constant. 598 IRBuilder<> Builder(Preheader->getTerminator()); 599 Value *NumElements = Builder.CreateAdd(BTC, 600 ConstantInt::get(BTC->getType(), 1), "num.elements"); 601 LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n"); 602 return NumElements; 603 } 604 605 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, 606 Value *TripCount, FixedVectorType *VecTy, 607 DenseMap<Instruction*, Instruction*> &NewPredicates) { 608 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 609 Module *M = L->getHeader()->getModule(); 610 Type *Ty = IntegerType::get(M->getContext(), 32); 611 612 // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand, 613 // is one less than the trip count. So we need to find or create 614 // %num.elements = %BTC + 1 in the preheader. 615 Value *BTC = ActiveLaneMask->getOperand(1); 616 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 617 Value *NumElements = getNumElements(L->getLoopPreheader(), BTC); 618 619 // Insert a phi to count the number of elements processed by the loop. 620 Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() ); 621 PHINode *Processed = Builder.CreatePHI(Ty, 2); 622 Processed->addIncoming(NumElements, L->getLoopPreheader()); 623 624 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus 625 // represent the effect of tail predication. 626 Builder.SetInsertPoint(ActiveLaneMask); 627 ConstantInt *Factor = 628 ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements()); 629 630 Intrinsic::ID VCTPID; 631 switch (VecTy->getNumElements()) { 632 default: 633 llvm_unreachable("unexpected number of lanes"); 634 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 635 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 636 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 637 638 // FIXME: vctp64 currently not supported because the predicate 639 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE 640 // type, so problems happen at isel time. 641 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics 642 // purposes, but takes a v4i1 instead of a v2i1. 643 } 644 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 645 Value *VCTPCall = Builder.CreateCall(VCTP, Processed); 646 ActiveLaneMask->replaceAllUsesWith(VCTPCall); 647 NewPredicates[ActiveLaneMask] = cast<Instruction>(VCTPCall); 648 649 // Add the incoming value to the new phi. 650 // TODO: This add likely already exists in the loop. 651 Value *Remaining = Builder.CreateSub(Processed, Factor); 652 Processed->addIncoming(Remaining, L->getLoopLatch()); 653 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " 654 << *Processed << "\n" 655 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); 656 } 657 658 bool MVETailPredication::TryConvert(Value *TripCount) { 659 if (!IsPredicatedVectorLoop()) { 660 LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n"); 661 return false; 662 } 663 664 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); 665 666 SetVector<Instruction*> Predicates; 667 DenseMap<Instruction*, Instruction*> NewPredicates; 668 669 // Walk through the masked intrinsics and try to find whether the predicate 670 // operand is generated by intrinsic @llvm.get.active.lane.mask(). 671 for (auto *I : MaskedInsts) { 672 unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3; 673 auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); 674 if (!Predicate || Predicates.count(Predicate)) 675 continue; 676 677 ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate); 678 if (!ActiveLaneMask || 679 ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask) 680 continue; 681 682 Predicates.insert(Predicate); 683 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " 684 << *ActiveLaneMask << "\n"); 685 686 VecTy = getVectorType(I); 687 if (!IsSafeActiveMask(TripCount, VecTy)) { 688 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); 689 return false; 690 } 691 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); 692 InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy, NewPredicates); 693 } 694 695 // Now clean up. 696 ClonedVCTPInExitBlock = Cleanup(NewPredicates, Predicates, L); 697 return true; 698 } 699 700 Pass *llvm::createMVETailPredicationPass() { 701 return new MVETailPredication(); 702 } 703 704 char MVETailPredication::ID = 0; 705 706 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 707 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 708