1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead 11 /// branches to help accelerate DSP applications. These two extensions, 12 /// combined with a new form of predication called tail-predication, can be used 13 /// to provide implicit vector predication within a low-overhead loop. 14 /// This is implicit because the predicate of active/inactive lanes is 15 /// calculated by hardware, and thus does not need to be explicitly passed 16 /// to vector instructions. The instructions responsible for this are the 17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the 18 /// the total number of data elements processed by the loop. The loop-end 19 /// LETP instruction is responsible for decrementing and setting the remaining 20 /// elements to be processed and generating the mask of active lanes. 21 /// 22 /// The HardwareLoops pass inserts intrinsics identifying loops that the 23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is 24 /// responsible for generating a vectorized loop in which the lanes are 25 /// predicated upon the iteration counter. This pass looks at these predicated 26 /// vector loops, that are targets for low-overhead loops, and prepares it for 27 /// code generation. Once the vectorizer has produced a masked loop, there's a 28 /// couple of final forms: 29 /// - A tail-predicated loop, with implicit predication. 30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT 31 /// blocks of instructions operating on different vector types. 32 /// 33 /// This pass: 34 /// 1) Checks if the predicates of the masked load/store instructions are 35 /// generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes 36 /// the Backedge Taken Count (BTC) of the scalar loop as its second argument, 37 /// which we extract to set up the number of elements processed by the loop. 38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target 39 /// specific VCTP intrinsic to represent the effect of tail predication. 40 /// This will be picked up by the ARM Low-overhead loop pass, which performs 41 /// the final transformation to a DLSTP or WLSTP tail-predicated loop. 42 43 #include "ARM.h" 44 #include "ARMSubtarget.h" 45 #include "ARMTargetTransformInfo.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolution.h" 49 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/TargetTransformInfo.h" 52 #include "llvm/CodeGen/TargetPassConfig.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "mve-tail-predication" 66 #define DESC "Transform predicated vector loops to use MVE tail predication" 67 68 cl::opt<TailPredication::Mode> EnableTailPredication( 69 "tail-predication", cl::desc("MVE tail-predication options"), 70 cl::init(TailPredication::Disabled), 71 cl::values(clEnumValN(TailPredication::Disabled, "disabled", 72 "Don't tail-predicate loops"), 73 clEnumValN(TailPredication::EnabledNoReductions, 74 "enabled-no-reductions", 75 "Enable tail-predication, but not for reduction loops"), 76 clEnumValN(TailPredication::Enabled, 77 "enabled", 78 "Enable tail-predication, including reduction loops"), 79 clEnumValN(TailPredication::ForceEnabledNoReductions, 80 "force-enabled-no-reductions", 81 "Enable tail-predication, but not for reduction loops, " 82 "and force this which might be unsafe"), 83 clEnumValN(TailPredication::ForceEnabled, 84 "force-enabled", 85 "Enable tail-predication, including reduction loops, " 86 "and force this which might be unsafe"))); 87 88 89 namespace { 90 91 class MVETailPredication : public LoopPass { 92 SmallVector<IntrinsicInst*, 4> MaskedInsts; 93 Loop *L = nullptr; 94 ScalarEvolution *SE = nullptr; 95 TargetTransformInfo *TTI = nullptr; 96 const ARMSubtarget *ST = nullptr; 97 98 public: 99 static char ID; 100 101 MVETailPredication() : LoopPass(ID) { } 102 103 void getAnalysisUsage(AnalysisUsage &AU) const override { 104 AU.addRequired<ScalarEvolutionWrapperPass>(); 105 AU.addRequired<LoopInfoWrapperPass>(); 106 AU.addRequired<TargetPassConfig>(); 107 AU.addRequired<TargetTransformInfoWrapperPass>(); 108 AU.addPreserved<LoopInfoWrapperPass>(); 109 AU.setPreservesCFG(); 110 } 111 112 bool runOnLoop(Loop *L, LPPassManager&) override; 113 114 private: 115 /// Perform the relevant checks on the loop and convert if possible. 116 bool TryConvert(Value *TripCount); 117 118 /// Return whether this is a vectorized loop, that contains masked 119 /// load/stores. 120 bool IsPredicatedVectorLoop(); 121 122 /// Perform checks on the arguments of @llvm.get.active.lane.mask 123 /// intrinsic: check if the first is a loop induction variable, and for the 124 /// the second check that no overflow can occur in the expression that use 125 /// this backedge-taken count. 126 bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount, 127 FixedVectorType *VecTy); 128 129 /// Insert the intrinsic to represent the effect of tail predication. 130 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount, 131 FixedVectorType *VecTy); 132 133 /// Rematerialize the iteration count in exit blocks, which enables 134 /// ARMLowOverheadLoops to better optimise away loop update statements inside 135 /// hardware-loops. 136 void RematerializeIterCount(); 137 }; 138 139 } // end namespace 140 141 static bool IsDecrement(Instruction &I) { 142 auto *Call = dyn_cast<IntrinsicInst>(&I); 143 if (!Call) 144 return false; 145 146 Intrinsic::ID ID = Call->getIntrinsicID(); 147 return ID == Intrinsic::loop_decrement_reg; 148 } 149 150 static bool IsMasked(Instruction *I) { 151 auto *Call = dyn_cast<IntrinsicInst>(I); 152 if (!Call) 153 return false; 154 155 Intrinsic::ID ID = Call->getIntrinsicID(); 156 return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load || 157 isGatherScatter(Call); 158 } 159 160 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { 161 if (skipLoop(L) || !EnableTailPredication) 162 return false; 163 164 MaskedInsts.clear(); 165 Function &F = *L->getHeader()->getParent(); 166 auto &TPC = getAnalysis<TargetPassConfig>(); 167 auto &TM = TPC.getTM<TargetMachine>(); 168 ST = &TM.getSubtarget<ARMSubtarget>(F); 169 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 170 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 171 this->L = L; 172 173 // The MVE and LOB extensions are combined to enable tail-predication, but 174 // there's nothing preventing us from generating VCTP instructions for v8.1m. 175 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { 176 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); 177 return false; 178 } 179 180 BasicBlock *Preheader = L->getLoopPreheader(); 181 if (!Preheader) 182 return false; 183 184 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { 185 for (auto &I : *BB) { 186 auto *Call = dyn_cast<IntrinsicInst>(&I); 187 if (!Call) 188 continue; 189 190 Intrinsic::ID ID = Call->getIntrinsicID(); 191 if (ID == Intrinsic::set_loop_iterations || 192 ID == Intrinsic::test_set_loop_iterations) 193 return cast<IntrinsicInst>(&I); 194 } 195 return nullptr; 196 }; 197 198 // Look for the hardware loop intrinsic that sets the iteration count. 199 IntrinsicInst *Setup = FindLoopIterations(Preheader); 200 201 // The test.set iteration could live in the pre-preheader. 202 if (!Setup) { 203 if (!Preheader->getSinglePredecessor()) 204 return false; 205 Setup = FindLoopIterations(Preheader->getSinglePredecessor()); 206 if (!Setup) 207 return false; 208 } 209 210 // Search for the hardware loop intrinic that decrements the loop counter. 211 IntrinsicInst *Decrement = nullptr; 212 for (auto *BB : L->getBlocks()) { 213 for (auto &I : *BB) { 214 if (IsDecrement(I)) { 215 Decrement = cast<IntrinsicInst>(&I); 216 break; 217 } 218 } 219 } 220 221 if (!Decrement) 222 return false; 223 224 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n" 225 << *Decrement << "\n"); 226 227 if (!TryConvert(Setup->getArgOperand(0))) { 228 LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n"); 229 return false; 230 } 231 232 return true; 233 } 234 235 static FixedVectorType *getVectorType(IntrinsicInst *I) { 236 unsigned ID = I->getIntrinsicID(); 237 FixedVectorType *VecTy; 238 if (ID == Intrinsic::masked_load || isGather(I)) { 239 if (ID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated) 240 // then the type is a StructType 241 VecTy = dyn_cast<FixedVectorType>(I->getType()->getContainedType(0)); 242 else 243 VecTy = dyn_cast<FixedVectorType>(I->getType()); 244 } else if (ID == Intrinsic::masked_store) { 245 VecTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType()); 246 } else { 247 VecTy = dyn_cast<FixedVectorType>(I->getOperand(2)->getType()); 248 } 249 assert(VecTy && "No scalable vectors expected here"); 250 return VecTy; 251 } 252 253 bool MVETailPredication::IsPredicatedVectorLoop() { 254 // Check that the loop contains at least one masked load/store intrinsic. 255 // We only support 'normal' vector instructions - other than masked 256 // load/stores. 257 bool ActiveLaneMask = false; 258 for (auto *BB : L->getBlocks()) { 259 for (auto &I : *BB) { 260 auto *Int = dyn_cast<IntrinsicInst>(&I); 261 if (!Int) 262 continue; 263 264 switch (Int->getIntrinsicID()) { 265 case Intrinsic::get_active_lane_mask: 266 ActiveLaneMask = true; 267 continue; 268 case Intrinsic::sadd_sat: 269 case Intrinsic::uadd_sat: 270 case Intrinsic::ssub_sat: 271 case Intrinsic::usub_sat: 272 case Intrinsic::experimental_vector_reduce_add: 273 continue; 274 case Intrinsic::fma: 275 case Intrinsic::trunc: 276 case Intrinsic::rint: 277 case Intrinsic::round: 278 case Intrinsic::floor: 279 case Intrinsic::ceil: 280 case Intrinsic::fabs: 281 if (ST->hasMVEFloatOps()) 282 continue; 283 break; 284 default: 285 break; 286 } 287 if (IsMasked(&I)) { 288 auto *VecTy = getVectorType(Int); 289 unsigned Lanes = VecTy->getNumElements(); 290 unsigned ElementWidth = VecTy->getScalarSizeInBits(); 291 // MVE vectors are 128-bit, but don't support 128 x i1. 292 // TODO: Can we support vectors larger than 128-bits? 293 unsigned MaxWidth = TTI->getRegisterBitWidth(true); 294 if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth) 295 return false; 296 MaskedInsts.push_back(cast<IntrinsicInst>(&I)); 297 continue; 298 } 299 300 for (const Use &U : Int->args()) { 301 if (isa<VectorType>(U->getType())) 302 return false; 303 } 304 } 305 } 306 307 if (!ActiveLaneMask) { 308 LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n"); 309 return false; 310 } 311 return !MaskedInsts.empty(); 312 } 313 314 // Look through the exit block to see whether there's a duplicate predicate 315 // instruction. This can happen when we need to perform a select on values 316 // from the last and previous iteration. Instead of doing a straight 317 // replacement of that predicate with the vctp, clone the vctp and place it 318 // in the block. This means that the VPR doesn't have to be live into the 319 // exit block which should make it easier to convert this loop into a proper 320 // tail predicated loop. 321 static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) { 322 BasicBlock *Exit = L->getUniqueExitBlock(); 323 if (!Exit) { 324 LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n"); 325 return; 326 } 327 328 // Drop references and add operands to check for dead. 329 SmallPtrSet<Instruction*, 4> Dead; 330 while (!MaybeDead.empty()) { 331 auto *I = MaybeDead.front(); 332 MaybeDead.remove(I); 333 if (I->hasNUsesOrMore(1)) 334 continue; 335 336 for (auto &U : I->operands()) 337 if (auto *OpI = dyn_cast<Instruction>(U)) 338 MaybeDead.insert(OpI); 339 340 Dead.insert(I); 341 } 342 343 for (auto *I : Dead) { 344 LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump()); 345 I->eraseFromParent(); 346 } 347 348 for (auto I : L->blocks()) 349 DeleteDeadPHIs(I); 350 } 351 352 // The active lane intrinsic has this form: 353 // 354 // @llvm.get.active.lane.mask(IV, BTC) 355 // 356 // Here we perform checks that this intrinsic behaves as expected, 357 // which means: 358 // 359 // 1) The element count, which is calculated with BTC + 1, cannot overflow. 360 // 2) The element count needs to be sufficiently large that the decrement of 361 // element counter doesn't overflow, which means that we need to prove: 362 // ceil(ElementCount / VectorWidth) >= TripCount 363 // by rounding up ElementCount up: 364 // ((ElementCount + (VectorWidth - 1)) / VectorWidth 365 // and evaluate if expression isKnownNonNegative: 366 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 367 // 3) The IV must be an induction phi with an increment equal to the 368 // vector width. 369 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, 370 Value *TripCount, FixedVectorType *VecTy) { 371 bool ForceTailPredication = 372 EnableTailPredication == TailPredication::ForceEnabledNoReductions || 373 EnableTailPredication == TailPredication::ForceEnabled; 374 375 // 1) Test whether entry to the loop is protected by a conditional 376 // BTC + 1 < 0. In other words, if the scalar trip count overflows, 377 // becomes negative, we shouldn't enter the loop and creating 378 // tripcount expression BTC + 1 is not safe. So, check that BTC 379 // isn't max. This is evaluated in unsigned, because the semantics 380 // of @get.active.lane.mask is a ULE comparison. 381 auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1); 382 auto *BTC = SE->getSCEV(BackedgeTakenCount); 383 auto *MaxBTC = SE->getConstantMaxBackedgeTakenCount(L); 384 385 if (isa<SCEVCouldNotCompute>(MaxBTC)) { 386 LLVM_DEBUG(dbgs() << "ARM TP: Can't compute SCEV BTC expression: "; 387 BTC->dump()); 388 return false; 389 } 390 391 APInt MaxInt = APInt(BTC->getType()->getScalarSizeInBits(), ~0); 392 if (cast<SCEVConstant>(MaxBTC)->getAPInt().eq(MaxInt) && 393 !ForceTailPredication) { 394 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be int max: "; 395 BTC->dump()); 396 return false; 397 } 398 399 // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow: 400 // 401 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount 402 // 403 // 2.1) First prove overflow can't happen in: 404 // 405 // ElementCount + (VectorWidth - 1) 406 // 407 // Because of a lack of context, it is difficult to get a useful bounds on 408 // this expression. But since ElementCount uses the same variables as the 409 // TripCount (TC), for which we can find meaningful value ranges, we use that 410 // instead and assert that: 411 // 412 // upperbound(TC) <= UINT_MAX - VectorWidth 413 // 414 auto *TC = SE->getSCEV(TripCount); 415 unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits(); 416 int VectorWidth = VecTy->getNumElements(); 417 auto Diff = APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth); 418 uint64_t MaxMinusVW = Diff.getZExtValue(); 419 uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue(); 420 421 if (UpperboundTC > MaxMinusVW && !ForceTailPredication) { 422 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n"; 423 dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n"; 424 dbgs() << UpperboundTC << " <= " << MaxMinusVW << " == false\n";); 425 return false; 426 } 427 428 // 2.2) Make sure overflow doesn't happen in final expression: 429 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount, 430 // To do this, compare the full ranges of these subexpressions: 431 // 432 // Range(Ceil) <= Range(TC) 433 // 434 // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime 435 // values (and not constants), we have to compensate for the lowerbound value 436 // range to be off by 1. The reason is that BTC lives in the preheader in 437 // this form: 438 // 439 // %trip.count.minus = add nsw nuw i32 %N, -1 440 // 441 // For the loop to be executed, %N has to be >= 1 and as a result the value 442 // range of %trip.count.minus has a lower bound of 0. Value %TC has this form: 443 // 444 // %5 = add nuw nsw i32 %4, 1 445 // call void @llvm.set.loop.iterations.i32(i32 %5) 446 // 447 // where %5 is some expression using %N, which needs to have a lower bound of 448 // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set, 449 // we first add 0 to TC such that we can do the <= comparison on both sets. 450 // 451 auto *One = SE->getOne(TripCount->getType()); 452 // ElementCount = BTC + 1 453 auto *ElementCount = SE->getAddExpr(BTC, One); 454 // Tmp = ElementCount + (VW-1) 455 auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount, 456 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); 457 // Ceil = ElementCount + (VW-1) / VW 458 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, 459 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth))); 460 461 ConstantRange RangeCeil = SE->getSignedRange(Ceil) ; 462 ConstantRange RangeTC = SE->getSignedRange(TC) ; 463 if (!RangeTC.isSingleElement()) { 464 auto ZeroRange = 465 ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0)); 466 RangeTC = RangeTC.unionWith(ZeroRange); 467 } 468 if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) { 469 LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n"); 470 return false; 471 } 472 473 // 3) Find out if IV is an induction phi. Note that we can't use Loop 474 // helpers here to get the induction variable, because the hardware loop is 475 // no longer in loopsimplify form, and also the hwloop intrinsic uses a 476 // different counter. Using SCEV, we check that the induction is of the 477 // form i = i + 4, where the increment must be equal to the VectorWidth. 478 auto *IV = ActiveLaneMask->getOperand(0); 479 auto *IVExpr = SE->getSCEV(IV); 480 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); 481 if (!AddExpr) { 482 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); 483 return false; 484 } 485 // Check that this AddRec is associated with this loop. 486 if (AddExpr->getLoop() != L) { 487 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); 488 return false; 489 } 490 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); 491 if (!Step) { 492 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; 493 AddExpr->getOperand(1)->dump()); 494 return false; 495 } 496 auto StepValue = Step->getValue()->getSExtValue(); 497 if (VectorWidth == StepValue) 498 return true; 499 500 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match " 501 "vector width " << VectorWidth << "\n"); 502 503 return false; 504 } 505 506 // Materialize NumElements in the preheader block. 507 static Value *getNumElements(BasicBlock *Preheader, Value *BTC) { 508 // First, check the preheader if it not already exist: 509 // 510 // preheader: 511 // %BTC = add i32 %N, -1 512 // .. 513 // vector.body: 514 // 515 // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1, 516 // but instead can just return %N. 517 for (auto &I : *Preheader) { 518 if (I.getOpcode() != Instruction::Add || &I != BTC) 519 continue; 520 ConstantInt *MinusOne = nullptr; 521 if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1)))) 522 continue; 523 if (MinusOne->getSExtValue() == -1) { 524 LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n"); 525 return I.getOperand(0); 526 } 527 } 528 529 // But we do need to materialise BTC if it is not already there, 530 // e.g. if it is a constant. 531 IRBuilder<> Builder(Preheader->getTerminator()); 532 Value *NumElements = Builder.CreateAdd(BTC, 533 ConstantInt::get(BTC->getType(), 1), "num.elements"); 534 LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n"); 535 return NumElements; 536 } 537 538 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, 539 Value *TripCount, FixedVectorType *VecTy) { 540 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 541 Module *M = L->getHeader()->getModule(); 542 Type *Ty = IntegerType::get(M->getContext(), 32); 543 unsigned VectorWidth = VecTy->getNumElements(); 544 545 // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand, 546 // is one less than the trip count. So we need to find or create 547 // %num.elements = %BTC + 1 in the preheader. 548 Value *BTC = ActiveLaneMask->getOperand(1); 549 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 550 Value *NumElements = getNumElements(L->getLoopPreheader(), BTC); 551 552 // Insert a phi to count the number of elements processed by the loop. 553 Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI() ); 554 PHINode *Processed = Builder.CreatePHI(Ty, 2); 555 Processed->addIncoming(NumElements, L->getLoopPreheader()); 556 557 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus 558 // represent the effect of tail predication. 559 Builder.SetInsertPoint(ActiveLaneMask); 560 ConstantInt *Factor = 561 ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); 562 563 Intrinsic::ID VCTPID; 564 switch (VectorWidth) { 565 default: 566 llvm_unreachable("unexpected number of lanes"); 567 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; 568 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; 569 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; 570 571 // FIXME: vctp64 currently not supported because the predicate 572 // vector wants to be <2 x i1>, but v2i1 is not a legal MVE 573 // type, so problems happen at isel time. 574 // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics 575 // purposes, but takes a v4i1 instead of a v2i1. 576 } 577 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); 578 Value *VCTPCall = Builder.CreateCall(VCTP, Processed); 579 ActiveLaneMask->replaceAllUsesWith(VCTPCall); 580 581 // Add the incoming value to the new phi. 582 // TODO: This add likely already exists in the loop. 583 Value *Remaining = Builder.CreateSub(Processed, Factor); 584 Processed->addIncoming(Remaining, L->getLoopLatch()); 585 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " 586 << *Processed << "\n" 587 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); 588 } 589 590 bool MVETailPredication::TryConvert(Value *TripCount) { 591 if (!IsPredicatedVectorLoop()) { 592 LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n"); 593 return false; 594 } 595 596 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); 597 SetVector<Instruction*> Predicates; 598 599 // Walk through the masked intrinsics and try to find whether the predicate 600 // operand is generated by intrinsic @llvm.get.active.lane.mask(). 601 for (auto *I : MaskedInsts) { 602 unsigned PredOp = 603 (I->getIntrinsicID() == Intrinsic::masked_load || isGather(I)) ? 2 : 3; 604 auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); 605 if (!Predicate || Predicates.count(Predicate)) 606 continue; 607 608 auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate); 609 if (!ActiveLaneMask || 610 ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask) 611 continue; 612 613 Predicates.insert(Predicate); 614 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " 615 << *ActiveLaneMask << "\n"); 616 617 auto *VecTy = getVectorType(I); 618 if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) { 619 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); 620 return false; 621 } 622 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n"); 623 InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy); 624 } 625 626 Cleanup(Predicates, L); 627 return true; 628 } 629 630 Pass *llvm::createMVETailPredicationPass() { 631 return new MVETailPredication(); 632 } 633 634 char MVETailPredication::ID = 0; 635 636 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) 637 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) 638