xref: /llvm-project/llvm/lib/Target/ARM/MVETailPredication.cpp (revision 3324e3a6eeb5aab8b704509bb4b40e652da3799d)
1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
21 ///
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon the iteration counter. This pass looks at these predicated
26 /// vector loops, that are targets for low-overhead loops, and prepares it for
27 /// code generation. Once the vectorizer has produced a masked loop, there's a
28 /// couple of final forms:
29 /// - A tail-predicated loop, with implicit predication.
30 /// - A loop containing multiple VCPT instructions, predicating multiple VPT
31 ///   blocks of instructions operating on different vector types.
32 ///
33 /// This pass:
34 /// 1) Checks if the predicates of the masked load/store instructions are
35 ///    generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
36 ///    the Backedge Taken Count (BTC) of the scalar loop as its second argument,
37 ///    which we extract to set up the number of elements processed by the loop.
38 /// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
39 ///    specific VCTP intrinsic to represent the effect of tail predication.
40 ///    This will be picked up by the ARM Low-overhead loop pass, which performs
41 ///    the final transformation to a DLSTP or WLSTP tail-predicated loop.
42 
43 #include "ARM.h"
44 #include "ARMSubtarget.h"
45 #include "llvm/Analysis/LoopInfo.h"
46 #include "llvm/Analysis/LoopPass.h"
47 #include "llvm/Analysis/ScalarEvolution.h"
48 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "mve-tail-predication"
65 #define DESC "Transform predicated vector loops to use MVE tail predication"
66 
67 static cl::opt<bool>
68 ForceTailPredication("force-mve-tail-predication", cl::Hidden, cl::init(false),
69                      cl::desc("Force MVE tail-predication even if it might be "
70                               "unsafe (e.g. possible overflow in loop "
71                               "counters)"));
72 
73 cl::opt<bool>
74 DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
75                        cl::init(true),
76                        cl::desc("Disable MVE Tail Predication"));
77 namespace {
78 
79 class MVETailPredication : public LoopPass {
80   SmallVector<IntrinsicInst*, 4> MaskedInsts;
81   Loop *L = nullptr;
82   ScalarEvolution *SE = nullptr;
83   TargetTransformInfo *TTI = nullptr;
84   const ARMSubtarget *ST = nullptr;
85 
86 public:
87   static char ID;
88 
89   MVETailPredication() : LoopPass(ID) { }
90 
91   void getAnalysisUsage(AnalysisUsage &AU) const override {
92     AU.addRequired<ScalarEvolutionWrapperPass>();
93     AU.addRequired<LoopInfoWrapperPass>();
94     AU.addRequired<TargetPassConfig>();
95     AU.addRequired<TargetTransformInfoWrapperPass>();
96     AU.addPreserved<LoopInfoWrapperPass>();
97     AU.setPreservesCFG();
98   }
99 
100   bool runOnLoop(Loop *L, LPPassManager&) override;
101 
102 private:
103   /// Perform the relevant checks on the loop and convert if possible.
104   bool TryConvert(Value *TripCount);
105 
106   /// Return whether this is a vectorized loop, that contains masked
107   /// load/stores.
108   bool IsPredicatedVectorLoop();
109 
110   /// Perform checks on the arguments of @llvm.get.active.lane.mask
111   /// intrinsic: check if the first is a loop induction variable, and for the
112   /// the second check that no overflow can occur in the expression that use
113   /// this backedge-taken count.
114   bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
115                         FixedVectorType *VecTy);
116 
117   /// Insert the intrinsic to represent the effect of tail predication.
118   void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
119                            FixedVectorType *VecTy);
120 
121   /// Rematerialize the iteration count in exit blocks, which enables
122   /// ARMLowOverheadLoops to better optimise away loop update statements inside
123   /// hardware-loops.
124   void RematerializeIterCount();
125 };
126 
127 } // end namespace
128 
129 static bool IsDecrement(Instruction &I) {
130   auto *Call = dyn_cast<IntrinsicInst>(&I);
131   if (!Call)
132     return false;
133 
134   Intrinsic::ID ID = Call->getIntrinsicID();
135   return ID == Intrinsic::loop_decrement_reg;
136 }
137 
138 static bool IsMasked(Instruction *I) {
139   auto *Call = dyn_cast<IntrinsicInst>(I);
140   if (!Call)
141     return false;
142 
143   Intrinsic::ID ID = Call->getIntrinsicID();
144   // TODO: Support gather/scatter expand/compress operations.
145   return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
146 }
147 
148 bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
149   if (skipLoop(L) || DisableTailPredication)
150     return false;
151 
152   MaskedInsts.clear();
153   Function &F = *L->getHeader()->getParent();
154   auto &TPC = getAnalysis<TargetPassConfig>();
155   auto &TM = TPC.getTM<TargetMachine>();
156   ST = &TM.getSubtarget<ARMSubtarget>(F);
157   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
158   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
159   this->L = L;
160 
161   // The MVE and LOB extensions are combined to enable tail-predication, but
162   // there's nothing preventing us from generating VCTP instructions for v8.1m.
163   if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
164     LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
165     return false;
166   }
167 
168   BasicBlock *Preheader = L->getLoopPreheader();
169   if (!Preheader)
170     return false;
171 
172   auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
173     for (auto &I : *BB) {
174       auto *Call = dyn_cast<IntrinsicInst>(&I);
175       if (!Call)
176         continue;
177 
178       Intrinsic::ID ID = Call->getIntrinsicID();
179       if (ID == Intrinsic::set_loop_iterations ||
180           ID == Intrinsic::test_set_loop_iterations)
181         return cast<IntrinsicInst>(&I);
182     }
183     return nullptr;
184   };
185 
186   // Look for the hardware loop intrinsic that sets the iteration count.
187   IntrinsicInst *Setup = FindLoopIterations(Preheader);
188 
189   // The test.set iteration could live in the pre-preheader.
190   if (!Setup) {
191     if (!Preheader->getSinglePredecessor())
192       return false;
193     Setup = FindLoopIterations(Preheader->getSinglePredecessor());
194     if (!Setup)
195       return false;
196   }
197 
198   // Search for the hardware loop intrinic that decrements the loop counter.
199   IntrinsicInst *Decrement = nullptr;
200   for (auto *BB : L->getBlocks()) {
201     for (auto &I : *BB) {
202       if (IsDecrement(I)) {
203         Decrement = cast<IntrinsicInst>(&I);
204         break;
205       }
206     }
207   }
208 
209   if (!Decrement)
210     return false;
211 
212   LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
213              << *Decrement << "\n");
214 
215   if (!TryConvert(Setup->getArgOperand(0))) {
216     LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
217     return false;
218   }
219 
220   return true;
221 }
222 
223 static FixedVectorType *getVectorType(IntrinsicInst *I) {
224   unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
225   auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
226   auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType());
227   assert(VecTy && "No scalable vectors expected here");
228   return VecTy;
229 }
230 
231 bool MVETailPredication::IsPredicatedVectorLoop() {
232   // Check that the loop contains at least one masked load/store intrinsic.
233   // We only support 'normal' vector instructions - other than masked
234   // load/stores.
235   bool ActiveLaneMask = false;
236   for (auto *BB : L->getBlocks()) {
237     for (auto &I : *BB) {
238       auto *Int = dyn_cast<IntrinsicInst>(&I);
239       if (!Int)
240         continue;
241 
242       switch (Int->getIntrinsicID()) {
243       case Intrinsic::get_active_lane_mask:
244         ActiveLaneMask = true;
245         LLVM_FALLTHROUGH;
246       case Intrinsic::sadd_sat:
247       case Intrinsic::uadd_sat:
248       case Intrinsic::ssub_sat:
249       case Intrinsic::usub_sat:
250         continue;
251       case Intrinsic::fma:
252       case Intrinsic::trunc:
253       case Intrinsic::rint:
254       case Intrinsic::round:
255       case Intrinsic::floor:
256       case Intrinsic::ceil:
257       case Intrinsic::fabs:
258         if (ST->hasMVEFloatOps())
259           continue;
260         LLVM_FALLTHROUGH;
261       default:
262         break;
263       }
264 
265       if (IsMasked(&I)) {
266         auto *VecTy = getVectorType(Int);
267         unsigned Lanes = VecTy->getNumElements();
268         unsigned ElementWidth = VecTy->getScalarSizeInBits();
269         // MVE vectors are 128-bit, but don't support 128 x i1.
270         // TODO: Can we support vectors larger than 128-bits?
271         unsigned MaxWidth = TTI->getRegisterBitWidth(true);
272         if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
273           return false;
274         MaskedInsts.push_back(cast<IntrinsicInst>(&I));
275         continue;
276       }
277 
278       for (const Use &U : Int->args()) {
279         if (isa<VectorType>(U->getType()))
280           return false;
281       }
282     }
283   }
284 
285   if (!ActiveLaneMask) {
286     LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
287     return false;
288   }
289   return !MaskedInsts.empty();
290 }
291 
292 // Look through the exit block to see whether there's a duplicate predicate
293 // instruction. This can happen when we need to perform a select on values
294 // from the last and previous iteration. Instead of doing a straight
295 // replacement of that predicate with the vctp, clone the vctp and place it
296 // in the block. This means that the VPR doesn't have to be live into the
297 // exit block which should make it easier to convert this loop into a proper
298 // tail predicated loop.
299 static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
300   BasicBlock *Exit = L->getUniqueExitBlock();
301   if (!Exit) {
302     LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
303     return;
304   }
305 
306   // Drop references and add operands to check for dead.
307   SmallPtrSet<Instruction*, 4> Dead;
308   while (!MaybeDead.empty()) {
309     auto *I = MaybeDead.front();
310     MaybeDead.remove(I);
311     if (I->hasNUsesOrMore(1))
312       continue;
313 
314     for (auto &U : I->operands())
315       if (auto *OpI = dyn_cast<Instruction>(U))
316         MaybeDead.insert(OpI);
317 
318     Dead.insert(I);
319   }
320 
321   for (auto *I : Dead) {
322     LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
323     I->eraseFromParent();
324   }
325 
326   for (auto I : L->blocks())
327     DeleteDeadPHIs(I);
328 }
329 
330 // The active lane intrinsic has this form:
331 //
332 //    @llvm.get.active.lane.mask(IV, BTC)
333 //
334 // Here we perform checks that this intrinsic behaves as expected,
335 // which means:
336 //
337 // 1) The element count, which is calculated with BTC + 1, cannot overflow.
338 // 2) The element count needs to be sufficiently large that the decrement of
339 //    element counter doesn't overflow, which means that we need to prove:
340 //        ceil(ElementCount / VectorWidth) >= TripCount
341 //    by rounding up ElementCount up:
342 //        ((ElementCount + (VectorWidth - 1)) / VectorWidth
343 //    and evaluate if expression isKnownNonNegative:
344 //        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
345 // 3) The IV must be an induction phi with an increment equal to the
346 //    vector width.
347 bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
348     Value *TripCount, FixedVectorType *VecTy) {
349   // 1) Test whether entry to the loop is protected by a conditional
350   // BTC + 1 < 0. In other words, if the scalar trip count overflows,
351   // becomes negative, we shouldn't enter the loop and creating
352   // tripcount expression BTC + 1 is not safe. So, check that BTC
353   // isn't max. This is evaluated in unsigned, because the semantics
354   // of @get.active.lane.mask is a ULE comparison.
355 
356   int VectorWidth = VecTy->getNumElements();
357   auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1);
358   auto *BTC = SE->getSCEV(BackedgeTakenCount);
359 
360   if (!llvm::cannotBeMaxInLoop(BTC, L, *SE, false /*Signed*/) &&
361       !ForceTailPredication) {
362     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be max: ";
363                BTC->dump());
364     return false;
365   }
366 
367   // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
368   //
369   //      (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
370   //
371   // 2.1) First prove overflow can't happen in:
372   //
373   //      ElementCount + (VectorWidth - 1)
374   //
375   // Because of a lack of context, it is difficult to get a useful bounds on
376   // this expression. But since ElementCount uses the same variables as the
377   // TripCount (TC), for which we can find meaningful value ranges, we use that
378   // instead and assert that:
379   //
380   //     upperbound(TC) <= UINT_MAX - VectorWidth
381   //
382   auto *TC = SE->getSCEV(TripCount);
383   unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
384   auto Diff =  APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
385   uint64_t MaxMinusVW = Diff.getZExtValue();
386   uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue();
387 
388   if (UpperboundTC > MaxMinusVW && !ForceTailPredication) {
389     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
390                dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
391                dbgs() << UpperboundTC << " <= " << MaxMinusVW << "== false\n";);
392     return false;
393   }
394 
395   // 2.2) Make sure overflow doesn't happen in final expression:
396   //  (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
397   // To do this, compare the full ranges of these subexpressions:
398   //
399   //     Range(Ceil) <= Range(TC)
400   //
401   // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
402   // values (and not constants), we have to compensate for the lowerbound value
403   // range to be off by 1. The reason is that BTC lives in the preheader in
404   // this form:
405   //
406   //     %trip.count.minus = add nsw nuw i32 %N, -1
407   //
408   // For the loop to be executed, %N has to be >= 1 and as a result the value
409   // range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
410   //
411   //     %5 = add nuw nsw i32 %4, 1
412   //     call void @llvm.set.loop.iterations.i32(i32 %5)
413   //
414   // where %5 is some expression using %N, which needs to have a lower bound of
415   // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
416   // we first add 0 to TC such that we can do the <= comparison on both sets.
417   //
418   auto *One = SE->getOne(TripCount->getType());
419   // ElementCount = BTC + 1
420   auto *ElementCount = SE->getAddExpr(BTC, One);
421   // Tmp = ElementCount + (VW-1)
422   auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount,
423       SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
424   // Ceil = ElementCount + (VW-1) / VW
425   auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
426       SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));
427 
428   ConstantRange RangeCeil = SE->getSignedRange(Ceil) ;
429   ConstantRange RangeTC = SE->getSignedRange(TC) ;
430   if (!RangeTC.isSingleElement()) {
431     auto ZeroRange =
432         ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
433     RangeTC = RangeTC.unionWith(ZeroRange);
434   }
435   if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
436     LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
437     return false;
438   }
439 
440   // 3) Find out if IV is an induction phi. Note that We can't use Loop
441   // helpers here to get the induction variable, because the hardware loop is
442   // no longer in loopsimplify form, and also the hwloop intrinsic use a
443   // different counter.  Using SCEV, we check that the induction is of the
444   // form i = i + 4, where the increment must be equal to the VectorWidth.
445   auto *IV = ActiveLaneMask->getOperand(0);
446   auto *IVExpr = SE->getSCEV(IV);
447   auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
448   if (!AddExpr) {
449     LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
450     return false;
451   }
452   // Check that this AddRec is associated with this loop.
453   if (AddExpr->getLoop() != L) {
454     LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
455     return false;
456   }
457   auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
458   if (!Step) {
459     LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
460                AddExpr->getOperand(1)->dump());
461     return false;
462   }
463   auto StepValue = Step->getValue()->getSExtValue();
464   if (VectorWidth == StepValue)
465     return true;
466 
467   LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
468              "vector width " << VectorWidth << "\n");
469 
470   return false;
471 }
472 
473 // Materialize NumElements in the preheader block.
474 static Value *getNumElements(BasicBlock *Preheader, Value *BTC) {
475   // First, check the preheader if it not already exist:
476   //
477   // preheader:
478   //    %BTC = add i32 %N, -1
479   //    ..
480   // vector.body:
481   //
482   // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1,
483   // but instead can just return %N.
484   for (auto &I : *Preheader) {
485     if (I.getOpcode() != Instruction::Add || &I != BTC)
486       continue;
487     ConstantInt *MinusOne = nullptr;
488     if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1))))
489       continue;
490     if (MinusOne->getSExtValue() == -1) {
491       LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n");
492       return I.getOperand(0);
493     }
494   }
495 
496   // But we do need to materialise BTC if it is not already there,
497   // e.g. if it is a constant.
498   IRBuilder<> Builder(Preheader->getTerminator());
499   Value *NumElements = Builder.CreateAdd(BTC,
500         ConstantInt::get(BTC->getType(), 1), "num.elements");
501   LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n");
502   return NumElements;
503 }
504 
505 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
506     Value *TripCount, FixedVectorType *VecTy) {
507   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
508   Module *M = L->getHeader()->getModule();
509   Type *Ty = IntegerType::get(M->getContext(), 32);
510   unsigned VectorWidth = VecTy->getNumElements();
511 
512   // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand,
513   // is one less than the trip count. So we need to find or create
514   // %num.elements = %BTC + 1 in the preheader.
515   Value *BTC = ActiveLaneMask->getOperand(1);
516   Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
517   Value *NumElements = getNumElements(L->getLoopPreheader(), BTC);
518 
519   // Insert a phi to count the number of elements processed by the loop.
520   Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI()  );
521   PHINode *Processed = Builder.CreatePHI(Ty, 2);
522   Processed->addIncoming(NumElements, L->getLoopPreheader());
523 
524   // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus
525   // represent the effect of tail predication.
526   Builder.SetInsertPoint(ActiveLaneMask);
527   ConstantInt *Factor =
528     ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
529 
530   Intrinsic::ID VCTPID;
531   switch (VectorWidth) {
532   default:
533     llvm_unreachable("unexpected number of lanes");
534   case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
535   case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
536   case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
537 
538     // FIXME: vctp64 currently not supported because the predicate
539     // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
540     // type, so problems happen at isel time.
541     // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
542     // purposes, but takes a v4i1 instead of a v2i1.
543   }
544   Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
545   Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
546   ActiveLaneMask->replaceAllUsesWith(VCTPCall);
547 
548   // Add the incoming value to the new phi.
549   // TODO: This add likely already exists in the loop.
550   Value *Remaining = Builder.CreateSub(Processed, Factor);
551   Processed->addIncoming(Remaining, L->getLoopLatch());
552   LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
553              << *Processed << "\n"
554              << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
555 }
556 
557 bool MVETailPredication::TryConvert(Value *TripCount) {
558   if (!IsPredicatedVectorLoop()) {
559     LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
560     return false;
561   }
562 
563   LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
564   SetVector<Instruction*> Predicates;
565 
566   // Walk through the masked intrinsics and try to find whether the predicate
567   // operand is generated by intrinsic @llvm.get.active.lane.mask().
568   for (auto *I : MaskedInsts) {
569     unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3;
570     auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
571     if (!Predicate || Predicates.count(Predicate))
572       continue;
573 
574     auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
575     if (!ActiveLaneMask ||
576         ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
577       continue;
578 
579     Predicates.insert(Predicate);
580     LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
581                       << *ActiveLaneMask << "\n");
582 
583     auto *VecTy = getVectorType(I);
584     if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
585       LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
586       return false;
587     }
588     LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
589     InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
590   }
591 
592   Cleanup(Predicates, L);
593   return true;
594 }
595 
596 Pass *llvm::createMVETailPredicationPass() {
597   return new MVETailPredication();
598 }
599 
600 char MVETailPredication::ID = 0;
601 
602 INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
603 INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
604