xref: /llvm-project/llvm/lib/Target/ARM/MVETailPredication.cpp (revision 4fe5615eabbb2a47e7ac32917e621852e057efe8)
1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
21 ///
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon the iteration counter. This pass looks at these predicated
26 /// vector loops, that are targets for low-overhead loops, and prepares it for
27 /// code generation. Once the vectorizer has produced a masked loop, there's a
28 /// couple of final forms:
29 /// - A tail-predicated loop, with implicit predication.
30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT
31 ///   blocks of instructions operating on different vector types.
32 ///
33 /// This pass:
34 /// 1) Checks if the predicates of the masked load/store instructions are
35 ///    generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
36 ///    the Backedge Taken Count (BTC) of the scalar loop as its second argument,
37 ///    which we extract to set up the number of elements processed by the loop.
38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
39 ///    specific VCTP intrinsic to represent the effect of tail predication.
40 ///    This will be picked up by the ARM Low-overhead loop pass, which performs
41 ///    the final transformation to a DLSTP or WLSTP tail-predicated loop.
42 
43 #include "ARM.h"
44 #include "ARMSubtarget.h"
45 #include "ARMTargetTransformInfo.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolution.h"
49 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "mve-tail-predication"
66 #define DESC "Transform predicated vector loops to use MVE tail predication"
67 
68 cl::opt<TailPredication::Mode> EnableTailPredication(
69    "tail-predication", cl::desc("MVE tail-predication options"),
70    cl::init(TailPredication::Disabled),
71    cl::values(clEnumValN(TailPredication::Disabled, "disabled",
72                          "Don't tail-predicate loops"),
73               clEnumValN(TailPredication::EnabledNoReductions,
74                          "enabled-no-reductions",
75                          "Enable tail-predication, but not for reduction loops"),
76               clEnumValN(TailPredication::Enabled,
77                          "enabled",
78                          "Enable tail-predication, including reduction loops"),
79               clEnumValN(TailPredication::ForceEnabledNoReductions,
80                          "force-enabled-no-reductions",
81                          "Enable tail-predication, but not for reduction loops, "
82                          "and force this which might be unsafe"),
83               clEnumValN(TailPredication::ForceEnabled,
84                          "force-enabled",
85                          "Enable tail-predication, including reduction loops, "
86                          "and force this which might be unsafe")));
87 
88 
89 namespace {
90 
91 class MVETailPredication : public LoopPass {
92   SmallVector<IntrinsicInst*, 4> MaskedInsts;
93   Loop *L = nullptr;
94   ScalarEvolution *SE = nullptr;
95   TargetTransformInfo *TTI = nullptr;
96   const ARMSubtarget *ST = nullptr;
97 
98 public:
99   static char ID;
100 
101   MVETailPredication() : LoopPass(ID) { }
102 
103   void getAnalysisUsage(AnalysisUsage &AU) const override {
104     AU.addRequired<ScalarEvolutionWrapperPass>();
105     AU.addRequired<LoopInfoWrapperPass>();
106     AU.addRequired<TargetPassConfig>();
107     AU.addRequired<TargetTransformInfoWrapperPass>();
108     AU.addPreserved<LoopInfoWrapperPass>();
109     AU.setPreservesCFG();
110   }
111 
112   bool runOnLoop(Loop *L, LPPassManager&) override;
113 
114 private:
115   /// Perform the relevant checks on the loop and convert if possible.
116   bool TryConvert(Value *TripCount);
117 
118   /// Return whether this is a vectorized loop, that contains masked
119   /// load/stores.
120   bool IsPredicatedVectorLoop();
121 
122   /// Perform checks on the arguments of @llvm.get.active.lane.mask
123   /// intrinsic: check if the first is a loop induction variable, and for the
124   /// the second check that no overflow can occur in the expression that use
125   /// this backedge-taken count.
126   bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
127                         FixedVectorType *VecTy);
128 
129   /// Insert the intrinsic to represent the effect of tail predication.
130   void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
131                            FixedVectorType *VecTy);
132 
133   /// Rematerialize the iteration count in exit blocks, which enables
134   /// ARMLowOverheadLoops to better optimise away loop update statements inside
135   /// hardware-loops.
136   void RematerializeIterCount();
137 };
138 
139 } // end namespace
140 
141 static bool IsDecrement(Instruction &I) {
142   auto *Call = dyn_cast<IntrinsicInst>(&I);
143   if (!Call)
144     return false;
145 
146   Intrinsic::ID ID = Call->getIntrinsicID();
147   return ID == Intrinsic::loop_decrement_reg;
148 }
149 
150 static bool IsMasked(Instruction *I) {
151   auto *Call = dyn_cast<IntrinsicInst>(I);
152   if (!Call)
153     return false;
154 
155   Intrinsic::ID ID = Call->getIntrinsicID();
156   return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load ||
157          isGatherScatter(Call);
158 }
159 
160 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
161   if (skipLoop(L) || !EnableTailPredication)
162     return false;
163 
164   MaskedInsts.clear();
165   Function &F = *L->getHeader()->getParent();
166   auto &TPC = getAnalysis<TargetPassConfig>();
167   auto &TM = TPC.getTM<TargetMachine>();
168   ST = &TM.getSubtarget<ARMSubtarget>(F);
169   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
170   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
171   this->L = L;
172 
173   // The MVE and LOB extensions are combined to enable tail-predication, but
174   // there's nothing preventing us from generating VCTP instructions for v8.1m.
175   if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
176     LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
177     return false;
178   }
179 
180   BasicBlock *Preheader = L->getLoopPreheader();
181   if (!Preheader)
182     return false;
183 
184   auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
185     for (auto &I : *BB) {
186       auto *Call = dyn_cast<IntrinsicInst>(&I);
187       if (!Call)
188         continue;
189 
190       Intrinsic::ID ID = Call->getIntrinsicID();
191       if (ID == Intrinsic::set_loop_iterations ||
192           ID == Intrinsic::test_set_loop_iterations)
193         return cast<IntrinsicInst>(&I);
194     }
195     return nullptr;
196   };
197 
198   // Look for the hardware loop intrinsic that sets the iteration count.
199   IntrinsicInst *Setup = FindLoopIterations(Preheader);
200 
201   // The test.set iteration could live in the pre-preheader.
202   if (!Setup) {
203     if (!Preheader->getSinglePredecessor())
204       return false;
205     Setup = FindLoopIterations(Preheader->getSinglePredecessor());
206     if (!Setup)
207       return false;
208   }
209 
210   // Search for the hardware loop intrinic that decrements the loop counter.
211   IntrinsicInst *Decrement = nullptr;
212   for (auto *BB : L->getBlocks()) {
213     for (auto &I : *BB) {
214       if (IsDecrement(I)) {
215         Decrement = cast<IntrinsicInst>(&I);
216         break;
217       }
218     }
219   }
220 
221   if (!Decrement)
222     return false;
223 
224   LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
225              << *Decrement << "\n");
226 
227   if (!TryConvert(Setup->getArgOperand(0))) {
228     LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
229     return false;
230   }
231 
232   return true;
233 }
234 
235 static FixedVectorType *getVectorType(IntrinsicInst *I) {
236   unsigned ID = I->getIntrinsicID();
237   FixedVectorType *VecTy;
238   if (ID == Intrinsic::masked_load || isGather(I)) {
239     if (ID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated)
240       // then the type is a StructType
241       VecTy = dyn_cast<FixedVectorType>(I->getType()->getContainedType(0));
242     else
243       VecTy = dyn_cast<FixedVectorType>(I->getType());
244   } else if (ID == Intrinsic::masked_store) {
245     VecTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType());
246   } else {
247     VecTy = dyn_cast<FixedVectorType>(I->getOperand(2)->getType());
248   }
249   assert(VecTy && "No scalable vectors expected here");
250   return VecTy;
251 }
252 
253 bool MVETailPredication::IsPredicatedVectorLoop() {
254   // Check that the loop contains at least one masked load/store intrinsic.
255   // We only support 'normal' vector instructions - other than masked
256   // load/stores.
257   bool ActiveLaneMask = false;
258   for (auto *BB : L->getBlocks()) {
259     for (auto &I : *BB) {
260       auto *Int = dyn_cast<IntrinsicInst>(&I);
261       if (!Int)
262         continue;
263 
264       switch (Int->getIntrinsicID()) {
265       case Intrinsic::get_active_lane_mask:
266         ActiveLaneMask = true;
267         continue;
268       case Intrinsic::sadd_sat:
269       case Intrinsic::uadd_sat:
270       case Intrinsic::ssub_sat:
271       case Intrinsic::usub_sat:
272       case Intrinsic::experimental_vector_reduce_add:
273         continue;
274       case Intrinsic::fma:
275       case Intrinsic::trunc:
276       case Intrinsic::rint:
277       case Intrinsic::round:
278       case Intrinsic::floor:
279       case Intrinsic::ceil:
280       case Intrinsic::fabs:
281         if (ST->hasMVEFloatOps())
282           continue;
283         break;
284       default:
285         break;
286       }
287       if (IsMasked(&I)) {
288         auto *VecTy = getVectorType(Int);
289         unsigned Lanes = VecTy->getNumElements();
290         unsigned ElementWidth = VecTy->getScalarSizeInBits();
291         // MVE vectors are 128-bit, but don't support 128 x i1.
292         // TODO: Can we support vectors larger than 128-bits?
293         unsigned MaxWidth = TTI->getRegisterBitWidth(true);
294         if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
295           return false;
296         MaskedInsts.push_back(cast<IntrinsicInst>(&I));
297         continue;
298       }
299 
300       for (const Use &U : Int->args()) {
301         if (isa<VectorType>(U->getType()))
302           return false;
303       }
304     }
305   }
306 
307   if (!ActiveLaneMask) {
308     LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
309     return false;
310   }
311   return !MaskedInsts.empty();
312 }
313 
314 // Look through the exit block to see whether there's a duplicate predicate
315 // instruction. This can happen when we need to perform a select on values
316 // from the last and previous iteration. Instead of doing a straight
317 // replacement of that predicate with the vctp, clone the vctp and place it
318 // in the block. This means that the VPR doesn't have to be live into the
319 // exit block which should make it easier to convert this loop into a proper
320 // tail predicated loop.
321 static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
322   BasicBlock *Exit = L->getUniqueExitBlock();
323   if (!Exit) {
324     LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
325     return;
326   }
327 
328   // Drop references and add operands to check for dead.
329   SmallPtrSet<Instruction*, 4> Dead;
330   while (!MaybeDead.empty()) {
331     auto *I = MaybeDead.front();
332     MaybeDead.remove(I);
333     if (I->hasNUsesOrMore(1))
334       continue;
335 
336     for (auto &U : I->operands())
337       if (auto *OpI = dyn_cast<Instruction>(U))
338         MaybeDead.insert(OpI);
339 
340     Dead.insert(I);
341   }
342 
343   for (auto *I : Dead) {
344     LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
345     I->eraseFromParent();
346   }
347 
348   for (auto I : L->blocks())
349     DeleteDeadPHIs(I);
350 }
351 
352 // The active lane intrinsic has this form:
353 //
354 //    @llvm.get.active.lane.mask(IV, BTC)
355 //
356 // Here we perform checks that this intrinsic behaves as expected,
357 // which means:
358 //
359 // 1) The element count, which is calculated with BTC + 1, cannot overflow.
360 // 2) The element count needs to be sufficiently large that the decrement of
361 //    element counter doesn't overflow, which means that we need to prove:
362 //        ceil(ElementCount / VectorWidth) >= TripCount
363 //    by rounding up ElementCount up:
364 //        ((ElementCount + (VectorWidth - 1)) / VectorWidth
365 //    and evaluate if expression isKnownNonNegative:
366 //        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
367 // 3) The IV must be an induction phi with an increment equal to the
368 //    vector width.
369 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
370     Value *TripCount, FixedVectorType *VecTy) {
371   bool ForceTailPredication =
372     EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
373     EnableTailPredication == TailPredication::ForceEnabled;
374 
375   // 1) Test whether entry to the loop is protected by a conditional
376   // BTC + 1 < 0. In other words, if the scalar trip count overflows,
377   // becomes negative, we shouldn't enter the loop and creating
378   // tripcount expression BTC + 1 is not safe. So, check that BTC
379   // isn't max. This is evaluated in unsigned, because the semantics
380   // of @get.active.lane.mask is a ULE comparison.
381   auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1);
382   auto *BTC = SE->getSCEV(BackedgeTakenCount);
383   auto *MaxBTC = SE->getConstantMaxBackedgeTakenCount(L);
384 
385   if (isa<SCEVCouldNotCompute>(MaxBTC)) {
386     LLVM_DEBUG(dbgs() << "ARM TP: Can't compute SCEV BTC expression: ";
387                BTC->dump());
388     return false;
389   }
390 
391   APInt MaxInt = APInt(BTC->getType()->getScalarSizeInBits(), ~0);
392   if (cast<SCEVConstant>(MaxBTC)->getAPInt().eq(MaxInt) &&
393       !ForceTailPredication) {
394     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be int max: ";
395                BTC->dump());
396     return false;
397   }
398 
399   // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
400   //
401   //      (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
402   //
403   // 2.1) First prove overflow can't happen in:
404   //
405   //      ElementCount + (VectorWidth - 1)
406   //
407   // Because of a lack of context, it is difficult to get a useful bounds on
408   // this expression. But since ElementCount uses the same variables as the
409   // TripCount (TC), for which we can find meaningful value ranges, we use that
410   // instead and assert that:
411   //
412   //     upperbound(TC) <= UINT_MAX - VectorWidth
413   //
414   auto *TC = SE->getSCEV(TripCount);
415   unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
416   int VectorWidth = VecTy->getNumElements();
417   auto Diff =  APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
418   uint64_t MaxMinusVW = Diff.getZExtValue();
419   uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue();
420 
421   if (UpperboundTC > MaxMinusVW && !ForceTailPredication) {
422     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
423                dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
424                dbgs() << UpperboundTC << " <= " << MaxMinusVW << " == false\n";);
425     return false;
426   }
427 
428   // 2.2) Make sure overflow doesn't happen in final expression:
429   //  (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
430   // To do this, compare the full ranges of these subexpressions:
431   //
432   //     Range(Ceil) <= Range(TC)
433   //
434   // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
435   // values (and not constants), we have to compensate for the lowerbound value
436   // range to be off by 1. The reason is that BTC lives in the preheader in
437   // this form:
438   //
439   //     %trip.count.minus = add nsw nuw i32 %N, -1
440   //
441   // For the loop to be executed, %N has to be >= 1 and as a result the value
442   // range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
443   //
444   //     %5 = add nuw nsw i32 %4, 1
445   //     call void @llvm.set.loop.iterations.i32(i32 %5)
446   //
447   // where %5 is some expression using %N, which needs to have a lower bound of
448   // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
449   // we first add 0 to TC such that we can do the <= comparison on both sets.
450   //
451   auto *One = SE->getOne(TripCount->getType());
452   // ElementCount = BTC + 1
453   auto *ElementCount = SE->getAddExpr(BTC, One);
454   // Tmp = ElementCount + (VW-1)
455   auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount,
456       SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
457   // Ceil = ElementCount + (VW-1) / VW
458   auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
459       SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));
460 
461   ConstantRange RangeCeil = SE->getSignedRange(Ceil) ;
462   ConstantRange RangeTC = SE->getSignedRange(TC) ;
463   if (!RangeTC.isSingleElement()) {
464     auto ZeroRange =
465         ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
466     RangeTC = RangeTC.unionWith(ZeroRange);
467   }
468   if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
469     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
470     return false;
471   }
472 
473   // 3) Find out if IV is an induction phi. Note that we can't use Loop
474   // helpers here to get the induction variable, because the hardware loop is
475   // no longer in loopsimplify form, and also the hwloop intrinsic uses a
476   // different counter. Using SCEV, we check that the induction is of the
477   // form i = i + 4, where the increment must be equal to the VectorWidth.
478   auto *IV = ActiveLaneMask->getOperand(0);
479   auto *IVExpr = SE->getSCEV(IV);
480   auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
481   if (!AddExpr) {
482     LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
483     return false;
484   }
485   // Check that this AddRec is associated with this loop.
486   if (AddExpr->getLoop() != L) {
487     LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
488     return false;
489   }
490   auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
491   if (!Step) {
492     LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
493                AddExpr->getOperand(1)->dump());
494     return false;
495   }
496   auto StepValue = Step->getValue()->getSExtValue();
497   if (VectorWidth == StepValue)
498     return true;
499 
500   LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
501              "vector width " << VectorWidth << "\n");
502 
503   return false;
504 }
505 
506 // Materialize NumElements in the preheader block.
507 static Value *getNumElements(BasicBlock *Preheader, Value *BTC) {
508   // First, check the preheader if it not already exist:
509   //
510   // preheader:
511   //    %BTC = add i32 %N, -1
512   //    ..
513   // vector.body:
514   //
515   // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1,
516   // but instead can just return %N.
517   for (auto &I : *Preheader) {
518     if (I.getOpcode() != Instruction::Add || &I != BTC)
519       continue;
520     ConstantInt *MinusOne = nullptr;
521     if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1))))
522       continue;
523     if (MinusOne->getSExtValue() == -1) {
524       LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n");
525       return I.getOperand(0);
526     }
527   }
528 
529   // But we do need to materialise BTC if it is not already there,
530   // e.g. if it is a constant.
531   IRBuilder<> Builder(Preheader->getTerminator());
532   Value *NumElements = Builder.CreateAdd(BTC,
533         ConstantInt::get(BTC->getType(), 1), "num.elements");
534   LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n");
535   return NumElements;
536 }
537 
538 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
539     Value *TripCount, FixedVectorType *VecTy) {
540   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
541   Module *M = L->getHeader()->getModule();
542   Type *Ty = IntegerType::get(M->getContext(), 32);
543   unsigned VectorWidth = VecTy->getNumElements();
544 
545   // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand,
546   // is one less than the trip count. So we need to find or create
547   // %num.elements = %BTC + 1 in the preheader.
548   Value *BTC = ActiveLaneMask->getOperand(1);
549   Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
550   Value *NumElements = getNumElements(L->getLoopPreheader(), BTC);
551 
552   // Insert a phi to count the number of elements processed by the loop.
553   Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI()  );
554   PHINode *Processed = Builder.CreatePHI(Ty, 2);
555   Processed->addIncoming(NumElements, L->getLoopPreheader());
556 
557   // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus
558   // represent the effect of tail predication.
559   Builder.SetInsertPoint(ActiveLaneMask);
560   ConstantInt *Factor =
561     ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
562 
563   Intrinsic::ID VCTPID;
564   switch (VectorWidth) {
565   default:
566     llvm_unreachable("unexpected number of lanes");
567   case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
568   case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
569   case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
570 
571     // FIXME: vctp64 currently not supported because the predicate
572     // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
573     // type, so problems happen at isel time.
574     // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
575     // purposes, but takes a v4i1 instead of a v2i1.
576   }
577   Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
578   Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
579   ActiveLaneMask->replaceAllUsesWith(VCTPCall);
580 
581   // Add the incoming value to the new phi.
582   // TODO: This add likely already exists in the loop.
583   Value *Remaining = Builder.CreateSub(Processed, Factor);
584   Processed->addIncoming(Remaining, L->getLoopLatch());
585   LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
586              << *Processed << "\n"
587              << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
588 }
589 
590 bool MVETailPredication::TryConvert(Value *TripCount) {
591   if (!IsPredicatedVectorLoop()) {
592     LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
593     return false;
594   }
595 
596   LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
597   SetVector<Instruction*> Predicates;
598 
599   // Walk through the masked intrinsics and try to find whether the predicate
600   // operand is generated by intrinsic @llvm.get.active.lane.mask().
601   for (auto *I : MaskedInsts) {
602     unsigned PredOp =
603         (I->getIntrinsicID() == Intrinsic::masked_load || isGather(I)) ? 2 : 3;
604     auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
605     if (!Predicate || Predicates.count(Predicate))
606       continue;
607 
608     auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
609     if (!ActiveLaneMask ||
610         ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
611       continue;
612 
613     Predicates.insert(Predicate);
614     LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
615                       << *ActiveLaneMask << "\n");
616 
617     auto *VecTy = getVectorType(I);
618     if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
619       LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
620       return false;
621     }
622     LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
623     InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
624   }
625 
626   Cleanup(Predicates, L);
627   return true;
628 }
629 
630 Pass *llvm::createMVETailPredicationPass() {
631   return new MVETailPredication();
632 }
633 
634 char MVETailPredication::ID = 0;
635 
636 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
637 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
638